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Abstract: This paper introduces the notion of moment deviation subspaces of di-

mension reduction for high-dimensional data with change structure. We propose

a novel estimation method to identify subspaces by combining the Mahalanobis

matrix and the pooled covariance matrix. The theoretical properties are investi-

gated to show that the change point detection and clustering can be equivalently

implemented in the dimension reduction subspaces, whether the data structure

is dense or sparse, whenever the dimension divided by the sample size goes to

zero. We propose an iterative algorithm based on dimension reduction subspaces

that can be applied for data clustering of high-dimensional data. The numeri-

cal studies on synthetic and real data sets suggest that the dimension reduction

versions of existing methods of change point detection and clustering methods

∗Corresponding author (L. Zhu). Email address: lzhu@hkbu.edu.hk.
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significantly improve the performances of existing approaches in finite sample

scenarios.

Key words and phrases: Clustering; Dimension reduction; Moment changes; Mo-

ment deviation subspace.

1. Introduction

This research is motivated by detecting structural changes and cluster-

ing of high-dimensional data. For change point detection, there are several

proposals available in the literature. For instance, Jirak [2015] suggested a

coordinate-wise CUSUM-statistic; Cho and Fryzlewicz [2015] proposed the

sparsified binary segmentation (SBS) method; Cho [2016] used a double

CUSUM statistic for panel data; Wang and Samworth [2018] developed a

projection-based method; Enikeeva and Harchaoui [2019] developed a scan-

statistic-based algorithm; Grundy et al. [2020] proposed a method via a

geometrically inspired mapping; and Dette et al. [2022] proposed a two-

stage approach for the covariance matrix structure; and Wang et al. [2022]

applied a self-normalized U-statistic to replace the CUSUM statistics.

Without sparsity structure, the dimensionality problem challenges most

existing methods. Dimension reduction with no loss of the information pro-

vided by the original data is then an important technique to alleviate this
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challenge. In a different but relevant research field with supervised learning,

sufficient dimension reduction introduced first by Li [1991] can achieve this

goal by projecting original predictors onto a lower-dimensional subspace

called the central subspace. In the last three decades, several promising

methods have been developed, such as inverse regression methods (e.g.,

[Li, 1991, Cook and Weisberg, 1991, Zhu et al., 2010]), forward regres-

sion methods (e.g., [Xia et al., 2002]). This paper introduces the notion

of central moment deviation subspaces of dimension reduction and verifies

the equivalence between the changes in the dimension reduction subspace

and the original data space. We develop a novel method to construct a

subspace estimation by combining the Mahalanobis matrix and the pooled

covariance matrix. As the detection is performed on the lower-dimensional

subspace, we could significantly enhance the performances of existing meth-

ods. When the primary interest is on the mean structure, our method needs

not to assume the homoscedasticity of observations. When we are inter-

ested in detecting the number of change points and their locations under

the contemporaneous mean and second-order moment structures, we can

extend the method to handle higher central moment deviation subspace.

For space-saving, we put the results in Supplementary Materials.

Unlike change point analysis, when the clustering analysis is considered,
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there is no sufficient information on the details of the subscript over the

data. Hence we can not directly estimate the pooled covariance matrix. To

overcome this difficulty, we then develop an iterative subspace clustering

algorithm to improve some classical clustering methods, such as the K-

means algorithm.

For the estimated dimension reduction subspaces, we show the consis-

tency whenever the dimension is fixed or divergent at a certain rate as the

sample size goes to infinity. The asymptotic results apply to both dense

and sparse data structures. But the current method has a limitation in

that the method can not be used to handle ultra-high dimension cases. If

we wish to study the properties in those cases, the estimation procedure for

the dimension reduction subspaces needs to modify, say, using a method for

dimension reduction with simultaneous variable selection, see, e.g., [Wang

et al., 2018, Lin et al., 2019, Qian et al., 2019]. Some technical issues remain

to be unsolved; thus, the research is beyond the scope of this paper and

deserves further study.

The remainder of the paper is organized as follows. Subsection 2.1 in-

troduces the notion of central mean deviation subspace and proposes a novel

method to identify it. Subsection 2.2 suggests a criterion to determine the

subspace dimension. Section 3 contains the dimension reduction method
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for clustering and suggests an iterative algorithm. Section 4 includes sim-

ulation studies and illustrative analyses of Genetics data and Financial

data. Section 5 discusses the merits and limitations of the new method

and some other research topics. For space-saving, we, in Supplementary

Materials, discuss an extension of central mean deviation subspace to cen-

tral κ−moment deviation subspace to handle more general issues such as

covariance matrices with change structure. Supplementary Materials also

include part of the simulations with changes in the covariance matrix, the

regularity conditions, and technical proofs for the theorems.

2. Central mean deviation subspace

Before giving the detail of the notion and the constructions of this

subspace and its estimation, we point out that the methods and results

described in this section can be extended to develop the general central κ-th

moment deviation subspace when we want to consider the contemporaneous

mean or second-order moment change structures. The results can be used

for clustering analysis, as described in Section 3. To save space, the details

can be found in Supplementary Materials.
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2.1 The subspace identification

2.1 The subspace identification

Let Xi = (Xi1, · · · , Xip)
⊤, for i = 1 · · · , n, be independent p-dimensional

random vectors as

Xi = µi + ϵi, 1 ≤ i ≤ n, (2.1)

where µi = E(Xi) and Σi = Cov(Xi). The primary interest in this section

is on the means µi’s. Assume that the sequence {µi}ni=1 follows a piecewise

constant structure with K+1 segments. That is, there are K change points

1 ≤ z1 < z2 < ... < zK ≤ n such that µzk−1+j = µ(k), Σzk−1+j = Σ(k) and

µ(k) ̸= µ(k+1), for k = 1, · · · , K and 1 ≤ j ≤ zk − zk−1, with z0 = 0 and

zK+1 = n. Let Span{µ(k) − µ(l), for k, l = 1, 2, · · · , K + 1} denote the

column space spanned by {µ(k) − µ(l), for k, l = 1, 2, · · · , K + 1}.

Definition 2.1. Span{µ(k) − µ(l), for k, l = 1, 2, · · · , K + 1} is called the

central mean deviation subspace of the sequence {Xi}ni=1 and is written as

S{E(Xi)}ni=1
. For this subspace, q = dim{S{E(Xi)}ni=1

} is called the structural

dimension of S{E(Xi)}ni=1
.

The following theorem states the equivalence between the change struc-

tures of the original data sequence and the low-dimensional data sequence.

6

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0384



2.1 The subspace identification

Theorem 2.1. For any basis matrix B ∈ Rp×q of S{E(Xi)}ni=1
with q ≤

min{p,K}, both the sequences {B⊤Xi}ni=1 and {Xi}ni=1 have the same loca-

tions of changes.

Hence, Theorem 2.1 persuasively offers a way to detect change points by

using the sequence projected {B⊤Xi}ni=1. Motivated by Xiang et al. [2008],

we estimate the projection matrix B using the following Mahalanobis matrix

as the target matrix:

Mn =
1

n(n− 1)

n∑
i=1

∑
i ̸=j

(Xi −Xj)(Xi −Xj)
⊤. (2.2)

Compute the expectation of Mn to see that

E(Mn) =
1

n(n− 1)

n∑
i=1

∑
i ̸=j

E
{
(Xi −Xj)(Xi −Xj)

⊤}
=

1

n(n− 1)

n∑
i=1

∑
i ̸=j

Cov(Xi −Xj)

+
1

n(n− 1)

n∑
i=1

∑
i ̸=j

E(Xi −Xj)E(Xi −Xj)
⊤

=
2

n

n∑
i=1

Σi +
K+1∑
k=1

∑
l ̸=k,l≤K+1

nlnk

n(n− 1)
(µ(k) − µ(l))(µ(k) − µ(l))⊤,

where nk is the segment length between two consecutive changes. When
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2.1 The subspace identification

nk/n → ck > 0, for k = 1, 2, · · · , K + 1, we have

E(Mn) → 2
K+1∑
k=1

ckΣ
(k) +

K+1∑
k=1

∑
l ̸=k,l≤K+1

ckcl(µ
(k) − µ(l))(µ(k) − µ(l))⊤(2.3)

= : 2Σpooled +∆ = M.

Theorem 2.2. Under the model (2.1), we have Span(∆) = S{E(Xi)}ni=1
. Fur-

thermore, Span(B) = S{E(Xi)}ni=1
, where B = (v1, · · · , vq) denotes the matrix

consisting of the eigenvectors of ∆ associated with the nonzero eigenvalues

of ∆.

To efficiently estimate ∆ and then the subspace S{E(Xi)}ni=1
, we need

to have a good estimator of the pooled covariance matrix Σpooled. As

the locations of changes are unknown, we suggest a “divide-and-conquer”

strategy to estimate this matrix involving the different means µ(k), for

k = 1, · · · , K + 1. Let K̃ = ⌊n/βn⌋, where ⌊·⌋ denotes the floor opera-

tion and βn is a tunning parameter depending on n. Divide the data into

K̃ segments as Sm = {(m− 1)βn + 1, · · · ,mβn}, for m = 1, 2 · · · , K̃ − 1

and SK̃ = {(K̃ − 1)βn + 1, · · · , n}. Compute the covariance matrices for

all segments and then average them to get the final estimator Σpooled,n of
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2.1 The subspace identification

Σpooled as:

Σpooled,n =
1

K̃

K̃∑
m=1

Σ̂m with Σ̂m =
1

#{Sm} − 1

∑
k∈Sm

(Xk − X̄m)(Xk − X̄m)
⊤,(2.4)

where X̄m = 1
#{Sm}

∑
k∈Sm

Xk with #{Sm} being the cardinality of the sets

Sm’s. Together with the formula in (2.2) and (2.4), ∆ can be estimated as:

∆n = Mn − 2Σpooled,n.

Then an estimator Bn of the basis matrix B consists of the eigenvectors

associated with the largest q eigenvalues of ∆n.

Theorem 2.3. Under the model (2.1), assume that Xi − E(Xi) are inde-

pendent random variables, and Assumptions S3.1, S3.2, S3.3 and S3.4 in

Supplementary Materials hold. Then,

||∆n −∆||F = Op

(√
p

n
+

√
pβn

n

)
,

where || · ||F denotes the Frobenius norm of a matrix. Furthermore, when q

is given,

||Bn − B||F = Op

(√
p

n
+

√
pβn

n

)
.
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2.2 The structural dimension determination

Remark 2.1. The above results indicate that when βn = O (nm) with

0 ≤ m ≤ 1/2, including the case where βn is fixed, the convergence rate of

||Bn −B||F is Op

(√
p/n

)
. The estimation consistency can hold as long as

p = o(n). In other words, the convergence rate is identical in a large range

of βn. Further, we note that when there is no change point, the estimator of

Σpooled is unbiased, and the variance of every element is of the order 1/n in

theory. This reminds us that the tuning parameter βn intrinsically differs

from the bandwidth in a nonparametric estimation, which can be selected

through a balance between the bias and variance. Thus, in general, choosing

a βn that could minimize the error, say MSE, seems not possible unless we

would have another criterion for such a selection. In practice, if βn is too

small, the invalid estimate of the covariance for each segment maybe lead to

a lousy estimator of the pooled covariance matrix Σpooled. When βn is too

large, each segment may contain multiple distributions, which also leads to

a lousy estimator. As a compromise, we recommend βn = ⌊
√
n⌋ by the rule

of thumbs in Section 4.

2.2 The structural dimension determination

As the structural dimension q is usually unknown, which is related to the

number of change points K, determining q plays a crucial role in efficiently
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2.2 The structural dimension determination

identifying this subspace. Let λ1 ≥ λ2 ≥ . . . ≥ λq > λq+1 = . . . = λp = 0

denote the eigenvalues of the p × p positive semi-definite matrix ∆. As is

well known, all the eigenvalues λ̂1 ≥ . . . ≥ λ̂p of the estimated target matrix

∆n are usually non-zero.

Inspired by the method proposed in Zhu et al. [2020a,b], we suggest a

thresholding ridge ratio (TRR) criterion to estimate the structural dimen-

sion q by:

q̂ := max
1≤k≤p−1

{
k : r̂k =

λ̂k+1 + cn

λ̂k + cn
≤ τ

}
, (2.5)

where the ridge value cn tends to zero at a certain rate of convergence and

the thresholding value τ satisfies 0 < τ < 1. According to the plug-in princi-

ple in Zhu et al. [2020a], choosing τ = 0.5 is reasonable to avoid in general

overestimation with large τ and underestimation with small τ . Further,

as the target matrix involved herewith is different from those in Zhu et al.

[2020a], we then recommend the ridge value to be cn = 0.5 log(log(n))
√
p/n

chosen by the rule of thumb as there is no theoretical result for optimal se-

lection.

The consistency of q̂ is stated in the following theorem.

Theorem 2.4. Let η̃n = max
{√

p
n
,
√
pβn

n

}
. Under the same conditions in
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Theorem 2.3, if cn satisfies cn → 0, η̃n → 0, cn/η̃n → ∞ as n → ∞, then

P (q̂ = q) → 1.

3. An iterative algorithm for subspace identification in cluster

analysis

Suppose the observations Xi = (Xi1, · · · , Xip)
⊤ ∈ Rp for i = 1, · · · , n

are independent. Cluster information may not only be limited to the mean;

higher moment clustering as a more general approach could also be of in-

terest. Thus, we define the new high-dimensional variables Zi based on Xi

as:

Zi = (Xi1, ..., Xip, X
2
i1, Xi1Xi2, ..., Xi1Xip, X

2
i2, Xi2Xi3, ..., Xi2Xip,

· · ·Xκ
i1, X

κ−1
i1 Xi2 · · · , Xκ

ip)
⊤, (3.1)

where κ denotes some positive integer. As κ = 2 covers the information of

the mean and covariance, this may be used frequently in practice.

Assume that {Xi}ni=1 belong to a union of d categories {Ck}dk=1 which

satisfy that if both Xi and Xj are in the same Ck for k = 1, · · · , d, then

E(Zi) = E(Zj) holds. Each category Ck contains nk datum points with∑d
k=1 nk = n. Similarly, when Xj ∈ Ck, let E(Zj) = µ

(k)
Z and Σ

(k)
Z =
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Cov(Zj) for k = 1, · · · , d.

Definition 3.1. Span{µ(k)
Z − µ

(l)
Z , for k, l = 1, · · · , d} is called the central

κ−th moment deviation subspace of the sequence {Xi}ni=1 and is written as

Sκ
{Xi}ni=1

. Further, qκ = dim{Sκ
{Xi}ni=1

} is called the structural dimension of

Sκ
{Xi}ni=1

.

Consider the following Mahalanobis matrix of the sequence {Zi}ni=1 as:

MZ,n =
1

n(n− 1)

n∑
i=1

∑
i ̸=j

(Zi − Zj)(Zi − Zj)
⊤. (3.2)

We follow the similar arguments as proving the formula in (2.3), we have

that as nk/n → ck > 0, for k = 1, · · · , d, and
∑d

k=1 ck = 1,

E(MZ,n) →
d∑

k=1

∑
k ̸=l≤d

ckcl(Σ
(k)
Z + Σ

(l)
Z ) + 2

d∑
k=1

c2kΣ
(k)
Z

+
d∑

k=1

∑
k ̸=l≤d

ckcl(µ
(k)
Z − µ

(l)
Z )(µ

(k)
Z − µ

(l)
Z )⊤

= 2
d∑

k=1

ckΣ
(k)
Z +

d∑
k=1

∑
k ̸=l≤d

ckcl(µ
(k)
Z − µ

(l)
Z )(µ

(k)
Z − µ

(l)
Z )⊤

≡: 2ΣZ
pooled +∆Z = MZ .

Define the central κ-th moment deviation subspace Sκ
{Xi}ni=1

= Span{µ(k)
Z −

µ
(l)
Z , for k, l = 1, · · · , d}. Here the dimension qκ of Sκ

{Xi}ni=1
is less than or
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equal to min{pZ , d − 1}. Then the following theorem offers a way to con-

struct a new algorithm to cluster the lower-dimensional data.

Theorem 3.1. For any basis matrix B ∈ RpZ×qκ of Sκ
{Xi}ni=1

, both the

sequences {B⊤Zi}ni=1 and {Zi}ni=1 have the same clustering results. Fur-

thermore, we have Span(B) = Sκ
{Xi}ni=1

, where B = (v1, · · · , vqκ) denotes the

eigenvectors of ∆Z associated with the nonzero eigenvalues of ∆Z.

As commented in the Introduction, the subscript of the sequence {Zi}ni=1

can not provide any information such that we can not directly estimate the

pooled covariance matrix ΣZ
pooled. We suggest the following iterative sub-

space clustering procedure.

Initial value choice. Motivated from Xiang et al. [2008], get an initial

basis matrix Bn via optimizing the following objective function as:

Bn = arg max
B∈RpZ×qκ

1

n(n− 1)

∑
i ̸=j

||B⊤MZ,nB|| s.t B⊤B = Iqκ . (3.3)

This is equivalent to learning the central κ-th moment deviation subspace

when κ = 1 and Cov(Zi) = σIpZ×pZ for i = 1, · · · , n. See Supplementary

Materials. As qκ of Sκ
{Xi}ni=1

is smaller than or equal to min{pZ , d − 1}, it

is reasonable to learn the basis matrix Bn by (3.3) as an initial value with

q̂κ = d− 1 in the first step.
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Clustering step. In this paper, we choose the classical method such as

K-means to cluster {B⊤
n Zi}ni=1 to get {Ĉi}di=1 with the pre-specified number

d of categories.

Dimension reduction step. Calculate the covariance for each category

and then have a weighted average of them to get an estimator of the pooled

covariance matrix ΣZ
pooled as:

ΣZ
pooled,n =

d∑
k=1

#{Ĉk} − 1

n− d
Σ̂Zk, (3.4)

where Σ̂Zk = 1

#{Ĉk}−1

∑
j∈Ĉk(Zj − Z̄k)(Zj − Z̄k)

⊤ with Z̄k = 1

#{Ĉk}

∑
j∈Ĉk Zj

and #{Ĉk} denotes the cardinality of the set Ĉk. Combining the formula

(3.2) and (3.4), the estimated target matrix is defined as:

∆Z,n = MZ,n − 2ΣZ
pooled,n. (3.5)

Similarly, we can determine the dimension qκ by TRR defined in (2.5).

Then an estimator Bn of the basis matrix B consists of the eigenvectors

associated with the largest q̂κ eigenvalues of ∆n.

Iteration step. Iterate the dimension reduction and clustering steps

based on the lower-dimensional data with some stopping criterion. Here we

adopt the Rand index (RI) [Rand, 1971] as the stopping criterion as the
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RI describes the similarity between two adjacent clustering results. If two

clusters of n observations are given by U and V , the RI is defined as:

RI =
a+ b(

n
2

) ,

where a denotes the number of the point pairs in the same class under U

and in the same class under V , b presents the number of the point pairs

in the different classes under U and in the different classes under V . The

maximum of the RI is 1. A good algorithm performs well with a large RI.

The above procedures can be summarized below in Algorithm 1.

Algorithm 1 Iterative Subspace Cluster Algorithm.
Require: X ∈ Rn×p, τ = 0.5, cn = 0.5 log(log(n))

√
p/n;

1: Calculate the MZ,n in (3.2) and set q̂κ = d − 1, then learn the basis
matrix Bn estimated by (3.3);

2: Choose a classical clustering algorithm such as K-means to cluster the
lowered data {B⊤

n Zi}ni=1, then get Ĉk and calculate the pooled covari-
ance matrix ΣZ

pooled,n by (3.4);
3: Update the target matrix ∆Z,n in (3.5) and make the eigen-

decomposition: the eigenvalues λ̂1 ≥ . . . ≥ λ̂pZ and the eigenvectors
ν̂1, · · · , ν̂pZ ;

4: Determine the dimension qκ based on TRR in (2.5) and then have the
matrix Bn = (ν̂1, · · · , ν̂q̂κ);

5: Repeat step 2 and then calculate the RI between the clustering result
and the last clustering result.

6: Repeat steps 3-5 until the RI is greater than 0.99;
Ensure: {Ĉ1, · · · , Ĉd}.

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0384



4. Numerical experiments

In this section, we conduct several experiments on synthetic data and

real data examples to examine the finite sample performances of the pro-

posed methods. Throughout the simulations, each experiment is repeated

1000 times.

4.1 Experiments on change point detection

We compare five popularly change-point detection methods with their

dimension reduction versions: the E-Divisive method [Matteson and James,

2014], the change-point detection tests using rank statistics [Lung-Yut-Fong

et al., 2015], the sparsified binary segmentation (SBS) method [Cho and

Fryzlewicz, 2015], the change point procedure via pruned objectives by

Kolmogorov-Smirnov statistic [Zhang et al., 2017] and the kernel change-

point algorithm [Arlot et al., 2019], which are written as E-Divisive, Mul-

tirank, SBS, ks-cp3o and KCP, respectively. Their dimension reduction-

based versions are written as E-Divisivedr, Multirankdr, SBSdr, ks-cp3odr

and KCPdr, respectively. Because the SBS method is applied to multi-

variate data, if the dimension q is determined to be 1, it reduces to wild

binary segmentation method (WBS) [Fryzlewicz, 2014], which is a univari-

ate change point method. We also compare with the change point detection
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4.1 Experiments on change point detection

methods proposed by Wang and Samworth [2018], Cho [2016] and Grundy

et al. [2020], which are abbreviated as Inspect, DCBS and GeomCP. The

comparison is still sensible as they can also be used in non-sparse scenarios.

This section only considers SBS, DCBS, GeomCP, Inspect and Multirank

for mean change detection.

To evaluate the performances of different methods for estimating the

number of change points, we calculate the average of K̂ and the mean

squared error (MSE) of K̂, and also the RI as an evaluation index for the

estimated locations of changes. The E-Divisive and ks-cp3o methods are

implemented in the R package: ecp. The Multirank method is implemented

by the Python code from the author of Lung-Yut-Fong et al. [2015]. The

SBS and DCBS methods are implemented in the R package: hdbinseg. The

GeomCP method is implemented in the R package: changepoint.geo. The

WBS method is implemented in the R package: wbs. The Inspect method

is implemented in the R package: InspectChangepoint.

Consider the following three situations: (1) changes in mean, (2) changes

in covariance matrix, and (3) changes in distribution. To save space of the

main context, we put the numerical results with changes in the covariance

matrix in Supplementary Materials. The sample size is n = 500, and the

number of change points is K = 4 and 9.
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4.1 Experiments on change point detection

Experiment 1: Changes in mean with K = 4. The data are

generated from the multivariate normal distributions G0, G1, G2, G3 and

G4 as Gi = N(ui, Ip×p), where Ip×p denotes the identify matrix with p =

100, 200. The change points are located at 100i for i = 1, 2, 3, 4, respectively.

We consider the following cases:

Case 1: u0 = u2 = u4 = −u and u1 = u3 = u, where the first 10 elements

of the vector u are equal to 0.1, 0.2, and the others equal to 0;

Case 2: u0 = u2 = u4 = −u and u1 = u3 = u, where all the elements of the

vector u are equal to 0.1, 0.2.

Table 1: The RI of different βn in Experiment 1 with Case 1

p = 100, u = 0.2 p = 200, u = 0.2
Method 2 5 ⌊

√
n/2⌋ ⌊

√
n⌋ ⌊2

√
n⌋ ⌊n/3⌋ 2 5 ⌊

√
n/2⌋ ⌊

√
n⌋ ⌊2

√
n⌋ ⌊n/3⌋

E-Divisive 0.789 0.958 0.964 0.965 0.965 0.737 0.683 0.916 0.939 0.946 0.944 0.796
Multirank 0.198 0.198 0.970 0.973 0.965 0.602 0.198 0.198 0.946 0.940 0.934 0.623

SBS 0.726 0.958 0.968 0.970 0.971 0.730 0.590 0.912 0.932 0.947 0.948 0.795
KCP 0.664 0.933 0.952 0.959 0.953 0.754 0.385 0.834 0.928 0.938 0.936 0.794

ks-cp3o 0.864 0.948 0.965 0.966 0.959 0.820 0.817 0.904 0.939 0.948 0.944 0.818
p = 100, u = 0.1 p = 200, u = 0.1

Method 2 5 ⌊
√
n/2⌋ ⌊

√
n⌋ ⌊2

√
n⌋ ⌊n/3⌋ 2 5 ⌊

√
n/2⌋ ⌊

√
n⌋ ⌊2

√
n⌋ ⌊n/3⌋

E-Divisive 0.433 0.719 0.838 0.866 0.875 0.727 0.446 0.779 0.860 0.872 0.872 0.796
Multirank 0.198 0.198 0.605 0.640 0.641 0.616 0.198 0.198 0.659 0.717 0.734 0.618

SBS 0.339 0.670 0.836 0.855 0.864 0.724 0.371 0.785 0.862 0.861 0.863 0.797
KCP 0.266 0.446 0.614 0.764 0.847 0.749 0.243 0.405 0.641 0.793 0.860 0.796

ks-cp3o 0.775 0.799 0.816 0.848 0.864 0.814 0.775 0.796 0.789 0.831 0.858 0.819

The mean changes are sparse in Case 1 and dense in Case 2. Differ-

ent values of u can be viewed as the representatives of weak and strong

signals. To evaluate the impact of βn on our method, we compare the

performance of the above five methods in Case 1 when βn takes values of

2, 5, ⌊
√
n/2⌋, ⌊

√
n⌋, ⌊2

√
n⌋, ⌊n/3⌋. The results, presented in Table 1, indi-
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Table 2: Changes in the mean in Experiment 1 with Case 1

p u Method k̂ MSE RI u Method k̂ MSE RI

100 0.2

E-Divisivedr 4.565 0.928 0.967

0.1

E-Divisivedr 5.889 6.099 0.871
E-Divisive 3.406 1.796 0.872 E-Divisive 0.231 14.551 0.260
Multirankdr 4.057 0.206 0.966 Multirankdr 3.363 8.049 0.613
Multirank 0.055 15.895 0.202 Multirank 0.004 15.978 0.199
SBSdr 4.448 0.889 0.972 SBSdr 6.192 9.117 0.860
SBS 0.020 15.862 0.204 SBS 0.003 15.979 0.199
KCPdr 5.541 6.094 0.957 KCPdr 4.801 9.481 0.761
KCP 0.000 16.000 0.198 KCP 0.000 16.000 0.198
ks-cp3odr 4.235 0.807 0.961 ks-cp3odr 5.995 8.063 0.834
ks-cp3o 6.304 10.082 0.832 ks-cp3o 6.271 9.989 0.784
GeomCP 0.005 15.966 0.200 GeomCP 0.014 15.906 0.200
DCBS 0.088 15.422 0.223 DCBS 0.004 15.975 0.200
Inspect 0.344 14.076 0.282 Inspect 0.029 15.799 0.208

200 0.2

E-Divisivedr 5.635 4.354 0.941

0.1

E-Divisivedr 7.596 15.955 0.874
E-Divisive 2.001 6.513 0.633 E-Divisive 0.133 15.151 0.235
Multirankdr 4.169 0.774 0.931 Multirankdr 4.503 7.817 0.704
Multirank 0.000 16.000 0.198 Multirank 0.000 16.000 0.198
SBSdr 5.912 6.796 0.943 SBSdr 8.886 27.745 0.868
SBS 0.027 15.813 0.207 SBS 0.016 15.888 0.204
KCPdr 5.551 5.534 0.940 KCPdr 6.064 13.815 0.792
KCP 0.000 16.000 0.198 KCP 0.000 16.000 0.198
ks-cp3odr 4.449 1.483 0.951 ks-cp3odr 6.177 8.818 0.831
ks-cp3o 6.388 10.372 0.834 ks-cp3o 6.279 10.089 0.787
GeomCP 0.004 15.975 0.198 GeomCP 0.011 15.928 0.198
DCBS 0.004 15.975 0.199 DCBS 0.000 16.000 0.198
Inspect 0.100 15.402 0.224 Inspect 0.027 15.817 0.207

cate that the performances associated with βn = ⌊
√
n/2⌋, ⌊

√
n⌋, ⌊2

√
n⌋ out-

perform those of 2, 5, ⌊n/3⌋. This is consistent with the claim in Remark

2.1. Notably, the best choice of βn varies in different scenarios, but over-

all βn = ⌊
√
n⌋ makes the estimation most robust in terms of performance.

Hence, we recommend this value of βn in the subsequent simulations.

The results are reported in Tables 2 and 3. The findings are as follows.

When the magnitudes of changes becomes large, the performances of most
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Table 3: Changes in the mean in Experiment 1 with Case 2

p u Method k̂ MSE RI u Method k̂ MSE RI

100 0.2

E-Divisivedr 4.063 0.079 0.992

0.1

E-Divisivedr 4.187 0.231 0.988
E-Divisive 4.043 0.049 0.993 E-Divisive 4.048 0.054 0.988
Multirankdr 4.000 0.000 0.993 Multirankdr 4.000 0.000 0.991
Multirank 2.231 8.491 0.420 Multirank 0.297 15.237 0.221
SBSdr 4.065 0.081 0.999 SBSdr 4.169 0.249 0.992
SBS 0.432 13.364 0.311 SBS 0.020 15.864 0.204
KCPdr 4.014 0.016 0.994 KCPdr 4.130 0.316 0.989
KCP 4.000 0.000 0.993 KCP 0.000 16.000 0.198
ks-cp3odr 4.000 0.000 0.994 ks-cp3odr 4.013 0.015 0.989
ks-cp3o 6.387 10.627 0.830 ks-cp3o 6.391 10.379 0.789
GeomCP 4.031 0.034 0.994 GeomCP 4.041 0.052 0.988
DCBS 4.002 0.002 0.994 DCBS 2.524 4.186 0.752
Inspect 4.218 0.330 0.993 Inspect 1.890 7.708 0.583

200 0.2

E-Divisivedr 4.074 0.082 0.993

0.1

E-Divisivedr 4.218 0.272 0.989
E-Divisive 4.049 0.049 0.993 E-Divisive 4.054 0.054 0.992
Multirankdr 4.000 0.000 0.994 Multirankdr 4.000 0.000 0.991
Multirank 0.051 15.855 0.203 Multirank 0.297 15.237 0.221
SBSdr 4.086 0.104 0.999 SBSdr 4.229 0.369 0.996
SBS 1.101 9.959 0.469 SBS 0.040 15.734 0.210
KCPdr 4.001 0.001 0.994 KCPdr 4.091 0.166 0.992
KCP 4.000 0.000 0.993 KCP 0.000 16.000 0.198
ks-cp3odr 4.000 0.000 0.994 ks-cp3odr 4.001 0.001 0.993
ks-cp3o 6.310 10.132 0.836 ks-cp3o 6.164 9.138 0.782
GeomCP 4.014 0.014 0.994 GeomCP 4.025 0.032 0.989
DCBS 4.000 0.000 0.995 DCBS 3.380 1.413 0.907
Inspect 4.162 0.236 0.995 Inspect 3.156 4.404 0.773

competitors are comparable. SBS and Multirank perform worse than the

others, and Multirankdr is the best. In the weak signal scenarios, E-Divisive,

Multirank, KCP, Inspect, and SBS tend to underestimate the number of

change points. Particularly, in the sparse change point settings in Case 1,

all five methods fail to work, while their dimension reduction versions still

work well. Overall, the dimension reduction strategy greatly improves the

performances of the original methods.
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4.1 Experiments on change point detection

In Experiment 2, we design more complicated scenarios to illustrate

the impact of various factors, including the structural dimension q, the

number of change points K, outliers, and imbalanced data.

Experiment 2: Changes in mean with K = 9. The data are

generated from the multivariate normal distributions G0, G1, G2,..., G9 as

Gi = N(ui, Ip×p) with p = 100, 200. Consider the following cases:

Case 1: u0 = u2 = u4 = u6 = u8 = 0, u1 = u5 = u9 = (a1, a2, ...a5, 0, ..., 0)
⊤,

u3 = u7 = (b1, b2, ...b5, 0, ..., 0)
⊤, ai = i/v, bi = 1 − i/v, v = 5, 10, the

locations of change points are at 30, 95, 140, 175, 245, 295, 360, 390, 450;

Case 2: The settings of change points and ui are the same as Case 1, but it

includes 5% outliers from N(ui + wi, Ip×p) between each zi and zi+1. Here

wi’s are p-dimensional vectors. To check the sensitivity of the methods

against outliers, for each i, we randomly select 5% of its elements to take

values 5, and the other elements are 0;

Case 3: u0 = u2 = u4 = u6 = u8 = 0, u1 = u9 = (a1, a2, ...a5, 0, ..., 0)
⊤, u3 =

(b1, b2, ...b5, 0, ..., 0)
⊤, ai = i/10, bi = 1− i/10, u5 = (uI1×5,

u
2
I1×5, 0, ..., 0)

⊤,

u7 = (u
2
I1×5, uI1×5, 0, ..., 0)

⊤, u = 0.5, 1. The settings of change points are

the same as Case 1.

In this experiment, we set the structural dimension q to be 2 in Cases

1–2, and 4 in Case 3. All the cases consist of imbalanced data with a
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mixture of weak and strong signals. We consider outliers in Case 2 to

assess the sensitivity of our proposed method. Tables 4–6 report the re-

sults. Specifically, E-Divisivedr performs better than the other methods,

and SBSdr also shows promising results. Moreover, all five methods yield

significant improvements through dimension reduction. Comparing the re-

sults of Experiment 1 and Experiment 2, we find that the dimension

reduction-based methods are robust against the structural dimension q and

the number of change points K. Furthermore, the results of this experiment

also suggest that the dimension reduction-based methods are relatively ro-

bust against imbalanced data and data with outliers.

To check the sensibility of the strategy based on dimension reduction

against the different distributions, we design Experiment 3.

Experiment 3: Changes in distribution. The data are generated

in the following settings:

Case 1: G0 = G2 = G4 = N(0p, aIp×p) with a = 0.6, 0.8, G1 = G3 are the

p-dimensional uniform distribution on the p-dimensional cube [−1, 1]p, and

the change points are located at 100ith for i = 1, 2, 3, 4;

Case 2: G0 = G2 = G4 = N(0p, Ip×p) and G1 = G3 = t(df,Σ) are the

p-dimensional t-distribution with df = 4 and Σ = (σij), where σij = I(i =

j)+ aI(i ̸= j) with a = 0.3, 0.5, the locations of change points are set to be

23

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0384



4.1 Experiments on change point detection

Table 4: Changes in the mean in Experiment 2 with Case 1

p v Method k̂ MSE RI v Method k̂ MSE RI

100 10

E-Divisivedr 7.612 4.335 0.920

5

E-Divisivedr 6.703 7.580 0.910
E-Divisive 1.638 56.702 0.449 E-Divisive 3.245 37.372 0.641
Multirankdr 2.558 51.070 0.423 Multirankdr 5.061 16.539 0.852
Multirank 0.000 81.000 0.106 Multirank 0.077 80.233 0.110
SBSdr 7.473 5.697 0.901 SBSdr 6.070 10.580 0.892
SBS 0.000 81.000 0.106 SBS 0.032 80.468 0.112
KCPdr 6.686 16.463 0.797 KCPdr 7.234 7.032 0.897
KCP 0.000 81.000 0.106 KCP 0.021 80.601 0.105
ks-cp3odr 6.633 9.644 0.836 ks-cp3odr 6.636 9.294 0.869
ks-cp3o 6.351 11.340 0.804 ks-cp3o 6.356 11.346 0.799
GeomCP 0.005 80.910 0.106 GeomCP 0.000 81.000 0.106
DCBS 0.000 81.000 0.106 DCBS 0.021 80.638 0.110
Inspect 0.021 80.638 0.114 Inspect 0.394 74.723 0.176

200 10

E-Divisivedr 8.449 2.465 0.922

5

E-Divisivedr 7.601 4.293 0.921
E-Divisive 0.548 72.463 0.237 E-Divisive 1.473 59.718 0.387
Multirankdr 3.824 37.276 0.565 Multirankdr 5.273 15.874 0.839
Multirank 0.000 81.000 0.106 Multirank 0.000 81.000 0.106
SBSdr 9.240 4.773 0.911 SBSdr 7.420 5.612 0.906
SBS 0.005 80.910 0.108 SBS 0.059 80.027 0.120
KCPdr 7.213 11.501 0.844 KCPdr 7.941 5.665 0.904
KCP 0.000 81.000 0.106 KCP 0.000 81.000 0.106
ks-cp3odr 6.527 10.537 0.833 ks-cp3odr 6.840 8.053 0.878
ks-cp3o 6.213 12.011 0.801 ks-cp3o 6.399 10.356 0.803
GeomCP 0.000 81.000 0.106 GeomCP 0.000 81.000 0.106
DCBS 0.000 81.000 0.106 DCBS 0.000 81.000 0.106
Inspect 0.016 80.729 0.113 Inspect 0.170 78.149 0.140

the same as Case 1;

Case 3: The settings of Gi are the same as Case 2, except that the locations

of change points are 90, 250, 390, 450.

E-Divisivedr performs the best among the competitors, E-Divisive and

KCP perform the worst, whereas KCPdr works much better than the orig-

inal KCP. The results are reported in Table 7. ks-cp3o has a slight over-

estimation for the number of change points, but ks-cp3odr significantly im-

24

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0384



4.1 Experiments on change point detection

Table 5: Changes in the mean in Experiment 2 with Case 2

p v Method k̂ MSE RI v Method k̂ MSE RI

100 10

E-Divisivedr 7.489 5.121 0.913

5

E-Divisivedr 6.745 7.268 0.913
E-Divisive 1.472 59.277 0.415 E-Divisive 3.364 35.333 0.683
Multirankdr 2.059 57.065 0.363 Multirankdr 4.819 20.255 0.805
Multirank 0.003 80.947 0.106 Multirank 0.093 79.922 0.110
SBSdr 8.121 6.567 0.894 SBSdr 6.623 8.810 0.893
SBS 0.004 80.926 0.108 SBS 0.030 80.485 0.114
KCPdr 4.879 30.268 0.663 KCPdr 6.792 10.537 0.864
KCP 0.000 81.000 0.106 KCP 0.000 81.000 0.106
ks-cp3odr 6.701 9.476 0.843 ks-cp3odr 6.658 9.762 0.866
ks-cp3o 6.117 12.693 0.794 ks-cp3o 6.307 11.108 0.795
GeomCP 0.009 80.853 0.106 GeomCP 0.009 80.853 0.107
DCBS 0.000 81.000 0.106 DCBS 0.000 81.000 0.106
Inspect 0.169 78.364 0.144 Inspect 1.017 65.801 0.273

200 10

E-Divisivedr 7.918 3.680 0.911

5

E-Divisivedr 7.506 4.619 0.917
E-Divisive 0.874 67.329 0.327 E-Divisive 1.792 54.680 0.460
Multirankdr 2.137 55.505 0.380 Multirankdr 3.607 36.371 0.604
Multirank 0.000 81.000 0.106 Multirank 0.000 81.000 0.106
SBSdr 10.485 10.039 0.889 SBSdr 9.143 7.104 0.898
SBS 0.017 80.706 0.113 SBS 0.039 80.338 0.116
KCPdr 3.814 41.662 0.541 KCPdr 5.394 25.658 0.700
KCP 0.000 81.000 0.106 KCP 0.000 81.000 0.106
ks-cp3odr 6.113 12.175 0.807 ks-cp3odr 6.545 9.719 0.860
ks-cp3o 6.294 11.649 0.805 ks-cp3o 6.186 11.801 0.799
GeomCP 0.078 79.745 0.114 GeomCP 0.048 80.216 0.112
DCBS 0.000 81.000 0.106 DCBS 0.000 81.000 0.106
Inspect 0.325 76.017 0.173 Inspect 0.610 72.442 0.199

proves. It suggests that the dimension reduction-based methods are much

more robust against different distributions and imbalanced data than their

original counterparts.

To further reveal the reasons for the above phenomena, we draw the

scatter plots of the first variable of the original data, namely {Xi1}ni=1, and

of {B⊤
1nXi}ni=1 or {B⊤

1nZi}ni=1 with B1n being the 1 column vector of Bn in

Figure 1. It is observed that the changes of {B⊤
1nXi}ni=1 or {B⊤

1nZi}ni=1 at the
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Table 6: Changes in the mean in Experiment 2 with Case 3

p u Method k̂ MSE RI u Method k̂ MSE RI

100 1

E-Divisivedr 7.037 6.080 0.909

0.5

E-Divisivedr 7.032 6.883 0.906
E-Divisive 4.872 17.383 0.807 E-Divisive 1.697 54.622 0.454
Multirankdr 4.057 29.244 0.702 Multirankdr 3.115 44.022 0.506
Multirank 0.047 80.408 0.110 Multirank 0.000 81.000 0.106
SBSdr 6.239 9.771 0.870 SBSdr 6.277 11.234 0.866
SBS 0.346 75.303 0.209 SBS 0.447 73.404 0.188
KCPdr 7.654 6.420 0.890 KCPdr 6.702 11.936 0.834
KCP 0.000 81.000 0.106 KCP 0.000 81.000 0.106
ks-cp3odr 5.707 11.761 0.851 ks-cp3odr 6.670 8.766 0.855
ks-cp3o 6.186 11.314 0.836 ks-cp3o 6.122 13.431 0.799
GeomCP 0.011 80.830 0.109 GeomCP 0.032 80.479 0.110
DCBS 0.734 69.415 0.303 DCBS 0.250 76.750 0.153
Inspect 2.356 46.665 0.580 Inspect 0.814 67.282 0.256

200 1

E-Divisivedr 7.548 4.218 0.922

0.5

E-Divisivedr 7.793 4.335 0.909
E-Divisive 4.516 20.644 0.797 E-Divisive 1.011 64.745 0.320
Multirankdr 4.987 18.864 0.811 Multirankdr 3.946 34.630 0.600
Multirank 0.000 81.000 0.106 Multirank 0.000 81.000 0.106
SBSdr 7.277 6.223 0.896 SBSdr 7.931 6.112 0.888
SBS 0.255 76.734 0.185 SBS 0.431 73.676 0.186
KCPdr 8.340 5.351 0.893 KCPdr 7.165 9.144 0.853
KCP 0.000 81.000 0.106 KCP 0.000 81.000 0.106
ks-cp3odr 5.872 10.681 0.856 ks-cp3odr 6.601 9.516 0.846
ks-cp3o 6.213 10.755 0.841 ks-cp3o 6.090 12.771 0.807
GeomCP 0.000 81.000 0.106 GeomCP 0.000 81.000 0.106
DCBS 0.005 80.910 0.109 DCBS 0.000 81.000 0.106
Inspect 1.048 65.314 0.340 Inspect 0.426 73.787 0.181

change points become obviously larger than that of {Xi1}ni=1. This would

explain why the dimension reduction versions work well.

In conclusion, the dimension reduction strategy could significantly im-

prove the performances of the original methods. The more numerical studies

with the central κ-th moment deviation subspace are put in Supplementary

Materials.
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Table 7: Change in both the distribution and the covariance matrix in
Experiment 3
Case pz a Method k̂ MSE RI pz a Method k̂ MSE RI

1 65

0.6

E-Divisivedr 4.264 0.325 0.976

20

0.6

E-Divisivedr 4.109 0.323 0.951
E-Divisive 0.555 12.761 0.337 E-Divisive 0.177 14.879 0.246
ks-cp3odr 4.097 0.234 0.979 ks-cp3odr 4.712 2.364 0.948
ks-cp3o 6.250 9.740 0.769 ks-cp3o 6.224 9.890 0.764
KCPdr 5.720 11.760 0.937 KCPdr 5.740 12.220 0.903
KCP 1.020 11.660 0.398 KCP 4.260 38.740 0.486

0.8

E-Divisivedr 4.154 0.181 0.988

0.8

E-Divisivedr 4.092 0.111 0.984
E-Divisive 4.023 0.083 0.980 E-Divisive 1.314 9.370 0.495
ks-cp3odr 4.007 0.016 0.991 ks-cp3odr 4.043 0.077 0.985
ks-cp3o 6.243 9.887 0.771 ks-cp3o 6.212 9.982 0.768
KCPdr 4.420 0.940 0.982 KCPdr 4.600 1.800 0.985
KCP 4.400 2.520 0.919 KCP 7.680 30.920 0.958

2 65

0.3

E-Divisivedr 4.031 0.434 0.935

20

0.3

E-Divisivedr 3.655 1.020 0.871
E-Divisive 0.608 12.645 0.340 E-Divisive 0.313 14.100 0.281
ks-cp3odr 4.719 3.047 0.928 ks-cp3odr 5.940 8.727 0.852
ks-cp3o 5.958 9.503 0.754 ks-cp3o 6.510 11.697 0.779
KCPdr 5.807 11.367 0.905 KCPdr 2.756 9.797 0.580
KCP 0.000 16.000 0.198 KCP 0.092 15.513 0.217

0.5

E-Divisivedr 4.055 0.221 0.962

0.5

E-Divisivedr 3.908 0.554 0.924
E-Divisive 0.927 10.982 0.403 E-Divisive 0.497 13.135 0.316
ks-cp3odr 4.308 1.096 0.958 ks-cp3odr 5.251 5.619 0.902
ks-cp3o 6.453 10.889 0.775 ks-cp3o 6.020 8.745 0.761
KCPdr 6.372 15.325 0.950 KCPdr 4.782 12.542 0.790
KCP 0.039 15.799 0.206 KCP 0.334 15.463 0.245

3 65

0.3

E-Divisivedr 3.530 1.537 0.897

20

0.3

E-Divisivedr 3.086 2.246 0.831
E-Divisive 0.570 12.643 0.365 E-Divisive 0.350 13.918 0.314
ks-cp3odr 5.036 6.324 0.860 ks-cp3odr 5.911 8.515 0.787
ks-cp3o 6.101 9.143 0.732 ks-cp3o 6.399 10.511 0.743
KCPdr 5.222 10.028 0.878 KCPdr 2.985 10.128 0.622
KCP 0.000 16.000 0.236 KCP 0.247 15.540 0.272

0.5

E-Divisivedr 3.827 0.480 0.956

0.5

E-Divisivedr 3.394 1.380 0.900
E-Divisive 0.750 11.679 0.399 E-Divisive 0.483 13.138 0.340
ks-cp3odr 4.301 2.047 0.932 ks-cp3odr 5.367 7.347 0.840
ks-cp3o 6.574 11.032 0.751 ks-cp3o 6.222 9.470 0.731
KCPdr 6.055 13.001 0.946 KCPdr 4.833 13.104 0.807
KCP 0.033 15.809 0.245 KCP 0.554 13.914 0.323

4.2 Experiment on clustering

Consider the data with clusters and compare two popularly used clus-

tering methods: the K-means method (K-means) and the density-based spa-

tial clustering with noise method (DBSCAN) with their Iterative Subspace

Clustering (ISC) algorithms proposed in this paper. Their ISC versions are

27

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0384
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Figure 1: Scatter plots before and after dimension reduction, the above
two figures correspond to the dense mean change points with p = 100 and
u = 0.2 in Experiment 1 and the below two figures to the Case 3 with
p = 10, pZ = 65 and a = 0.8 in Experiment 3.

written as ISCK−means and ISCDBSCAN , respectively. By optimizing the ob-

jective function in (3.3), we can have the lower-dimensional data {B⊤
n Zi}ni=1.

The corresponding methods are written as K-meansdr and DBSCANdr. We

still adopt the RI to measure the similarity between the underlying clusters

and estimated clusters to evaluate the performances. We conduct experi-

ments on both balanced and imbalanced datasets with three categories: (1)

the balanced dataset has the same sample sizes n1 = n2 = n3 = n/3; (2)

the imbalanced dataset has sample sizes n1 = 300, n2 = 200, and n3 = 100.

The data are generated from the following settings:

• Case 1: (Distance-based example) The kth category is from the multi-

dimensional normal distribution N(akIp, σ2Ip×p) with σ = 0.5, ak = k,
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4.2 Experiment on clustering

for k = 1, 2, 3, where Ip denotes is an all-one vector with dimension

p = 50, 100.

• Case 2: (Bull’s eye example) The kth category contains {Xk,i}nk
i=1

with Xk,i = σk,iwk,i, for k = 1, 2, 3 and i = 1, 2, · · · , nk, where σk,i is

from the uniform distribution on the regions [2k− 2, 2k− 1] and wk,i

is from the uniform distribution on the unit sphere Sp. Here p = 5, 10

corresponding to pZ = 20, 65, respectively.

To make the comparison fairly, we also transform the original data in the

Bull’s eye example based on the formula in (3.1) and then adapt the meth-

ods to cluster the data {Zi}ni=1, which are written as K-means(z) and DB-

SCAN(z), respectively. The mean and sd denote the mean and standard

deviation of the RI, respectively. From the results reported in Tables 8 and

9, we can observe that the dimension reduction-based versions significantly

outperform their original versions of the methods. Three clustering meth-

ods for the original data perform the worst in these examples. Further, the

iterative algorithms enhance their performances.

To show the results visually, we plot the first two dimensions of the

data in the distance-based example with p = 50 and the bull’s eye exam-

ple with pZ = 20. Figure 2 shows the scatter plots of {B̃⊤
n Zi}ni=1 with B̃n

being the eigenvectors associated with the largest two eigenvalues of ∆Z,n.
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4.3 Real data examples

It is observed that the three categories of {B̃⊤
n Zi}ni=1 can be clearly dis-

tinguished. This reveals the reason why our proposed iterative subspace

clustering method performs much better than the original K-means.

To check whether the algorithm converges empirically, we present the

convergence of our algorithm based on synthetic data. Based on ISCK−means,

we compute the ||M (k+1)
n −M

(k)
n ||F at each iteration step, and exhibit the

plots of ||M (k+1)
n −M

(k)
n ||F in the Distance-based example with p = 50 and

Bull’s eye example with pZ = 20 in Figure 3. From Figure 3, we observe

that ||M (k+1)
n − M

(k)
n ||F suggests a downward trend and quickly goes to 0

by less than 5 iterations. Therefore, the iterative algorithm could converge.

4.3 Real data examples

In this subsection, we illustrate the applications of the proposed meth-

ods to three real data sets. To save space, the analysis of Genetics data is

put in Supplementary Materials.

4.3.1 Financial data with mean and variance changes

Consider the data set on the log-returns of the daily closing price of all

constituent stocks of the Standard and Poor’s 100 (S&P100) index. This

data set is from Yahoo Finance, covering the period from July 1st, 2019, to
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4.3 Real data examples

Figure 2: Scatter plots before and after dimension reduction, the two left
figures correspond to the first two dimensions of the distance-based example
with p = 50 and the bull’s eye example with pZ = 20, respectively. The
right two figures correspond to the first two dimensions of the {B⊤

n Xi}ni=1

and {B⊤
n Zi}ni=1 under the distance-based example with p = 50 and the bull’s

eye example with pZ = 20, respectively.

Figure 3: ||M (k+1)
n −M

(k)
n ||F at each iteration

July 1st, 2020. After cleaning the stocks with missing values, there are 80

constituent stocks, namely p = 80, with the sample size n = 254. We first
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4.3 Real data examples

Table 8: The clustering results of balanced data with n1 = n2 = n3 = 200

Distance-based example
p Method mean sd p Method mean sd

50

ISCDBSCAN 0.994 0.003

100

ISCDBSCAN 0.994 0.003
DBSCAN 0.332 0.000 DBSCAN 0.332 0.000
DBSCANdr 0.839 0.015 DBSCANdr 0.819 0.017
ISCK−means 0.976 0.078 ISCK−means 0.971 0.085
K-means 0.929 0.121 K-means 0.923 0.125
K-meansdr 0.916 0.127 K-meansdr 0.916 0.128

Bull’s eye example
pZ Method mean sd pZ Method mean sd

20

ISCDBSCAN 0.967 0.067

65

ISCDBSCAN 0.993 0.005
DBSCAN 0.428 0.014 DBSCAN 0.401 0.011
DBSCANdr 0.801 0.009 DBSCANdr 0.897 0.017
DBSCAN(z) 0.421 0.013 DBSCAN(z) 0.399 0.011
ISCK−means 0.849 0.136 ISCK−means 0.898 0.131
K-means 0.581 0.011 K-means 0.564 0.012
K-meansdr 0.795 0.012 K-meansdr 0.841 0.133
K-means(z) 0.729 0.136 K-means(z) 0.733 0.009

detect mean changes in the data structure.

As, on the whole, E-Divisivedr and SBSdr perform better than the oth-

ers in the previous simulation studies, we then adopt the two methods.

The dimension q is determined to be 1 using the TRR criterion in (2.5).

E-Divisivedr detects a change at the location t = 164 on February 20, 2020.

This identification seems reasonable as the outbreak of the COVID-19 epi-

demic led to a serious economic downturn after February 2020. For com-

parison, E-Divisive detects two change points at t = 164, 194, but no other

economic events appear to be occurring around t = 194. SBSdr identifies
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4.3 Real data examples

Table 9: The clustering results of imbalanced data with n1 = 300, n2 =
200,n3 = 100

Distance-based example
p Method mean sd p Method mean sd

50

ISCDBSCAN 0.993 0.003

100

ISCDBSCAN 0.994 0.003
DBSCAN 0.388 0.000 DBSCAN 0.388 0.000
DBSCANdr 0.842 0.017 DBSCANdr 0.823 0.018
ISCK−means 0.953 0.097 ISCK−means 0.950 0.097
K-means 0.919 0.112 K-means 0.917 0.117
K-meansdr 0.905 0.119 K-meansdr 0.903 0.121

Bull’s eye example
pZ Method mean sd pZ Method mean sd

20

ISCDBSCAN 0.982 0.006

65

ISCDBSCAN 0.991 0.005
DBSCAN 0.450 0.011 DBSCAN 0.422 0.007
DBSCANdr 0.867 0.004 DBSCANdr 0.927 0.012
DBSCAN(z) 0.442 0.010 DBSCAN(z) 0.420 0.006
ISCK−means 0.880 0.163 ISCK−means 0.938 0.132
K-means 0.645 0.016 K-means 0.624 0.016
K-meansdr 0.807 0.170 K-meansdr 0.865 0.167
K-means(z) 0.654 0.014 K-means(z) 0.655 0.003

two change points at t = 171, 181. Because the time points t = 171, 181 are

close, both could be viewed as the same change attributed to the COVID-19

epidemic. SBS does not detect any change points.

We further detect changes in the contemporary mean and second-order

moment structures. Hence we set κ = 2. To apply our method efficiently,

we choose ten stocks with relatively large changes from the original data.

Then p = 10 and pZ = 65. We also, via the TRR criterion, found q̂κ = 1.

The change is also at t = 164, the same location detected in the mean

structure by E-Divisivedr. To further visualize the change at this date,
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4.3 Real data examples

Figure 4 presents the scatter plots of the lower-dimensional data {B⊤
n Xi}ni=1

and {B⊤
n Zi}ni=1. It is observed that both the contemporaneous mean and

second-order moment structures should have changed at t = 164. In the

second-order moment structures, E-Divisive detects two change points at

t = 164, 194.

Figure 4: Change point detection after dimension reduction for S&P100
data, the top figure describes detecting the changes in the mean, and the
bottom figure presents breaks in the contemporaneous mean and second-
order moment structures.

4.3.2 Iris data with clusters

Consider this classical dataset for clustering using the proposed iterative

algorithm; see the UCI database. The Iris dataset consists of n = 150

samples with p = 4 attributes, including sepal length, sepal width, and
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Table 10: The results of clustering data

Method RI Method RI
ISCDBSCAN 0.702 ISCK−means 0.887
DBSCAN 0.431 K-means 0.815
DBSCANdr 0.475 K-meansdr 0.831

petal width. The dataset contains three species of Iris, which are Setosa,

Versicolour, and Virginia, respectively. Thus, we cluster the real dataset

into three categories. Wang [2010] also analyzed it for clustering.

Table 10 reports the RI and the accuracy of three estimations. Since

the results of K-means depend on the selection of initial value points, the

result of each experiment may be different; we then repeat the experiment

50 times to have an average. It is easy to observe that ISCKmeans performs

the best. K-meansdr can also improve the K-means’ accuracy. DBSCAN

exhibits improvement after employing the ISC method.

5. Conclusion

In this paper, we propose the notion of moment deviation subspaces and

analyze the estimation for the subspaces. This can reduce the dimension

of high-dimensional data such that we can efficiently work on them in the

lower-dimensional spaces without losing any information. We developed a

novel method combining the Mahalanobis matrix and the covariance matrix
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to identify the effective dimension reduction spaces for unsupervised dimen-

sion reduction. We then apply this new strategy to changes and clustering

in the data structure.

This generic method could apply to other types of high-dimensional

data, such as panel data (see, e.g., Düker [2022]) and tensor data (see, e.g.,

Huang et al. [2022]). In addition, our approach could also be extended

to deal with more general models than moment changes. For example, it

might detect change points in the more general class of parameters (see, e.g.,

Dette and Gösmann [2020]) such as parametric distribution, parametric,

and semiparametric regression models. Under certain regularity conditions,

this might also be used to handle the change point detection problem in

ultra-high-dimensional data when sparsity exists in the data structure, as

Wang and Samworth [2018] considered. But this may need to combine

some penalization approaches in the dimension reduction procedure. The

research is ongoing. Another issue is extending the method to change point

detection of online data. The current approach has a limitation: only the

offline data can be handled. For more general paradigms, it deserves further

study.
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Supplementary material

In the online supplementary material, we discuss the situation of changes

in the covariance matrix. This supplementary material also contains part

of numerical studies and all proofs of the theoretical results.
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