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Abstract: We propose a partially-global Fréchet regression model by extending the

profiling technique for the partially linear regression model (Severini and Wong

1992). This extension allows for the response to come from a generic metric

space and can incorporate a combination of Euclidean predictors and a predictor

which comes from another generic metric space. By melding together the local

and global Fréchet regression models proposed by Petersen and Müller (2019),

we gain a model that is more flexible than global Fréchet regression and more

accurate than local Fréchet regression when the data generating process relies on a

non-Euclidean predictor or is truly “global (linear)” for some scalar predictors. In

this paper, we provide theoretical support for partially-global Fréchet regression

and demonstrate its competitive finite-sample performance when applied to both

simulated data and to real data which is too complex for traditional statistical

methods.

Key words and phrases: Fréchet regression, local polynomial smoothing, non-

Euclidean predictor, non-Euclidean response, partially linear model
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1. Introduction

Regression has continued to be a central technique for analyzing data, es-

pecially to study how a response variable depends on one or more predictor

variables. In classical regression, responses and covariates are limited to

be scalars. However, more complex types of data, which are situated in a

generic metric space, are becoming more common and readily available in

this era of big data. There is now a necessity to develop statistical mod-

els which can extend classical regression to incorporate these complex data

types, such as probability distributions, symmetric positive definite matri-

ces or data on a Riemannian manifold, as is discussed in Wang and Marron

(2007), Hein (2009), Marron and Alonso (2014) and Faraway (2014).

To this aim, recent work has been done to model the dependency of Rie-

mannian manifolds on Euclidean predictors. This includes the development

of local polynomial-type models (Pelletier 2006; Davis et al. 2010; Hinkle,

Muralidharan, Fletcher, and Joshi Hinkle et al.; Yuan et al. 2012), geodesic

regression (Fletcher 2013; Cornea et al. 2017; Niethammer et al. 2011; Ding

et al. 2019), and even partially linear models (Gonzalez-Manteiga et al.

2012). An additive functional regression model has also been developed for

the case when densities are responses (Han et al. 2020).

However, each of these methods is restricted to a specific type of re-
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sponse, just as classical regression is restricted to Euclidean data. There-

fore, Petersen and Müller (2019) extended classical regression to Fréchet

regression, which can handle responses which come from a generic metric

space. Fréchet regression was cleanly formulated as a weighted Fréchet

mean, with weights depending on Euclidean predictors. Further, Lin and

Müller (2021) studied total variation regularized Fréchet regression.

Petersen and Müller (2019) proposed both a global Fréchet regression

by extending classical linear regression as well as a local Fréchet regression

by extending local polynomial non-parametric smoothing methods. In this

paper, we propose partially-global Fréchet regression, a method which com-

bines the two, extending already developed semi-parametric methods. This

development allows for more flexible Fréchet regression models, ones which

combine the strengths of global and local Fréchet regression. Further, it

extends the capability of Fréchet regression to incorporate predictors which

come from a generic metric space, not necessarily Euclidean space. This

generic metric space need not match that of the response, enabling our

models to capture quite complex data generating processes.

The remainder of this paper is organized as follows: Section 2 gives

the basic set up for Fréchet regression. A quick review of semi-parametric

regression and the profiling technique for estimation (Severini and Wong
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1992) is given in Section 3. Section 4 proposes our partially-global Fréchet

regression model as well as a method for its estimation. Sections 5 and 6

develop the theoretical properties of our models, including pointwise con-

vergence rates. Finally, Sections 7 and 8 share simulation studies and real

data examples to justify the utilization of our method, and Section 9 gives

concluding remarks as well as ideas for future work. All definitions, assump-

tions, and proofs are collected in the separate Supplementary Materials

document.

2. Set up

First, we present the general set up for Fréchet regression. We consider a

random process (X, Z, Y ) ∼ F on the product space X × Z × Y , where

(Z, δ) and (Y , d) are two metric spaces, while X ⊂ Rp. Here, X =

(X1, X2, . . . , Xp)
T denotes multivariate “global (linear)” predictors, Z ∈ Z

denotes a univariate “local (nonlinear)” predictor, and Y ∈ Y denotes the

response. We refer to Z and Y as random objects. We use F to denote

the joint distribution of (X, Z, Y ) on X × Z × Y . Denote the marginal

distributions of X, Z, and Y by FX, FZ , and FY , respectively. We assume

that all conditional distributions exist and are well defined. This is similar

to the set up in Petersen and Müller (2019).
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In particular, we consider a univariate local predictor Z that takes value

in a generic metric space to broaden our partially-global Fréchet regression

model’s applicability. This includes the scalar local predictor as a special

case when Z ⊂ R.

Because we are considering random objects Y and Z in generic metric

spaces, the conventional definitions of mean and variance for random vari-

ables from Euclidean space do not apply. Fréchet (1948) generalized the

concepts of mean and variance by defining the Fréchet mean and Fréchet

variance of a random object Y as

ω⊕ = argmin
y∈Y

E(d2(Y, y)) and V⊕ = E(d2(Y, ω⊕)),

respectively.

To study and model the relationship between a random object re-

sponse and multivariate random variable predictors, Petersen and Müller

(2019) defined the Fréchet regression function of Y given X = x with

x = (x1, x2, . . . , xp)
T as

m⊕(x) = argmin
y∈Y

E(d2(Y, y)|X = x).

Petersen and Müller (2019) developed both global and local Fréchet

regression models. We combine the strength of these models and propose a

partially-global Fréchet regression model to increase model flexibility.
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3. Partially Linear Model

Our partially-global Fréchet regression model is an extension of the classical

partially linear model (Härdle et al. 2000). Let’s first review this. Assume

that

Y = XTβ + f(Z) + ϵ,

with X ∈ Rp, Z ∈ R, and random error ϵ satisfying E(ϵ|X) = 0 and

E(ϵ|Z) = 0, with a slight abuse of notations. Based on a random sample

{(Xi, Zi, Yi) : i = 1, 2, . . . , n}, we denote X = (X1,X2, . . . ,Xn)
T , Z =

(Z1, Z2, . . . , Zn)
T and Y = (Y1, Y2, . . . , Yn)

T .

The profiling technique (Severini and Wong 1992) is commonly used

for the estimation of the above semi-parametric regression model. This

is the method we will focus on. Suppose for now that β is known and we

want to estimate the nonparametric component, f(·). We define “adjusted”

responses as Yi−XT
i β, i = 1, 2, . . . , n. Then we can apply local polynomial

smoothing (Fan and Gijbels 1996) to the “adjusted” data {(Zi, Yi−XT
i β) :

i = 1, 2, . . . , n} to estimate f(·).

With a local qth order polynomial, we estimate f(z) for any z by solving

(ĉ0, ĉ1, . . . , ĉq)
T =

argmin
c0,c1,...,cq

n∑
i=1

{
(Yi −XT

i β)−
q∑

j=0

cj(Zi − z)j

}2

Kh(Zi − z) (3.1)
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and set f̂(z) = ĉ0, where K(·) is a kernel function, Kh(·) = K(·/h)/h and

h > 0 is a smoothing bandwidth. Now, local polynomial smoothing is a

linear smoother. That is, f̂(z) = s(z)T (Y − Xβ) for a vector

s(z) ≡ sh,q(z), (3.2)

which depends on the choice of h and q in (3.1). Denote the smoothing

matrix S ≡ Sh,q = (sh,q(Z1), sh,q(Z2), . . . , sh,q(Zn))
T . Then

(f̂(Z1), f̂(Z2), . . . , f̂(Zn))
T = S(Y − Xβ).

Recall that the linear regression coefficients β were assumed to be known. β

must still be estimated by solving minβ ⟨(I− S)(Y − Xβ), (I− S)(Y − Xβ)⟩ ,

with the closed form solution β̂ =
{
XT (I− S)T (I− S)X

}−1 XT (I−S)T (I−

S)Y. Thus, the estimate of f(z) at any z is given by f̂(z) = s(z)T (y−Xβ̂).

Putting it all together, the prediction at any future x and z is given by

xT β̂ + f̂(z) (3.3)

= s(z)TY + (xT − s(z)TX)β̂

=
[
s(z)T + (xT − s(z)TX)

{
XT (I− S)T (I− S)X

}−1XT (I− S)T (I− S)
]
Y.

Just as Petersen and Müller (2019) reframed the classical linear regres-

sion model and local polynomial models as an optimization problem for a

prediction at a future observation, here we can reframe the classical par-
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tially linear model as an optimization problem with (3.3) as the optimizer.

Denote the weight wi(x, z) to be the ith element of

s(z)T + (xT − s(z)TX)
{
XT (I− S)T (I− S)X

}−1XT (I− S)T (I− S).

Then we can write (3.3) as

argmin
y∈Y

n∑
i=1

wi(x, z)(Yi − y)2. (3.4)

This allows us to extend partially linear models from Euclidean space

to a generic metric space (Y , d) by replacing the Euclidean distance with a

general metric d. The details of this extension and our proposed model are

given in Section 4. But first, we point out a further extension that can be

made using the local constant smoother s(z) = sh,0(z).

3.1 Local constant smoothing to encompass a non-Euclidean Z

For the special case of q = 0, i.e. local constant smoothing, (3.2) has the

closed form

sh,0(z) =
1∑n

i=1 Kh(Zi − z)



Kh(Z1 − z)

Kh(Z2 − z)

...

Kh(Zn − z)


.
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To facilitate non-Euclidean Z, we can generalize the local constant smooth-

ing vector to

1∑n
i=1Kh(δ(Zi, z))



Kh(δ(Z1, z))

Kh(δ(Z2, z))

...

Kh(δ(Zn, z))


by replacing the univariate Euclidean distance |Zi−z| with a metric distance

δ(Zi, z). This will allow us to develop a model that can incorporate both a

non-Euclidean response and a non-Euclidean predictor.

4. Partially-global Fréchet Regression

We now extend the partially linear semi-parametric model combined with

the profiling technique for estimation, to the case when Y ∈ Y is a random

object.

4.1 Partially-global Fréchet regression model

Let us first define the partially-global Fréchet regression model.

Definition 1. We denote the Fréchet regression function of Y given X = x

and Z = z

m⊕(x, z) = argmin
y∈Y

E(d2(Y, y)|X = x, Z = z). (4.1)
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The partially-global Fréchet regression model is said to hold if

m⊕(x, z) = s⊕(x, z) for any x ∈ X , z ∈ Z, where

s⊕(x, z) = argmin
y∈Y

S⊕(y;x, z) (4.2)

and

S⊕(y;x, z) = E(d2(Y, y)|Z = z) + (4.3)

(x− E(X|Z = z))T (cov(X− E(X|Z)))−1cov(X− E(X|Z), d2(Y, y)− E(d2(Y, y)|Z)).

Notice that each of the terms in (4.2) corresponds to each of the terms in

the estimator (3.4) when the metric space (Y , d) is the univariate Euclidean

space with Y = R and d(y, y′) = |y − y′|. In fact, we have the following

lemma to verify that the partially-global Fréchet regression model does

indeed simplify to the partially linear model.

Lemma 1. For the special case of partially linear regression model, we have

s⊕(x, z) = xTβ + f(z) for any x and z.

4.2 Estimation of the partially-global Fréchet regression model

Now that we have a model, we extend the profiling technique to estimate it.

Let shi(·) denote the ith element of the smoothing vector sh,q(·), as defined
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in (3.2) coming from (3.1). Then we estimate (4.2) by

ŝ⊕(x, z) = argmin
y∈Y

Ŝn(y;x, z), (4.4)

where

Ŝn(y;x, z) = ŵ0(y; z) + ŵ1(x, z)ŵ
−1
2 ŵ3(y), (4.5)

with

ŵ0(y, z) = n−1

n∑
i=1

shi(z)d
2(Yi, y),

ŵ1(x, z) =

(
xT − n−1

n∑
i=1

shi(z)X
T
i

)
,

ŵ2 = n−1

n∑
i=1

(
Xi − n−1

n∑
j=1

shj(Zi)Xj

)(
Xi − n−1

n∑
j=1

shj(Zi)Xj

)T

,

and ŵ3(y)

= n−1

n∑
i=1

(
Xi − n−1

n∑
j=1

shj(Zi)Xj

)(
d2(Yi, y)− n−1

n∑
j=1

shj(Zi)d
2(Yj, y)

)
,

which is essentially an extension of the optimizer (3.4) introduced previ-

ously.

Now that we have our estimator, we derive its convergence rate to the

target model under several different settings.
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5. Theoretical Properties for Partially-global Fréchet Regression

with Local Linear Smoothing

We first consider the case when the partially-global model utilizes local

linear smoothing. We assume that X ⊂ Rp, Z ⊂ R and consider points

x ∈ X for which fX(x) > 0 and points z ∈ Z for which fZ(z) > 0. For ease

of reading, we re-write (4.3) as

S⊕(y;x, z) = w0(y; z) + w1(x, z)w
−1
2 w3(y), (5.1)

where w0(y; z) = E(d2(Y, y)|Z = z), w1(x, z) = (x− E(X|Z = z)),

w2 = Cov(X− E(X|Z)), and

w3(y) = Cov(X− E(X|Z), d2(Y, y)− E(d2(Y, y)|Z)).

We then define the population version of (4.4) as

s̃⊕(x, z) = argmin
y∈Y

S̃n(y;x, z), (5.2)

where

S̃n(y;x, z) = w̃0(y; z) + w̃1(x, z)w
−1
2 w3(y) (5.3)

with w̃0(y, z) = E(ζh(Z, z)d
2(Y, y)) and w̃1(x, z) = (x − E(ζh(Z, z)X)).

Because we are considering local linear smoothing, we have that

ζh(Z, z) = Kh(Z − z)
µ̃2(z)− µ̃1(z)(Z − z)

σ̃2
0(z)

, (5.4)
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where µ̃j(z) = E[Kh(Z−z)(Z−z)j] for j = 0, 1, 2, and σ̃2
0(z) = µ̃0(z)µ̃2(z)−

µ̃2
1(z).

Further, under local linear smoothing the i-th element of (3.2) can be

written as

shi(z) = Kh(Zi − z)
µ̂2(z)− µ̂1(z)(Zi − z)

σ̂2
0(z)

, (5.5)

where µ̂j(z) = 1
n

∑n
i=1Kh(Zi − z)(Zi − z)j for j = 0, 1, 2, and σ̂2

0(z) =

µ̂0(z)µ̂2(z)− µ̂2
1(z).

Now that our notations are set, the goal is to obtain the rate of con-

vergence for the quantity d(s⊕(z), ŝ⊕(z)). In order to do this, we need

to quantify the convergence rate of the bias term d(s⊕(z), s̃⊕(z)) and the

stochastic term d(s̃⊕(z), ŝ⊕(z)). The assumptions we require are analogous

to those made in Petersen and Müller (2019) and are explicitly stated in

the Supplementary Materials.

Theorem 1. If assumptions P1, K1, L1, L2, and L3 hold, then

d(s⊕(x, z), s̃⊕(x, z)) = O(h2/(β1−1))

as h → 0, where β1 comes from Assumption L3.

Theorem 2. If assumptions P1, K1, L1, and L4 hold, and if h → 0 and
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nh2 → ∞, then

d(s̃⊕(x, z), ŝ⊕(x, z)) = Op((nh)
− 1

2(β2−1) ),

where β2 comes from Assumption L4.

Finally, utilizing the triangle inequality of metric spaces, we have the

following result:

Corollary 1. Under the assumptions of Theorem 1 and Theorem 2,

d(s⊕(x, z), ŝ⊕(x, z)) = O(h2/(β1−1)) +Op((nh)
− 1

2(β2−1) ).

These convergence rates match that of the local Fréchet regression

model in Petersen and Müller (2019). This is similar to the well-known

bias-variance tradeoff in classical nonparametric smoothing. Here β1 con-

trols the smoothing bias rate while β2 relates to estimation variance rate.

Also, by assuming nh2 → ∞, we can utilize the results of Theorem 1 from

Speckman (1988); therefore, we derive a result which matches the special

case when Y ⊂ R, d is the Euclidean distance, and the profiling technique

is applied to estimate a partially linear model under local linear polyno-

mial smoothing. For details, please refer to the proof of Theorem 2 in the

Supplementary Materials document, and note that β1 = β2 = 2 in this case.
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6. Theoretical Properties for Partially-global Fréchet Regression

with Local Constant Smoothing

Next, we consider the case of partially-global Fréchet regression with local

constant smoothing on Z which comes from a generic metric space (Z, δ).

We replace (5.4) with

ζh(Z, z) =
Kh(δ(Z, z))

E(Kh(δ(Z, z)))
, (6.1)

and we replace (5.5) with

shi(z) =
Kh(δ(Zi, z))

n−1
∑n

j=1Kh(δ(Zj, z))
. (6.2)

Because the rates of convergence which we derive will rely on the metric

spaces of interest, (Z, δ) and (Y , d), we require the following definition as

well.

Definition 2. As n → ∞ and h → 0, the small ball probability of random

objects Z ∈ Z and Y ∈ Y are defined as

φZ,z(h) = P (Z ∈ BZ(z, h)) and φY,y(h) = P (Y ∈ BY(y, h)) (6.3)

respectively, where

BZ(z, h) = {z′ ∈ Z, δ(z′, z) ≤ h} and BY(y, h) = {z′ ∈ Y , d(y′, y) ≤ h}.

15

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0389



PARTIALLY-GLOBAL FRÉCHET REGRESSION

Note: When Z = R and is equipped with the Euclidean distance d,

φZ,z(h) =
∫ z+h

z−h
dFZ . Thus, in this case, φZ,z = O(h).

To handle local constant smoothing with a non-Euclidean predictor Z

we must also incorporate the following assumptions, which are adapted from

Ferraty and Vieu (2006).

Assumption 1. ∀ϵ > 0, P (Z ∈ BZ(z, ϵ)) = φZ,z(ϵ) > 0.

This extends the assumption that the marginal density f of Z is strictly

positive.

Assumption 2. lim
n→∞

h = 0, lim
n→∞

logn
nφZ,z(h)

= 0, and lim
n→∞

nh2 = ∞.

The following assumption allows us to still consider unbounded Z.

Assumption 3. ∀m ≥ 1, ∀y ∈ Y , and ∀z ∈ Z, E(d2m(Y, y)|Z = z) <

σY m(z) < ∞ and E(|Xj|m|Z = z) < σXjm(z) < ∞ for j = 1, ..., p, where

σY m, σX1m, ..., σXpm are continuous at z.

To control the effect of δ in the rate of convergence of the bias term,

d(s⊕(z), s̃⊕(z)), we make the following Lipschitz-type assumption.

Assumption 4. There exists β0X > 0 and β0Y > 0 such that

E(Xj|Z) ∈ LipZ,β0X
for j = 1, ..., p, and

E(d2(Y, y)|Z) ∈ LipZ,β0Y
for any y ∈ Y , where

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0389



PARTIALLY-GLOBAL FRÉCHET REGRESSION

LipZ,β0X
= {f : Z → R,∃C0 > 0,∀z, z′ ∈ Z, |f(z)− f(z′)| < C0δ(z, z

′)β0X}

and LipZ,β0Y

= {f : Z ×Y → R, ∃C0 > 0,∀z, z′ ∈ Z, |f(y, z)− f(y, z′)| < C0δ(z, z
′)β0Y }.

Given the definition of type I and type II kernels provided in the Sup-

plementary Materials, we have the following assumption.

Assumption 5. K is a kernel of type I or K is a kernel of type II and

satisfies

∃C5 > 0, ∃ϵ0, ∀ϵ < ϵ0,

∫ ϵ

0

φZ,z(u)du > C5ϵφZ,z(ϵ).

This differs from the kernel assumptions in Petersen and Müller (2019)

in that the kernels are no longer symmetric around 0. However, Assumption

5 ensures that Lemma 4.4 from Ferraty and Vieu (2006) holds, which will

serve as a useful tool.

Finally, we require Assumptions L1, L3, L4, and P1 as defined in the

Supplementary Materials and used in Section 5.

6.1 Local constant Fréchet regression with only a non-Euclidean

predictor

First consider the case whenX is not a random vector, but rather a vector of

constants. This reduces the setting to local constant Fréchet regression with
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a non-Euclidean predictor, as (4.2) becomes s⊕(z) = argmin
y∈Y

E(d2(Y, y)|Z =

z), (5.2) becomes s̃⊕(z) = argmin
y∈Y

E
[
ζh(Z, z)d

2(Y, y)
]
and (4.4) becomes

ŝ⊕(z) = argmin
y∈Y

∑n
i=1 shi(z)d

2(Yi, y).

Theorem 3. Suppose assumptions P1, 5, L1, L3, and 2 - 4 hold. If h → 0,

then

d(s⊕(z), s̃⊕(z)) = O(hβ0Y /(β1−1)).

Theorem 4. If assumptions P1, 5 , L1, L4, and 1-3 hold, then

d(s̃⊕(z), ŝ⊕(z)) = Op((nφZ,z(h))
−1

2(β2−1) ).

Corollary 2. Under the assumptions of Theorem 3 and Theorem 4, we

have

d(s⊕(z), ŝ⊕(z)) = O(h
β0Y

(β1−1) ) +Op((nφZ,z(h))
−1

2(β2−1) ).

6.2 Partially-global Fréchet regression with mixed predictors

Finally, we provide the theory for the partially-global Fréchet regression

model with Z coming from a generic metric space. That is, we keep the

definitions of (6.1) and (6.2), corresponding to local constant smoothing,

but we include the global contribution of a random vector X ∈ Rp along

with the local contribution from the random object Z ∈ Z.
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Theorem 5. Suppose assumptions P1, 5, L1, L3, and 2 - 4 hold. Then

d(s⊕(x, z), s̃⊕(x, z)) = O(hβ0/(β1−1)),

where β0 = min{β0X, β0Y }.

Theorem 6. If assumptions P1, 5, L1, L4, and 1-3 hold, then

d(s̃⊕(x, z), ŝ⊕(x, z), ) = Op((nφZ,z(h))
−1

2(β2−1) ).

Corollary 3. If the assumptions of Theorems 5 and 6 hold, then

d(s⊕(x, z), ŝ⊕(x, z), ) = O(h
β0

(β1−1) ) +Op((nφZ,z(h))
−1

2(β2−1) ),

where β0 = min{β0X, β0Y }.

Similarly as aforementioned, the right hand side mimics the bias-variance

tradeoff in classicial smoothing.

7. Simulation Studies

We now demonstrate the capability of the partially-global Fréchet regression

model and consider simulated datasets with the response coming from two

different metric spaces.

Definition 3. Let Ω1 be the set of probability distributions. The 2-

Wasserstein metric distance between two distributions with CDFs H(·) and
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G(·) is defined as

dW (H,G) =

√∫ 1

0

(H−1(t)−G−1(t))2dt.

We denote (Ω1, dW ) as the metric space of probability distributions equipped

with the Wasserstein distance.

Definition 4. Let Ω2 be the set of symmetric, positive definite (SPD)

matrices. Let P1 and P2 be two SPD matrices. Then, under the Cholesky

decomposition, we can write P1 = (P
1/2
1 )TP

1/2
1 and P2 = (P

1/2
2 )TP

1/2
2 ,

where P
1/2
1 and P

1/2
2 are upper triangle matrices with positive diagonal

components. The Cholesky decomposition metric distance between two

SPD matrices, P1 and P2, is defined as

dC(P1,P2) =

√
trace

(
(P

1/2
1 −P

1/2
2 )T (P

1/2
1 −P

1/2
2 )
)
.

We denote (Ω2, dC) as the metric space of SPD matrices equipped with the

Cholesky decomposition distance.

7.1 Partially-global Fréchet regression for probability distribu-

tions equipped with the Wasserstein distance

Consider Y ⊂ Ω1. Data are generated by adapting the simulation example

in Petersen and Müller (2019). Let ρ = 0.5. Raw predictors are generated

in two steps:
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(1) (S1, S2, S3)
T is multivariate Gaussian with E(Sj) = 0 and cov(Sj, Sj′) =

ρ|j−j′| for 1 ≤ j, j′ ≤ 3;

(2) Set T = Φ(S3), where Φ is the standard normal distribution function,

so that T ∼ Unif [0, 1].

Example 1. An example when Z is scalar.

In this example, we consider Z ⊂ R. Set X1 = S1, X2 = S2, and

Z = T , generated as above. The Fréchet regression function is given by

m⊕(x, z) = E(Y (·)|X = x, Z = z) = µ0+β(x1+x2)+(σ0+γsin(πz))Φ−1(·).

Conditional onX and Z, the random response Y is generated by adding

noise as follows: Y = µ + σΦ−1 with µ|X ∼ N(µ0 + β(X1 + X2), ν1) and

σ|Z ∼ Gamma((σ0 + γ sin(πZ))2/ν2, ν2/(σ0 + γ sin(πZ)) being indepen-

dently sampled. The additional parameters are set to be µ0 = 0, σ0 = 3,

β = 3/4, γ = 3, ν1 = 1, and ν2 = 2.

Because we are only considering Euclidean predictors in Example 1, we

can implement partially-global Fréchet regression with both local constant

and local linear smoothing, as well as local and global Fréchet regression.

The local Fréchet model we implement for comparison uses the local linear

smoother, as in Petersen and Müller (2019).
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Example 2. An example when Z is a density.

In this example, we consider Z ⊂ Ω1. Set X1 = S1, X2 = S2. Further,

we set

E(Z(·)|T = t) = µ0z + (σ0z + γzt)Φ
−1(·).

Conditional on T , the predictor Z is generated by adding noise as follows:

Z = µ0z + σzΦ
−1 with σz|T ∼ Gamma((σ0z + γzT )

2/νz, νz/(σ0z + γzT ))

being independently sampled.

The Fréchet regression function is given by

m⊕(x, z) = E(Y (·)|X = x, T = t) = µ0+β(x1+x2)+(σ0+γ(sin(πt)))Φ−1(·).

Conditional on X and T , the random response Y is generated by adding

noise as follows: Y = µ + σΦ−1 with µ|X ∼ N(µ0 + β(X1 + X2), ν1)

and σ|T ∼ Gamma((σ0 + γ(sin(πT )))2/ν2, ν2/(σ0 + γ sin(πT )) being in-

dependently sampled. The additional parameters are set as µ0, µ0z = 0,

σ0, σ0z = 3, β = 3/4, γ = 3, γz = 6, ν1, νz = 1, and ν2 = 2.

In Example 2, we can see that Y depends on Z through the latent variable

T . Further, because Z is no longer Euclidean, we can only implement our

partially-global Fréchet regression model with local constant smoothing.

Now, let I denote an M ×M identity matrix and U = (Ui,j) denote an

M ×M matrix where Ui,j = I(j>i).
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Example 3. An example when Z is an SPD matrix.

Consider Z ⊂ Ω2, the set of SPD matrices. Set X1 = S1 and X2 = S2.

Further, set

E(Z|T = t) = E(A|T = t)TE(A|T = t),

where E(A|T = t) = {µz+βzt}I+{σ0z+γzt}U. Conditional on T , the pre-

dictor Z is generated by adding noise as follows: Z = ATA whereA = µzI+

σzU, µz = µ0z + βzT , and with σz|T ∼ Gamma((σ0z + γzT )
2/νz, νz/(σ0z +

γzT ) being independently sampled.

The Fréchet regression function is given by

m⊕(x, t) = E(Y (·)|X = x, T = t) = µ0+β(x1+x2)+(σ0+γ sin(πt))Φ−1(·).

The additional parameters are set M = 5, µ0, µ0z, σ0z, σ0 = 0, β, βz, γ, γz =

5, and ν1, ν2, νz = 1.

Training samples of size n = 50, 100, and 200 were used for all examples.

For all partially-global and local models, independent tuning sets of size n

were generated in the same way as the training set to perform bandwidth

selection. As mentioned previously, the local Fréchet model uses the local

linear smoother, as in Petersen and Müller (2019).

Independent test sets of size ñ = 2000, denoted by {(X̃i, Z̃i, Ỹi) : i =

1, 2, . . . , ñ}, were then generated to evaluate the performance of the esti-
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mated Fréchet regression function. On the testing data sets, we calculate a

generalized MSE (GMSE) defined as 1
ñ

∑ñ
i=1[dW (ŝ⊕(X̃i, Z̃i), Ỹi)]

2. Table 1

shows the simulation results.

From Table 1, we see that our partially-global models outperform the

local and global Fréchet models when Z is a scalar predictor. The partially-

global model with local constant smoothing also performs well in both Ex-

ample 2 and Example 3 when the local predictor Z is non-Euclidean. We are

not aware of any other model that can handle this highly complex data, and

therefore, cannot compare our model to other methods for these examples.

To study the complexity of these models empirically, we also compute

the average fitting time of each model in Table 2. Note: for partially-

global Fréchet regression with local constant smoothing and with local linear

smoothing, and for local Fréchet regression, the grids used for bandwidth

selection all had a total of 200 points for consideration and were comparable

width. However, these grids were shifted according to the tuning error

curves of each model to ensure that the global minimum of each error curve

was realized during the tuning process.

Figure 1 takes a look at three observations from the testing data of

Example 3. This example is of particular interest because it mixes random

objects from Euclidean space and two different metric spaces. In the figure,
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we represent the SPD matrix predictors as graphs to gain a visual under-

standing. We treat each SPD matrix as a weighted adjacency matrix of a

weighted graph. That is, the number of nodes in the graph is the dimension

of the matrix, and the weights between nodes correspond to the elements

in the matrix.

We notice from Figure 1 that fluctuations in the structure of the SPD

matrices are reflected in the structure of the density outputs. Further, we

see that our predicted densities visually match the observed densities well,

affirming the results in Table 1.

7.2 Partially-global Fréchet regression for SPDmatrices equipped

with the Cholesky decomposition distance

Consider Y ⊂ Ω2. For the following examples, raw predictors are generated

in two steps:

(1) (S1, S2, S3, S4)
T is multivariate Gaussian with E(Sj) = 0 and

cov(Sj, Sj′) = ρ|j−j′| for 1 ≤ j, j′ ≤ 4;

(2) Set T = Φ(S4), where Φ is the standard normal distribution function,

so that T ∼ Unif [0, 1].

We set ρ = 0.5. Let IM denote an M ×M identity matrix and UM =
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(a) Three observed SPD matrix predictors, represented

as weighted graphs.
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(b) Corresponding observed density responses.
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(c) Corresponding predictions by PGl model.

Figure 1: Three observed SPD matrix predictors, observed density re-

sponses, and predicted density responses from Example 3.26
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(Ui,j) denote an M ×M matrix where Ui,j = I(j>i), as before.

Example 4. An example when Z is scalar.

Consider Z ⊂ R. Further, we set X1 = S1, X2 = S2, X3 = S3, and

Z = T − 1. The Fréchet regression function is given by

m⊕(x, z) = E(Y |X = x, Z = z) = E(B|X = x, Z = z)TE(B|X = x, Z = z)

where E(B|X = x, Z = z) = {µ0 + β sin(πz)}IM + {µ0 + β sin(πz) + σ0 +

γ(x1 + x2 + x3)}UM .

Conditional on X and Z, the random response Y is generated by

adding noise as follows: Y = BTB where B = µIM + (µ + σ)UM and

with µ|Z ∼ N(µ0 + β sin(πZ), ν1) and σ|X ∼ Gamma((σ0 + γ(X1 +X2 +

X3))
2/ν2, ν2/(σ0+γ(X1+X2+X3))) being independently sampled. The ad-

ditional parameters are set as M = 5, µ0, σ0 = 3, β, γ = 4, and ν1, ν2 = 1/2.

Example 5. An example when Z is an SPD matrix.

We consider Z ⊂ Ω2. Set X1 = S1, X2 = S2 and X3 = S3. Further, we

set

E(Z|T = t) = E(A|T = t)TE(A|T = t),

where E(A|T = t) = {µ0z + βz sin(πt) + σ0z + γz sin(πt)}IMz + {σ0z +

γz sin(πt)}UMz . Conditional on T , the predictor Z is generated by adding

noise as follows: Z = ATA where A = (µz + σz)IMz + σzUMz and with
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µz|T ∼ N(µ0z + βz sin(πT ), νz1) and

σz|T ∼ Gamma((σ0z + γz sin(πT ))
2/νz2, νz2/(σ0z + γz sin(πT )) being inde-

pendently sampled.

The Fréchet regression function is given by

m⊕(x, z) = E(Y |X = x, T = t) = E(B|X = x, T = t)TE(B|X = x, T = t),

where E(B|X = x, T = t) = {µ0 + β(x1 + x2 + x3) + σ0 + γ sin(πt)}IM +

{σ0 + γ sin(πt)}UM . Conditional on X and T , the response Y is gener-

ated by adding noise as follows: Y = BTB where B = (µ + σ)IM + σUM

and with µ|X, T ∼ N(µ0 + β(X1 +X2 +X3), ν1) and σ|T ∼ Gamma((σ0 +

γ sin(πT )2/ν2, ν2/(σ0+γ sin(πT ))) being independently sampled. The addi-

tional parameters are set as Mz = 3, M = 5, µ0z, σ0z, µ0, σ0 = 3, νz1, ν1 = 1,

νz2, ν2 = 2, βz, β = 2, and γz, γ = 3.

Example 6. An example when Z is a density.

Here we consider Z ⊂ Ω1. Set X1 = S1, X2 = S2 and X3 = S3. Further,

E(Z(·)|T = t) = µ0z + (σ0z + γz sin(πt))Φ
−1(·).

Conditional on T , the predictor Z is generated by adding noise as follows:

Z = µ0z + σzΦ
−1 with σz|T ∼ Gamma((σ0z + γz sin(πT ))

2/νz, νz/(σ0z +

γz sin(πT )))) being independently sampled.
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The Fréchet regression function is given by

m⊕(x, t) = E(Y |X = x, T = t) = E(B|X = x, T = t)TE(B|X = x, T = t),

where E(B|X = x, T = t) = {µ0 + β(x1 + x2 + x3) + σ0 + γ sin(πt)}IM +

{σ0 + γ sin(πt)}UM . Conditional on X and T , the response Y is generated

by adding noise as follows: Y = BTB where B = (µ + σ)IM + σUM and

with µ|X, T ∼ N(µ0 + β(X1 + X2 + X3), ν1) and σ|T ∼ Gamma((σ0 +

γ sin(πT )2/ν2, ν2/(σ0 + γ sin(πT ))) being independently sampled. The ad-

ditional parameters are set as M = 8, µ0z, σ0z, µ0, σ0 = 3, νz, ν1, ν2 = 1/2,

γz, γ = 3, and β = 2.

Training samples of size n = 50, 100, and 200 were used for all examples.

For all partially-global and local models, independent tuning sets of size n

were generated in the same way as the training set to perform bandwidth

selection. Once again, we implement local linear smoothing for the local

Fréchet regression model.

Independent test sets of size ñ = 2000, denoted by {(X̃i, Z̃i, Ỹi) : i =

1, 2, . . . , ñ}, were then generated to evaluate the performance of the esti-

mated Fréchet regression function. On the testing data sets, we calculate a

generalized MSE (GMSE) defined as 1
ñ

∑ñ
i=1[dC(ŝ⊕(X̃i, Z̃i), Ỹi)]

2. Table 3

presents the simulation results.
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As expected, Table 3 shows that the partially-global Fréchet regression

models outperform the local and global Fréchet regression models in Ex-

ample 4 and also perform well when Z comes from a generic metric space.

Empirical computation time is reported in Table 4.

Figure 2, similar to Figure 1, takes a look at three observations from

the testing data of Example 6. We see that not only are the fluctuations in

the density predictors reflected in the SPD matrix responses, but also our

partially-global Fréchet regression model captures this relationship well.

8. Real Data Applications

8.1 Bike Rental Distribution Regression

We first demonstrate the flexibility of partially-global Fréchet regression

applied to bike rental data collected by Capital Bikeshare in Washington

D.C. This data set spans the years 2011 and 2012 for a total of 731 days.

For each day, there are 24 hourly observations of bike rental counts as well

as the following 7 predictors (Fanaee-T and Gama 2013):

• RBW: Indicator of bad weather (snowy and/or rainy), standardized

• Work: Indicator of neither the weekend nor a holiday, standardized

• Spring: Indicator of Spring season, standardized
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(b) Corresponding observed SPD matrix responses.
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(c) Corresponding predictions by PGl model.

Figure 2: Three observed density predictors, observed SPD matrix re-

sponses, and predicted SPD matrix responses from Example 6.
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• Summer: Indicator of Summer season, standardized

• Fall: Indicator of Fall season, standardized

• Year: Indicator of the year 2012, standardized

• Temp: Daily mean temperature, standardized

We construct the response for each day to be the 24 observed quantiles

for an underlying distribution of bike rental counts. We randomly split the

data into a training set of size n = 366 and a testing set of size ñ = 365.

We consider four models for the data: a partially-global model with local

constant smoothing on the local predictor Temp (PGc), a partially-global

model with local linear smoothing on the local predictor Temp (PGl), a

local model utilizing local linear smoothing on all predictors (Ll), and a

global model on all predictors (G). For the partially-global and the local

models, we performed 10-fold cross validation on the training set to tune the

bandwidth parameter, h. We considered h ∈ {0.2, 0.25, 0.3..., 0.9, 0.95, 1}.

We then computed the GMSE of each model when applied to the testing

set. We repeated this process 100 times. The results are recorded in Table

5.

From Table 5, we see that the partially-global models perform better

than both the local and the global models in terms of prediction errors. The
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generalized R2
⊕ = 0.952 for the partially-global model with linear smoothing

(for details see Petersen and Müller 2019). Figure 3 depicts the predicted

distributions (after spline smoothing for prettier visuals) of all models for

one observation in the testing set. Box plots are also superimposed on each

distribution image. From this figure, we can see that our partially-global

models match the true distribution’s overall shape much better than the

local and global models.

8.2 New York Taxi Network Regression

Finally, we demonstrate the performance of our partially-global Fréchet

regression model on real SPD matrix data. The New York City Taxi and

Limousine Commission provides records on pick-up and drop-off dates and

times, pick-up and drop-off locations, trip distances, and itemized fares

for yellow taxis which are available from https://www1.nyc.gov/site/

tlc/about/tlc-trip-record-data.page. We transform this data into

graph data, where neighborhoods are nodes and edges are weighted by the

number of taxi rides which picked up in one neighborhood and dropped

off in another within a single hour. After proper transformation, these

graphs lie in a metric space of SPD matrices equipped with the Choleksy

decomposition distance, as in Section 7.2.
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Figure 3: Predicted bike rental distributions for one observation in the test-

ing data set from one random repetition. The quantiles of each distribution

are smoothed using cubic splines to depict estimates of the exact underlying

distributions.
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To engineer SPD matrices from the taxi data, we do the following:

1. We filter the data on the month of January 2016 due to resource

restrictions.

2. We further filter on observations with both pick-up and drop-off oc-

curring in Manhattan.

3. We then label the corresponding neighborhood for each pick-up and

drop-off in the same manner as Dubey and Müller (2020).

4. For each hour, we collect the number of pairwise connections between

nodes based on taxi pick-ups and drop-offs. These correspond to

weights between nodes on a graph.

By doing this, we collect 723 weighted adjacency matrices of dimension

10 × 10 for our data set (removing a small handful of observations due to

their sparsity). To ensure that these outputs are truly SPD matrices, we

further square them.

From the taxi data, we also collect the following Euclidean predictors

for each hour:

• Late Hour: Indicator for the hour being between 11pm and 5am,

standardized
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• Credit: Sum of credit indicator for type of payment, standardized

To showcase the ability of partially-global Fréchet regression to utilize

non-Euclidean predictors, we consider a third predictor: the distribution of

taxi ride distances. That is, for each hour we collect 20 quantiles from the

observed taxi ride distances and call this non-Euclidean predictor Distance.

We implement three models on the data: a partially-global model with

Late Hour and Credit as global predictors and Distance as a local predictor,

a local model which utilizes local linear smoothing with only the Euclidean

predictors, and a global model with only the Euclidean predictors. To deter-

mine the efficacy of each model, we randomly split the data into a training

set of size 361 and testing set of size 362. For the partially-global and the

local models, we performed 5-fold cross validation on the training set to

tune the bandwidth parameter, h, considering h ∈ {0.6, 0.8, 1..., 7.6, 7.8, 8}.

We then computed the GMSE of each model when applied to the testing

set. We repeated this process 100 times. The results are shown in Table 6.

From the results, we see that the partially-global model performs better

than both the local and the global models in terms of prediction error.

Therefore, including the non-Euclidean predictor, Distance, is apparently

important. For one random repetition, the generalized R2
⊕ = 0.490 for
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the partially-global model. This R2
⊕ value is not as impressive as that of

the bike data, but is still respectable, considering that we did not perform

variable selection.

Figure 4 depicts the predicted taxi networks from all models for one

observation in the testing data set produced from one random repetition.

From this figure, we see further evidence that our partially-global model

best captures the nature of the complex taxi networks. In particular, both

the local and global model depict a more connected taxi network, when in

fact only a few connections should be present.

9. Concluding Remarks

In this work, we have developed the partially-global Fréchet regression

model, a flexible model which not only capitalizes on the strengths of both

global and local Fréchet regression but also allows for the incorporation of a

non-Euclidean predictor. We have derived its pointwise convergence rates

and have further provided simulation and real data examples to demon-

strate its competitive finite sample performance on highly complex data

types.

The realm of potential applications for the partially-global Fréchet re-

gression model is vast. In this paper, we only considered density and SPD
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(a) True taxi network (b) Prediction from PGc model

(c) Prediction from L model (d) Prediction from G model

Figure 4: Predicted taxi networks for one observation in the testing data

set from one random repetition. Each node represents a neighborhood in

Manhattan. Each connection between nodes is weighted by the number of

taxi rides between neighborhoods over a given hour time frame.
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matrix data, only utilizing one choice of a metric for each. However, many

more data types from varying metric spaces can now be modeled while

maintaining the original structure of the data and retaining information

that scalar summaries simply cannot provide. It is our opinion that much

more research should be done in this area to meet the needs of every up-

coming practical application. In short, there is still much to explore in this

exciting new area of statistics.

Supplementary Materials

All definitions, assumptions, and proofs are collected in the separate Sup-

plementary Materials document.
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Table 1: GMSE (standard error) across 100 simulations for partially-global

Fréchet regression with local constant smoothing (PGc) and with local lin-

ear smoothing (PGl), and local (Ll) and global (G) Fréchet regression mod-

els when the response is density data. For examples 2 and 3, PGl, Ll, and

G Fréchet regression cannot be applied.

n PGc PGl Ll G

1

50 2.936 (0.0208) 2.902 (0.022) 3.562 (0.015) 3.469 (0.019)

100 2.666 (0.009) 2.670 (0.008) 3.434 (0.011) 3.258 (0.009)

200 2.558 (0.004) 2.543 (0.004) 3.307 (0.006) 3.160 (0.004)

2

50 3.152 (0.021)

100 2.932 (0.011)

200 2.788 (0.005)

3

50 2.463 (0.021)

100 2.118 (0.011)

200 1.890 (0.006)
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Table 2: Average computation time in seconds (standard error) across

100 simulations for partially-global Fréchet regression with local constant

smoothing (PGc) and with local linear smoothing (PGl), and local (Ll) and

global (G) Fréchet regression models when the response is density data.

n PGc PGl Ll G

1

50 5.847 (0.062) 5.877 (0.014) 3.587 (0.012) 0.330 (0.003)

100 17.148 (0.071) 17.243 (0.031) 9.623 (0.021) 0.361 (0.004)

200 59.089 (0.040) 59.406 (0.058) 27.867 (0.009) 0.364 (0.002)

2

50 19.638 (0.058)

100 43.039 (0.144)

200 142.996 (0.310)

3

50 1200.293 (0.717)

100 2464.333 (1.953)

200 4887.486 (3.954)
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Table 3: GMSE (standard error) across 100 simulations for partially-global

Fréchet regression with local constant smoothing (PGc) and with local lin-

ear smoothing (PGl), and local (Ll) and global (G) Fréchet regression mod-

els when the output is SPD matrix data. For examples 5 and 6, PGl, Ll,

and G Fréchet regression cannot be applied.

n PGc PGl Ll G

4

50 18.016 (1.356) 15.297 (1.141) 29.287 (1.350) 34.524 (1.461)

100 17.574 (1.417) 14.907 (1.179) 25.469 (1.314) 33.269 (1.452)

200 17.281 (1.425) 14.869 (1.194) 21.310 (1.291) 32.719 (1.451)

5

50 21.027 (1.658)

100 19.240 (1.623)

200 18.453 (1.661)

6

50 43.978 (2.976)

100 43.390 (3.089)

200 42.882 (3.105)
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Table 4: Average computation time in seconds (standard error) across

100 simulations for partially-global Fréchet regression with local constant

smoothing (PGc) and with local linear smoothing (PGl), and local (Ll) and

global (G) Fréchet regression models when the output is SPD matrix data.

n PGc PGl Ll G

4

50 12.657 (0.036) 8.532 (0.008) 34.252 (0.024) 0.963 (0.004)

100 43.353 (0.048) 27.338 (0.048) 146.206 (0.366) 1.923 (0.005)

200 194.245 (0.399) 93.987 (0.042) 525.453 (0.888) 3.812 (0.011)

5

50 55.643 (0.046)

100 239.467 (0.387)

200 878.075 (0.716)

6

50 13.175 (0.041)

100 45.824 (0.047)

200 180.338 (0.468)
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Table 5: GMSE (standard error) for partially-global Fréchet regression with

local constant smoothing (PGc), partially-global Fréchet regression with lo-

cal linear smoothing (PGl), and local (Ll) and global (G) Fréchet regression

models when applied to the bike rental density data over 100 repetitions.

PGc PGl Ll G

2215.315 (13.191) 2191.892 (12.828) 2404.486 (21.250) 2549.441 (13.669)

Table 6: GMSE (standard error) for partially-global Fréchet regression with

local constant smoothing (PGc), and local (Ll) and global (G) Fréchet

regression models when applied to taxi ride data with SPD matrix output

over 100 repetitions.

PGc Ll G

320.754 (0.907) 323.820 (0.976) 329.651 (0.945)
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