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Abstract: Matrix regression provides a powerful technique for analyzing matrix-

type data, as exemplified by many contemporary applications. Despite the rapid

advance, distributed learning for robust matrix regression to deal with heavy-

tailed noises in the big data regime still remains untouched. In this paper, we

first consider adaptive Huber matrix regression with a nuclear norm penalty,

which enjoys insensitivity to heavy-tailed noises without losing the statistical ac-

curacy. To further enhance the scalability in massive data applications, we em-

ploy the communication-efficient surrogate likelihood framework to develop dis-

tributed robust matrix regression, which can be efficiently implemented through

the ADMM algorithms. Under only bounded (1 + δ)-th moment on the noise

for some δ ∈ (0, 1], we provide upper bounds for the estimation error of the

central estimator and the distributed estimator, and prove they can achieve the

same rate as established with sub-Gaussian tails when only the second moment

of noise exists. Numerical studies verify the advantage of the proposed method
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over existing methods in heavy-tailed noise settings.

Key words and phrases: Huber loss, nuclear norm, robust matrix regression, big

data, communication-efficient.

1. Introduction

Advances of modern technologies have made matrix-type data increasingly

frequent in various applications, including image processing in computer

vision, microarray gene study in medicine and asset allocation in economics

(Rohde and Tsybakov, 2011; Senneret et al., 2016; Yang et al., 2016; Fan

et al., 2021). Although one intuitive idea is to reshape the matrix into a

vector and apply popular vector-based regression methods, this may incur

ultrahigh dimensionality and also destroy the inherent structure of matrix

data such as the correlation between rows and columns. When considering

matrix estimation, the rank plays an important part in constraining the

model complexity, and the nuclear norm is a convex surrogate for rank

(Candès and Tao, 2010). Indeed, the idea of imposing the nuclear norm

penalty has been widely used in the literature. For example, Negahban and

Wainwright (2011a); Koltchinskii et al. (2011) studied the least squares

matrix regression with nuclear norm penalty and derived the convergence

rates under sub-Gaussian tails. However, the above methods are sensitive

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0022



to outliers and the tails of the noise distribution due to the nature of least

squares loss.

To tackle the issue of robustness, Huber (1973) proposed Huber loss

which worked as a robust alternative to least squares loss. Subsequently, a

variety of methods based on Huber loss were developed, including Lambert-

Lacroix and Zwald (2011); Naseem et al. (2012); Loh (2017). These works

share a common characteristic that the robustification parameter is treated

as a constant based on the 95% asymptotic efficiency criterion. More re-

cently, Sun et al. (2020) proposed the adaptive Huber regression that adapts

the magnitude of the robustification parameter according to the sample size,

dimension and moments of noises. It is worth mentioning that, although

robust statistical tools like median/quantile regression are also frequently

employed to cope with heavy-tailed noises, they differ from Huber-type

methods in that the latter have a specific emphasis on robust mean regres-

sion. When the error is heterogeneous, the mean and the median can be

considerably different and replacing mean regression with median regres-

sion incurs significant bias if our interest is on the conditional mean as we

are focusing on in the current work. For more discussions on Huber-type

methods, please refer to Fan et al. (2017); Chen and Zhou (2020); Wang

et al. (2021). While these methods achieve favorable results in the existing
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literature, they only work on vector regression and may be inefficient once

handling matrix data.

On another direction of research development, with the availability of

large-scale data, storing all data on a single machine is impracticable due to

privacy issues, limited storage or communication costs. For example, differ-

ent hospitals gather their own information individually and these original

patient data cannot be shared to safeguard privacy. In the distributed

learning, the full data are partitioned across multiple machines and each

local machine only needs to store and process local data. Thus both storage

and computation costs are functions of the local sample size n rather than

functions of the total sample size N . Motivated by data parallelism, the

divide-and-conquer strategy has been employed. The main idea is to calcu-

late local estimates on local machines in parallel and then take the average

to obtain the final estimate. Despite its low communication cost, the calcu-

lation may be expensive and some helpful structures may be sacrificed. For

instance, Lee et al. (2017); Battey et al. (2018) investigated the averaged

debiased Lasso where the debiasing step is acknowledged to be computation-

ally intensive and the resulting estimator is no longer sparse. To overcome

such barrier, Jordan et al. (2018) introduced a communication-efficient sur-

rogate likelihood (CSL) method. Although it is easy to implement and

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0022



enjoys appealing statistical properties, the success of CSL method depends

delicately on the smooth loss function (the original theoretical development

requires the loss is thrice differentiable). Moreover, Chen et al. (2020);

Wang and Lian (2020) adopted different strategies to relax this smoothness

condition, which were developed for vector regression. There are still few

works concerning the distributed learning for matrix regression, let alone

the robust matrix regression.

In this paper, we extend the idea of adaptive Huber vector regression

to matrix regression, which can handle matrix covariates without loss of

structural information. Inherited from the merits of adaptive Huber loss,

our method is less sensitive to heavy-tailed errors and the adaptivity of

the robustification parameter leads to the optimal trade-off between bias

and robustness. To enhance the scalability of large-scale applications, we

apply the communication-efficient distributed framework to the proposed

robust matrix regression and developed an efficient implementation through

ADMM based algorithms. Theoretically, we provide upper bounds for the

estimation errors in terms of both Frobenius norm and nuclear norm in

the presence of heavy-tailed noises. Specially, when δ = 1, we show that

the convergence rate of the central estimator using the full data and the

distributed estimator can achieve the same rate established for matrix re-
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gression with light tails. In other words, the proposed method can enjoy the

(approximate) unbiasness and robustness simultaneously. Last, it is rigor-

ously proven that the the regularized estimators possess the low-rankness.

We note that matrix regression are closely related to multi-task learn-

ing, matrix completion and compressed sensing (Fan et al., 2019). There-

fore, the proposed robust matrix regression and associated distributed learn-

ing can be applied to these special models after some adjustments, which

shows broad applications in practice.

The rest of the paper is organized as follows. Section 2 presents the

proposed regularized adaptive Huber matrix regression. The associated

algorithm and theoretical guarantees are developed. Section 3 introduces

the distributed estimation for robust matrix regression, which can be solved

by an ADMM based algorithm. The convergence rates for the distributed

estimator are also provided. Section 4 shows an application to Beijing Air-

Quality data. Section 5 concludes with some discussions. All the proofs and

additional technical details are deferred to the Supplementary Material, as

well as two simulation studies.

Notations. For a vector v = (v1, . . . , vn)
⊤, ∥v∥q = (

∑n
i=1 |vi|q)1/q de-

notes the lq norm for q ∈ [1,∞). For a matrix A, σ1(A) ≥ σ2(A) ≥ . . . ≥

σm(A) denote the ordered singular values, ∥A∥op = σ1(A) denotes the
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operator norm, ∥A∥F =
√∑m

j=1 σ
2
j (A) denotes the Frobenius norm and

∥A∥∗ =
∑m

j=1 σj(A) denotes the nuclear norm. tr(A) denotes the trace,

vec(A) denotes the vectorization of A, and λmin(A) and λmax(A) denote

the minimum and maximum eigenvalues of A, respectively. Throughout

the paper, C denotes a generic constant whose value may change even on

the same line.

2. Regularized adaptive Huber matrix regression

2.1 Model setting

Consider the matrix regression (also called trace regression) model

Y = ⟨X,Θ0⟩+ e,

where Y ∈ R is the response, X ∈ Rp×q is the covariate, Θ0 ∈ Rp×q

is the unknown regression coefficient matrix, ⟨X,Θ0⟩ = tr(X⊤Θ0) is the

inner product between matrices, and e ∈ R is the noise term. For ease of

presentation, we omit the intercept and it can be added with some easy

modifications that only involves more notational burden. Assume we have

independent and identically distributed (i.i.d.) Xi and ei for i = 1, . . . , n.

Define the empirical Huber loss as L(Θ) = (1/n)
∑n

i=1 ℓτ (Yi − ⟨Xi,Θ⟩),
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2.1 Model setting

where ℓτ (·) is the Huber loss of the form

ℓτ (u) =


u2/2, if |u| ≤ τ,

τ |u| − τ 2/2, if |u| > τ,

with τ > 0 being the robustification parameter. Intuitively, a larger τ leads

to less bias but reduced robustness at the same time. Conversely, estimates

with a small τ are typically more robust yet deviate more from the mean

estimation. When τ goes to infinity, the Huber loss reduces to the least

squares loss which possesses unbiasness at the expense of losing robustness.

The regularized estimator of Θ0 is defined as

Θ̂ := argmin
Θ∈Rp×q

L(Θ) + λ∥Θ∥∗, (2.1)

where λ > 0 is a regularization parameter. Here we adopt nuclear norm

penalty to encourage a low rank estimate due to the fact that nuclear norm

can be regarded as the convex surrogate of the rank, and enjoys desirable

theoretical properties and tractable calculation.
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2.2 Algorithm

2.2 Algorithm

We employ an ADMM algorithm to solve the above optimization problem.

Specifically, by introducing auxiliary variables {ri}ni=1 andB, we can rewrite

(2.1) equivalently as

min
Θ,B,ri

1

n

n∑
i=1

ℓτ (ri) + λ∥B∥∗

subject to ri = Yi − ⟨Xi,Θ⟩, i = 1, . . . , n, and B = Θ. (2.2)

To write it in matrix form, denote by r = (r1, . . . , rn)
⊤, y = (Y1, . . . , Yn)

⊤,

X̄ = (x1, . . . ,xn)
⊤ with xi = vec(Xi), and θ = vec(Θ). Let ℓτ (r) repre-

sent that ℓτ (·) is applied to each entry of r and then takes the sum. The

augmented Lagrangian function is

Lρ(r,B,θ;u,V) =
1

n
ℓτ (r) + λ∥B∥∗ + u⊤(r− y + X̄θ) + ⟨V,B−Θ⟩

+
ρ

2
∥r− y + X̄θ∥22 +

ρ

2
∥B−Θ∥2F ,

where u ∈ Rn,V ∈ Rp×q are dual variables associated with the constraints

in (2.2) and ρ > 0 is the augmentation parameter. Then we have the
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2.2 Algorithm

following updates

rk+1 = argmin
r

1

n
ℓτ (r) +

ρ

2
∥r− y + X̄θk + ukρ−1∥22,

Bk+1 = argmin
B

ρ

2
∥B−Θk +Vkρ−1∥2F + λ∥B∥∗,

θk+1 = argmin
θ

ρ

2
∥rk+1 − y + X̄θ + ukρ−1∥22 +

ρ

2
∥θ − bk+1 − vkρ−1∥22,

uk+1 = uk + ρ(rk+1 − y + X̄θk+1),

Vk+1 = Vk + ρ(Bk+1 −Θk+1), (2.3)

where b = vec(B) and v = vec(V). The algorithm is summarized in

Algorithm 1 and the detailed derivation is deferred to the Supplementary

Material. Note that the update of B does not depend on r and vice versa.

Thus this ADMM algorithm indeed has two blocks, one is the update of

(r,B) and the other is the update of θ. Consequently, we have global

convergence to the minimizer of (2.1). We present the following convergence

result from Boyd et al. (2011) for completeness.

Proposition 1. The iterates ΘK produced by Algorithm 1 converges to the

minimizer of (2.1) Θ̂ as K → ∞.
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2.3 Theoretical properties

Algorithm 1 ADMM-based algorithm for solving the regularized adaptive
Huber matrix regression.

Require: {(Yi,Xi)}ni=1.

1: Initialize (r0,B0,θ0,u0,V0).

2: for k = 0, 1, 2, . . . , K − 1 do

3: Calculate hi = (y − X̄θk − uk/ρ)i;

4: Update

rk+1
i =

{
nρhi/(1 + nρ), if |hi| ≤ τ(1 + nρ)/(nρ),

(hi − τ/(nρ))+ − (−hi − τ/(nρ))+, otherwise;

5: Calculate SVD1: Θk −Vk/ρ =
∑min(p,q)

j=1 ωjajc
T
j ;

6: Update Bk+1 =
∑min(p,q)

j=1 (ωj − λ/ρ)+ajc
T
j ;

7: Update

θk+1 = (X̄⊤X̄+ Ipq)
−1{X̄⊤(−rk+1 + y − uk/ρ) + bk+1 + vk/ρ};

8: Update uk+1 = uk + ρ(rk+1 − y + X̄θk+1);

9: Update Vk+1 = Vk + ρ(Bk+1 −Θk+1);

10: end for

11: return θK .
1SVD denotes the singular value decomposition.

2.3 Theoretical properties

To establish an upper bound for the error of Θ̂ in (2.1), we impose the

following assumptions.

(A1) The true regression coefficient matrix Θ0 has rank r ≤ min(p, q).

(A2) The vectorized covariate x = vec(X) is sub-Gaussian. That is, for

any α ∈ Rpq and t > 0, there exits some positive constant c0 such

that P(|α⊤x| ≥ t) ≤ 2 exp(−t2∥α∥22/c20).
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2.3 Theoretical properties

(A3) Let Σ = E(xx⊤). There exist positive constants cl and cu such that

cl ≤ λmin(Σ) ≤ λmax(Σ) ≤ cu.

(A4) The noise e satisfies E(e|X) = 0 and E(|e|1+δ|X) ≤ σδ almost surely

for some 0 < δ ≤ 1.

(A1) is imposed to ensure the true coefficient matrix has a low-rank

structure. Our upper bound to follow becomes smaller with a decrease

of r as expected. (A2) is used to bound some operator norms involving

the covariates and derive exponential-type concentration inequalities. (A3)

assumes the eigenvalues of Σ are bounded, which is a mild assumption even

typically used in high-dimensional linear regression. (A4) allows for the

heavy-tailed noise with only finite (1 + δ)-th moment for some δ ∈ (0, 1],

which is milder than common sub-Gaussian assumptions. It also allows

conditional heteroscedastic models, where e can depend on X. Similar

assumptions appeared in Sun et al. (2020); Chen and Zhou (2020).

To facilitate the theoretical analysis, we introduce some additional no-

tations. Let Θ0 = UDV⊤ be the singular value decomposition (SVD) of

Θ0, where U ∈ Rp×r and V ∈ Rq×r are orthogonal matrices, and D is a
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2.3 Theoretical properties

diagonal matrix. We define two subspaces of Rp×q as follows

M = {A ∈ Rp×q : row(A) ⊆ col(V), col(A) ⊆ col(U)},

N = {A ∈ Rp×q : row(A) ⊥ col(V), col(A) ⊥ col(U)},

where row(·) and col(·) denote the row space and column space, respectively.

As stated in Negahban et al. (2012), the nuclear norm is decomposable with

respect to a pair (M,N ) which means that ∥A1+A2∥∗ = ∥A1∥∗+∥A2∥∗ for

any A1 ∈ M and A2 ∈ N . Let PN : Rp×q → Rp×q denote the projection

onto the subspace N , ∆rc = PN∆ and ∆r = ∆ − ∆rc for any matrix

∆ ∈ Rp×q. We consider the restricted set

C := {∆ ∈ Rp×q : ∥∆rc∥∗ ≤ 3∥∆r∥∗}.

In fact, as long as we assume that λ ≥ 2∥∇L(Θ0)∥op holds, ∆̂ := Θ̂−Θ0

will fall into the above nuclear norm cone C; see Lemma 1 in the Supple-

mentary Material. Then we can establish the restricted strong convexity

property (Lemma 5 in the Supplementary Material) over C ∩ {∥∆∥F ≤ γ}

for some γ > 0, which plays a pivotal role in deriving the error bounds of

the regularized estimator. In the statement of Theorem 1 below, for no-
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2.3 Theoretical properties

tational simplicity, we define vδ = (σδ)
1/(1+δ), where σδ is the constant as

given in Assumption (A4).

Before stating the theorem, let us make it clear that in our theoretical

study r, p, q are allowed to diverge with n (one can think of these quantities

as functions of n such that when we say n → ∞, we also mean we possibly

have p → ∞ at the same time, for example). Several other quantities that

appeared in the assumptions, including c0, cl, cu, are treated as constants.

In the statements and proofs of our theoretical results, C denotes a generic

positive constants that can depends on c0, cl, cu, but not on r, p, q.

Theorem 1. Assume conditions (A1)-(A4) hold, n ≥ Cr(p+ q) log n, τ =

Cvδ[n/{(p + q) log n}]1/(1+δ) and λ ≥ Cvδ{(p + q) log n/n}δ/(1+δ) for some

sufficiently large constant C. Then with probability at least 1 − n−C for

some C > 0, we have

∥Θ̂−Θ0∥F ≤ C
√
rλ, ∥Θ̂−Θ0∥∗ ≤ Crλ.

Theorem 1 provides upper bounds for the estimation error in terms

of both Frobenius norm and nuclear norm. The error bounds depend on

r(p+q) rather than the ambient parameter pq. Specifically, when the noises

have a finite second moment (δ = 1), the proposed estimator can achieve
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2.3 Theoretical properties

the convergence rate established in Negahban and Wainwright (2011a) for

matrix regression models with sub-Gaussian tails up to a log n factor (log n

factor can be removed as discussed in Remark 1 below). When the noises

are more heavy-tailed (0 < δ < 1), the proposed estimator achieves a

slower rate than that with δ = 1. Our result thus provides a theoretical

justification of using Huber’s loss instead of squared loss when the noise is

heavy-tailed.

We also note that τ adapts to the sample size, dimension and moments

of the noise and reveals an optimal tradeoff between bias and robustness.

As described in Section 2.1, τ controls the blending of least squares loss

and absolute value loss. A large τ reduces the bias but compromises the

robustness. Specifically, the convergence rate is determined by the order

of λ ≥ C∥∇L(Θ0)∥op and Lemma 6 in the Supplementary Material reveals

that

∥∇L(Θ0)∥op ≤ C

√
σδτ 1−δ(p+ q) log n

n
+ C

τ(p+ q) log n

n
+ Cσδτ

−δ.

If we assume τ = Cvδ[n/{(p + q) log n}]1/(1+δ), the above three terms have
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2.3 Theoretical properties

the same order and thus yield the upper bound

∥∇L(Θ0)∥op ≤ Cvδ

{
(p+ q) log n

n

}δ/(1+δ)

,

which implies the bound in Theorem 1. When δ = 1, this is consistent with

the rate
√

r(p+q)
n

established in Negahban and Wainwright (2011a) up to a

log n factor (log n factor can be removed as discussed in Remark 1 below).

Remark 1. In Theorem 1, λ should be set to have at least the same order

as ∥∇L(Θ0)∥op. Moving to the proof for the upper bound of ∥∇L(Θ0)∥op

(Lemma 6 in the Supplementary Material), if we take z = C(p + q) in

equation (S2.15) rather than z = C(p + q) log n, we can further get the

following result.

Assume conditions (A1)-(A4) hold, n ≥ Cr(p + q), τ = Cvδ{n/(p +

q)}1/(1+δ) and λ ≥ Cvδ{(p+ q)/n}δ/(1+δ) for some sufficiently large constant

C. Then with probability at least 1− e−C(p+q), we have

∥Θ̂−Θ0∥F ≤ C
√
rλ, ∥Θ̂−Θ0∥∗ ≤ Crλ.

That is, the above bounds hold with probability approaching one provided

that p, q diverge to infinity. We keep the log n term for technical convenience
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2.4 Comparison with existing works

to cover the settings of fixed p, q. Similar arguments also apply to other

theorems below.

The following result shows that the nuclear norm-regularized estimator

(2.1) has a rank that is of the same order as the unknown true rank.

Theorem 2. Assume the same conditions as in Theorem 1. Then with

probability approaching one as n goes to infinity, we have

rank(Θ̂) ≤ Cr.

Theorem 2 points out that the rank of the regularized estimator is of the

order O(r) with an overwhelming probability. Although Θ̂ is often low-rank

in practice as long as the regularization parameter λ is sufficiently large,

we provide strict theoretical guarantee on the low-rankness for regularized

robust matrix estimator.

2.4 Comparison with existing works

Past work by Negahban and Wainwright (2011a) (abbreviated as NW11)

studied the matrix estimation problem with least squares loss and nuclear

norm penalty and derived the upper bound
√

r(p+q)
n

in terms of the Frobe-

nius norm under sub-Gaussian tails and restricted strong convexity. Be-
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2.4 Comparison with existing works

sides, Zhou and Li (2014) (ZL14) also covered this setting but did not

prove theoretical guarantee in terms of the convergence rate. Due to the

nature of quadratic loss, their methods are sensitive to outliers and the tails

of the noise distribution. Moreover, they did not prove the low-rankness of

the regularized estimator.

Elsener and van de Geer (2018) (EV18) considered robust nuclear norm

penalized estimators through using the absolute deviation/median loss and

the Huber loss. However, for the Huber loss, they treat the robustification

parameter τ as fixed which does not trade off bias versus robustness. Their

assumption that the distribution of noises is symmetric around zero is quite

stringent. If this condition is violated, the estimator using median loss can

only estimate the conditional median rather than the conditional mean.

Unlike EV18, we allow τ to diverge, thereby waiving the requirement of

symmetric noise distribution. Moreover, if p ≍ q and p(log p)
1+δ
3+δ ≫ n

1−δ
3+δ ,

their convergence rates
√
rpq

√
log(p+q)
n(p∧q) in Frobenius norm and rpq

√
log(p+q)
n(p∧q)

in nuclear norm are slower than ours. In other words, our rate is better

if the dimension of the matrix is sufficiently large. In particular, if δ = 1,

our rate is always better, although requiring a stronger assumption of finite

second moment for error.

We summarize the above comparison in Table 1 and also applicability
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2.4 Comparison with existing works

Table 1: Summary of comparison with existing works.

Loss
Convergence rate

Order of rank
Frobenius norm Nuclear norm

NW11 quadratic
√

r(p+q)
n

× ×
ZL14 quadratic × × ×
EV18 median/Huber

√
rpq

√
log(p+q)
n(p∧q) rpq

√
log(p+q)
n(p∧q) ×

Ours Huber
√
r
(
p+q
n

) δ
1+δ r

(
p+q
n

) δ
1+δ O(r)

Table 2: Applicability of different methods for conditional mean regression.
Quadratic (NW11, ZL14) Median (EV18) Huber (Ours)

Light tails
Symmetric ✓ ✓ ✓(large τ)
Asymmetric ✓ × ✓(large τ)

Heavy tails
Symmetric × ✓ ✓(small τ)
Asymmetric × × ✓(small τ)

of several methods under different error distribution assumptions in Ta-

ble 2. Theoretically, Negahban and Wainwright (2011b) assumed the error

distribution is Gaussian or sub-Gaussian. We assumed finite moment as-

sumption up to the second moment in this work. Elsener and van de Geer

(2018) does not require any moment assumption, but in order for the esti-

mation target to be the conditional mean, the error distribution needs to

be symmetric.
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3. Distributed estimation for regularized adaptive Huber matrix

regression

In this section, we apply the communication-efficient surrogate likelihood

(CSL) method (Jordan et al., 2018) to the robust matrix regression studied

in Section 2, to enhance the scalability of dealing with large-scale data. Let

{Zij : i = 1, . . . , n, j = 1, . . . ,m} denote N = nm samples that are stored

on m machines (in the regression setting Zij = (Yij,Xij)), where we indeed

assume each local machine Mj stores an equal number of subsamples n for

simplicity. We briefly review CSL and then illustrate the distributed Huber

matrix regression.

3.1 Communication-efficient distributed framework

We adopt CSL to develop distributed robust matrix regression, owing to

the appealing property that CSL can achieve the tradeoff between commu-

nication cost and statistical efficiency, and is easy to implement. Assume

θ0 is the unknown parameter of interest, loss function ℓ is differentiable

and Lj(θ) = (1/n)
∑n

i=1 ℓ(θ, Zij) is the local loss on machine Mj. Given

an initial estimator θ̂ of θ0 that is typically computed on a small part of

the entire data, Jordan et al. (2018) proposed to estimate the global loss
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3.1 Communication-efficient distributed framework

L(θ) = (1/N)
∑n

i=1

∑m
j=1 ℓ(θ;Zij) by

L(θ) ≈ L1(θ)− θ⊤{∇L1(θ̂)−∇L(θ̂)}+ terms independent of θ, (3.1)

which is essentially motivated by second-order Taylor’s expansion. We note

that ∇L(θ̂) = (1/m)
∑m

j=1∇Lj(θ̂) is the only term that involves data other

than those on M1. The distributed learning procedure is implemented as

follows.

• First, M1 transmits the initial estimator to local machines, and each

Mj calculates the local gradient ∇Lj(θ̂) and sends it back to M1;

• Second, M1 computes the updated θ by using the surrogate loss

L1(θ)− θ⊤{∇L1(θ̂)−∇L(θ̂)}.

As discussed in Jordan et al. (2018), the communication cost is O(mp̃) with

p̃ denoting the dimension of θ. Compared with collecting all data on a single

machine with communication cost O(mnp̃), CSL significantly reduces the

communication cost. Technically, Jordan et al. (2018) requires ℓ is at least

thrice differentiable and thus does not apply to Huber’s loss directly. We

need to construct a proof that heavily relies on empirical process techniques

making it sufficiently different.
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3.2 Distributed adaptive Huber matrix regression

We integrate the idea of CSL with the adaptive Huber matrix regression in

the following. Given samples {(Yij,Xij)}ni=1
m
j=1, the local and global Huber

loss functions are of the form

Lj(Θ) =
1

n

n∑
i=1

ℓτ (Yij − ⟨Xij,Θ⟩), j = 1, . . . ,m,

L(Θ) =
1

m

m∑
j=1

Lj(Θ) =
1

N

n∑
i=1

m∑
j=1

ℓτ (Yij − ⟨Xij,Θ⟩).

Adapted from (3.1), we can construct the surrogate loss function as

L̃(Θ) = L1(Θ)− ⟨Θ,∇L1(Θ̂)−∇L(Θ̂)⟩,

where Θ̂ is an initial estimator of the true coefficient matrix Θ0, ∇L1(Θ̂) =

−(1/n)
∑n

i=1 ℓ
′
τ (Yi1−⟨Xi1, Θ̂⟩)Xi1 and∇L(Θ̂) = −(1/N)

∑n
i=1

∑m
j=1 ℓ

′
τ (Yij−

⟨Xij, Θ̂⟩)Xij with ℓ
′
τ (u) = sign(u)min(|u|, τ). The distributed estimator is

defined as

Θ̃ := argmin
Θ∈Rp×q

L̃(Θ) + λ∥Θ∥∗. (3.2)

We again adapt the ADMM algorithm to solve the distributed esti-
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3.2 Distributed adaptive Huber matrix regression

mator Θ̃. By introducing auxiliary variables {ri}ni=1 and B, (3.2) can be

reformulated as

min
Θ,B,ri

1

n

n∑
i=1

ℓτ (ri)− ⟨Θ,∇L1(Θ̂)−∇L(Θ̂)⟩+ λ∥B∥∗

subject to ri = Yi1 − ⟨Xi1,Θ⟩, i = 1, . . . , n, and B = Θ.

Denote by r = (r1, . . . , rn)
⊤, y1 = (Y11, . . . , Yn1)

⊤, X̄1 = (x11, . . . ,xn1)
⊤

with xi1 = vec(Xi1), θ = vec(Θ) and g = vec(∇L1(Θ̂) − ∇L(Θ̂)). The

augmented Lagrangian function is

Lρ(r,B,θ;u,V) =
1

n
ℓτ (r)− θ⊤g + λ∥B∥∗ + u⊤(r− y1 + X̄1θ)

+⟨V,B−Θ⟩+ ρ

2
∥r− y1 + X̄1θ∥22 +

ρ

2
∥B−Θ∥2F .

Then we have the following updates

rk+1 = argmin
r

1

n
ℓτ (r) +

ρ

2
∥r− y1 + X̄1θ

k + ukρ−1∥22,

Bk+1 = argmin
B

ρ

2
∥B−Θk +Vkρ−1∥2F + λ∥B∥∗,

θk+1 = argmin
θ

ρ

2
∥rk+1 − y1 + X̄1θ + ukρ−1∥22 +

ρ

2
∥θ − bk+1 − vkρ−1∥22 − θ⊤g,

uk+1 = uk + ρ(rk+1 − y1 + X̄1θ
k+1),

Vk+1 = Vk + ρ(Bk+1 −Θk+1),
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3.2 Distributed adaptive Huber matrix regression

where b = vec(B) and v = vec(V). We note that all updates have closed-

form solutions and can be solved efficiently. Indeed, the above updates

naturally reduce to (2.3) when g = 0. The detailed implementation of

the distributed learning procedure is summarized in Algorithm 2. This

algorithm is also a two-block ADMM algorithm and thus it also has the

global convergence property as in Proposition 1.

Next we proceed with the theoretical analysis. As mentioned above,

since ℓτ is not thrice differentiable and the matrix covariate has a more

complex structure, the proof of Jordan et al. (2018) cannot be applied

directly. Although the surrogate loss involves the local loss L1, we need to

derive error bounds that correspond to that of the central estimator using

the global loss L, which seems quite challenging. The key techniques used to

address these issues are outlined in Lemma 7 in the Supplementary Material,

where we resort to the covering argument and Bernstein’s inequality to

bound ∥∇L(Θ) − ∇L(Θ0) − E∇L(Θ) + E∇L(Θ0)∥op uniformly over the

restricted set Ω = {Θ ∈ Rp×q : ∥Θ −Θ0∥F ≤ an, rank(Θ) ≤ Cr} with an

given in (A5) below, rather than applying the third-order Taylor’s expansion

as in Jordan et al. (2018). We impose the following additional assumptions.

(A5) The initial estimator Θ̂ satisfies ∥Θ̂−Θ0∥F ≤ an and rank(Θ̂) ≤ Cr,

with some positive sequence an = o(1) as n → ∞.
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3.2 Distributed adaptive Huber matrix regression

Algorithm 2 Communication-efficient ADMM algorithm for solving the
distributed regularized adaptive Huber matrix regression.

Require: {(Yij,Xij) : i = 1, . . . , n, j = 1, . . . ,m} on machines {Mj}mj=1.

1: Calculate the initial value Θ̂ on M1 by Algorithm 1;

2: Machine M1 transmits θ̂ = vec(Θ̂) to {Mj}mj=1;

3: for j = 1, 2, . . . ,m do

4: Calculate ∇Lj(Θ̂) on each machine Mj;

5: Transmit ∇Lj(Θ̂) to machine M1;

6: end for

7: Calculate ∇L(Θ̂) = (1/m)
∑m

j=1∇Lj(Θ̂) and g = vec(∇L1(Θ̂) −
∇L(Θ̂)) on machine M1;

8: Update (rk,Bk,θk,uk,Vk) on M1 as follows:

9: for k = 0, 1, 2, . . . , K − 1 do

10: hi = (y1 − X̄1θ
k − uk/ρ)i;

11: rk+1
i =

{
nρhi/(1 + nρ), if |hi| ≤ τ(1 + nρ)/(nρ),

(hi − τ/(nρ))+ − (−hi − τ/(nρ))+, otherwise;

12: Calculate SVD1: Θk −Vk/ρ =
∑min(p,q)

j=1 ωjajc
T
j ;

13: Bk+1 =
∑min(p,q)

j=1 (ωj − λ/ρ)+ajc
T
j ;

14: θk+1 = (X̄⊤
1 X̄1+Ipq)

−1{X̄⊤
1 (−rk+1+y1−uk/ρ)+bk+1+vk/ρ+g/ρ};

15: uk+1 = uk + ρ(rk+1 − y1 + X̄1θ
k+1);

16: Vk+1 = Vk + ρ(Bk+1 −Θk+1);

17: end for

18: return θK .
1SVD denotes the singular value decomposition.

(A5) characterizes the restrictions on the initial estimator. Regarding

the specific choice of Θ̂, a natural idea is to solve the optimization problem

(2.1) on the first machine, whose estimation accuracy and low-rank property

have been proven in Theorem 1 and Theorem 2, respectively. Moreover,

(A5) implies that ∥Θ̂−Θ0∥∗ ≤ C
√
ran since ∥Θ̂−Θ0∥∗ ≤ C

√
r∥Θ̂−Θ0∥F
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3.2 Distributed adaptive Huber matrix regression

when rank(Θ̂) ≤ Cr holds. The following theorem and corollary guarantee

the estimation accuracy of the proposed distributed estimator.

Theorem 3. Assume conditions (A1)-(A5) hold, n ≥ Cr2{(p + q) log n}2

and τ = Cvδ[N/{(p + q) logN}]1/(1+δ) for some sufficiently large constant

C. In addition, assume for some sufficiently large C,

λ≥Can

√
r(p+ q) log n

n
+Can

r3/2(p+ q)2(log n)2

n
+Cvδ

{
(p+ q) logN

N

}δ/(1+δ)

.

Then with probability at least 1− n−C for some C > 0, we have

∥Θ̃−Θ0∥F ≤ C
√
rλ, ∥Θ̃−Θ0∥∗ ≤ Crλ.

Theorem 3 presents the convergence rates of the proposed distributed

estimator, which are closely related to the initial estimation error an. The

last term Cvδ
√
r{(p+q) logN/N}δ/(1+δ) matches the upper bound obtained

in Theorem 1 when we directly use the full data to estimate (2.1) (the

resulting estimate is known as the central estimator). In addition, this

term can be the dominating term under further sample size condition, as

described in Corollary 1 below.
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Corollary 1. Assume that the conditions of Theorem 3 hold and

an

√
r(p+ q) log n

n
+ an

r3/2(p+ q)2(log n)2

n
≪ vδ

{
(p+ q) logN

N

}δ/(1+δ)

.(3.3)

Then with probability at least 1− n−C for some C > 0, we have

∥Θ̃−Θ0∥F ≤ Cvδ
√
r

{
(p+ q) logN

N

}δ/(1+δ)

,

∥Θ̃−Θ0∥∗ ≤ Cvδr

{
(p+ q) logN

N

}δ/(1+δ)

.

Corollary 1 directly results from Theorem 3. As mentioned in Wang

and Lian (2020), some quantitative relationship between m and N is nor-

mally required in order for the distributed learning to work, implying that

n cannot be too small, or equivalently, m cannot be too large. To sim-

plify (3.3), we consider some specific values of an to further illustrate the

convergence rates of the distributed estimator. For example, if vδ ≍ 1

and an ≍ n−1/4, then N/ logN ≪ n
3(1+δ)

4δ r−
3(1+δ)

2δ (p + q)−
2+δ
δ (log n)−

2(1+δ)
δ

(if δ = 1 and we ignore the logarithmic terms, this further simplifies to

N ≪ n3/2

r3/2(p+q)3
) suffices to make Θ̃ achieve the same rate as the central

estimator which uses the full data directly, as established in Theorem 1.

For the second case, we set vδ ≍ 1 and an ≍
√
r{(p+ q) log n/n}δ/(1+δ) (this
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3.2 Distributed adaptive Huber matrix regression

rate can be obtained by using the local data of size n). Then we require

N/ logN ≪ n
1+3δ
2δ r−

2(1+δ)
δ (p + q)−

2(1+δ)
δ (log n)

2+3δ
δ (if δ = 1 and we ignore

the logarithmic terms, this further simplifies to N ≪ n2

r4(p+q)4
). Finally, we

note that the theoretically choice of λ is not directly useful in practice, and

we will use 5-fold cross-validation to choose the optimal λ.

Remark 2. Although not directly seen from the statement of Theorem 1,

our proof actually shows that if the initial estimator is computed by (2.1)

using local data on M1, we have

an = C
√
r

{√
σδτ 1−δ(p+ q) log n

n
+

τ(p+ q) log n

n
+ σδτ

−δ

}
.

In fact, as in the proof of Theorem 1 and Lemma 6, when computing the

initial estimator, λ should be set to the order {
√

σδτ 1−δ(p+ q) log n/n +

τ(p+ q) log n/n + σδτ
−δ}. In this case, Corollary 1 would imply n ≥

(N/ logN)2/3{r(p+ q) log n}2. Fortunately, this restriction can be removed

if the communication-efficient distributed learning is iterated: once the t-th

round distributed estimator is obtained, we can use it as the initial esti-

mator of the (t+1)-th round and apply the distributed learning procedure

summarized in Algorithm 2 again to further reduce the error. Let Θ̃
t
denote

the distributed estimator obtained at t-th round. After T rounds (T is spec-
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3.2 Distributed adaptive Huber matrix regression

ified below), Θ̃
T
can achieve the convergence rate Cvδ

√
r
{

(p+q) logN
N

}δ/(1+δ)

without the above stated stringent condition on n or m. We state this rela-

tively straightforward extension as follows whose proof is also contained in

the supplementary material.

Corollary 2. Assume that the conditions of Theorem 3 hold, except that

in round t, we need to choose λt ≍
{√

r(p+q) logn
n

+ r3/2(p+q)2(logn)2

n

}
an,t +

vδ

{
(p+q) logN

N

} δ
1+δ

, where an,t = ∥Θ̃
t−1

− Θ0∥F is the error of the ini-

tial estimator at the t-th round (also the estimator at the end of the

(t − 1)-th round). Define bn = Cr
√

(p+q) logn
n

+ C r2(p+q)2(logn)2

n
and SN =

Cvδ
√
r
{

(p+q) logN
N

} δ
1+δ

, and assume bn < 1/2 (or any other constant in

(0, 1)). After T ≥ log(SN/an)
log bn

rounds, we have

∥Θ̃
T
−Θ0∥F ≤ Cvδ

√
r

{
(p+ q) logN

N

}δ/(1+δ)

,

∥Θ̃
T
−Θ0∥∗ ≤ Cvδr

{
(p+ q) logN

N

}δ/(1+δ)

.

with probability at least 1− Tn−C for some C > 0.

Again, we can show the distributed estimator (3.2) has a low rank.

Theorem 4. Assume conditions (A1)-(A5) are satisfied, τ = Cvδ[N/{(p+

q) logN}]1/(1+δ), λ ≥ Cvδ{(p+ q) logN/N}δ/(1+δ) ≫ an
√
r(p+ q) log n/n+
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anr
3/2(p+ q)2(log n)2/n, and N ≥ C{min(p, q)(p+ q) logN}4 for some suf-

ficiently large constant C. Then with probability approaching one as n goes

to infinity, we have

rank(Θ̃) ≤ Cr.

4. Numerical studies: an application to Beijing air-quality dataset

Here we only report an analysis on a real data set and our simulation stud-

ies are deferred to the Supplementary Material. The Beijing Air-Quality

dataset (Du et al., 2019) is available at UCI: https://archive.ics.uci.

edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data. The dataset

provides hourly air quality information collected from 12 monitoring sta-

tions (each with 35064 records and there are 420768 records in total) in

Beijing from March 2013 to February 2017. It is recognized that PM2.5

has become an important index to measure the level of air pollution. Here

we are interested in predicting daily average PM2.5 concentrations. The

data contains daily (from 0hr to 23hr) air quality information including

SO2, NO2, CO, O3, temperature, pressure, dew point and wind speed serv-

ing as matrix covariates. That is, each observation (Xi, Yi) ∈ R24×8 × R

and the total sample size is N = 420768/24 = 17352. The multi-site struc-

ture naturally leads to m = 12 and thus n = N/m = 1461. We fill the
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missing values using the average of the column and normalize the original

data to [0, 1]. The kurtosis of the normalized PM2.5 data is plotted in

Figure 1, which shows that PM2.5 data at all 12 stations have heavy-tailed

distributions.

We compare five estimators:

(a) LHuber: the local Huber estimator using the only data on M1;

(b) NHuber: the naive average of all local Huber estimators calculated on

{Mj}mj=1;

(c) DHuber: the proposed distributed Huber estimator;

(d) DLS: the distributed least squares estimator using surrogate loss, that

is, replacing Huber loss ℓτ in (3.2) with least squares loss ℓ(·) = (·)2

and still applying the CSL framework for the purpose of fair compar-

ison;

(e) DMed: the distributed median estimator using surrogate loss, that

is, replacing Huber loss ℓτ in (3.2) with median/absolute value loss

ℓ(·) = | · | and still applying the CSL framework.

For each monitoring station, we randomly split the data into a training

set containing 70% of the sample and use the remaining as a test set. Then
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Figure 1: Histogram of kurtosis for PM2.5 (y-axis denotes the frequency).
The dashed red line at 3 is the kurtosis of standard normal distribution.

Table 3: Means and standard errors (in parentheses) of the prediction errors
by different methods over 50 partitions.

LHuber NHuber DHuber DLS DMed
RMSE 0.160(0.030) 0.128(0.002) 0.121(0.002) 0.161(0.003) 0.136(0.003)
MAE 0.119(0.023) 0.094(0.001) 0.089(0.001) 0.110(0.002) 0.095(0.001)

we combine the training sets obtained from 12 stations as the final training

set. The final test set is also obtained in this way. The above procedure is

repeated 50 times. We use the training set to fit the model and select the

tuning parameters and robustification parameters by 5-fold cross-validation.

We report the averaged RMSE and MAE over the test data for 50 splittings,

which are seperately defined as

RMSE =

{
1

Ntest

Ntest∑
i=1

(Yi − Ŷi)
2

}1/2

and MAE =
1

Ntest

Ntest∑
i=1

|Yi − Ŷi|.

In terms of both RMSE and MAE summarized in Table 3, we see that the

DHuber achieves the smallest errors among all methods.
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5. Discussions

In this paper, we have studied the adaptive Huber regression with matrix

covariates and applied the communication-efficient distributed framework

to deal with large-scale settings, enjoying robustness to heavy-tailed noises

and outliers. It inherits the strengths of the adaptive Huber loss and dis-

tributed learning, and can be efficiently implemented by ADMM based

algorithms. The estimation error bound and the low-rank properties of the

proposed estimators are established. Extensive simulation results confirm

the effectiveness of the proposed method.

It would also be interesting to extend to more general cases such as

the covariate X and noise e are both heavy-tailed, or develop the robust

tensor regression to handle tensor covariates and further investigate the

distributed estimation for regularized Huber tensor regression. Besides,

establishing the matching minimax lower bounds under the restricted strong

convexity condition seems promising but challenging, since we allow heavy-

tailed noises with only bounded (1 + δ)-th moment for some δ ∈ (0, 1]. We

leave these interesting topics for future research.
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Supplementary Material

Proofs of the theorems and two simulation studies are contained in the

Supplementary Materials.
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