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Supplementary Material

This Supplement contains proofs of the theorems in the paper and other con-

tributed results. Subsections S1–S5 contain proofs of theorems 1, 2, 3, 4 and 5

respectively. Subsection S6 contains some additional simulation results for the

performance of the test statistic T 2
CP.

S1 Proof of Theorem 1

First, we restate the asymptotic distribution for linear quadratic forms (see The-

orem 2.1 in Srivastava (2009)).

Lemma 1. We assume that zij are i.i.d. random variables with E(zij) = 0,

var(zij) = 1, fourth moment κ, and z̄ = (z̄1, . . . , z̄p)
T , where z̄i = 1

n

∑n
j=1 zij, i =

1, . . . , p j = 1, . . . , n. Then for any p×p symmetric matrix, A = (aij), suppose the

following assumptions hold: (i): lim
p→∞

max
1≤j≤p

(a2jj
p

)
= 0 and (ii): lim

p→∞

(
trAi

+/p
)
<∞,

i = 1, 2, 4, where A+ = (aij+) is a p × p symmetric matrix defined by aii+ = aii,
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and aij+ = |aij|. As n, p→∞, then the following result holds:

P
[(nz̄TAz̄− tr(A)√

2pτ2

)
≤ x

]
= Φ(x),

where Φ(x) is the cumulative distribution function of a standard normal random

variable, and τ2 = tr(A2)
p

.

Proof of Theorem 1 : Recall that the definition of t2o is

t2o = n1x̄
T
1U2W

−1
1 UT

2 x̄1 + n2x̄
T
2U1W

−1
2 UT

1 x̄2,

where W1 = diag(uT21Σu21, . . . ,u
T
2pΣu2p) and W2 = diag(uT11Σu11, . . . ,u

T
1pΣu1p).

In this proof, we will prove the asymptotic normality of t2o in two steps. The first

step is to prove that

n1x̄
T
1U2W

−1
1 UT

2 x̄1 − p√
2tr(R2

1)

d.−→ N(0, 1) and
n2x̄

T
2U1W

−1
2 UT

1 x̄2 − p√
2tr(R2

2)

d.−→ N(0, 1).(S.1)

The second step is to prove that the two aforementioned parts (S.1) are uncorre-

lated terms. Now, from the independent components structure, we can see that

n1x̄
T
1U2W

−1
1 UT

2 x̄1 = n1z̄
T
1

(
ΓTU2W

−1
1 UT

2 Γ
)
z̄1

=: n1z̄
T
1 Bz̄1,

where B = ΓTU2W
−1
1 UT

2 Γ. It follows that

tr(B) = tr(ΓTU2W
−1
1 UT

2 Γ) = tr(W−1
1 UT

2 ΓΓTU2)

= tr(W−1
1 UT

2 ΣU2) = tr(W
−1/2
1 UT

2 ΣU2W
−1/2
1 ) = tr(R1) = p,
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and

tr(B2) = tr(ΓTU2W
−1
1 UT

2 ΓΓTU2W
−1
1 UT

2 Γ) = tr(W−1
1 UT

2 ΣU2W
−1
1 UT

2 ΓΓTU2)

= tr(W−1
1 UT

2 ΣU2W
−1
1 UT

2 ΣU2) = tr(W
−1/2
1 UT

2 ΣU2W
−1
1 UT

2 ΣU2W
−1/2
1 )

= tr(R2
1).

In the framework of our projection test, as long as Assumption 3 holds, the

following conclusions can also be naturally established

lim
p→∞

%i = lim
p→∞

(
tr((R1)i)

p

)
= %i0 <∞, i = 1, . . . , 4, (S.2)

where R1 = D
−1/2
2 (UT

2 ΣU2)D
−1/2
2 and D2 = diag(uT21Σu21, . . . ,u

T
2pΣu2p) for

given projection matrix U2. Let the other correlation coefficient matrix R2 =

D
−1/2
1 (UT

1 ΣU1)D
−1/2
1 , where D1 = diag(uT11Σu11, . . . ,u

T
1pΣu1p). Similarly, for

given projection matrix U1, projection correlation matrix R2 still has the conclu-

sion of (S.2). Particularly, overcoming the correlation between two variables in

the covariance matrix by using the projection technique holds for many covariance

matrix models, for example, when the covariance matrix is diagonal as well as the

band structure, autoregressive, and factor models. Hence, the result of (S.2) holds

for two assumptions in Lemma 1, and combining this with Assumption 2 com-

pletes the asymptotically standard normality distribution in (S.1). Then, we split

expression t2o into two terms, writing n1x̄
T
1U2W

−1
1 UT

2 x̄1 and n2x̄
T
2U1W

−1
2 UT

1 x̄2 as

I1 and I2, respectively. For the sake of calculation simplicity, the main calculation
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formulas involved in terms I1 and I2 are expressed with simple symbols, which

are respectively defined as follows:

I1 + I2 =

p∑
i=1

(√
n1u

T
2ix̄1√

uT2iΣu2i

)2

+

p∑
j=1

 √n2u
T
1jx̄2√

uT1jΣu1j

2

=:

p∑
i=1

( √
n1u

T
i x̄1√

uT2iΣu2i

)2

+

p∑
j=1

√n2v
T
j x̄2√

vTj Σvj

2

.

Hence, it is shown that

cov(I1, I2) = cov
( p∑
i=1

(√n1u
T
i x̄1√

uTi Σui

)2

,

p∑
j=1

(√n2v
T
j x̄2√

vTj Σvj

)2)

=

p∑
i=1

p∑
j=1

{
E
((√n1u

T
i x̄1√

uTi Σui

)2(√n2v
T
j x̄2√

vTj Σvj

)2)
− E

(√n1u
T
i x̄1√

uTi Σui

)2

E
(√n2v

T
j x̄2√

vTj Σvj

)2}

=

p∑
i=1

p∑
j=1

E
((√n1u

T
i x̄1√

uTi Σui

)2(√n2v
T
j x̄2√

vTj Σvj

)2)
− p× p, (S.3)

where

p∑
i,j=1

E
((√n1u

T
i x̄1√

uTi Σui

)2(√n2v
T
j x̄2√

vTj Σvj

)2)

=

p∑
i,j=1

E
(n1u

T
i x̄1x̄

T
1 ui

uTi Σui
·
n2v

T
j x̄2x̄

T
2 vj

vTj Σvj

)
=

p∑
i,j=1

E
(n1u

T
i Γz̄1z̄

T
1 ΓTui

uTi Σui
·
n2v

T
j x̄2x̄

T
2 vj

vTj Σvj

)
=

p∑
i,j=1

E
(

E
(tr(n1z̄1z̄

T
1 ΓTuiu

T
i Γ)

uTi Σui
· tr(n2z̄2z̄

T
2 ΓTviv

T
i Γ)

vTi Σvi
|Sz1 ,Sz2

))
=

p∑
i,j=1

E
( 1

uTi Σui

1

vTj Σvj
E
(

tr(n1z̄1z̄
T
1 ΓTuiu

T
i Γ)|Sz2

)
E
(

tr(n2z̄2z̄
T
2 ΓTvjv

T
j Γ)|Sz1

))
=

p∑
i,j=1

E
( 1

uTi Σui

1

vTj Σvj
tr
(

E(n1z̄1z̄
T
1 |Sz2)Γ

Tuiu
T
i Γ
)

tr
(

E(n2z̄2z̄
T
2 |Sz1)Γ

Tvjv
T
j Γ
))
,
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where z̄1 and z̄2 represent the sample means of zi in terms of the two partitioned

samples in structure (3.6). They correspond to Sz1 and Sz2 , which are the sample

covariance matrices for the two split samples. The two conditional expectations

in the last line above are defined as

E(n1z̄1z̄
T
1 |Sz2) = c11(Sz2)Ip + c12(Sz2)(11T − Ip),

E(n2z̄1z̄
T
1 |Sz2) = c21(Sz1)Ip + c22(Sz1)(11T − Ip),

where 1 denotes a column vector whose p-dimensional elements are all one:

c11(Sz2) = E(n1z̄
2
11|Sz2) and c12(Sz2) = E(n1z̄11z̄12|Sz2) and c21(Sz1) = E(n2z̄

2
21|Sz2)

and c22(Sz1) = E(n2z̄21z̄22|Sz1). Among these, z̄11 and z̄12 respectively denote the

first and second component elements of z̄1. Therefore,

p∑
i,j=1

E
( 1

uTi Σui

1

vTj Σvj
tr
(

E(n1z̄1z̄
T
1 |Sz2)Γ

Tuiu
T
i Γ
)

tr
(

E(n2z̄2z̄
T
2 |Sz1)Γ

Tvjv
T
j Γ
))

=

p∑
i,j=1

E
(uTi Γ

(
c11(Sz2)Ip + c12(Sz2)(11T − Ip)

)
ΓTui

uTi Σui

×
vTj Γ

(
c21(Sz1)Ip + c21(Sz1)(11T − Ip)

)
ΓTvj

vTj Σvj

)
=

p∑
i,j=1

E
(uTi Γc11(Sz2)IpΓ

Tui
uTi Σui

·
vTj Γc21(Sz1)IpΓ

Tvj

vTj Σvj

)
=

p∑
i=1

p∑
j=1

E
(
c11(Sz2)c21(Sz1)

)
=

p∑
i=1

p∑
j=1

E
(

E(n1z̄
2
11|Sz2)E(n2z̄

2
21|Sz1)

)
=

p∑
i=1

p∑
j=1

E
(

E(n1z̄
2
11|Sz2)

)
E
(

E(n2z̄
2
21|Sz1)

)
= p× p, (S.4)

where the second equation is followed by one fact:
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c12(Sz2)u
T
i Γ(11T − Ip)Γ

Tui
uTi Σui

=
E(n1z̄11z̄12|Sz2)u

T
i Γ(11T − Ip)Γ

Tui
uTi Σui

=
n1E(z̄11)E(z̄12)uTi Γ(11T − Ip)Γ

Tui
uTi Σui

= 0,

and similarly,

c21(Sz1)v
T
j Γ(11T − Ip)Γ

Tvj

vTj Σvi
= 0.

In summary, putting the result shown in (S.4) into formula (S.3), we obtain

cov(I1, I2) =

p∑
i=1

p∑
j=1

E
((√n1u

T
i x̄1√

uTi Σui

)2(√n2v
T
j x̄2√

vTj Σvj

)2)
− p× p = p2 − p2 = 0.

Here, we can declare that I1 and I2 are uncorrelated terms. The asymptotic

variance of the sum of I1 and I2 is equal to {2
(
tr(R2

1) + tr(R2
2)
)
}1/2. Combining

the results in equation (S.1), it can be straightforwardly shown that

t2o − 2p{
2
(
tr(R2

1) + tr(R2
2)
)}1/2

d.−→ N(0, 1).

This completes the proof of Theorem 1.

S2 Proof of Theorem 2

In this section, we first show the consistency of Lemma 2 to assist the derivation

of Theorem 2.

Lemma 2. Under the structure of random variables in (3.6), when Assumptions

2 and 4 hold, the given p-dimensional projection directions for u2j from sample
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covariance matrix S2, as n goes to infinity for j = 1, . . . , p are∣∣∣uT2jS1u2j

uT2jΣu2j

− 1
∣∣∣ p.−→ 0,

In addition, matrix S2 also holds this result for given projection direction matrix

U1.

Proof of Lemma 2: First, the spectral decomposition of covariance matrix Σ can

be written as

Σ = VΛVT ,

where V and Λ are composed of eigenvectors and eigenvalues of Σ. Define x̄∗1 =

VT x̄1 andx̄∗2 = VT x̄2, and U∗2 = VTU2 and U∗1 = VTU1. Based on the test

statistic, T 2
CP is constructed as in equation (2.5). Now, it can be expressed in

matrix form as

T 2
CP = n1x̄

T
1U2Ŵ

−1
1 UT

2 x̄1 + n2x̄
T
2U1Ŵ

−1
2 UT

1 x̄2

= n1x̄
T
1 VVTU2Ŵ

−1
1 UT

2 VVT x̄1 + n2x̄
T
2 VVTU1Ŵ

−1
2 UT

1 VVT x̄2

, n1x̄
∗T
1 U∗2 (Ŵ∗

1)−1U∗T2 x̄∗1 + n2x̄
∗T
2 U∗1 (Ŵ∗

2)−1U∗T1 x̄∗2, (S.5)

where Ŵ∗
1 = diag(u∗T21 S∗1u

∗
21, . . . ,u

∗T
2p S∗1u

∗
2p) and Ŵ∗

2 = diag(u∗T11 S∗2u
∗
11, . . . ,u

∗T
1p S∗2u

∗
1p),

in which u2i = Vu∗2i and S∗1 = VTS1V. Diagonal matrices Ŵ1 and Ŵ2 include

the variance components of vectors x̄T1U2 and x̄T2U1, respectively. Thus, vec-

tors x̄T1U2 and x̄T2U1 have reached the standardization effect. At the beginning

of the proof, given the projection direction on each data split, the projection
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variances have the following consistency: Ŵ∗
i,(jj)

p.−→ W∗
i,(jj), where W∗

i,(jj) =

diag(u∗T21 Λu∗21, . . . ,u
∗T
2p Λu∗2p) for j = 1, 2, . . . , p, and i = 1 and 2. Under Assump-

tion 4, given projection vectors u∗2i for i = 1, 2, . . . , p, so that u∗T2i Λu∗2i > c0, it is

easy to find that∣∣∣∣u∗T2i S∗1u
∗
2i

u∗T2i Λu∗2i
− 1

∣∣∣∣ =

∣∣∣∣u∗T2i S∗1u
∗
2i − u∗T2i Λu∗2i

u∗T2i Λu∗2i

∣∣∣∣ =

∣∣∣∣u∗T2i VTS1Vu∗2i − u∗T2i VTΣVu∗2i
u∗T2i VTΣVu∗2i

∣∣∣∣ .
According to this fact,

E(u∗T2i S∗1u2i) = u∗T2i VTE
( 1

n1 − 1

n1∑
j=1

(xj − x̄1)(xj − x̄1)T
)
Vu∗2i

= u∗T2i VTΣVu∗2i = u∗T2i Λu∗2i,

so that E
(∣∣∣u∗T

2i S∗
1u∗

2i

u∗T
2i Λu∗

2i
− 1
∣∣∣) = 0. Let yj = VTxj. Given u∗T2i for i = 1, 2, . . . , p,

var
(

u∗T
2i yj√

u∗T
2i Λu∗

2i

)
= 1 and

u∗T2i S∗1u
∗
2i

u∗T2i Λu∗2i
=

1

n1 − 1

n1∑
j=1

(
u∗T2i (yj − ȳj)√

u∗T2i Λu∗2i

)2

=
1

n1 − 1

n1∑
j=1

(
u∗T2i yj√
u∗T2i Λu∗2i

)2

− n1

n1 − 1

(
u∗T2i ȳ

u∗T2i Λu∗2i

)2

,

where ȳ = 1
n1

∑n1

j=1 yj. Suppose that Assumption 2 holds, we have by the law of

large numbers that

u∗T2i S∗1u
∗
2i

u∗T2i Λu∗2i

p.−→ 1

as n→∞. Similarly, the consistency can be easily obtained as follows:

u∗T1i S∗2u
∗
2i

u∗T1i Λu∗1i

p.−→ 1
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as n → ∞, for given projection directions u1i’s, 1 ≤ i ≤ p. Even though the

eigenvalues of Λ vary with ni in a sequence, as long as a ni is given, our consistency

can be obtained through the law of large numbers. Combining the transformation

results of (S.5) and the proof conclusions of the consistency property mentioned

above, we obtain the following consistency properties:

uT2iS1u2i

uT2iΣu2i

p.−→ 1 and
uT1iS2u2i

uT1iΣu1i

p.−→ 1.

This completes the proof of Lemma 2.

Proof of Theorem2 : It can be seen from the expression of equation (S.5) that test

statistic T 2
CP can also be written as

T 2
CP =

p∑
i=1

( √
n1u

T
2ix̄1√

uT2iS1u2i

)2

+

p∑
j=1

 √n2u
T
1jx̄2√

uT1jS2u1j

2

=

p∑
i=1

( √
n1u

∗T
2i x̄∗1√

u∗T2i S∗1u
∗
2i

)2

+

p∑
j=1

 √n2u
∗T
1j x̄∗2√

u∗T1j S∗2u
∗
1j

2

=: I3 + I4. (S.6)

For independent components structure (3.6), covariance matrix Σ = ΓΓT is as-

sumed to be positive definite. Define δj = 1
p
tr(Σj), for j = 1, 2, 3, 4, when the

limitation of δj’s exists. That is,

0 < lim
p→∞

δj = δj0 <∞. (S.7)

Let δ̂1 = 1
p
tr(Sn) and δ̂2 = 1

p
[tr(S2

n)− 1
n−1

(tr(Sn))2]. Srivastava (2009) proved that

δ̂1 and δ̂2 are consistent estimators of δ1 and δ2 as (n, p)→∞ in Theorem 2.2. In
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our framework, when Assumptions 1–3 hold, it implies that the result of equation

(S.2) holds. It can be shown that for i = 1 and 2, 1
p
(tr(R̂2

i ) − p2/(ni − 1)) is a

consistent estimator of 1
p
tr(R2

i ) as (n, p)→∞ for the case (n− 1) = O(pτ ), 0 <

τ ≤ 1, which was proved by Srivastava and Du (2008) in Lemma 3.2. According

to the asymptotic normality of Theorem 1, and if Assumptions 1–3 hold, it can

be seen that the expression of I3 and I4 have the following asymptotic normality

distribution:

n1x̄
T
1U2Ŵ

−1
1 UT

2 x̄1 − p(n1−1
n1−3

)

{2
(
tr(R̂2

1)− p2

(n1−1)

)
}1/2

d.−→ N(0, 1), (S.8)

and

n2x̄
T
2U1Ŵ

−1
2 UT

1 x̄2 − p(n2−1
n2−3

)

{2
(
tr(R̂2

2)− p2

(n2−1)

)
}1/2

d.−→ N(0, 1). (S.9)

It should be pointed out that the expectations of both I3 and I4 are respectively

obtained by obeying p independent F (1, ni − 1) distribution with 1 and ni − 1

degrees of freedom under normal distribution. However, regardless of distribution,

both p(n1−1
n1−3

) and p(n2−1
n2−3

) converge to p when Assumption 2 holds. Therefore, their

limit distributions are unchanged. In real world application, we still adopt the

expression of Theorem 2 to further correct the bias of test statistics I3 and I4.

To obtain the asymptotic normality property of test statistic T 2
CP, based on

equations (S.6)–(S.8), we only need to prove that terms I3 and I4 are asymptoti-

cally irrelevant or irrelevant. According to the conclusions of Lemma 2, it follows
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that

uT2iS1u2i

uT2iΣu2i

p.−→ 1 and
uT1iS2u2i

uT1iΣu1i

p.−→ 1.

Furthermore, the cross test statistic, T 2
CP, yields the following result:

T 2
CP =

p∑
i=1


( √

n1u
T
2ix̄1√

uT2iS1u2i

)2

+

( √
n2u

T
1ix̄2√

uT1iS2u1i

)2


p.−→
p∑
i=1


(√

n1u
T
2ix̄1√

uT2iΣu2i

)2

+

(√
n2u

T
1ix̄2√

uT1iΣu1i

)2


= I1 + I2. (S.10)

To obtain the asymptotic normality of test statistic T 2
CP, when I3 and I4 have

asymptotic normality, they can be translated using the uncorrelated property

between I1 and I2 because I3 and I4 converge with probabilities I1 and I2, re-

spectively. According to the consistency property of T 2
CP in (S.10), and because

I1 and I2 are uncorrelated in Theorem 1, it is easy to find that from the asymp-

totic normality shown in (S.8) and (S.9), the cross test statistic T 2
CP follows the

asymptotic normality

T 2
CP − p(n1−1

n1−3
)− p(n2−1

n2−3
)

{2
(
tr(R̂2

1) + tr(R̂2
2)− p2

n1−1
− p2

n2−1

)
}1/2

d.−→ N(0, 1),

where R̂1 and R̂2 are the sample correlation matrix of projection samples UT
2 X1

and UT
1 X2 with X1 = (x1, . . . ,xn1) and X2 = (xn1+1, . . . ,xn), respectively. This

completes the proof of Theorem 2.
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S3 Proof of Theorem 3

Proof of Theorem 3: Combining the conclusion of Theorem 2 and the content of

Theorem 2.1 in Srivastava (2009), when mean vector µ 6= 0, as n, p → ∞, for

random variables xi, we easily see that

n1(x̄1 − µ)TU2Ŵ
−1
1 UT

2 (x̄1 − µ) + n2(x̄2 − µ)TU1Ŵ
−1
2 UT

1 (x̄2 − µ)− 2p√
2(tr(R2

1) + tr(R2
2))

(S.11)

has a standard normal distribution, N(0,1). For the local alternative setting

µ =
(

1
n(n−1)

) 1
2δ,

1
√
p
{n1(x̄1 − µ)TU2Ŵ

−1
1 UT

2 (x̄1 − µ) + n2(x̄2 − µ)TU1Ŵ
−1
2 UT

1 (x̄2 − µ)}

=
1
√
p

(n1x̄
T
1U2Ŵ

−1
1 UT

2 x̄1 + n2x̄
T
2U1Ŵ

−1
2 UT

1 x̄2)− 2n1√
pn(n− 1)

δTU2Ŵ
−1
1 UT

2 x̄1

− 2n2√
pn(n− 1)

δTU1Ŵ
−1
2 UT

1 x̄2 +
n1

n(n− 1)
√
p
δTU2Ŵ

−1
1 UT

2 δ

+
n2

n(n− 1)
√
p
δTU1Ŵ

−1
2 UT

1 δ.

Combining the conditions of (3.7) and (3.8), because x̄i,j
p.−→ µj = (1/{n(n −

1)}) 1
2δj as n→∞ and Ŵi(jj)

p.−→Wi(jj) for i = 1 and 2, it follows that

n1√
pn(n− 1)

δTU2Ŵ
−1
1 UT

2 x̄1 − n1/(n(n− 1)
√
p)δTU2W

−1
1 UT

2 δ
p.−→ 0,

and

n2√
pn(n− 1)

δTU1Ŵ
−1
2 UT

1 x̄2 − n2/(n(n− 1)
√
p)δTU1W

−1
2 UT

1 δ
p.−→ 0.
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The above conclusion is true only if the following facts are proved:

n1√
pn(n− 1)

δTU2Ŵ
−1
1 UT

2 x̄1 −
n1√

pn(n− 1)
δTU2Ŵ

−1
1 UT

2 µ
p.−→ 0. (S.12)

When finite fourth moments exists for random variables, according to the conclu-

sion of Ŵi(jj)
p.−→Wi(jj), the convergence rate of variance of n1√

pn(n−1)
(δTU2Ŵ

−1
1 UT

2 x̄1)

can be obtained by the consistency term n1√
pn(n−1)

(δTU2W
−1
1 UT

2 x̄1). By the con-

dition of (3.7), the variance of

var
( n1√

pn(n− 1)
(δTU2W

−1
1 UT

2 x̄1)|U2

)
=

n1

n(n− 1)

1

p
(δTU2W

−1
1 UT

2 δ),

and

var
( n2√

pn(n− 1)
(δTU1W

−1
2 UT

1 x̄2)|U1

)
=

n2

n(n− 1)

1

p
(δTU1W

−1
2 UT

1 δ).

By assumption 2, both of the above variances tend to 0 as n → ∞. Thus, the

result in (S.12) is obviously established. Therefore,

1
√
p
{n1

(
x̄1 − µ)TU2Ŵ

−1
1 UT

2 (x̄1 − µ) + n2(x̄2 − µ)TU1Ŵ
−1
2 UT

1 (x̄2 − µ)
)
}

− 1
√
p
{T 2

CP −
1

n− 1
(kδTU2W

−1
1 UT

2 δ + (1− k)δTU1W
−1
2 UT

1 δ)} p.→ 0.

Define ∆(δ;n, p) = 1
n−1

(kδTU2W
−1
1 UT

2 δ+ (1− k)δTU1W
−1
2 UT

1 δ). By the asymp-

totic normality result in equation (S.11), as (n, p)→∞, we easily have

T 2
CP −∆(δ;n, p)− 2p√
2(tr(R2

1) + tr(R2
2))

d.−→ N(0, 1).
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Thus, we have that under local alterative µ = { 1
(n(n−1))

} 1
2δ, the conditions of

Theorem 1, and 1
p
(δTU2W

−1
1 UT

2 δ + δTU1W
−1
2 UT

1 δ) ≤ C,

lim
(n,p)→∞

P (T 2 > z1−α|U1, U2)

= lim
(n,p)→∞

P

(
T 2

CP − 2p√
2(tr(R2

1) + tr(R2
2))

> z1−α|U1, U2

)

= lim
(n,p)→∞

P

(
T 2

CP −∆(δ;n, p)− 2p√
2(tr(R2

1) + tr(R2
2))

> z1−α −
∆(n, p)√

2(tr(R2
1) + tr(R2

2))

)

= lim
(n,p)→∞

Φ

(
−z1−α +

∆(δ;n, p)√
2(tr(R2

1) + tr(R2
2))

)
.

This completes the proof of Theorem 3.

S4 Proof of Theorem 4

Proof of Theorem 4: Define two events, ε1 and ε2, as

ε1 =

{
max
1≤j≤p

|x̄j − µj|/s1/2
jj < δn,p/

√
n

}

and

ε2 =

{
4

9
≤ sjj/σjj ≤

9

4
,∀j = 1, 2, . . . , p

}
.

For any j ∈ S(µ), it follows that |µj| > 3σ
1/2
jj δn,p/

√
n by the definition of S(µ).

Then, under event ε1 ∩ ε2,

|x̄j|
s

1/2
jj

≥ |µj| − |x̄j − µj|
s

1/2
jj

≥ 2µj

3σ
1/2
jj

− δn,p/
√
n > δn,p/

√
n.
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This implies that j ∈ Ŝ. Hence, S(µ) ⊂ Ŝ. In fact, we have proved this statement

on event ε1 ∩ ε2 uniformly for µ ∈ U :

inf
µ∈U

P (S(µ) ⊂ Ŝ|µ)→ 1.

Furthermore, under the null hypothesis (H0), by Assumption 3,

P (J0 = 0|H0) = P (Ŝ = ∅|H0) = P ( max
1≤j≤p

{|x̄j|/s1/2
jj } < δn,p/

√
n|H0)→ 1.

In addition, by infµ∈U P (S(µ) ⊂ Ŝ|µ)→ 1,

sup
µ∈U

P (J0 ≤ n|S(µ) 6= ∅)

≤ sup
µ∈U

P (J0 ≤ n, Ŝ 6= ∅|S(µ) 6= ∅) + sup
µ∈U

P (Ŝ = ∅|S(µ) 6= ∅)

≤ sup
µ∈U

P
(
n · 1{max

1≤j≤p
(|x̄j|/s1/2

jj ) > δn,p/
√
n} ≤ n, Ŝ 6= ∅|S(µ) 6= ∅

)
+ o(1)→ 0.

Therefore, infµ∈U P (J0 > n|S(µ) 6= ∅)→ 1. This completes the proof of Theorem

4.

S5 Proof of Theorem 5

Proof of Theorem 5: According to the result in Theorem 4, P (J0 = 0|H0) → 1.

This implies that J = JCPT + J0
d.−→ N(0, 1) under the null hypothesis (H0).

Hence, one must only prove that inf
µ∈Us

P (J1 ≥ zα|µ)→ 1. By the definitions of J0

and Ŝ, these two events are equivalent. That is, {J0 < n} = {Ŝ = ∅}. Because
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infµ∈U P (S(µ) ⊂ Ŝ|µ)→ 1 and Us = {µ : S(µ) 6= ∅},

sup
µ∈Us

P (J0 < n|µ) = sup
µ∈Us

P (Ŝ = ∅|µ) ≤ sup
{µ:S(µ) 6=∅}

P (Ŝ = ∅,S(µ) ⊂ Ŝ|µ) + o(1).

It can be obviously found that the first term of the last inequality is zero, so

supµ∈Us P (J0 ≥ n|µ)→ 1. Hence, as n→∞,

inf
µ∈Us

P (J > zα|µ) ≥ inf
µ∈Us

P (n+ JCPT > zα)→ 1,

which completes the proof content of Theorem 5.

S6 Presentation of additional simulation results

Many of the simulation results are listed for reference in this section to avoid

redundant text and to help the reader understand the article. These include

the exploration of reasonable split percentages for three distributions (Examples

(a)–(c)), the comparison of empirical and theoretical power, and the simulation

results for both the dense and sparse mean tests.

S6.1 Reasonable splitting percentage

Define the splitting percentage for the two-group sample as ς; thus, n1 = [n · ς]

and n2 = n − n1, where [x] means rounding x to the nearest integer. In this

section, we explore this trade-off in simulations by taking a range of ς over (0,

1): 10%, 20%, . . . , 90%, and we compare the power of each grid value. It should
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be noted that when ς = 10%, the empirical power of the CPT is similar to

that of ς = 90% because the CPT is a summation of two statistics, T 2
1 and

T 2
2 , in equation (2.5), which are obtained by cross projection. The mean vector

is set to µ = (w/25 ∗ 10.3p,00.7p)
T throughout in this exploration. Figures 1–

3 show the empirical power curves with setting (n, p) = (150, 300), in which w

are drawn with the values of 1.5, 2.0, 2.5, and 3.0, respectively. The optimal

splitting percentages vary for many simulations, with most peaks occurring at a

grid value of 40%− 60% in factor model structures, Σ1 and Σ2, while a splitting

percentage of the covariance in the range of 20% − 80% for the remaining two

structures is acceptable. It is difficult in practical application to choose an optimal

splitting percentage that performs consistently because of the unknown covariance

structure. Therefore, we suggest that 40% − 60% is a reasonable range in our

projection framework.
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Figure 1: Empirical power under multivariate normal data changes with the splitting percentage.
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Figure 2: Empirical power when multivariate student t data change with the splitting percentage.
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Figure 3: Empirical power when the multivariate chi-square data change with the splitting percentage.

S6.2 Comparison of empirical and theoretical power

In this subsection, we illustrate that the performance of the empirical power is

close to the theoretical power calculated by Theorem 3. The mean vector is set

to µ = (w/30 ∗ 10.5p,00.5p)
T throughout in this presentation. Figures 4–5 show

the curves of the empirical power and the approximated theoretical power with

the setting (n, p) = (250, 300), where w is plotted with values from 1.0 to 1.8.

According to Theorem 3, the asymptotic power of standardized CPT statistic T 2
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as (n, p)→∞ is given by

β(T 2|δ) ' EU1,U2

(
Φ
(
− z1−α +

∆(δ;n, p)√
2(tr(R2

1) + tr(R2
2))

))
.

Let β̃(T 2|δ) be an approximation of EU1,U2

(
Φ
(
−z1−α+ ∆(δ;n,p)√

2(tr(R2
1)+tr(R2

2))

))
, where

β̃(T 2|δ) =
1

m

m∑
i=1

Φ
(
− z1−α +

∆(i)(δ;n, p)√
2
(
tr(R

(i)
1 )2 + tr(R

(i)
1 )2

))

with ∆(i)(δ;n, p) = 1
n−1

(
kδTU

(i)
2 W

(i)−1
1 U

(i)T
2 δ + (1 − k)δTU

(i)
1 W

(i)−1
2 U

(i)T
1 δ

)
and

W
(i)
1 , W

(i)
2 , R

(i)
1 and R

(i)
2 are obtained by replacing U1 and U2 with U

(i)
1 and

U
(i)
2 in the definitions of W1, W2, R1 and R2, respectively, where the projection

directions U
(i)
1 and U

(i)
2 are the eigenvectors of the sample covariance matrix of

i-th iteration.
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Figure 4: The dashed and solid lines represent the fitted plots of the empirical power and the approximated

theoretical power (β̃(T 2|δ)) of CPT with increasing signal strength, respectively.

It can observe from Figure 4 that the empirical power is very close to the

approximated theoretical power calculated by Theorem 3. Of course, with a

sufficiently large sample size and dimensionality, the convergence of our CPT to

the asymptotic normality under the local alternative would be better. Therefore,
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it is normal to have a slight difference on a few points in the fitted plots in Figure

4.

S6.3 Simulation results for dense and sparse mean tests

We first show the performance of CPT in terms of empirical size and power on

dense mean settings for the multivariate student t and multivariate normal chi-

square distributions in Tables S1–S2, respectively. It can be seen from Tables

S1–S2 that the performance of our proposed CPT is similar to that of Table 1

under the normal distribution.

Table S1: Empirical size and power (%) of test statistics (Example(b), nominal α = 0.05)

Size Dense meanw = 2 Dense meanw = 3

Type T 2
CP T

2
OP T

2
BS T 2

S T
2
CQ T 2

CP T 2
OP T 2

BS T 2
S T 2

CQ T 2
CP T 2

OP T 2
BS T 2

S T 2
CQ

Σ1 5.7 5.5 7.0 7.2 5.1 93.3 74.4 14.2 17.1 9.0 100.0 100.0 71.5 78.5 42.9

n = 200 Σ2 6.4 5.4 7.1 7.0 5.3 92.6 71.6 8.3 9.0 5.3 100.0 100.0 11.8 15.4 8.9

p = 250 Σ3 5.9 5.4 5.7 5.7 5.1 96.9 79.7 99.9 99.9 99.8 100.0 100.0 100.0 100.0 100.0

Σ4 6.1 5.0 5.2 5.5 4.6 78.5 36.4 95.9 96.4 92.9 100.0 99.4 100.0 100.0 100.0

Σ1 6.0 5.1 7.1 7.5 4.4 97.5 91.5 16.6 20.0 11.5 100.0 100.0 91.1 99.3 79.2

n = 200 Σ2 6.0 4.6 6.8 7.0 4.2 98.1 89.7 8.4 9.1 5.9 100.0 100.0 11.8 15.4 8.3

p = 350 Σ3 6.2 4.9 5.1 5.5 4.3 99.5 96.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Σ4 5.9 4.8 5.9 6.0 5.8 89.1 64.3 98.7 99.0 97.7 100.0 100.0 100.0 100.0 100.0

The three distributions have very similar empirical powers across different

combinations of sample sizes and dimensions on dense mean settings. Thus,

to save space, the power function graph of Example (a) (multivariate normal

distribution) is shown as a trend graph that gradually increases with the mean

signal. The eight subgraphs in Figure 5 highlight the advantages of our proposed
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Table S2: Empirical size and power (%) of test statistics (Example(c), nominal α = 0.05)

Size Dense meanw = 2 Dense meanw = 3

Type T 2
CP T

2
OP T

2
BS T 2

S T
2
CQ T 2

CP T 2
OP T 2

BS T 2
S T 2

CQ T 2
CP T 2

OP T 2
BS T 2

S T 2
CQ

Σ1 5.7 5.5 6.7 7.2 5.0 93.0 57.0 12.8 13.3 9.9 100.0 100.0 55.2 69.9 48.9

n = 200 Σ2 6.2 5.2 7.3 7.1 5.3 92.6 61.0 7.7 8.3 5.6 100.0 100.0 11.3 14.7 8.1

p = 250 Σ3 5.8 5.5 5.4 – 5.9 97.3 59.1 99.8 98.7 99.9 100.0 100.0 100.0 100.0 100.0

Σ4 5.9 5.5 5.2 7.7 4.8 77.6 23.2 95.7 89.3 93.4 100.0 98.4 100.0 100.0 100.0

Σ1 5.8 5.1 7.3 7.8 4.9 97.5 73.8 16.5 16.9 11.3 100.0 100.0 87.5 95.1 70.9

n = 200 Σ2 5.8 5.5 7.2 7.6 6.2 98.1 76.3 7.9 8.4 5.4 100.0 100.0 11.4 14.1 7.9

p = 350 Σ3 5.0 5.5 5.3 – 4.4 99.4 76.5 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0

Σ4 6.0 5.2 5.3 7.8 4.3 88.8 36.7 98.9 96.2 98.0 100.0 100.0 100.0 100.0 100.0

CPT method over the method of optimal projection direction, T 2
OP, which coincide

with the empirical size and power shown in Table 1 when the empirical size is

controlled at the nominal level of 0.05.
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Figure 5: Comparing the empirical power under the settings of Σ1–Σ4 in Example (a).

Under the sparse mean settings, Tables S3 and S4 show the empirical size of

the CPT approach as well as some tests for random samples generated by the

three distributions, including Examples (a)–(c) in the case where the covariance
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structures are Σ2 and Σ3, respectively. Tables S5 and S6, respectively, describe

the empirical power of the multivariate student t and chi-square distributions

at novel level α = 0.05 under the four types of the covariance matrix. We can

observe that the results in these tables have the same performance as in Tables 2

and 3.

Table S3: Empirical size (%) of tests with α = 0.05, sparse mean, Σ2

n p T 2
BS T 2

S T 2
CQ T 2

OP T 2
CP JOP + J0 JCPT + J0 P (Ŝ = ∅)

Example(a): Multivariate Gaussian

150

150 7.20 7.60 5.04 5.27 6.33 5.29 6.33 99.98
200 7.07 7.28 4.98 5.01 6.30 5.04 6.32 99.93
300 6.98 7.32 4.62 4.83 6.52 4.84 6.53 99.99

200

150 6.47 6.96 4.73 5.16 5.98 5.18 5.99 99.97
200 7.06 7.34 4.93 4.84 6.28 4.86 6.30 99.98
300 7.67 7.53 5.52 5.42 6.18 5.43 6.19 99.98

Example(b): Multivariate Student t

150

150 7.09 7.42 4.97 5.39 6.19 5.46 6.24 99.92
200 6.58 6.91 4.55 5.11 5.82 5.16 5.84 99.93
300 6.91 7.30 4.74 5.21 5.74 5.23 5.75 99.97

200

150 7.58 7.64 5.21 4.84 5.62 4.85 5.63 99.99
200 7.22 7.51 4.89 5.69 5.79 5.70 5.79 99.99
300 7.13 7.46 4.96 5.20 5.90 5.20 5.90 100.00

Example(c): Multivariate Chi-square

150

150 7.01 7.34 4.91 5.26 6.20 5.31 6.25 99.93
200 6.65 6.80 4.51 5.31 6.33 5.35 6.36 99.95
300 6.96 7.13 4.90 5.37 5.87 5.39 5.88 99.97

200

150 7.27 7.43 4.97 5.37 6.05 5.39 6.06 99.98
200 6.42 6.62 4.38 5.56 5.34 5.57 5.35 99.99
300 6.72 7.03 4.68 5.13 6.10 5.13 6.10 100.00
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Table S4: Empirical size (%) of tests with α = 0.05, sparse mean, Σ3

n p T 2
BS T 2

S T 2
CQ T 2

OP T 2
CP JOP + J0 JCPT + J0 P (Ŝ = ∅)

Example(a): Multivariate Gaussian

150

150 5.47 5.89 4.70 4.56 5.77 4.68 5.90 99.86
200 5.31 5.99 4.60 4.83 6.12 4.88 6.16 99.93
300 5.00 5.65 5.33 4.51 5.71 4.53 5.73 99.96

200

100 5.58 6.00 5.00 4.78 5.96 4.80 5.97 99.92
200 5.75 6.16 5.57 4.99 6.25 5.04 6.28 99.98
300 4.88 5.35 4.53 4.98 5.13 5.00 5.15 99.98

Example(b): Multivariate Student t

100

150 5.40 5.94 5.13 5.54 5.46 5.62 5.50 99.92
200 5.97 6.51 5.10 5.75 5.67 5.79 5.72 99.95
300 5.95 6.30 4.53 5.57 5.90 5.59 5.92 99.97

200

150 5.11 5.38 4.47 5.59 5.52 5.59 5.52 99.99
200 5.78 5.90 4.67 5.43 5.93 5.45 5.95 99.98
300 5.37 5.55 4.93 5.11 5.83 5.13 5.85 99.98

Example(c): Multivariate Chi-square

150

150 5.50 - 4.43 5.15 5.34 5.92 6.04 99.20
200 5.38 - 5.20 5.13 5.61 5.90 6.37 99.11
300 5.74 - 4.97 5.48 5.78 6.08 6.34 99.32

200

150 5.59 8.97 4.47 5.43 5.76 5.69 6.01 99.70
200 5.46 7.16 4.67 5.21 5.47 5.59 5.78 99.62
300 4.79 7.07 4.93 5.16 5.51 5.35 5.69 99.79

Table S5: Empirical power (%) of tests with α = 0.05 for Example(b)

Type n p T 2
BS T 2

S T 2
CQ T 2

OP T 2
CP JOP + J0 JCPT + J0 P (Ŝ = ∅)

Σ1

150

150 11.87 12.83 8.17 46.77 74.23 49.51 75.00 92.07
200 10.13 12.60 7.00 43.25 63.85 52.50 68.86 78.19
300 10.26 12.88 6.57 40.41 49.79 50.39 57.94 77.20

200

100 12.38 18.09 8.33 77.15 93.20 83.33 94.32 55.76
200 11.37 12.42 7.37 58.41 86.62 62.51 87.38 84.72
300 11.48 13.15 8.17 50.33 72.52 58.52 75.78 77.40

Σ2

150

150 7.90 8.44 4.70 34.70 71.94 34.86 71.97 99.36
200 7.70 8.11 4.43 36.08 64.30 36.18 64.33 99.54
300 7.87 8.63 5.50 37.45 46.68 37.70 48.90 98.98

200

150 8.38 10.76 6.30 81.60 93.48 82.52 93.72 87.34
200 8.12 8.36 5.30 55.01 86.43 55.04 86.43 99.67
300 8.27 8.35 5.87 28.96 74.02 29.90 74.03 99.90

Σ3

150

150 97.41 97.65 95.00 55.35 86.42 89.43 95.16 16.18
200 94.32 94.91 90.90 55.20 79.64 85.41 92.28 21.30
300 86.66 87.45 80.77 42.76 64.55 79.31 85.50 28.90

200

150 99.73 99.71 99.60 67.77 96.86 97.20 99.19 4.49
200 99.25 99.27 98.57 64.01 93.17 96.09 98.42 6.61
300 96.99 97.08 95.33 58.79 84.11 93.07 96.36 10.67

Σ4

150

150 87.00 87.81 81.50 33.30 66.31 77.58 84.07 27.73
200 80.09 81.19 73.20 29.71 58.15 71.97 79.32 33.81
300 68.57 70.31 60.00 26.26 46.64 65.18 71.53 41.31

200

150 96.34 96.39 94.40 42.80 83.32 90.78 94.38 11.61
200 93.38 93.42 88.34 39.83 75.74 87.53 92.19 15.51
300 86.14 86.28 78.70 36.04 63.66 82.43 86.87 21.85
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Table S6: Empirical power (%) of tests with α = 0.05 for Example(c)

Type n p T 2
BS T 2

S T 2
CQ T 2

OP T 2
CP JOP + J0 JCPT + J0 P (Ŝ = ∅)

Σ1

150

150 10.34 13.43 8.07 55.94 73.99 60.57 75.40 86.20
200 10.68 13.71 7.13 48.98 63.29 53.69 65.57 86.51
300 9.56 9.97 6.17 22.51 47.84 24.44 48.50 96.65

200

150 12.83 12.34 8.70 56.29 93.29 57.47 93.34 95.37
200 12.48 15.26 7.57 60.16 85.58 66.69 87.02 77.91
300 11.83 14.13 7.10 49.74 73.85 58.00 76.86 79.38

Σ2

150

150 8.20 9.67 4.83 62.87 73.26 63.23 73.52 97.56
200 7.41 7.91 5.87 32.42 62.82 32.55 62.85 99.62
300 7.77 8.43 5.20 37.46 47.22 37.77 47.91 99.00

200

150 8.37 8.81 5.50 69.66 93.51 69.77 93.51 99.45
200 7.57 8.03 5.83 53.96 85.58 54.23 85.60 98.92
300 7.55 8.72 5.17 57.93 72.09 58.57 72.42 96.83

Σ3

150

150 97.29 98.41 95.50 49.00 86.11 85.40 93.70 22.52
200 94.49 96.19 90.73 44.12 77.99 80.07 89.29 30.01
300 86.00 90.99 79.73 35.61 64.08 68.48 79.97 43.58

200

150 99.77 99.94 99.60 63.58 97.16 97.73 99.38 3.82
200 99.35 99.70 98.45 60.43 93.23 95.32 98.21 8.04
300 97.17 98.29 94.57 53.93 84.21 91.86 95.55 13.20

Σ4

150

150 86.86 89.98 79.27 29.83 66.40 71.43 80.93 35.12
200 80.36 83.26 74.13 26.94 57.58 65.57 74.53 42.20
300 68.06 72.88 59.87 24.37 45.13 57.09 65.36 52.72

200

150 96.38 97.22 94.00 41.23 83.89 89.12 94.10 14.23
200 93.47 94.91 90.10 37.86 76.26 85.93 90.81 18.11
300 86.68 89.01 79.47 33.54 63.95 78.24 84.53 27.39
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