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This Supplement contains proofs of the theorems in the paper and other con-
tributed results. Subsections S1-S5 contain proofs of theorems 1, 2, 3, 4 and 5
respectively. Subsection S6 contains some additional simulation results for the

performance of the test statistic T¢p.

S1 Proof of Theorem 1

First, we restate the asymptotic distribution for linear quadratic forms (see The-

orem 2.1 in [Srivastava (2009)).

Lemma 1. We assume that z; are i.i.d. random wvariables with E(z;) = 0,
var(z;;) = 1, fourth moment k, and z = (z1,...,z,)", where z; = %Z?:l Zij, 1 =

1,...,pg=1,...,n. Then for any pxp symmetric matriz, A = (a;;), suppose the

2

following assumptions hold: (z)plggo max (%) =0 and (ii): plgl;lo (trA’ /p) < oo,

i=1,2,4, where Ay = (a;j+) is a p X p symmetric matriz defined by a;y = a;;,
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and a;j4+ = |a;;|. Asn,p — oo, then the following result holds:

P <o) =o

where ®(x) is the cumulative distribution function of a standard normal random

tr(A2?)

variable, and 7 = ’

Proof of Theorem 1: Recall that the definition of ¢ is
t2 = mxl UyW U %) + noxt UyWL U %,

where W, = diag(ul, Zuyy, . .. ,unguQP) and Wy = diag(uf,Zuy, ... ,u{pEulp).
In this proof, we will prove the asymptotic normality of ¢ in two steps. The first
step is to prove that

=T W—l Tg _ X1 W_l Ixy —
X Wy DX =P 4 nig 1) ana 222UiWe Ui%e =P d, v 1yg )
2tr(R?) 2tr(R3)

The second step is to prove that the two aforementioned parts (S.1)) are uncorre-

lated terms. Now, from the independent components structure, we can see that
mx bWU % = mz, (TTLWUST)z,
= nlifBil,
where B = I'"U,W [ 'UJT. It follows that

tr(B) = tr(TTUWIUST) = tr(W UL TTTU,)

= te(W{UI'SU,) = tr(W; PUTSUWY?) = tr(Ry) = p,
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and

tr(B?) = tr(TTU,WUITTTU,WHULT) = te (WU SUW UL TTTU,)
= (WU SUWTUTSU,) = tr(W,PUT SU, WL Ul S0, W12

= tr(R?).

In the framework of our projection test, as long as Assumption 3 holds, the

following conclusions can also be naturally established

lim go; = lim (M) =i <00, 1=1,...,4, (S.2)
p

p—oo p—oo
where Ry = D,"*(UISU,)D,"? and Dy = diag(u,Suy, . .. ,ug,3uy,) for
given projection matrix U,. Let the other correlation coefficient matrix Ry =
Dfl/Q(U{[EUl)DII/z, where Dy = diag(uf,;Xuyy, ..., uf Yuy,). Similarly, for
given projection matrix Uy, projection correlation matrix Ry still has the conclu-
sion of . Particularly, overcoming the correlation between two variables in
the covariance matrix by using the projection technique holds for many covariance
matrix models, for example, when the covariance matrix is diagonal as well as the
band structure, autoregressive, and factor models. Hence, the result of holds
for two assumptions in Lemma [I} and combining this with Assumption 2 com-
pletes the asymptotically standard normality distribution in . Then, we split
expression 2 into two terms, writing n, X! UyW UL %, and noxl Uy W5 'UTX, as

I, and I, respectively. For the sake of calculation simplicity, the main calculation
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formulas involved in terms [; and [y are expressed with simple symbols, which

are respectively defined as follows:

L+1 = Ep:<—vmu2ixl> +2p: VTR
o\ VugXu; =1\ y/ul;3uy;

2

_. i(\/ uTXl) +zp: V12V; X
= \VugZuy =1 \\/V]Zv;

Hence, it is shown that

p T= p TS

Vniu; Xp\ 2 /MoV: Xo\ 2

cov(ly, ) = COV<Z<—uTEu~> ;Z<—TJ ) )
i=1 VY i j=1 ,/V.Evj

- S ) o P

=1 5=

i=1 j=1

_ ZZE((*\//_%) (\\//_%Y)pxp, (S.3)

where

(o) (222)’)

D'j@

T
2,7=1 \/11 Eul \/V?EVJ'
P Tg. T P _ T— =T
B . niul X X7 u;  navj XoX, vj) B Z E(nlufleszTui nyV] XoXy Vj)
u! Sy, vI¥v; < u' Ty, vI¥v;
) _]:1 J z,‘]zl 1 J

I
pgﬁ

u/ Yy, vIZv,

=

S,
I
—

1
u/ Xy, TEV]

E(tr(nlili{’FTuiuiTFHSm)E(tr(n2z2z2F v;vIT)[S, ))

PD?@

-

&,
Il
-

E

(E(tr 12,27 FTuZ ?F) ' tr(nQZQZQTFTVZ'ViTF) |Sz17 Szz)>

tr (E(nlzlzf ISz, )FTuZ-u;TFF> tr (E(nQZQZg‘SZI )FTV]-V;TFF> ) :

I
NE

TEuz TEV]

-

&,
Il
—
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where z; and z, represent the sample means of z; in terms of the two partitioned
samples in structure (3.6). They correspond to S,, and S,,, which are the sample
covariance matrices for the two split samples. The two conditional expectations

in the last line above are defined as

E(mz121 [S,,) = c11(S5,)L, + c12(S,,) (117 — L),

E(n2z121 |Sz,) = €21(Sz, )1, 4 ¢22(S4,) (117 — 1),

where 1 denotes a column vector whose p-dimensional elements are all one:
011<Sz2) = E(nli%ﬂsm) and 012(822) = E(n1211212|822) and Cgl(Szl> = E(n2231|Sz2)
and ¢9o(S,,) = E(n2Z21Z22|S,, ). Among these, z;; and z;5 respectively denote the

first and second component elements of z;. Therefore,

1 1 _ _
E ( T VTS, tr (E(nlzlle ISz, )FTuiuiTF) tr (E(HQZQZg‘SZI )FTVJ'V?F) >

.M,@

1

.

)]

E(uiTF (Cll(szz)lp + ¢12(84,) (117 — IP))PTui
ulTEui

I
.Mﬁ

1

]

X

VJTF (021 (Szl )Ip + o (SZ1 )(11T — Ip)) FTVj >
viZv,

B zp:E(uiTrcu(szz)IprTui varcm(Szl)Iprij>

= uZ-TEui VJTEVj
7p p p p
= Y3 E(en(Su)en(Sa)) = Do B(E(mzIS,) Bz S,,)
i=1 j=1 i=1 j=1
p p
= YD B(E(uzS..) )E(EMmz3[S,)) = p < p, (S.4)
i=1 j=1

where the second equation is followed by one fact:
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Clz(SZQ)U?F<11T — IP)FTui E(n1211212|8z2)uff(11T — Ip)FTlli
u/ Yy, u/ 3y,
nlE(ZH)E(Zlg)u;F<11T — Ip)PTlll‘

= =0
u/Yu; ’

and similarly,
Czl(Szl)V]TF(]_]_T — IP)FTV]'

=0.
VJTEVi

In summary, putting the result shown in (S.4)) into formula (S.3]), we obtain

cov(ly, Ip) = ZZ (<\/_u Xl) (\/n_QV?XQY) —pxp=p*—p*=0.

T /

Here, we can declare that I; and I are uncorrelated terms. The asymptotic

variance of the sum of I; and I is equal to {2(tr(R?) + tr(R3))}'/2. Combining
the results in equation (S.1)), it can be straightforwardly shown that

LT (),
{2(er(R2) + tx(R3)) }

This completes the proof of Theorem 1. 0O

S2 Proof of Theorem 2

In this section, we first show the consistency of Lemma [2| to assist the derivation

of Theorem 2.

Lemma 2. Under the structure of random variables in (3.6), when Assumptions

2 and 4 hold, the given p-dimensional projection directions for ug; from sample
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covariance matrix Ss, as n goes to infinity for j =1,...,p are
T )
W Sitty; | 0
ul 3uy, ’
23 2j

In addition, matriz Sy also holds this result for given projection direction matrix
U.

Proof of Lemma |2} First, the spectral decomposition of covariance matrix 3 can
be written as

> =VAVT,

where V and A are composed of eigenvectors and eigenvalues of 3. Define Xj =
VTix, andx} = VTx,, and Uy = VTU, and U = VTU,. Based on the test
statistic, T¢p is constructed as in equation (2.5). Now, it can be expressed in

matrix form as
T2 = mx UsWiUTR) + noxlUyW5 UT %,

= mxIVVTUL,WUIVVTR, + noxl VVIU, W, UTVVT %,

2 nxTU; (W) UTR + oz U (W) 70T %5, (S.5)
where W1 = diag(uzl'Siu,, ..., uzlStuz,) and W5 = diag(w(TSqui,, ..., uj7Szu;,),
in which uy; = Vuj, and S} = VTS,V. Diagonal matrices Wl and WQ include
the variance components of vectors X! U, and X1 U, respectively. Thus, vec-

tors x1 Uy and %2 U; have reached the standardization effect. At the beginning

of the proof, given the projection direction on each data split, the projection
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variances have the following consistency: W* T AN W* where W7

j5) ,(33) i(jj)

diag(usf Aug,, ..., u3 Auj)) for j =1,2,...,p, and ¢ = 1 and 2. Under Assump-
tion 4, given projection vectors u}, for i = 1,2,...,p, so that uil Auj;, > ¢, it is

easy to find that

KT Q44 % KT Q54 % *T * *sTx7T *sTx7T
uy; Sjuy; 1' _ |5 Sjug; —ug; Aug, | fug VIS Vg, —uy VI XV,
«T * - «T * — *T\7T :
ug; Aug, ug; Aug, uy; VXV,
According to this fact,
1
T Q* _ «T'x7T T *
E(u}; Sjuy;) = uj VvV E<n ] g (x; —X1)(x; — X1) )Vu%
1— 14
J=1

*T~x7T _
u;; V' XVu;, = uj; Auzl,

?TSTUSZ' — 1‘) = 0. Let y; = VTx;. Given uj] for i = 1,2,...,p,

*T *
2.1\ .

2
* T Qg gk ni
uy; Sjuj, y])
*T *
Uy, Au% ny — 1 i A/ U Au2l
2
ni T — 2
_ 2: ) y; n ( Uy ¥ )
- *T * ’
ny — 1=\ JwlAug, -1 ul; Aus;

Jj=

where y = 1 Z i=1Y;j- Suppose that Assumption 2 holds, we have by the law of

large numbers that
KT Qg4 %
u;; Sjus, p.
u*TAu* 1
2i 1\Uy;

as n — oo. Similarly, the consistency can be easily obtained as follows:

* T Qg%
uj; Siuy; p
u*TAu* 1
1% 17
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as n — oo, for given projection directions uy;’s, 1 < ¢ < p. Even though the
eigenvalues of A vary with n; in a sequence, as long as a n; is given, our consistency
can be obtained through the law of large numbers. Combining the transformation
results of and the proof conclusions of the consistency property mentioned
above, we obtain the following consistency properties:

T
—umslu% 251 and

ul Suy; u; Xy,

T
ulisgugi p.

— 1.

This completes the proof of Lemma 2} O
Proof of Theorem?2: It can be seen from the expression of equation (S.5)) that test

statistic T@p can also be written as

2
P s
Ter = \/T - ST Sw.
i=1 Uy; 91Uz j=1 uljsgulj

p *T =% p *T *
_ § : VTl Xq . Z V2l X

' Vus! Stus, u*TS ut

=1 v 7 j=1 2l

= 13 + I4. (86)

2

For independent components structure (3.6), covariance matrix ¥ = I'T7 is as-
sumed to be positive definite. Define §; = %tr(Zj), for j = 1,2,3,4, when the

limitation of d;’s exists. That is,

0 < lim §; = ;0 < 00. (S5.7)

pP—00
Let &, = ;tr(Sy,) and Oy = Str(S%) — 15 (tr(S,))?]. Srivastaval (2009) proved that

51 and 52 are consistent estimators of §; and ds as (n,p) — oo in Theorem 2.2. In
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our framework, when Assumptions 1-3 hold, it implies that the result of equation

1) holds. It can be shown that for ¢ = 1 and 2, %(tr(f{?) —p*/(n; — 1)) is a
consistent estimator of ]l]tr(Rf) as (n,p) — oo for the case (n — 1) =O(p7), 0 <
7 < 1, which was proved by Srivastava and Du (2008) in Lemma 3.2. According

to the asymptotic normality of Theorem 1, and if Assumptions 1-3 hold, it can

be seen that the expression of I3 and I have the following asymptotic normality

distribution:
mXTU,W U %, — p(a=L
o oWy T Zoiss) g,y (5.8)
[2(er(R2) — ) 12
and

noX U W, ' UT %, — p(m2=L
2Xo U1 Y2 Vi 22 p<"2*3>i>N(0,1). (5.9)
2(6r(R) - ) 2

(n2—1)

It should be pointed out that the expectations of both I3 and I, are respectively
obtained by obeying p independent F'(1,n; — 1) distribution with 1 and n; — 1
degrees of freedom under normal distribution. However, regardless of distribution,
both p(Zi—:;’) and p(zz—:é) converge to p when Assumption 2 holds. Therefore, their
limit distributions are unchanged. In real world application, we still adopt the
expression of Theorem 2 to further correct the bias of test statistics I3 and 1.
To obtain the asymptotic normality property of test statistic T¢p, based on
equations —, we only need to prove that terms I3 and I, are asymptoti-

cally irrelevant or irrelevant. According to the conclusions of Lemma[2] it follows
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that

T
u Sfllgz .
2’——>1 and —o—
ugzZugl u;,2uy;

Furthermore, the cross test statistic, T¢p, yields the following result:
T2 _ i NV TiUg Xy . y/ Mol X2
cp = T
i—1 vV ngsluzz vV uﬂ'szuu

1Uy;Xq ’ nguTiig ’

= 3 (i) + ()

= L+ L. (S.10)
To obtain the asymptotic normality of test statistic T@p, when I3 and I, have
asymptotic normality, they can be translated using the uncorrelated property
between I; and Iy because I3 and [, converge with probabilities I; and Is, re-
spectively. According to the consistency property of T@p in , and because
I, and [y are uncorrelated in Theorem 1, it is easy to find that from the asymp-
totic normality shown in and (S.9), the cross test statistic T¢p follows the

asymptotic normality

Tép —P(Z:é) —P(Zz:é) d.

- al B > — N(0,1),
{2(tr(R%)+tr(R§) — L —#)}1/2 .1

ni—1

where ﬁl and ﬁg are the sample correlation matrix of projection samples Ul X,
and U] Xy with X = (x1,...,%X,,) and X5 = (Xp, 11, - - -, Xn), respectively. This

completes the proof of Theorem 2. 0



12 Guanpeng Wang and Hengjian Cui

S3 Proof of Theorem 3

Proof of Theorem 3: Combining the conclusion of Theorem 2 and the content of
Theorem 2.1 in Srivastava (2009), when mean vector g # 0, as n,p — oo, for

random variables x;, we easily see that

ni(X; — M)TUzwfleT(il — ) + ng(Xg — H)TU1W51U1T(X2 — ) —2p (S.11)
V2(tr(R?) + tr(R3))

has a standard normal distribution, N(0,1). For the local alternative setting

D=

K= (n(nl—l)) 9,
1 __ _
%{nl(il — ) U, WUy (%) — p) + na(Xe — p) U W5 U (R — )}
1 ~ —~ 2 _—
= (ETU,WTUTR, + noX Uy W5 UTR) — ——t 5T, W UT R,
p pn(n —1)
2n4 Trr <1777 — ny Trr xar—177T
_ S U)W —_ 5 U,W 0
pn(n —1) OiW, U X2+n(n—1)\/f) U2Wi Uz
no

+ sTUW;UTS.

n(n—1)/p
Combining the conditions of (3.7) and (3.8), because %X;; — pu; = (1/{n(n —

1)})%61- as n — oo and Wi(jj) LN W,(;;) for i =1 and 2, it follows that

%JTUQVA\TUQTX1 — 1/ (n(n — 1)/p)0 Uy W TUTS 2 0,
pn(n —

and

22 §TUW; U Ry — na/(n(n — 1)/p) 8" U W5 UTS 25 0.

vpn(n—1)
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The above conclusion is true only if the following facts are proved:

ni ny

Vpn(n—1) vpn(n —1)

When finite fourth moments exists for random variables, according to the conclu-

STU,W T UTx, — STUW U T 25 0. (S.12)

sion of Wi(jj) — W,(j;), the convergence rate of variance of L(éTUQWflUE}’q)

Von(n—1)
can be obtained by the consistency term \/ﬁ(JTUQWflUQTil). By the con-

dition of (3.7), the variance of

ni

ny T 17T = L op —177T

ar( ———— (§TU, W UL %)) |Us ) = ———— = (8T U, W UL §),

var (s (T UW U R)|U) = P (6TU WU )
and

T2 T “177Ts T2 L or —177T

ar( ———=(0" UyW, U; x)|U; )| = ——————-(0" Uy W, Ui 9).

var(——Ees (T UW; U0 ) = s (6TUW; U )

By assumption 2, both of the above variances tend to 0 as n — oo. Thus, the

result in (S.12)) is obviously established. Therefore,

1 _ _
%{nl (31 — W)W Uy (%) = p) + na (%o — ) TUYWL U (%0 — ) }

1 1
— %{Tgp - m(/asTUQWl—lUQT(S + (1= k)TUWLUTS)} B 0.

Define A(8;n,p) = = (k6" UsW'UT6 + (1 — k)6" Uy W, ' UL ). By the asymp-

totic normality result in equation (S.11)), as (n,p) — oo, we easily have

Tép — A(d;n,p) — 2p
V2(tr(R?) + tr(R3))

5 N(0,1).
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Thus, we have that under local alterative p = {m}%(ﬁ, the conditions of

Theorem 1, and (67U, W U8 + 67 UyW, ' UT'8) < C,

lim P(T2 > Zl_a|U1,U2)

(n,p)—o0
T2p —2
— lim P cp 2P > 2 alUn, Us
(n,p)—oc0 V2(tr(R3?) + tr(R3))
2 _
— g p( e B@mp) -2 A(n, p)
(np)=oe \ 1/2(tr(R3) + tr(R3)) V2(tr(R?) + tr(R2))

= lim ®|—z_o+ A(%:n,p) )

This completes the proof of Theorem 3.

S4 Proof of Theorem 4
Proof of Theorem /: Define two events, £, and &,, as

£, = {max |z; — /ULJ|/31/2 < 5n’p/\/ﬁ}

1<5<p
and
4 9
€9 = {§ < sj5/055 < Z,Vj = 1727--->P}-

For any j € S(u), it follows that |u;| > 305526n,p/\/ﬁ by the definition of S(u).

Then, under event £, N &y,

5] o gl =175 — gl o 20
e 2 2 Ty~ Onp/ V> up/ V.
Sjj Sjj 30
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This implies that j € S. Hence, S (m) C S. In fact, we have proved this statement

on event £; N &y uniformly for p € U:

Jnf, P(S(p) C Slp) — 1.

Furthermore, under the null hypothesis (Hp), by Assumption 3,

Py = 0[Ho) = P(8 = 0]Hy) = P(max {12,1/55/%} < 8,,/v/n|Ho) — 1.

1<j<p

In addition, by inf ey P(S(p) C Slp) — 1,

sup P(Jo < n|S(p) # 0)

peu

< sup P(Jy <n, S # 0|S(p) # 0) + sup P(S = 0|S () # 0)
el pLeu

< sup P(n- 1{max(|fj|/s]1-3/-2) > 0pp/V/n} < n,8 # 0|S(p) # ) + o(1) — 0.
Heu 1<5<p

Therefore, inf ey P(Jo > n|S(p) # ) — 1. This completes the proof of Theorem

4. -

S5 Proof of Theorem 5

Proof of Theorem 5: According to the result in Theorem 4, P(Jy = 0|Hy) — 1.

This implies that J = Jepr + Jo — N(0,1) under the null hypothesis (Hy).

Hence, one must only prove that dn{{ P(Jy > zo|p) — 1. By the definitions of .J,
€Us

and S, these two events are equivalent. That is, {Jo < n} = {S = 0}. Because
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inf e P(S(p) C Slp) = 1and Uy = {p: S(p) # 0},

sup P(Jo < nlp) = sup P(S=0lp) < sup P(S=10,8(u) C S|p) +o(1).
el Heus {5 ()0}

It can be obviously found that the first term of the last inequality is zero, so

sup ey, P(Jo > n|p) — 1. Hence, as n — oo,

inf P(J > zo|p) > inf P(n+ Jepr > 24) — 1,
el LUy

which completes the proof content of Theorem 5. 0

S6 Presentation of additional simulation results

Many of the simulation results are listed for reference in this section to avoid
redundant text and to help the reader understand the article. These include
the exploration of reasonable split percentages for three distributions (Examples
(a)—(c)), the comparison of empirical and theoretical power, and the simulation

results for both the dense and sparse mean tests.

S6.1 Reasonable splitting percentage

Define the splitting percentage for the two-group sample as ¢; thus, ny = [n - ¢
and ny = n — ny, where [z] means rounding = to the nearest integer. In this
section, we explore this trade-off in simulations by taking a range of ¢ over (0,

1): 10%,20%, ...,90%, and we compare the power of each grid value. It should
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be noted that when ¢ = 10%, the empirical power of the CPT is similar to
that of ¢ = 90% because the CPT is a summation of two statistics, T? and
T2, in equation (2.5), which are obtained by cross projection. The mean vector
is set to p = (w/25 * 1g3,,007,)" throughout in this exploration. Figures
show the empirical power curves with setting (n,p) = (150, 300), in which w
are drawn with the values of 1.5, 2.0, 2.5, and 3.0, respectively. The optimal
splitting percentages vary for many simulations, with most peaks occurring at a
grid value of 40% — 60% in factor model structures, 3; and X5, while a splitting
percentage of the covariance in the range of 20% — 80% for the remaining two
structures is acceptable. It is difficult in practical application to choose an optimal
splitting percentage that performs consistently because of the unknown covariance
structure. Therefore, we suggest that 40% — 60% is a reasonable range in our

projection framework.

P G =+
> SohwLs - + N

. L N

N H N
g5 P AN 2 o) S N o R S WY SIS S

, 0= 0= - - -9-"0 -0~ o
S s -

- o--0o_ L N R

o N - .

. AN o Q\‘ 03] 03~ ~0 - o - 0--9--6--6--0-

01 02 03 04 05 05 07 08 09 0r 02 03 04 05 05 07 08 09 01 02 03 o 05 06 07 08 09 01 02 03 04 05 05 07 08 09
Spiting Percertage Spiting Percentage Spittng Percentage Splting Percentage

(A) Example(a), X1 (B) Example(a), X2 (C) Example(a), X3 (D) Example(a), 34

Figure 1: Empirical power under multivariate normal data changes with the splitting percentage.
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Figure 2: Empirical power when multivariate student ¢ data change with the splitting percentage.
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Figure 3: Empirical power when the multivariate chi-square data change with the splitting percentage.

S6.2 Comparison of empirical and theoretical power

In this subsection, we illustrate that the performance of the empirical power is
close to the theoretical power calculated by Theorem 3. The mean vector is set
to p = (w/30 * g5y, 005,)" throughout in this presentation. Figures 4-5 show
the curves of the empirical power and the approximated theoretical power with
the setting (n,p) = (250, 300), where w is plotted with values from 1.0 to 1.8.

According to Theorem 3, the asymptotic power of standardized CPT statistic 7
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s (n,p) — oo is given by

oy A(d;n,p)
B(T716) ~ Ey, v, <‘1>< ~ o T V2(tr(R?) +2‘)cr(R§))>)'

Let B(T2|6) be an approximation of E, 1, <<I)<— 21—+ A0inp) )), where

V/2(tr(R3)+tr(R3))
1 & AO(§;
T2‘5 Ezq)(_zlfa"i_ ( 7n7p) ‘ )
i=1 \/2 (tr(Rgz))2 + tr(Rgz))2)

with AD(&;n,p) = 22 (k6TUSWI U8 + (1 — k)o"UP WU S) and

ng), Wg), Rgi) and Rgi) are obtained by replacing U; and U, with Uli) and

Uéi) in the definitions of W1, Wy, R; and Ry, respectively, where the projection
(1)

directions Ul(i) and U, "~ are the eigenvectors of the sample covariance matrix of

i-th iteration.
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Figure 4: The dashed and solid lines represent the fitted plots of the empirical power and the approximated

theoretical power (3(T2|6)) of CPT with increasing signal strength, respectively.

It can observe from Figure [ that the empirical power is very close to the
approximated theoretical power calculated by Theorem 3. Of course, with a
sufficiently large sample size and dimensionality, the convergence of our CPT to

the asymptotic normality under the local alternative would be better. Therefore,
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it is normal to have a slight difference on a few points in the fitted plots in Figure

Ml

S6.3 Simulation results for dense and sparse mean tests

We first show the performance of CPT in terms of empirical size and power on
dense mean settings for the multivariate student ¢ and multivariate normal chi-
square distributions in Tables [SIHS2] respectively. It can be seen from Tables
that the performance of our proposed CPT is similar to that of Table 1
under the normal distribution.

Table S1: Empirical size and power (%) of test statistics (Example(b), nominal o = 0.05)

Size Dense mean w = 2 Dense mean w = 3
Type|Tép T3p T35 13 TéQ Tep Tép Tis T3 T(%Q Tép Tép Tis T3 T%Q
1 5.7 55 7.0 7.2 5.1/93.3 744 14.2 17.1 9.0/100.0 100.0 71.5 78.5 429
n = 200 3o 6.4 54 7.1 7.0 5.3/92.6 71.6 83 9.0 5.3(100.0 100.0 11.8 154 8.9
p =250 33 59 54 5.7 57 51/96.9 79.7 99.9 99.9 99.8/100.0 100.0 100.0 100.0100.0
P 6.1 5.0 5.2 5.5 46785 36.4 959 96.4 92.9(100.0 99.4 100.0 100.0100.0
3 6.0 5.1 7.1 7.5 4.4/97.5 91.5 16.6 20.0 11.5(100.0 100.0 91.1 99.3 79.2
n = 200 3o 6.0 4.6 6.8 70 4.2/98.1 89.7 84 9.1 5.9(100.0 100.0 11.8 15.4 8.3
p =350 X3 6.2 4.9 5.1 55 4.3/99.5 96.4100.0 100.0100.0{100.0 100.0 100.0 100.0 100.0
34 59 4.8 59 6.0 5.8/89.1 64.3 98.7 99.0 97.7/100.0 100.0 100.0 100.0100.0

The three distributions have very similar empirical powers across different
combinations of sample sizes and dimensions on dense mean settings. Thus,
to save space, the power function graph of Example (a) (multivariate normal
distribution) is shown as a trend graph that gradually increases with the mean

signal. The eight subgraphs in Figure |5 highlight the advantages of our proposed
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Table S2: Empirical size and power (%) of test statistics (Example(c), nominal a = 0.05)

Size

Dense mean w = 2

Dense mean w = 3

2 2 g2 2 2
Tep Top Tgs T Teq

2 2 2 2 72
Tép Tsp Tgs  T§ Tog

2
TCP

2 2 2 72
Top Tgs T3 Teq

Type
3
n = 200 Xo
p =250 X3
3y

5.7 55 6.7 72 5.0
6.2 52 7371 53
5.8 5.5 5.4 5.9
59 55 5277 4.8

9.9
5.6

93.0 57.0 12.8 13.3
92.6 61.0 7.7 83
97.3 59.1 99.8 98.7 99.9
776 232 95.7 89.3 934

100.0 100.0 55.2 69.9 48.9
100.0 100.0 11.3 14.7 8.1
100.0 100.0 100.0 100.0100.0
100.0 98.4 100.0 100.0100.0
100.0 100.0 87.5 95.1 70.9

3
n = 200 X9
p =350 55

5.8 51 7378 4.9

5.0 5.5 5.3

58 55 7276 6.2
4.4

97.5 73.8 16.5 169 11.3
98.1 763 79 84 54
99.4 76.5100.0 99.8100.0

88.8 36.7 989 96.2 98.0

PV

6.0 52 5378 4.3

100.0 100.0 11.4
100.0 100.0 100.0 100.0100.0

100.0 100.0 100.0 100.0100.0

141 7.9

CPT method over the method of optimal projection direction, T3p, which coincide

with the empirical size and power shown in Table 1 when the empirical size is

controlled at the nominal level of 0.05.
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Figure 5: Comparing the empirical power under the settings of ;-3 in Example (a)

Under the sparse mean settings, Tables [S3] and [S4] show the empirical size of

the CPT approach as well as some tests for random samples generated by the

three distributions, including Examples (a)—(c) in the case where the covariance
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structures are 3, and X3, respectively. Tables [S5| and [S6] respectively, describe
the empirical power of the multivariate student t and chi-square distributions
at novel level @ = 0.05 under the four types of the covariance matrix. We can
observe that the results in these tables have the same performance as in Tables 2

and 3.

Table S3: Empirical size (%) of tests with o = 0.05, sparse mean, 3o

n p T3y T2 T(%Q T3p Té¢p Jop+Jo Jopr +Jo P(S=10)
Example(a): Multivariate Gaussian
150 7.20 7.60 5.04 5.27 6.33 5.29 6.33 99.98
150 200 7.07 7.28 498 5.01 6.30 5.04 6.32 99.93
300 6.98 7.32 462 483 6.52 4.84 6.53 99.99
150 6.47 6.96 4.73 5.16 5.98 5.18 5.99 99.97
200 200 7.06 7.34 493 4.84 6.28 4.86 6.30 99.98
300 7.67 7.53 5.52 5.42 6.18 5.43 6.19 99.98
Example(b): Multivariate Student ¢
150 7.09 7.42 497 539 6.19 5.46 6.24 99.92
150 200 6.58 6.91 4.55 5.11 5.82 5.16 5.84 99.93
300 6.91 7.30 4.74 521 5.74 5.23 5.75 99.97
150 7.58 7.64 521 4.84 5.62 4.85 5.63 99.99
200 200 7.22 7.51 489 5.69 5.79 5.70 5.79 99.99
300 7.13 746 496 520 5.90 5.20 5.90 100.00
Example(c): Multivariate Chi-square
150 7.01 7.34 491 526 6.20 5.31 6.25 99.93
150 200 6.65 6.80 4.51 5.31 6.33 5.35 6.36 99.95
300 6.96 7.13 490 5.37 5.87 5.39 5.88 99.97
150 727 743 497 537 6.05 5.39 6.06 99.98
200 200 6.42 6.62 4.38 5.56 5.34 5.57 5.35 99.99
300 6.72 7.03 4.68 5.13 6.10 5.13 6.10 100.00
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Table S4: Empirical size (%) of tests with o = 0.05, sparse mean, X3

n p T3y T2 Tc27Q T3p T2p Jop+Jo Jopr +Jo P(S =10)
Example(a): Multivariate Gaussian
150 5.47 5.89 4.70 4.56 5.77 4.68 5.90 99.86
150 200 5.31 5.99 4.60 4.83 6.12  4.88 6.16 99.93
300 5.00 5.65 5.33 4.51 5.71 4.53 5.73 99.96
100 5.58 6.00 5.00 4.78 5.96 4.80 5.97 99.92
200 200 5.75 6.16 5.57 4.99 6.25 5.04 6.28 99.98
300 4.88 5.35 4.53 498 5.13 5.00 5.15 99.98
Example(b): Multivariate Student ¢
150 540 594 513 554 5.46 5.62 5.50 99.92
100 200 5.97 6.51 5.10 5.75 5.67 5.79 5.72 99.95
300 595 6.30 4.53 5.57 5.90 5.59 5.92 99.97
150 5.11 5.38 4.47 5.59 5.52 5.59 5.52 99.99
200 200 5.78 5.90 4.67 543 5.93 5.45 5.95 99.98
300 5.37 5.55 4.93 5.11 5.83 5.13 5.85 99.98
Example(c): Multivariate Chi-square
150 5.50 - 4.43 515 5.34 5.92 6.04 99.20
150 200 5.38 - 520 5.13 5.61 5.90 6.37 99.11
300 5.74 - 4.97 548 5.78 6.08 6.34 99.32
150 5.59 897 447 543 5.76 5.69 6.01 99.70
200 200 5.46 7.16 4.67 5.21 5.47 5.59 5.78 99.62
300 4.79 7.07 493 5.16 5.51 5.35 5.69 99.79

Table S5: Empirical power (%) of tests with a = 0.05 for Example(b)

Type n p T2q 12 T%Q T2, T2p Jop+Jo Jepr+Jo P(S=0)
> 150 11.87 12.83 8.17 46.77 74.23 4951 75.00 92.07
150 200 10.13 12.60 7.00 43.25 63.85  52.50 68.86 78.19
300 10.26 12.88 6.57 40.41 49.79  50.39 57.94 77.20

100 12.38 18.09 8.33 77.15 93.20 83.33 94.32 55.76

200 200 11.37 12.42 7.37 5841 86.62 62.51 87.38 84.72
300 11.48 13.15 8.17 50.33 72.52  58.52 75.78 77.40

> 150 7.00 8.44 4.70 3470 7194 34.86 71.97 99.36
150 200 7.70 811 4.43 36.08 64.30 36.18 64.33 99.54
300 7.87 8.63 550 37.45 46.68 37.70 48.90 98.98

150 8.38 10.76 6.30 81.60 9348 82.52 93.72 87.34

200 200 8.12 836 530 5501 8643  55.04 86.43 99.67
300 827 835 587 2896 74.02  29.90 74.03 99.90

=5 150 97.41 97.65 95.00 55.35 86.42  89.43 95.16 16.18
150 200 94.32 94.91 90.90 55.20 79.64  85.41 92.98 21.30
300 86.66 87.45 80.77 42.76 64.55  79.31 85.50 28.90

150 99.73 99.71 99.60 67.77 96.86  97.20 99.19 2.49

200 200 99.25 99.27 98.57 64.01 93.17  96.09 98.42 6.61
300 96.99 97.08 95.33 58.79 84.11  93.07 96.36 10.67

> 150 87.00 87.81 8150 33.30 66.31  77.58 84.07 27.73
200 80.09 81.19 73.20 29.71 58.15 71.97 79.32 33.81

150 300 68.57 70.31 60.00 26.26 46.64 65.18 71.53 41.31

150 96.34 96.39 94.40 42.80 83.32 90.78 94.38 11.61

200 200 93.38 93.42 88.34 39.83 75.74  87.53 92.19 15.51
300 86.14 86.28 78.70 36.04 63.66 82.43 86.87 21.85
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Table S6: Empirical power (%) of tests with a = 0.05 for Example(c)

Type n p Tgs T3 Tqq Tdp Tép Jop+Jo Jopr +Jo P(S=10)

3 150 10.34 13.43 8.07 55.94 73.99 60.57 75.40 86.20
150 200 10.68 13.71 7.13  48.98 63.29 53.69 65.57 86.51

300 9.56 9.97 6.17 22.51 47.84 24.44 48.50 96.65

150 12.83 12.34 8.70 56.29 93.29 57.47 93.34 95.37

200 200 12.48 15.26 7.57 60.16 85.58 66.69 87.02 77.91

300 11.83 14.13 7.10 49.74 73.85 58.00 76.86 79.38

3o 150 8.20 9.67 4.83 62.87 73.26 63.23 73.52 97.56
150 200 7.41 791 5.87 3242 62.82 32.55 62.85 99.62

300 7.77 843 520 3746 47.22 37.77 47.91 99.00

150 8.37 8.81 550 69.66 93.51 69.77 93.51 99.45

200 200 7.57 8.03 5.83 53.96 85.58 54.23 85.60 98.92

300 7.55 872 5.17 57.93 72.09 58.57 72.42 96.83

33 150 97.29 98.41 95.50 49.00 86.11 85.40 93.70 22.52
150 200 94.49 96.19 90.73 44.12 77.99 80.07 89.29 30.01

300 86.00 90.99 79.73 35.61 64.08 68.48 79.97 43.58

150 99.77 99.94 99.60 63.58 97.16 97.73 99.38 3.82

200 200 99.35 99.70 98.45 60.43 93.23 95.32 98.21 8.04

300 97.17 98.29 94.57 53.93 84.21 91.86 95.55 13.20

PV 150 86.86 89.98 79.27 29.83 66.40 71.43 80.93 35.12
150 200 80.36 83.26 74.13 26.94 57.58 65.57 74.53 42.20

300 68.06 72.88 59.87 24.37 45.13 57.09 65.36 52.72

150 96.38 97.22 94.00 41.23 83.89 89.12 94.10 14.23

200 200 93.47 94.91 90.10 37.86 76.26 85.93 90.81 18.11

300 86.68 89.01 79.47 33.54 63.95 78.24 84.53 27.39
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