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1. Anchored EM algorithm

This section restates the steps of the anchored EM algorithm for the mixture of

regressions model with additional details on its implementation.

Initialization. To initialize θ0 = (β0, σ0,η0), we recommend randomly partition-

ing the data into k groups and initializing β at the least-squares estimates calculated

from each group. The residual variance σ2 can be initialized at the estimate from

one of these least-squares solutions. We initialize ∆ at a large positive value (100 in

this study) and set the tolerance to a small, positive value (1× 10−5 in this study).



E-step. Calculate rtij for i = 1, . . . , n, j = 1, . . . , k, where rij is the posterior

probability that Si = j given y,X,β, σ,η, and equals

rtij =
ηtj φ

(
yi;xiβ

t

j ,σ
2t
)

∑k
l=1 η

t
l φ
(
yi;xiβ

t

l ,σ
2t
) . (1.1)

where φ(·; a, b) denotes the density function of a normal distribution with mean a

and variance b. The distribution q(s) is updated as

qt(s) =
n∏
i=1

qt(si) (1.2)

=
n∏
i=1

(
rtij
)I(si=j) (1.3)

where I(si = j) is an indicator function that equals 1 if si = j and equals 0 otherwise.

Anchor step. For fixed values mj, j = 1, . . . , k, update the anchor points by

finding At = ∪kj=1A
t
j to maximize

k∑
j=1

∑
i∈Aj

rtij, (1.4)

subject to Aj ∩ Aj′ = ∅ and |Aj| = mj for all j 6= j′. Then set

r̃tij =



rtij if i 6∈ At

1 if i ∈ Atj

0 if i ∈ Atj′ , j′ 6= j.

(1.5)

The optimization step in 1.4 simply amounts to assigning to component j the mj

points with the highest posterior probability of allocation to component j given the



current estimate of the model parameters, in situations where this does not anchor

any observations to more than one component. If an observation would be anchored

to more than one component, a situation that could occur if the mj values are

large relative to the sample size, an approximate solution may be used, or linear

programming algorithms can produce an exact solution.

M-step. In the M-step, we update θt = (βt, σt,ηt) to maximize F (qt, θ). The

objective function satisfies

F (q, θ) = Eq log(p(θ, s,y))− Eq log(q(s)), (1.6)

with the second term constant with respect to θ. The M-step is thus derived by

maximizing the following with respect to θ:

F ∗(qt, θ) = Eq log(p(θ, s,y)) (1.7)

= Eq log(f(y|X, s,θ)) + log(p(β) + log(p(σ2)) + log(p(η)) (1.8)

=
k∑
j=1

n∑
i=1

r̃tij log(φ(yi;xiβj , σ
2)) + log(p(β) + log(p(σ2)) + log(p(η)) (1.9)

=
n

2
log(σ−2)− 1

2

k∑
j=1

(y −Xβj)′Rt
j(y −Xβj)−

1

2
(β − µβ)′V −1(β − µβ) +

(a− 1) log
(
σ−2

)
− bσ−2 + (α− 1)

k∑
j=1

log(ηj) + c. (1.10)

In the expression above, c represents terms that are constant with respect to θ and

Rt
j is an n× n diagonal matrix whose i-th diagonal element is r̃tij. The update steps



are as follows:

βtj =
(
X ′Rt

jX + V −1
)−1 (

X ′Rt
jy + V −1µβ

)
, j = 1, . . . , k,(

σ−2
)t

=
a+ n/2− 1

b+ .5
∑k

j=1

(
y −Xβtj

)′
Rt
j(y −Xβtj)

,

ηtj =

∑n
i=1 r

t
ij + α− 1∑k

l=1

∑n
i=1 r

t
il + α− 1

, j = 1, . . . , k. (1.11)

Monitoring convergence. After the expectation, anchoring, and maximization

steps, t is increased by 1 and ∆ is updated until its improvement does not exceed the

tolerance. To update ∆, we calculate F ∗(qt, θt)−F ∗(qt−1, θt−1). The function F ∗(q, θ)

is given by 1.10 above. Convergence may instead be monitored using F (qt, θt) −

F (qt−1, θt−1) by adding the term Eq log(qt−1(s))− Eq log(qt(s)) to ∆.

Initialization and convergence. We have found the algorithm to be sensitive to

initial values and prone to visit local maxima, especially when components are not

well-separated. We thus recommend running the algorithm several times (at least

15-20) and selecting the solution with the largest ending value of F ∗(q, θ). We used

50 runs in the data analysis and simulations in this study. For the 3-component

mixture models considered in this study, we have found that it is typical for about

half of the sequences to converge to the same solution.

In the analysis and simulations of this manuscript, we set the tolerance for the

algorithm to be 1×10−5 and typically saw convergence in less than 200 iterations. If



the algorithm has not converged after a very large number of iterations, it should be

stopped and re-started from new random starting points. We have found that, more

often, the algorithm may converge in 3 or 4 iterations to a “poor” solution, such as

one in which two components have identical parameters. If this behavior is observed

in the final solution, the algorithm should be re-started from new random starting

points; however, we have found that this situation is prevented by using several runs

and retaining only the best solution.

2. Simulation study

We conducted a simulation study to evaluate the performance of the three anchoring

methods: A-EM, CDW-cov, and CDW-cor.

2.1 Data generation.

Data sets were generated under mixtures of simple linear regressions models with

k = 3 components. To mimic the mammals data studied in the main text, we used

sample sizes of n = 100 for all settings. Six settings were used to generate the data:

A1, A2, B1, B2, C1, and C2. Settings A, B, and C used different values of β, inducing

different relationships among the true regression lines. Figures 1, 4, and 7 show the

true regression lines for each case. One additional setting with a multiple regression

model is considered in Section 2.5.



2.1 Data generation.

For each value of β, we used two values of σ. These values were chosen so that

the ratio ∑k
j=1 ηj(βj − Es(β))2∑k

j=1 ηj(βj − Es(β))2 + σ2
, (2.12)

which reflects the ratio of expected across-cluster variability to total variability, was

set to be 0.95 (settings A1, B1, and C1) and 0.8 (settings A2, B2, and C2).

For each setting, 100 data sets were generated at random. The predictor variable,

x, was simulated from a standard normal distribution and centered and rescaled.

Latent allocations were sampled with η1 = η2 = η3 = 1/3, and data were sampled

conditional on the latent allocations.

As we did in the analysis of the mammals data performed in the main text,

m = 3 anchor points per component were selected using the A-EM, CDW-cov, and

CDW-cor methods. Each anchor model was fit using a Gibbs sampler and posterior

means of the model parameters were estimated. The hyperparameters were fixed at

the following values: a = 5, b = 1, v0 = 1, v1 = 3, α = 1.5, µβ = (ȳ, 0)′, where

ȳ is the sample mean of the simulated response variable. After fitting the models,

posterior means were computed for the model parameters, and maximum a posteriori

estimates were obtained for the latent allocation.

In addition to the three anchor models, we analyzed each data set using a tradi-

tional mixture of regressions model with no anchor points. Post-hoc relabeling was



2.1 Data generation.

used to relabel the posterior samples. This procedure involves first fitting a mixture

of regressions model with no anchor points and then applying the likelihood-based

relabeling method strategy of Stephens (2000) as implemented in the R package

label.switching (Papastamoulis, 2016). The package does not automatically rela-

bel the sampled allocation vectors, so estimated allocations were not computed for

this method.

CDW implementation details. When implementing the CDW methods, anchor

points were chosen automatically using k means on the rows of the Ĉ and R̂matrices,

and then k means was run a second time to find sub-clusters and their centroids. In

order to automate the procedure, we did not make PCA displays. We recommend

including this step in analysis of real data, however, to evaluate graphically the

features of the selected anchor points.

For some simulated data sets, the CDW method occasionally estimated initial

clusters with too few observations to select 3 anchor points per component. This was

more typical of the CDW-cov method, due to k means identifying a small cluster of

points with large variances of the log case deletion weights. In these situations, we

still selected three anchor points per component by artificially adding points to the

too-small cluster. The points that were closest to the centroid in Euclidean distance

were artificially added until each cluster contained at least 5 points. This decision



2.1 Data generation.

was made to facilitate the automation of the procedures. In practice, if this occurs,

it may be appropriate to instead modify the model to require fewer anchor points for

the affected component(s).

Evaluation

We evaluated the methods’ performance on the simulated data sets by measuring

estimation accuracy and clustering accuracy.

Squared estimation error. Monte Carlo estimates of the posterior means were

used as the primary estimates of each model parameter. We denote by θ̂d the esti-

mated posterior mean of a parameter θ from simulated data set d.

To calculate error, we first relabeled the posterior means to minimize the error

in estimating β. Relabeling is not typically necessary in an anchor model; however,

this step ensured that it was possible to compare estimated parameters to the true

values that generated the data. For each possible relabeling of the component-specific

parameters, the error was calculated as the sum of the relative squared distances,(
(θ̂d − θd)/θd

)2
, of the posterior means from their true values. The relabeling that

minimizes this value was chosen as the final parameter estimate.

After achieving the optimal relabeling of parameter estimates, we calculated

the mean squared error separately for the intercept parameters, slope parameters,
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mixture weights, and residual variance. The mean squared error for vector-valued θd

was calculated as

1

D

D∑
d=1

(θd − θ)T (θd − θ).

Clustering accuracy. We also assessed the accuracy of the maximum a posteriori

estimates of s from each anchor model. To measure accuracy, we calculated the Rand

index between the estimated allocation to the true allocation that generated the data.

The Rand index measures the similarity of two clustering structures estimated from

the same data (Rand, 1971). Numbers close to 1 indicate that the anchor model’s

clustering is similar to the allocation that in truth generated the data. Numbers

close to 0 indicate a dissimilar grouping of the observations.

As a benchmark, we also estimated an allocation using likelihood-based classifi-

cation probabilities evaluated at the true values of the model parameters:

soraclei = max
j
P (Si = j|yi,β,η, σ2), i = 1, . . . , n (2.13)

where

P (si = j|yi,β,η, σ2) ∝ ηjφ(yi;xiβj, σ
2). (2.14)

We refer to the allocation vector estimated using 2.13 as the “oracle” allocation.
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2.2 Results: Setting A

Figure 1 shows the regression lines used to simulated data in settings A1 and A2

(left panel). The center and right panels show examples of simulated data sets from

these two settings.
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Figure 1: True regression lines and representative simulated data sets for Setting A.

Plotting symbols are colored by their true allocation.

The plots in Figure 2 summarize the clustering and estimation performance of

the four methods for setting A1. The left panel shows boxplots of the Rand index

for the three anchor models and the oracle allocation. Among the anchor models,

the CDW-cor method has the highest median clustering accuracy and, for a few data

sets, achieves values close to those typical of the oracle allocation. The A-EM and

CDW-cov models perform similarly to each other, with more variability in the EM

values.
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Figure 2: Results from setting A1: Rand index (left) and MSE relative to anchored

EM for the intercept parameters (left center), slope parameters (right center), and

mixture weights (right).

The right panels of Figure 2 show boxplots of the log MSE relative to the A-

EM model under Setting A1. Values greater than zero indicate poorer performance

than the A-EM model and values less than zero indicate better performance. The

left center plot shows that the CDW-cov and relabeling method typically have much

higher error than A-EM, while CDW-cor outperforms A-EM about 25% of the time.

In estimating the slope (right center panel), CDW-cor performs comparably to A-

EM, with CDW-cov and relabeling again resulting in larger error. All of the anchor

models show similar performance in estimating the mixture weights, η.
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Figure 3: Results from setting A2: Rand index (left) and MSE relative to anchored

EM for the intercept parameters (left center), slope parameters (right center), and

mixture weights (right).

Figure 3 shows the same summaries for setting A2, where the residual variability

is higher. In this more difficult case, the methods perform similarly in classification

accuracy, with CDW-cor again tending to be the best. In this setting, CDW-cor

improves in estimation accuracy relative to A-EM, and in fact out-performs A-EM

when estimating the slopes. The CDW-cov also exhibits better relative performance,

but still has poorer estimation accuracy than A-EM. As in the previous setting, the

relabeling method provides the least accuracy.

The average posterior means of each parameter are shown in Table 1 for settings

A1 and A2. These values indicate that the relabeling method tends to estimate one

component with very low weight. This component is estimated to have a shallow

slope and intercept between that of the other two components. An explanation for
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this is that the method identifies some red points between the green and blue lines,

as seen in Figure 1, as belonging to a distinct component, but fails to accurately

detect the linear pattern followed by the red points across a wider range of x-values

without prior information from the anchor points.

Table 1: Average posterior means for each model under setting A1 (top) and A2

(bottom). Values are the posterior means for each parameter, averaged over all data

sets. Values in parentheses are estimated standard errors.

Setting A1

Component 1 Component 2 Component 3

β0 β1 η β0 β1 η β0 β1 η σ2

true -3 0.6 0.3333 -2.5 0.9 0.3333 -2 0.8 0.3333 0.009591

AEM -2.948 (0.05) 0.577 (0.04) 0.343 (0.05) -2.485 (0.06) 0.932 (0.07) 0.321 (0.07) -2.062 (0.03) 0.769 (0.03) 0.335 (0.06) 0.049 (0.01)

CDW-cov -2.862 (0.14) 0.613 (0.13) 0.323 (0.06) -2.553 (0.23) 0.807 (0.16) 0.304 (0.05) -2.152 (0.10) 0.808 (0.07) 0.373 (0.07) 0.064 (0.01)

CDW-cor -2.936 (0.08) 0.589 (0.06) 0.338 (0.05) -2.494 (0.10) 0.905 (0.10) 0.311 (0.06) -2.083 (0.07) 0.770 (0.06) 0.351 (0.06) 0.051 (0.01)

relabel -2.910 (0.04) 0.566 (0.03) 0.377 (0.06) -2.460 (0.04) 0.601 (0.17) 0.168 (0.13) -2.195 (0.09) 0.785 (0.10) 0.455 (0.12) 0.069 (0.01)

Setting A2

Component 1 Component 2 Component 3

β0 β1 η β0 β1 η β0 β1 η σ2

true -3 0.6 0.3333 -2.5 0.9 0.3333 -2 0.8 0.3333 0.04556

AEM -2.920 (0.07) 0.558 (0.08) 0.318 (0.08) -2.479 (0.15) 0.874 (0.20) 0.350 (0.09) -2.096 (0.10) 0.765 (0.11) 0.332 (0.11) 0.095 (0.01)

CDW-cov -2.842 (0.16) 0.602 (0.14) 0.309 (0.07) -2.541 (0.20) 0.783 (0.20) 0.320 (0.07) -2.182 (0.15) 0.810 (0.10) 0.371 (0.08) 0.106 (0.02)

CDW-cor -2.917 (0.11) 0.608 (0.08) 0.329 (0.05) -2.467 (0.14) 0.828 (0.14) 0.324 (0.05) -2.118 (0.09) 0.797 (0.07) 0.347 (0.05) 0.095 (0.01)

relabel -2.841 (0.09) 0.569 (0.06) 0.361 (0.08) -2.468 (0.05) 0.491 (0.14) 0.113 (0.10) -2.256 (0.08) 0.830 (0.10) 0.526 (0.12) 0.125 (0.02)
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2.3 Results: Setting B

Settings B1 and B2 generated data from three parallel lines, as shown in Figure 4.
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Figure 4: True regression lines and representative simulated data sets for Setting B.

Plotting symbols are colored by their true allocation.

The performance summaries under setting B1 are shown in Figure 5. The

typical values of the Rand index are highest for the CDW-cor models, and the MSE

is lowest for the same method. Figure 6 shows that in Setting B2, the case with less

separation, the advantage of CDW-cor in terms of MSE is even stronger. CDW-cov

in this setting performs as well or better than anchored EM, in contrast to settings

where models have differing slopes.
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Figure 5: Results from setting B1: Rand index (left) and MSE relative to anchored

EM for the intercept parameters (left center), slope parameters (right center), and

mixture weights (right).

●

●

●
●●
●

0.
2

0.
4

0.
6

0.
8

1.
0

ra
nd

 in
de

x

AEM CDW−cov CDW−cor oracle

●

●

●

●

●

●
●

●

●

●

●

●

●−
2

−
1

0
1

2
3

4

lo
g 

re
la

tiv
e 

M
S

E
 −

 in
te

rc
ep

ts

CDW−cov CDW−cor relabel

●

●

●

●

●
●

−
4

−
2

0
2

lo
g 

re
la

tiv
e 

M
S

E
 −

 s
lo

pe
s

CDW−cov CDW−cor relabel

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

−
10

−
5

0
5

lo
g 

re
la

tiv
e 

M
S

E
 −

 w
ei

gh
ts

CDW−cov CDW−cor relabel

Figure 6: Results from setting B2: Rand index (left) and MSE relative to anchored

EM for the intercept parameters (left center), slope parameters (right center), and

mixture weights (right).

The estimated parameters in both settings are shown in Table 2. In all methods,

although three distinct intercepts are estimated, the average posterior means of the

high- and low-intercept lines are under- and over-estimated, respectively. This is
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expected behavior in a mixture model because uncertainty in classifications will lead

to component means being shrunk towards each other.

Table 2: Average posterior means for each model under setting B1 (top) and B2

(bottom). Values are the posterior means for each parameter, averaged over all data

sets. Values in parentheses are estimated standard errors.

Setting B1

Component 1 Component 2 Component 3

β0 β1 η β0 β1 η β0 β1 η σ2

true -3 0.7 0.3333 -2.5 0.7 0.3333 -2 0.7 0.3333 0.008772

AEM -2.842 (0.08) 0.711 (0.10) 0.356 (0.07) -2.501 (0.13) 0.672 (0.15) 0.296 (0.05) -2.155 (0.08) 0.703 (0.09) 0.348 (0.07) 0.078 (0.01)

CDW-cov -2.809 (0.08) 0.695 (0.08) 0.359 (0.08) -2.496 (0.20) 0.692 (0.14) 0.289 (0.04) -2.194 (0.10) 0.701 (0.08) 0.351 (0.08) 0.085 (0.01)

CDW-cor -2.869 (0.05) 0.691 (0.05) 0.358 (0.05) -2.498 (0.10) 0.707 (0.07) 0.289 (0.03) -2.133 (0.05) 0.696 (0.05) 0.353 (0.05) 0.076 (0.01)

relabel -2.709 (0.11) 0.685 (0.05) 0.476 (0.15) -2.502 (0.03) 0.355 (0.05) 0.064 (0.02) -2.293 (0.11) 0.674 (0.07) 0.459 (0.16) 0.115 (0.02)

Setting B2

Component 1 Component 2 Component 3

β0 β1 η β0 β1 η β0 β1 η σ2

true -3 0.7 0.3333 -2.5 0.7 0.3333 -2 0.7 0.3333 0.04167

AEM -2.873 (0.09) 0.697 (0.13) 0.310 (0.08) -2.529 (0.16) 0.657 (0.20) 0.346 (0.07) -2.155 (0.08) 0.688 (0.13) 0.344 (0.09) 0.110 (0.01)

CDW-cov -2.818 (0.16) 0.671 (0.10) 0.335 (0.07) -2.485 (0.19) 0.711 (0.15) 0.325 (0.05) -2.218 (0.15) 0.674 (0.12) 0.340 (0.07) 0.115 (0.02)

CDW-cor -2.866 (0.10) 0.692 (0.07) 0.331 (0.04) -2.517 (0.13) 0.671 (0.10) 0.317 (0.04) -2.156 (0.12) 0.691 (0.07) 0.352 (0.05) 0.108 (0.01)

relabel -2.662 (0.11) 0.660 (0.07) 0.449 (0.19) -2.517 (0.05) 0.367 (0.07) 0.074 (0.06) -2.352 (0.10) 0.671 (0.07) 0.477 (0.19) 0.158 (0.02)
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2.4 Results: Setting C

Figure 7 shows the regression lines and sample data sets under Settings C1 and C2.

The model is characterized by two parallel lines with a third line intersecting both.

The points generated by setting C2 are particularly difficult to distinguish as being

generated from different groups.
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Figure 7: True regression lines and representative simulated data sets for Setting C.

Plotting symbols are colored by their true allocation.

The estimation accuracy of the four methods is shown in the right

panels of Figures 8 and 9 for settings C1 and C2, respectively. In set-

ting C1, the anchored EM has the strongest accuracy in parameter es-

timation, while the CDW-cor method has the highest clustering accuracy.
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Figure 8: Results from setting C1: Rand index (left) and MSE relative to anchored

EM for the intercept parameters (left center), slope parameters (right center), and

mixture weights (right).
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Figure 9: Results from setting C2: Rand index (left) and MSE relative to anchored

EM for the intercept parameters (left center), slope parameters (right center), and

mixture weights (right).

A very similar pattern is seen in setting C2, as shown in Figure 9. The estimates in

Table 3 indicate that there is particularly high error in estimating the steep slope of

the intersecting line under the two CDW methods. In addition, both CDW methods
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have average intercepts that are closer together than the true values. The anchored

EM also results in some shrinkage of the intercept estimates towards each other, but

to a lesser degree.

Table 3: Average posterior means for each model under setting C1 (top) and C2

(bottom). Values are the posterior means for each parameter, averaged over all data

sets. Values in parentheses are estimated standard errors.

Setting C1

Component 1 Component 2 Component 3

β0 β1 η β0 β1 η β0 β1 η σ2

true -2.75 0.5 0.3333 -2.5 0.9 0.3333 -2.25 0.5 0.3333 0.004064

AEM -2.633 (0.04) 0.494 (0.06) 0.281 (0.05) -2.500 (0.03) 0.825 (0.07) 0.423 (0.09) -2.360 (0.04) 0.491 (0.06) 0.297 (0.06) 0.054 (0.00)

CDW-cov -2.561 (0.06) 0.614 (0.16) 0.335 (0.06) -2.495 (0.05) 0.640 (0.19) 0.330 (0.07) -2.434 (0.06) 0.618 (0.14) 0.336 (0.05) 0.060 (0.01)

CDW-cor -2.597 (0.06) 0.574 (0.12) 0.315 (0.04) -2.498 (0.05) 0.693 (0.15) 0.358 (0.05) -2.401 (0.05) 0.592 (0.13) 0.327 (0.04) 0.059 (0.01)

relabel -2.515 (0.03) 0.559 (0.21) 0.404 (0.22) -2.499 (0.03) 0.388 (0.22) 0.237 (0.26) -2.476 (0.03) 0.510 (0.19) 0.360 (0.20) 0.069 (0.01)

Setting C2

Component 1 Component 2 Component 3

β0 β1 η β0 β1 η β0 β1 η σ2

true -2.75 0.5 0.3333 -2.5 0.9 0.3333 -2.25 0.5 0.3333 0.01931

AEM -2.642 (0.05) 0.503 (0.13) 0.285 (0.07) -2.503 (0.04) 0.793 (0.13) 0.404 (0.10) -2.363 (0.05) 0.512 (0.10) 0.312 (0.07) 0.068 (0.01)

CDW-cov -2.567 (0.06) 0.623 (0.15) 0.343 (0.05) -2.502 (0.06) 0.609 (0.20) 0.325 (0.08) -2.430 (0.06) 0.620 (0.17) 0.332 (0.06) 0.075 (0.01)

CDW-cor -2.618 (0.05) 0.606 (0.12) 0.318 (0.04) -2.496 (0.05) 0.662 (0.13) 0.356 (0.04) -2.392 (0.06) 0.606 (0.13) 0.326 (0.04) 0.074 (0.01)

relabel -2.527 (0.03) 0.535 (0.20) 0.382 (0.23) -2.502 (0.03) 0.384 (0.18) 0.201 (0.24) -2.478 (0.04) 0.548 (0.20) 0.417 (0.24) 0.084 (0.01)
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2.5 Setting D: three predictors

In addition, we considered one multiple regression case in which three numeric predic-

tors were used. We generated three numeric predictors, x1, x2, x3 with the following

correlation matrix: 
1 0.8 0.05

0.8 1 −0.10

0.05 −0.10 1

 (2.15)

The regression coefficients for each component were:

β1 = (−3.0, 0.7,−1.6, 0.2)′; β2 = (−2.5, 0.9,−1.6,−0.2)′;β3 = (−2.0, 0.5,−1.6, 0.0)′.

The residual standard deviation, σ, was set to be 0.224.

Figure 10 summarizes the performance of each of the methods. For this setting,

the EM and CDW methods tend to have similar MSEs for the coefficients corre-

sponding to the numeric predictors. The error is somewhat higher for CDW-cov in

estimating the intercept. As in the other settings, we see the highest accuracy in clus-

tering from CDW-cor and the lowest from CDW-cov. The parameter estimates are

given in Table 4. All methods typically produce accurate estimates of β2, which does

not differ across the components. The β1 coefficient, associated with the predictor x1

which is highly correlated with x2, is also estimated with accuracy. The intercepts, as

in the simpler models, tend to shrink together with the CDW-cov method exhibiting
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this behavior to the greatest degree.
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Figure 10: Results from setting D: Rand index (top left) and MSE relative to anchored

EM for the regression coefficients and mixture weights.



Table 4: Average posterior means for each model under setting D. Values are the

posterior means for each parameter, averaged over all data sets. Values in parentheses

are estimated standard errors.

Setting D

Component 1 Component 2 Component 3

β0 β1 β2 β3 η β0 β1 β2 β3 η β0 β1 β2 β3 η σ2

true -3 0.7 -1.6 0.2 0.3333 -2.5 0.9 -1.6 -0.2 0.3333 -2 0.5 -1.6 0 0.3333 0.05

AEM -2.86 (0.19) 0.68 (0.18) -1.56 (0.18) 0.24 (0.10) 0.32 (0.10) -2.47 (0.19) 0.80 (0.22) -1.59 (0.17) -0.14 (0.14) 0.38 (0.10) -2.18 (0.24) 0.46 (0.24) -1.55 (0.21) 0.02 (0.14) 0.30 (0.09) 0.09 (0.02)

CDW-cov -2.76 (0.24) 0.68 (0.21) -1.60 (0.19) 0.21 (0.11) 0.30 (0.08) -2.47 (0.19) 0.77 (0.18) -1.60 (0.14) -0.12 (0.16) 0.38 (0.09) -2.27 (0.24) 0.52 (0.24) -1.56 (0.20) 0.00 (0.12) 0.32 (0.08) 0.11 (0.02)

CDW-cor -2.83 (0.23) 0.69 (0.17) -1.58 (0.14) 0.17 (0.12) 0.33 (0.05) -2.45 (0.23) 0.76 (0.17) -1.59 (0.11) -0.10 (0.12) 0.35 (0.05) -2.22 (0.27) 0.57 (0.18) -1.59 (0.12) -0.01 (0.09) 0.32 (0.05) 0.10 (0.02)

relabel -2.60 (0.25) 0.45 (0.29) -1.17 (0.50) 0.12 (0.10) 0.33 (0.21) -2.42 (0.23) 0.63 (0.21) -1.52 (0.24) -0.04 (0.11) 0.60 (0.21) -2.50 (0.07) 0.06 (0.16) -0.24 (0.36) 0.02 (0.04) 0.06 (0.16) 0.17 (0.05)

3. Sensitivity analysis

In this section, we assess the sensitivity of our results to the number of mixture

components, the strength of prior assumptions, and to the number of anchor points.

3.1 Number of mixture components

Here, we show the results of fitting a mixture with k = 2 components to the mammals

data. The main text discussed that in selecting the number of components, two or

three components are preferred. Figure 11 shows the anchor points and estimated

regression lines resulting from the two-component model.
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Figure 11: Anchor points and estimated regression lines for a model with two compo-

nents.

Compared to the 3-component model presented in the main text, the estimated teal

component captures the species that constitute a group with a higher slope than the

others, including some of the large primates. This sub-group is similar to Compo-

nent 3 identified in the main text, although, in the two-component fit, the estimated

regression line is somewhat less steep and has a smaller intercept than Component 3

in the main text. The second group, shown in purple in Figure 11, has an estimated

slope of 0.71 for all anchor models, which is similar to the slopes of Components 1

and 2 in the main text. The estimated intercepts of this purple group range from

3.59 to 3.65, which falls between the intercepts estimated for Components 1 and 2

in the main text. The similarities between the lines estimated in the k = 2 and k = 3

models indicate that both models are able to partition the species into similar sub-
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groups, and that the 3-component model further refines the grouping by capturing

differences in average brain size.

Sensitivity to hyperparameters

The main text presents results under the following prior specification:

βj ∼ N2((3.5, 0.6)′,

1 0

0 0.5

) (3.16)

σ−2 ∼ Gamma(shape=5, rate=1) (3.17)

We will assess the effect of changing these hyperparameters on conclusions from the

analysis of the mammals data. Table 5 gives the posterior means and 90% credible

intervals under the original hyperparameters for reference.

The anchored EM method includes update steps that depend on the prior hyper-

parameters. The CDW methods select anchor points based on a preliminary simple

linear regression fit, which may also be affected by specification of the hyperparame-

ters. Because of this, in assessing sensitivity to the hyperparameters, we do not hold

the anchor points fixed, but re-select them for each case.
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Table 5: Posterior means and (90% credible intervals) of the regression coefficients

for the mammals data. Estimates are conditional on the hyperparameters used in the

main text.

Component 1 Component 2 Component 3

β0 β1 β0 β1 β0 β1

AEM 3.39 (3.18, 3.60) 0.697 (0.65, 0.74) 3.97 (3.72, 4.24) 0.712 (0.64, 0.77) 4.56 (4.35, 4.76) 0.911 (0.83, 1.02)

CDW-cov 3.43 (3.22, 3.65) 0.695 (0.65, 0.74) 4.00 (3.75, 4.26) 0.691 (0.59, 0.76) 4.53 (4.31, 4.73) 0.915 (0.83, 1.02)

CDW-cor 3.47 (3.21, 3.83) 0.694 (0.61, 0.75) 3.83 (3.54, 4.08) 0.724 (0.67, 0.78) 4.52 (4.32, 4.70) 0.891 (0.81, 0.99)

Sensitivity to V . We first consider the sensitivity of the results to the strength

of prior information on β by considering prior variances of 4 and 2 on the intercepts

and slopes, respectively. These variances are larger than those specified in the main

text analyses by a factor of 4. The prior means were left unchanged.

Table 6 gives the posterior means and credible intervals for the regression co-

efficients. The estimates are very similar to those in Table 5 under the A-EM and

CDW-cor method. For the CDW-cov method, the estimates for the steepest regres-

sion line (labeled Component 3) are similar to their original values. For the two

shallower lines (Component 1 and 2), the posterior credible interval of the estimated

intercepts overlap to a much greater degree under this less-informative prior.
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Table 6: Posterior means and (90% credible intervals) of the regression coefficients

with v0 = 4, v1 = 2.

Component 1 Component 2 Component 3

β0 β1 β0 β1 β0 β1

AEM 3.39 (3.16, 3.60) 0.699 (0.66, 0.74) 3.98 (3.73, 4.25) 0.712 (0.64, 0.77) 4.58 (4.37, 4.78) 0.910 (0.82, 1.02)

CDW-cov 3.55 (3.20, 3.96) 0.732 (0.67, 0.81) 3.79 (3.52, 4.07) 0.674 (0.58, 0.74) 4.56 (4.32, 4.77) 0.895 (0.79, 1.03)

CDW-cor 3.43 (3.19, 3.75) 0.696 (0.63, 0.75) 3.87 (3.61, 4.09) 0.726 (0.68, 0.78) 4.55 (4.36, 4.73) 0.897 (0.81, 1.00)

Sensitivity to a, b. We next consider the sensitivity of results to the strength of

prior information on σ−2 by setting the gamma shape and rate to be a = 0.5 and

b = 0.1, respectively. This specification leaves the prior mean of σ−2 unchanged,

but increases the prior variance from 5 to 50. Table 7 shows the estimated posterior

means under this weaker prior. The slope of Component 2 estimated by CDW-

cor is smaller than its estimate under the original hyperparameters and the slope

of Component 1 is larger. The credible intervals of these parameters nonetheless

overlap with the original estimates.

Table 7: Posterior means and (90% credible intervals) of the regression coefficients

with a = 0.5, b = 0.1.

Component 1 Component 2 Component 3

β0 β1 β0 β1 β0 β1

AEM 3.35 (3.17, 3.55) 0.701 (0.66, 0.74) 3.98 (3.76, 4.21) 0.709 (0.64, 0.77) 4.58 (4.40, 4.75) 0.903 (0.83, 0.99)

CDW-cov 3.40 (3.15, 3.95) 0.687 (0.54, 0.74) 3.87 (3.61, 4.06) 0.723 (0.67, 0.77) 4.58 (4.40, 4.75) 0.889 (0.82, 0.97)

CDW-cor 3.48 (3.19, 3.78) 0.735 (0.67, 0.81) 3.82 (3.44, 4.23) 0.648 (0.49, 0.74) 4.50 (4.29, 4.68) 0.865 (0.79, 0.93)
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3.2 Sensitivity to m

While selection of the number of anchor points is not a focus of our study, we con-

sidered the estimates resulting from using the proposed anchoring procedures with

fewer anchor points. Intuitively, at least two anchor points per component should

be needed to pin down the component-specific linear regression. Specification of a

single anchor point per component, while sufficient to avoid label switching, may not

be enough to provide accurate modeling. The table below displays posterior means

for the three anchoring methods with 1 and 2 points per component.

The top panel of Table 8 shows the estimated regression coefficients under the

anchor model with one point per component. Compared to the fit with m = 3,

the credible intervals are much wider, which is a natural consequence of a model

with weaker prior information. In these models, all methods have identified a line

with a steep slope and large intercept, arbitrarily labeled Component 3, although

the estimated slopes for this line are slightly smaller in the CDW models than their

original fits. For all methods, the credible intervals for the regression parameters

of Components 1 and 2 overlap substantially, particularly those estimated by the

CDW-cov and A-EM methods.

With two anchor points per component, the results summarized in the bottom

panel of Table 8 show that there is a clearer separation of Component 1 and 2, with



the former having a small intercept with credible intervals that do not overlap with

those of the intercepts for the other components under the A-EM and CDW-cor

methods. As in the m = 1 case, the estimates for Component 3 are similar to those

obtained with the original analysis.

Table 8: Posterior means and (90% credible intervals) of the regression coefficients

with m = 1 (top) and m = 2 (bottom).

m = 1

Component 1 Component 2 Component 3

β0 β1 β0 β1 β0 β1

AEM 3.68 (3.22, 4.43) 0.635 (0.41, 0.73) 3.84 (3.52, 4.27) 0.725 (0.66, 0.80) 4.50 (4.22, 4.76) 0.917 (0.80, 1.10)

CDW-cov 3.75 (3.22, 4.53) 0.773 (0.67, 1.01) 3.77 (3.40, 4.22) 0.679 (0.52, 0.75) 4.46 (4.00, 4.75) 0.835 (0.52, 1.00)

CDW-cor 3.56 (3.24, 3.99) 0.711 (0.63, 0.79) 3.99 (3.49, 4.65) 0.739 (0.61, 0.93) 4.40 (3.83, 4.70) 0.852 (0.62, 1.02)

m = 2

AEM 3.42 (3.17, 3.66) 0.697 (0.65, 0.74) 3.97 (3.69, 4.28) 0.714 (0.64, 0.78) 4.55 (4.31, 4.77) 0.914 (0.82, 1.05)

CDW-cov 3.58 (3.20, 4.22) 0.660 (0.46, 0.75) 3.80 (3.53, 4.08) 0.724 (0.67, 0.77) 4.53 (4.29, 4.75) 0.899 (0.80, 1.02)

CDW-cor 3.48 (3.24, 3.70) 0.711 (0.67, 0.76) 4.05 (3.61, 4.61) 0.735 (0.58, 0.93) 4.37 (3.91, 4.64) 0.820 (0.63, 0.94)

4. Model-based clustering and known taxonomy

The estimated component assignments ŝ give a model-based grouping of the species

which ignores the additional data on the species’ taxonomic orders and suborders. A

comparison of these groups with the true taxonomy of the species can shed light on

the allometric questions posed at the beginning of this article: the species assigned

to the same component by ŝ have similar estimated regression slopes, and if there



is a correspondence between ŝ and the species’ true orders, it may indicate that

certain taxonomic groups have distinct body mass/brain mass relationships. Fig-

ure 12 displays the data from species in three of the 13 orders, color-coded according

to the model-based cluster assignment. The displayed orders are Primates, Artio-

dactyla, and Rodentia, which account for 21, 21, and 24 of the 100 species in the

data, respectively.

The first column of the figure shows the Primate species, which, for all three

models, are split between Components 2 and 3. For a given body mass, most larger-

brained species are assigned to Component 3 and most of those with smaller brains

are assigned to Component 2. Component 3 also contains the three species of the

Cetacea order (not pictured) under all three model fits. Two primate species are

assigned to Component 3 by the CDW-cor method and to Component 2 by the

other two models: Hapale Leucocephala and Macaca Maurus, both of the sub-order

Anthropoidea. The Hapale Leucocephala is the primate with the smallest body, but

this species’ brain is actually large given its body mass. Component 2 also contains

all three primate species of the Prosimii sub-order. So, the mixture model is sensitive

to this aspect of the taxonomic classification, recognizing that the Prosimii species

have small brains given their body masses.

The clustering among the Rodentia differs most across the three anchor models.
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Figure 12: Data for the species in orders Primates, Artiodactyla, and Rodentia color-

coded according to their model-based ŝ. The rows correspond to the three anchor

models. The color coding used to distinguish the three mixture components matches

that used in Figure 4 of the main article.

The CDW-cov model assigns only four of 24 Rodentia to Component 2, while the

CDW-cor method assigns 9. All of the largest-bodied Rodentia species, seen as the
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far right points colored in blue, are assigned to Component 1 by all of the models.

Interestingly, one species that falls next to these points in the plot, the Myocastor

Coypus, is assigned to Component 2 by all models, in spite of its similar body size to

the neighboring points. This indicates a sensitivity of all models to its slight decrease

in brain size compared to the adjacent species, whose body sizes are very similar.
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