Forthcoming Issue
Papers to appear in Volume 35, No. 2, January 2025
(subject to change)
Corresponding author*
|
General |
|
1. SS-2021-0389 [Supp] |
doi:10.5705/ss.202021.0389 |
Partially-Global Fréchet Regression
Danielle C. Tucker and Yichao Wu* |
2. SS-2022-0384 [Supp] |
doi:10.5705/ss.202022.0384 |
Moment Deviation Subspaces of Dimension Reduction for High-Dimensional Data With Change Structure
Xuehu Zhu, Luoyao Yu, Jiaqi Huang, Junmin Liu and Lixing Zhu*
|
3. SS-2022-0371 |
doi:10.5705/ss.202022.0371 |
Improved Regression Inference Using a Second Overlapping Regression Model
Liang Peng and John Einmahl* |
4. SS-2021-0387 [Supp] |
doi:10.5705/ss.202021.0387 |
Statistical Inference With Anchored Bayesian Mixture of Regressions Models: An Illustrative Study of Allometric Data
Deborah Kunkel* and Mario Peruggia |
5. SS-2022-0351 [Supp] |
doi:10.5705/ss.202022.0351 |
Robust Recovery of the Central Subspace for Regression Using the Influence Function of the Rényi Divergence
Ross Iaci* and T. N. Sriram |
6. SS-2022-0407 [Supp] |
doi:10.5705/ss.202022.0407 |
Reinforcement Learning via Nonparametric Smoothing in a Continuous-Time Stochastic Setting With Noisy Data
Chenyang Jiang, Bowen Hu, Yazhen Wang and Shang Wu* |
7. SS-2022-0087 [Supp] |
doi:10.5705/ss.202022.0087 |
The Importance of Being a Band: Finite-Sample Exact Distribution-Free Prediction Sets for Functional Data
Jacopo Diquigiovanni*, Matteo Fontana and Simone Vantini |
8. SS-2022-0312 [Supp] |
doi:10.5705/ss.202022.0312 |
Enhanced Structural Break Detection in Functional Means
Shuhao Jiao*, Ngai Hang Chan and Chun Yip Yau |
9. SS-2022-0404 [Supp] |
doi:10.5705/ss.202022.0404 |
A New Paradigm for Generative Adversarial Networks Based on Randomized Decision Rules
Sehwan Kim, Qifan Song and Faming Liang* |
10. SS-2023-0022 [Supp] |
doi:10.5705/ss.202023.0022 |
Regularized Adaptive Huber Matrix Regression and Distributed Learning
Yue Wang, Wenqi Lu, Lei Wang, Zhongyi Zhu, Hongmei Lin* and Heng Lian |
11. SS-2022-0396 [Supp] |
doi:10.5705/ss.202022.0396 |
Transfer Learning for High-Dimensional Quantile Regression via Convolution Smoothing
Yijiao Zhang and Zhongyi Zhu* |
12. SS-2023-0006 [Supp] |
doi:10.5705/ss.202023.0006 |
Identification and Estimation of Treatment Effects on Long-Term Outcomes in Clinical Trials With External Observational Data
Wenjie Hu, Xiao-Hua Zhou and Peng Wu* |
13. SS-2022-0288 [Supp] |
doi:10.5705/ss.202022.0288 |
A Data Fusion Method for Quantile Treatment Effects
Yijiao Zhang and Zhongyi Zhu* |
14. SS-2022-0336 [Supp] |
doi:10.5705/ss.202022.0336 |
Empirical Likelihood Inference of Variance Components in Linear Mixed-Effects Models
Jingru Zhang, Wei Guo, Joanne S. Carpenter, Andrew Leroux, Kathleen R. Merikangas, Nicholas G. Martin, Ian B. Hickie, Haochang Shou and Hongzhe Li* |
15. SS-2022-0321 [Supp] |
doi:10.5705/ss.202022.0321 |
Optimal Model Averaging for Single-Index Models With Divergent Dimensions
Jiahui Zou, Wendun Wang, Xinyu Zhang* and Guohua Zou |
16. SS-2022-0011 [Supp] |
doi:10.5705/ss.202022.0011 |
Testing Hypotheses of Covariate-Adaptive Randomized Clinical Trials With Time-to-Event Outcomes Under the AFT Model
Hongjian Zhu, Lixin Zhang*, Jing Ning and Lu Wang |
17. SS-2022-0319 [Supp] |
doi:10.5705/ss.202022.0319 |
Automatic Sparse PCA for High-Dimensional Data
Kazuyoshi Yata* and Makoto Aoshima |
18. SS-2022-0211 [Supp] |
doi:10.5705/ss.202022.0211 |
Towards Optimal Use of Surrogate Markers to Improve Power
Xuan Wang, Layla Parast, Lu Tian and Tianxi Cai* |
19. SS-2022-0007 [Supp] |
doi:10.5705/ss.202022-0007 |
The Tucker Low-Rank Classification Model for Tensor Data
Junge Li, Qing Mai* and Xin Zhang |
20. SS-2022-0366 [Supp] |
doi:10.5705/ss.202022.0366 |
A Kernel Independence Test Using Projection-Based Measure in High-Dimension
Yuexin Chen and Wangli Xu* |
21. SS-2023-0128 [Supp] |
doi:10.5705/ss.202023.0128 |
Unification of Rare and Weak Multiple Testing Models Using Moderate Deviations Analysis and Log-Chisquared P-values
Alon Kipnis* |
22. SS-2022-0388 [Supp] |
doi:10.5705/ss.202022.0388 |
Cross Projection Test for High-Dimension Mean Vectors
Guanpeng Wang and Hengjian Cui* |
23. SS-2022-0323 [Supp] |
doi:10.5705/ss.202022.0323 |
Inference for Change Points in High Dimensional Mean Shift Models
Abhishek Kaul* and George Michailidis |