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TRANSFER LEARNING FOR

HIGH-DIMENSIONAL QUANTILE REGRESSION

VIA CONVOLUTION SMOOTHING

Yijiao Zhang and Zhongyi Zhu

Department of Statistics and Data Science, Fudan University

Abstract: This paper studies the high-dimensional quantile regression problem

under the transfer learning framework, where possibly related source datasets are

available to make improvements on the estimation or prediction based solely on

the target data. In the oracle case with known transferable sources, a smoothed

two-step transfer learning algorithm based on convolution smoothing is proposed

and the ℓ1/ℓ2 estimation error bounds of the corresponding estimator are also

established. To avoid including non-informative sources, we propose to select

the transferable sources adaptively and establish its selection consistency under

regular conditions. Monte Carlo simulations as well as an empirical analysis of

gene expression data demonstrate the effectiveness of the proposed procedure.

Key words and phrases: High-dimensional data; Quantile regression; Regulariza-

tion; Smoothing; Transfer learning.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0396



2

1. Introduction

The increasing availability of datasets from multiple sources has provided

us with unprecedented opportunities to get a better understanding of the

data-limited target problem. For example, for the task of drug sensitivity

prediction, the drug response data for the target type of cancer may be lim-

ited, but source data for another cancer type may be sufficient (Turki et al.,

2017). However, there is no free lunch. Along with the satisfactory sam-

ple size of source studies comes the heterogeneity between the source and

the target. Intuitively, the more related the source to the target, the more

improvement may be made in learning about the target. This motivates

transfer learning (Torrey and Shavlik, 2010; Pan and Yang, 2009; Weiss

et al., 2016; Niu et al., 2020), which attempts to improve a learner from one

domain by transferring information from a related but different domain. A

considerable amount of research has clearly shown the success of transfer

learning in many real-world applications, including ride dispatching (Wang

et al., 2018), medical images analyses (Yu et al., 2022), and human activity

recognition (Hirooka et al., 2022), etc.

This paper aims to investigate the effect of transfer learning on quan-

tile regression (QR) in a high-dimensional setting. Ever since the influential

work of Koenker and Bassett (1978), numerous scholars have explored the
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theoretical characterization of QR in various areas. See Koenker (2017) for

a detailed review. Compared to the traditional conditional mean regression,

QR captures the heterogeneous impact of regressors on different parts of

the distribution. It also exhibits robustness to heteroscedastic and heavy-

tailed errors. Moreover, in view of the frequently-collected high-dimensional

data in various application domains including genomics, tomography, and

finance, we focus on the regime where the dimension of covariates is sub-

stantially larger than the sample size.

A limited number of studies have sought to examine the possibility

of interaction between quantile regression and multiple sources of data.

Among them, Fan et al. (2016) considered the multi-task quantile regres-

sion problem under the transnormal model, which may be restricted in

practice. Moreover, large-scale covariance matrix estimation is needed in

their method. In the field of data integration, Dai et al. (2023) proposed to

use multiple datasets together with multiple quantiles to select variables si-

multaneously. They established model selection consistency and asymptotic

normality of their estimator, but theoretical results about the estimation

error are left unknown. More importantly, it needs to be emphasized that,

in contrast to multi-task learning and data integration, where the datasets

are equally important, the roles of the source and target tasks are no longer
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symmetric in transfer learning since we care most about the performance

on the target data.

Despite the popularity of transfer learning on the practical side, statisti-

cal views of it as well as the theoretical underpinnings of related algorithms

have been less than satisfactory. In the context of nonparametric classifica-

tion, Cai and Wei (2021) proposed an adaptive classifier and established its

minimax optimality. For high-dimensional data analysis, existing research

has focused on penalized mean regression. Bastani (2021) considered linear

regression and derived the estimation error bound for transferring knowl-

edge from a single source to the target. Li et al. (2022a) investigated the

case of multiple sources and proved the minimax optimal rate of their es-

timator. Tian and Feng (2022) further extended their work to generalized

linear models and provided analogous theoretical guarantees. The benefits

for confidence interval construction are also studied. These studies used a

two-step framework, which was further applied to Gaussian graphical mod-

els with false discovery rate control (Li et al., 2022b; He et al., 2022) and

functional learning models (Lin and Reimherr, 2022). By measuring the

similarity between the source and target by the difference of correspond-

ing regression coefficients, Li et al. (2022a) and Tian and Feng (2022) also

allow some of the source studies to be non-informative. However, one re-
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striction of these studies is that they assume homoscedastic random errors

with sub-gaussian distributions. While in real life, it is common to observe

heteroscedastic variance (Delaigle and Meister, 2007, 2008) and heavy-tailed

noises (Fan et al., 2017; Sun et al., 2020). Furthermore, the similarity be-

tween the source and target may vary across different tails of the outcome

distribution, which can not be reflected by the mean regression model.

Motivated by the above concerns, given a target dataset {((x(0)
i )⊤, y

(0)
i )}n0

i=1

and K independent source datasets [{((x(k)
i )⊤, y

(k)
i )}nk

i=1]
K
k=1, we investigate

the conditional quantile of the response y
(k)
i conditional on the covariates

x
(k)
i ∈ Rp at a given quantile level τ ∈ (0, 1), denoted by Q

y
(k)
i |x(k)

i
(τ). We

consider a linear QR model, that is, Q
y
(k)
i |x(k)

i
(τ) = (x

(k)
i )⊤w(k)(τ) with

w(k)(τ) ∈ Rp being the coefficient vector. We omit the dependence of

w(k)(τ) on τ hereafter. The preceding model can be rewritten as

y(k) = X(k)w(k) + ϵ(k), k = 0, . . . , K, (1.1)

where y(k) = (y
(k)
1 , . . . , y

(k)
nk )

⊤ ∈ Rnk , X(k) = (x
(k)
1 , . . . ,x

(k)
nk )

⊤ ∈ Rnk×p is the

design matrix, and ϵ(k) ∈ Rnk is the noise vector with the i-th element ϵ
(k)
i

satisfying P(ϵ(k)i ≤ 0 | x(k)
i ) = τ . The target parameter β := w(0), which

satisfies ∥β∥0 = s≪ p, is of our primary interest. Besides, we do not assume

ℓ0-sparsity on w(k) for k = 1, . . . , K. Following the spirit of Li et al. (2022a)

and Tian and Feng (2022), we define the k-th contract vector δ(k) = β−w(k)
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and the transferability of the k-th study as ∥δ(k)∥1. In general, we prefer

∥δ(k)∥1 to be sufficiently small to guarantee performance improvement of

transfer learning. With this insight in mind, the transferable set of source

studies is defined as Aη =
{
1 ≤ k ≤ K :

∥∥∥δ(k)
∥∥∥
1
≤ η
}
.

Compared with existing works for the (generalized) linear models under

the transfer learning framework (Li et al., 2022a; Tian and Feng, 2022), our

proposed QR model has several advantages:

1. it offers a more complete picture of the target problem by varying τ ;

2. it could handle heterogeneity due to either heteroscedastic variance

or other forms of non-location-scale covariate effects;

3. it relaxes the distributional conditions on the error terms, which is

more robust to tail behavior;

4. it allows the difference δ(k) as well as the transferable set Aη to change

with τ , which is more flexible.

However, the adoption of QR plays the role of a double-edged sword.

More specifically, under the transfer learning framework, three critical issues

need to be addressed: (i) what to transfer, (ii) how to transfer, and (iii) when

to transfer (Pan and Yang, 2009). The first one can be similarly solved by

defining some common component as that in Li et al. (2022a) and Tian
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and Feng (2022). A natural solution to the second issue is to adopt the

two-step framework. Unfortunately, due to the non-differentiability of the

quantile loss function, this can be not only technically challenging but also

computationally expensive, especially in the transfer learning setting when

the auxiliary source data may be extremely large. Besides, the (possibly)

unrelated tasks pose additional challenges to the last issue, which involves

correctly identifying the transferable set Aη to circumvent negative transfer

(Zhang et al., 2020; Niu et al., 2020).

To tackle the aforementioned challenges, we combine a smoothed two-

step procedure with a source detection algorithm for transferring high-

dimensional QR models. To deal with the non-smoothness, we employ

a recently developed convolution smoothing technique (Fernandes et al.,

2021; He et al., 2023) to smooth the piecewise linear quantile loss. Con-

volution smoothing and convex relaxation enable us to use gradient-based

algorithms which are much more scalable to large-scale datasets. At the

same time, delicated analysis of the smoothing bandwidths is also needed

to control the smoothing bias. A distributed QR transfer approach is also

proposed for the ease of computation burden. To avoid negative transfer,

we propose to evaluate the change of performance on the target with and

without each source and exclude unrelated sources which lead to worse per-
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formance. This idea originates from the works by Eaton et al. (2008) and

Tian and Feng (2022).

In theory, our contributions are fourfold. Firstly, by choosing smooth-

ing bandwidths properly such that the smoothing bias is controlled, we

derived the ℓ1 and ℓ2 estimation error bounds for our smoothed two-step

estimator, which is complementary to the existing results in the mean re-

gression world. The convergence rate is shown to be faster than that of

the single-task smoothed high-dimensional quantile regression established

in Tan et al. (2022). Secondly, we show that the transferable set can be

consistently detected by the proposed clustering method when there is a suf-

ficiently large gap between the positive and negative sources. Thirdly, the

statistical property of our distributed QR transfer estimator is also estab-

lished. As a byproduct, two lemmas related to the local restricted strong

convexity (RSC) of the empirical smoothed quantile loss are established,

which provide a core result for establishing error bounds for our smoothed

two-step QR estimators and may be of independent interest.

The rest of the paper is organized as follows. In Section 2, we present

our smoothed two-step estimator with the known transferable set, followed

by a source detection algorithm to select the transferable set. Section 3 is

dedicated to providing theoretical guarantees for our proposed method, in-
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cluding estimation error bounds and the selection consistency of the source

detection algorithm. We demonstrate our proposed method on simulated

data in Section 4 and an empirical analysis of Genotype-Tissue Expression

(GTEx) data in Section 5. We conclude with some discussions on possible

extensions in Section 6. The proofs of all theoretical results, additional

simulation results, and an extension to the distributed QR transfer are

relegated to supplementary materials.

We finish this section with notation. Throughout this paper, we use

bold capitalized letters (e.g. X,A) to denote matrices and use bold little

letters (e.g. x, y) to denote vectors. For a p-dimensional vector x =

(x1, . . . , xp)
T , we denote its ℓq-norm as ∥x∥q = (

∑p
i=1 |xi|q)1/q (q ∈ (0, 2]),

ℓ0-norm as ∥x∥0 = # {j : xj ̸= 0} and ℓ∞-norm as ∥x∥∞=maxj |xj|. We use

|I| to denote the cardinal number of a set I. For any positive integer, n, we

denote the index set {1, . . . , n} as [n]. We use I{·} to denote the indicator

function. For a matrix Ap×q = [aij]m×n, let ∥A∥1 = supj

∑m
i=1 |aij| and

∥A∥max = supi,j |aij| denote its ℓ1-norm and max-norm respectively. For

any k × k symmetric, positive semidefinite matrix A ∈ Rm×m, we use

Λmin(A) and Λmax(A) to denote its minimum and maximum eigenvalue.

For any two real numbers a and b, we write a ∨ b = max(a, b) and a ∧ b =

min(a, b). For two sequences of non-negative numbers {an}n≥1 and {bn}n≥1,
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an ≲ bn or bn ≳ an indicate that supn |an/bn| <∞; an ≍ bn is equivalent to

an ≲ bn and bn ≲ an. We use an ≪ bn, bn ≫ an or an = o (bn) to represent

|an/bn| → 0 as n→∞.

2. Methodology

2.1 QR basics

We start by providing a brief introduction to QR. Consider the QR model

yi = xi
⊤w + ϵi, P(ϵi ≤ 0 | xi) = τ, i = 1, . . . , n (2.1)

where w ∈ Rp is the coefficient vector with ∥w∥0 = s. Following Belloni

and Chernozhukov (2011), we can estimate w by fitting the ℓ1-penalized

quantile regression (ℓ1-QR):

w̃ ∈ argmin
w∈Rp

{
1

n

n∑
i=1

ρτ
(
yi − xi

⊤w
)
+ λw∥w∥1

}
, (2.2)

where ρτ (x) = x[τ − I{x ≤ 0}] is the check function. However, if we fit

ℓ1-QR based solely on the target data (X(0),y(0)) to obtain an estimator

β̃tar, its performance can be limited by the sample size n0 of the target

data, which motivates us to incorporate other related sources to make some

improvements.
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2.2 Smoothed two-step QR transfer

We start with the case when the transferable set Aη is known. As there is

heterogeneity between the target and source data, it leads us to think about

the first issue in transfer learning: What to transfer. The key point is to find

a common component between the source and the target. In view of this,

we pool the target and the sources in the transferable set Aη together and

consider the parameter wAη identified by the following moment equation

∑
k∈Aη∪{0}

αkE
[
x(k)

(
Fϵ(k)|x(k)

(
(x(k))

⊤
(wAη −w(k)) | x(k)

)
− τ
)]

= 0,

(2.3)

where αk = nk/(nAη + n0) with nAη =
∑

k∈Aη
nk and Fϵ(k)|x(k)(· | x(k))

is the conditional distribution function of ϵ(k) given x(k). Further de-

note fϵ(k)|x(k)(·) as the conditional density of ϵ(k) given x(k), and M k =

E
[∫ 1

0
x(k)(x(k))

⊤
fϵ(k)|x(k)(t(x(k))

⊤
(wAη −w(k)))dt

]
. Then we can write

wAη = β − δAη ,

where δAη =
(∑

k∈Aη∪{0} αkM k

)−1∑
k∈Aη∪{0} αkM kδ

(k). The bias δAη is

a weighted average of δ(k), which is supposed to be ℓ1-sparse under certain

conditions. Since the moment equation (2.3) incorporates information from

the sources and the target, wAη can be seen as a shared knowledge which

can be transferred.
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Now we move to consider the second issue: how to transfer. A com-

monly used heuristic in transfer learning is to adopt the two-step framework

(Bastani, 2021; Li et al., 2022a; Tian and Feng, 2022). Specifically, in the

first transferring step, we can pool the sources and target together to obtain

an estimator ŵAη and then further correct the bias of ŵAη by calibrating

it using the target data. Both steps could be accomplished by fitting ℓ1-

QR similar to that in (2.2). However, the nondifferentiable quantile loss

function brings challenges to both computation and theory establishment.

On the computation side, the minimization problem in (2.2) can be

reformulated as a linear program (Wang et al., 2012; Peng and Wang, 2015)

of which the computation complexity grows with both p and n. In the

setting of multiple sources as well as high-dimensional data, this approach

may suffer from heavy computational costs. On the theoretical side, due

to the nonsmooth loss and (possibly) non-sparsity of ŵAη , it is difficult to

establish theoretical guarantees.

To overcome these challenges, we propose a smoothed version of the

two-step procedure by smoothing the piecewise linear quantile loss via con-

volution. Recall the QR model in (2.1). The ℓ1-penalized smoothed quantile

Statistica Sinica: Preprint 
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regression (ℓ1-SQR) estimator (Tan et al., 2022) is defined as

ŵ ∈ argmin
w∈Rp

{
1

nh

n∑
i=1

∫ ∞

−∞
ρτ (u)K

(
u+ xi

⊤w − yi
h

)
du+ λ∥w∥1

}
, (2.4)

where h is the smoothing bandwidth, λ is a tuning parameter that con-

trols the model complexity, and K : R → [0,∞) is a symmetric, non-

negative kernel that integrates to one. For ease of notation, we use ℓ1-

SQR({(xi, yi)}i∈I ;λ, h) to denote the estimator in (2.4) given a dataset

{(xi, yi)}i∈I with index set I, a tuning parameter λ and a bandwidth h.

The convolution-type smoothing first introduced by Fernandes et al.

(2021) yields a convex and twice differentiable loss, which enables the use

of gradient-based algorithms and hence eases the computational burden.

Additionally, it is also convenient for statistical analysis. Consider the sin-

gle task quantile regression based solely on the target data (X(0),y(0)). In

the low-dimensional regime where p≪ n0, Fernandes et al. (2021) provided

a comprehensive asymptotic analysis for the unpenalized smoothed QR esti-

mator, followed by an in-depth finite sample theory in He et al. (2023). More

related to our work, Tan et al. (2022) investigated convolution smoothing

for high-dimensional QR on both the theoretical and computational sides.

They showed that with a proper yet flexible choice of the bandwidth, the

ℓ1-SQR estimator shares the same ℓ1 and ℓ2 error upper bounds as the

ℓ1-QR estimator (Belloni and Chernozhukov, 2011), which are s
√

log p/n0
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and
√

s log p/n0 respectively. In addition, a coordinate descent algorithm

and an alternating direction method of multiplier algorithm were also pro-

posed for solving the ℓ1-SQR problem in (2.4) with the uniform kernel and

Gaussian kernel respectively.

Combining this smoothing procedure with our two-step framework leads

to Algorithm 1 ( Oracle-Trans-SQR). Here Ik = [nk] for k = 0, . . . , K. The

smoothed two-step estimator β̂ is expected to converge fast to our target β

provided a substantial sample size of source studies in the transferring step

along with a sufficiently small bias in the debiasing step.

Algorithm 1 Oracle-Trans-SQR Algorithm

Input: Target data (X(0),y(0)), source data {(X(k),y(k))}k∈Aη , penalty

parameters (λw, λδ) and bandwidths (hw, hδ).

1: Transferring : ŵAη ← ℓ1-SQR({{(x(k)
i , y

(k)
i )}i∈Ik}k∈Aη∪{0};λw, hw)

2: Debiasing : δ̂
Aη ← ℓ1-SQR({(x(0)

i , y
(0)
i − (x

(0)
i )

⊤
ŵAη)}i∈I0 ;λδ, hδ)

Output: β̂ = ŵAη + δ̂
Aη

Due to the memory constraints of a single machine, we also provide a

distributed version of Algorithm 1 with corresponding statistical properties,

which are relegated to the supplementary materials.
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2.3 Transferable set detection

In practice, the transferable set Aη may be unknown, which makes the

problem more intractable. Indeed, the performance of learning on the target

may be reduced if irrelevant sources are included in transfer learning, which

is defined as negative transfer (Pan and Yang, 2009; Ge et al., 2014). It

forces us to take the third issue into consideration: when to transfer.

To avoid negative transfer, Li et al. (2022a) and Lin and Reimherr

(2022) proposed to aggregate a collection of candidate estimators, which

leads to a relatively robust estimator. However, previous research on QR

model aggregation has been restricted to the out-of-sample prediction error

(Lu and Su, 2015; Wang et al., 2021). Relatively little is understood about

the optimality of the estimation error after model aggregation.

Intuited by (Eaton et al., 2008), we propose to select the sources with

positive transfer by thresholding the change in performance on the target

between learning with and without each source. Specifically, we randomly

split the target index set I0 into the training part Itr0 and the validation part

Iva0 with equal size. We first obtain a benchmark estimate β̂
(0)

by fitting ℓ1-

SQR on the target training data. Next, we carry out ℓ1-SQR based on the

k-th source data as well as the target training data to obtain an estimate

β̂
(k)
, which is exactly the transferring step in Algorithm 1 with Aη = {k}
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and I0 = Itr0 . Then we examine the difference of quantile losses on the target

validation data based on β̂
(k)

and β̂
(0)
, denoted by T̂ (k) = Q̂(0)(β̂

(k)
; Iva0 )−

Q̂(0)(β̂
(0)
; Iva0 ), where Q̂(0)(w; I) = 1/|I|

∑
i∈I ρτ (y

(0)
i − (xi

(0))
⊤
w). We call

T̂ (k) the transferability index of the k-th study, which is preferable when it

is smaller. The transferable set Aη is then estimated by the source datasets

whose transferability indices are lower than a prespecified threshold. The

detailed source detection procedure is presented in Algorithm 2.

Algorithm 2 Trans-SQR Algorithm

Input: Target data (X(0),y(0)), source data {(X(k),y(k))}Kk=1, penalty pa-

rameters {λ(k)}Kk=0, bandwidths {h(k)}Kk=0 and a threshold t.

1: Estimating transferability index:

(1) Randomly split I0 = [n0] into I0 = Itr0 ∪ Iva0 with |Iva0 | = ⌊n0/2⌋.

(2) Compute β̂
(0)
← ℓ1-SQR({x(0)

i , y
(0)
i }i∈Itr

0
;λ(0), h(0)).

(3) For k = 1, . . . , K, compute

β̂
(k)
← ℓ1-SQR({x(k)

i , y
(k)
i }i∈Ik ∪ {x

(0)
i , y

(0)
i }i∈Itr

0
;λ(k), h(k)).

(4) For k = 1, . . . , K, compute T̂ (k) = Q̂(0)(β̂
(k)
; Iva0 )− Q̂(0)(β̂

(0)
; Iva0 ).

2: Source detection: Let Â = {k : T̂ (k) < t(Q̂(0)(β̂
(0)
; Iva0 ) ∨ 0.01)}.

3: Trans-SQR: β̂ ← run Algorithm 1 with {(X(k),y(k))}k∈Â∪{0}

Output: β̂
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Under regular conditions, the detected transferable set Â will be shown

to exactly identify the unknown Aη for some η with high probability. Fur-

thermore, in comparison to the model aggregation method proposed in Li

et al. (2022a), our method greatly eases the computation burden since we

do not need to execute the oracle transferring procedure repeatedly based

on a set of candidate estimates of Aη.

3. Theoretical Guarantees

In this section, we will investigate the statistical properties of the proposed

algorithms in Section 2. We first establish high probability bounds of our

QR transfer estimator in Algorithm 1 in Section 3.1. In Section 3.2, we

establish the consistency of the source detection procedure in Algorithm 2.

3.1 Estimation error of Oracle-Trans-SQR

We begin by imposing some regularity conditions in smoothed quantile

regression. Denote the covariance matrix of x(k) as Σ(k) =
(
σ
(k)
ij

)
1≤i,j≤p

.

Condition 1. For k = 0, . . . , K and some constant b0 > 0, infkfϵ(k)|x(k)(t) ≥

fl > 0 for all |t| ≤ b0 and supkfϵ(k)|x(k)(0) ≤ fu <∞ almost surely. Besides,

there exists a constant l0 > 0 such that
∣∣fϵ(k)|x(k)(u)− fϵ(k)|x(k)(v)

∣∣ ≤ l0|u−v|

for all u, v ∈ R almost surely.
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Condition 2. The kernel function K : R → [0,∞) is symmetric around

zero, and satisfies

(a)
∫∞
−∞ K(u)du = 1 and

∫∞
−∞ u2K(u)du <∞;

(b) κℓ =
∫∞
−∞ |u|

ℓK(u)du <∞ for ℓ = 1, 2, . . . and κl = min|u|≤1 K(u) > 0.

Condition 3. For k = 0, . . . , K, the covariate vector x(k) ∈ Rp is sub-

Gaussian: there exists some v1 ≥ 1 such that P
(∣∣uTx(k)

∣∣ ≥ v1∥u∥2 · t
)
≤

2e−t2/2 for all u ∈ Rp and t ≥ 0. In addition, µk = supu∈Sp−1 E|⟨u,x⟩|k <

∞ for k = 1, . . . , 4 and 0 < γp ≤ infkΛmin

(
Σ(k)

)
≤ supkΛmax

(
Σ(k)

)
≤ γ1.

Remark 1. Condition 1 imposes regular conditions on the conditional den-

sity of the random errors. We allow for heteroscedastic errors. Condition

2 is commonly used for kernel functions (Fernandes et al., 2021; Tan et al.,

2022). Some detailed comments can be found in Remark 4.1 of Tan et al.

(2022). Condition 3 assumes sub-Gaussian covariates with well-behaved

covariance structures. We comment that our theoretical analysis will still

carry through if we impose a weaker restricted eigenvalue condition similar

to that in Bickel et al. (2009).

The next condition characterizes the differences between MAη and M k

defined in Section 2.2, which is used to ensure that the common component

wAη to be transferred is close to our target β.
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3.1 Estimation error of Oracle-Trans-SQR 19

Condition 4. Denote MAη =
∑

k∈Aη∪{0} αkM k with αk defined in (2.3).

For some constant cM , it holds that supk∈Aη
∥M−1

Aη
M k∥1 = cM <∞.

Remark 2. Condition 4 is related in spirit to Assumption 4 in Tian and

Feng (2022) as well as Condition 4 in Li et al. (2022a). We regard Condition

4 as reasonable as it does not require exact sparsity of M−1
Aη
M k. For

example, the ℓ1-norm of the inverses are bounded for symmetric diagonally

dominant positive matrices (Li, 2008) as well as matrices with its (i, j)-th

component being ρ|i−j| for some ρ ∈ (−1, 1). Besides, it also holds true for

banded matrices with a fixed bandwidth (Demko, 1977).

Condition 5. Assume that ∥x(k)∥∞ ≤ Bk almost surely for some Bk > 0

and Bk∥δA − δ(k)∥1 ≤ b0, for all k ∈ Aη ∪ {0}.

Remark 3. The upper bound Bk in Condition 5 can be O(1) when x(k)

has bounded components and O(log p) for general sub-Gaussian designs.

Therefore, a sufficient condition for Condition 5 to hold is η ≲ 1 in the

former case and η ≲ 1/ log p in the latter.

With the above preparations, we are ready to present the main result

for our Oracle-Trans-SQR algorithm. Consider the parameter space

Θ(s, η) =

{
B =

(
β, δ(1), . . . , δ(K)

)
: ∥β∥0 ≤ s, sup

k∈Aη

∥∥∥δ(k)
∥∥∥
1
≤ η

}
.
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3.2 Source detection consistency 20

Theorem 1. Assume Conditions 1-5 hold. Suppose that n0 ≳ log p, nAη ≳

s2 log p, and η = O(1). Let λw ≍ (log p/(nAη + n0))
1/2 and λδ ≍ (log p/n0)

1/2.

Choose the bandwidths as hw ≍ (s log p/(nAη + n0))
1/4 and hδ ≍ (log p/n0)

1/4.

Then for the estimator β̂ obtained from the Oracle-Trans-SQR algorithm,

there exist positive constants c1 and c2 such that

inf
B∈Θ(s,η)

P

(
∥β̂ − β∥1 ≲ s

(
log p

nAη + n0

)1/2

+ η

)
≥ 1− c1 exp(−c2 log p),

inf
B∈Θ(s,η)

P

(
∥β̂ − β∥2 ≲

(
log p

n0

) 1
4

(
√
s

(
log p

nAη + n0

) 1
4

+
√
η

))
≥ 1−c1 exp(−c2 log p).

Remark 4. The above theorem established the convergence rate of β̂ from

the Oracle-Trans-SQR algorithm under a proper choice of bandwidths. For

single-task smoothed quantile regression based solely on the target data,

Tan et al. (2022) obtained the rate for ℓ2 bound as
√

s log p/n0. Hence,

our proposed estimator will enjoy a sharper convergence rate provided that

η ≪ s
√
log p/n0 and nA ≫ n0. These results parallel analogous results

in Li et al. (2022a) for linear regression and in Tian and Feng (2022) for

generalized linear models.

3.2 Source detection consistency

Next, we investigate the theoretical property of the Trans-SQR algorithm.

The key ingredient of this part is to establish the detection consistency of
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3.2 Source detection consistency 21

the transferable set Aη. Let Ac
η = {1, . . . , K}\Aη and nmin = min1≤k≤K nk.

Similar to (2.3), let β(k) be the parameter identified by

∑
k′∈{0,k}

αk′E
[
x(k′)

(
Fϵ(k

′)|x(k′)

(
(x(k′))

⊤
(β(k) −w(k′)) | x(k′)

)
− τ
)]

= 0.

Condition 6. Suppose that there exist some positive s′ and η′ independent

of k such that β(k) can be decomposed into β(k) = ι(k)+ϖ(k) with
∥∥ι(k)∥∥

0
≤

s′ and
∥∥ϖ(k)

∥∥
1
≤ η′ for k = 1, . . . , K.

Remark 5. Condition 6 imposes a “weak” sparse structure on β(k), which

is similar to Assumption 6 in Tian and Feng (2022). We allow the support

of ι(k), denoted by Sk, to be significantly different for k ∈ Aη and k ∈ Ac
η.

DefineR(k) = E
[∫ 1

0
x(0)(x(0))

⊤
fϵ(0)|x(0)(t(x(0))

⊤
(β(k) − β))dt

]
. Let Ωmax =√

s′ log p/(nmin + n0)+(log p/(nmin+n0))
1/4
√
η′+(log p/(nmin+n0))

3/8(s′)−1/8η′,

Ω0 =
√
s log p/n0, and cn = (µ1 + 2v1

√
log p/n0)(Ωmax + Ω0). Here µ1 and

v1 are defined in Condition 3.

Condition 7. Suppose that there exist some η and a constant C such that

infk∈Ac
η
Λmin(R

(k)) := λ > 0, supk∈Aη
Λmax(R

(k)) := λ̄ <∞ and

inf
k∈Ac

η

∥β(k)−β∥22 ≥ λ−1

(
λ̄ sup

k∈Aη

∥β(k) − β∥22 + 12v1

√
log p

n0

sup
k∈[K]

∥β(k) − β∥2 + 2Ccn

)
.

Remark 6. Condition 7 ensures the identifiability of some Aη by Trans-

SQR. It assumes that for sources not in the transferable set Aη, there is a
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significant gap between the population-level coefficient from the transferring

step and the true coefficient of the target data. It is parallel to Assumption

5 in Tian and Feng (2022).

Theorem 2. Assume that Conditions 1-6 hold and Condition 7 is satisfied

for some η. Suppose that nAη ≳ s2 log p. Let λw ≍ (log p/(nAη + n0))
1/2,

and λδ ≍ (log p/n0)
1/2. For k = 0, . . . , K, let λ(k) ≍ (log p/(nk + n0))

1/2

and h(k) ≍ (s′ log p/(nk + n0))
1/4. Choose the threshold t as λ̄ supk∈Aη

∥β(k)−

β∥22 +
√
log p/n0 supk∈[K] ∥β(k) − β∥2 + cn ≲ t ≲ λ/2 infk∈Ac

η
∥β(k) − β∥22.

Then for the detected set Â in Algorithm 2, we have

P(Â = Aη)→ 1.

Consequently, the estimator β̂ obtained from the Trans-SQR algorithm en-

joys the same ℓ1/ℓ2-estimation error upper bounds in Theorem 1 with high

probability.

Remark 7. Theorem 2 indicates that the source detection procedure in

Algorithm 2 can consistently detect the underlying transferable set Aη.

4. Simulation

In this section, we conduct numerical experiments to evaluate the empirical

performance of the proposed transfer learning methods in comparison with
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some other alternatives. Specifically, we consider the following methods, in-

cluding L1-SQR (ℓ1-SQR with only target data), Oracle-TSQR (Algorithm

1), Oracle-TQR (Algorithm 1 with both the transferring and debiasing steps

solved by ℓ1-QR), Naive-TSQR (Algorithm 1 with all sources) and TSQR

(Algorithm 2).

4.1 Data Generation

We consider a target study with n0 = 150 and K = 20 source studies with

n1, . . . , nK = 100. The dimension p = 500 for both target and source data.

We consider the following generative model for k = 0, . . . , K:

y(k) = 0.5 + (x(k))
⊤
w(k) + ϵ(k),

where x(0) ∼ Np(0,Σ) withΣ =
(
0.7|i−j|)

1≤i,j≤p
and x(k) ∼ N

(
0p,Σ+ ϵϵT

)
with ϵ ∼ N (0p, δ

2Ip) for k = 1, . . . , K. We consider δ = 0.3 here. See Sec-

tion S5.1 of the supplementary materials for additional simulations under

more heterogeneous designs with larger δ’s. We generate ϵ(k) from two dif-

ferent distributions: (i) standard normal distribution, ϵ(k) ∼ N (0, 1); and

(ii) t distribution with degrees of freedom 3, ϵ(k) ∼ t(3).

Now we specify the coefficients in each study. For the target, we set

s = 16, w
(0)
j = 0.5I{j ∈ [s]}. Denote r

(k)
i as an independent Rademacher

random variable (taking values in {1,−1} with equal probability). For the
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source studies, we set

w
(k)
j =


w

(0)
j + η/200 ∗ r(k)j I{j ∈ H(k)}, k ∈ Aη,

η/100 ∗ r(k)j I{j ∈ H(k) ∪ [s]}, k ∈ Ac
η,

where H(k) is a random subset of {s+ 1, . . . , p} with |H(k)| = 200.

We consider η ∈ {5, 10, 15} for Gaussion errors and η ∈ {10, 20, 30}

for t errors. We vary A = |Aη| ∈ {0, 4, 8, . . . , 20} and repeat simulations

100 times. For smoother QR, we use the Gaussian kernel for smoothing

with regularization parameter selected by five-fold cross-validation (CV)

and choose the bandwidths as max{0.05,
√
τ(1− τ){log(p)/n}1/4} as rec-

ommended in Tan et al. (2022) for a specific n in the corresponding problem.

It needs to be emphasized that this particular choice of bandwidths is by no

means optimal numerically. One can also select the optimal bandwidths by

CV. We have also noted that the performance of our proposed estimators

is not sensitive to the choice of the bandwidths, see Section S2.2 of the sup-

plementary materials for additional simulation results about the numerical

sensitivity to the bandwidths.

We set the threshold t = 0.2 for the TQR estimator for simplicity

although one can still choose t by CV. We found that the performance of

TQR is not sensitive to the choice of t as long as t falls into a proper interval.

We also tried t = 0.05, 0.1, 0.15 and the results are similar.
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For non-smoothed QR, the regularization parameter is selected by five-

fold CV when A = 0 and BIC when A ≥ 4 respectively, since CV in ℓ1-QR

greatly increases the computational burden as the sample size increases.

BIC leads to similar performance as that of CV when the sample size is

relatively large while spending much less time than CV. We evaluate the

performance of each method in terms of the estimation error ∥β̂ − β∥22 as

well as the computation time.

4.2 Simulation Results

Figure 1 and Figure 2 provide a comparison of ℓ2-estimation errors of the five

methods mentioned above under Gaussian errors and t errors respectively.

The average computation time of one replication for the five methods under

Gaussian errors is reported in Figure 3, where we take an average of over 100

replications and various (τ, h) for each method and each A. We highlight

four conclusions in the following.

Firstly, as we expect, Oracle-TSQR enjoys the best performance across

all scenarios as it transfers knowledge exactly from the ideal transferable set

Aη. Moreover, smaller η and bigger A produce smaller estimation errors. In

contrast, they do not affect the performance of the single-task ℓ1-SQR. This

corroborates our main message that one can benefit from transfer learning,
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Figure 1: ℓ2 estimation errors of various methods with Gaussian errors

under quantile levels τ = 0.2, 0.5, 0.7, averaged over 100 replications.

which is consistent with results in Theorem 1.

Secondly, the worse performance of Naive-TSQR compared to the ℓ1-

SQR when the size of the transferable set A is small confirms our concern

about the negative transfer. A larger η leads to more severe negative trans-

fer when A is small and therefore, a larger A is needed for Naive-TSQR
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Figure 2: ℓ2 estimation errors of various methods with t errors under quan-

tile levels τ = 0.2, 0.5, 0.7, averaged over 100 replications.

to perform better than ℓ1-SQR. It also demonstrates the necessity of the

source detection procedure in our Trans-SQR algorithm.

Thirdly, our proposed TSQR almost nearly matches the oracle estima-

tion errors obtained by Oracle-TSQR. This supports our theory on source

detection consistency in Theorem 2.
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Figure 3: Computation time (in seconds) for each method and each A under

Gaussian errors, averaged over 100 replications and various (τ, h).

To illustrate the benefit of smoothing, we note in Figure 3 that oracle-

TSQR and even TSQR have an overwhelming advantage in computational

time compared to that of the non-smooth oracle-TQR especially when the

sample size of transferable sources is large, even we have already used BIC

to select the regularization parameter for oracle-TQR in these cases. In ad-

dition, we also note that Oracle-TSQR performs slightly better than Oracle-

TQR in terms of the estimation error when the size of the transferable set

Aη is relatively small. This phenomenon is also noted in Tan et al. (2022)

thanks to the strong convexity brought by convolution smoothing.
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Generally speaking, the above conclusions on the performance of differ-

ent methods apply when the errors follow a t distribution.

5. Application

Primary familial brain calcification (PFBC) is a rare, genetically domi-

nant, inherited neurological disorder characterized by bilateral calcifica-

tions in the basal ganglia and other brain regions, and commonly presents

motor, psychiatric, and cognitive symptoms. Recent studies have identi-

fied JAM2 as a novel causative gene of autosomal recessive PFBC (Cen

et al., 2019; Schottlaender et al., 2020). JAM2 encodes junctional adhe-

sion molecule 2, which is highly expressed in neurovascular unit-related cell

types (endothelial cells and astrocytes) and is predominantly localized on

the plasma membrane. It may be important in cell-cell adhesion and main-

taining homeostasis in the central nervous system (CNS). Schottlaender

et al. (2020) show that JAM2 variants lead to reduction of JAM2 mRNA

expression and absence of JAM2 protein in patient’s fibroblasts, consistent

with a loss-of-function mechanism. Therefore, it is of great interest in pre-

dicting the expression level of gene JAM2 in target brain tissues, especially

at the lower quantile levels.

We apply the proposed transfer learning algorithm to the Genotype-
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Tissue Expression (GTEx) data, available at https://gtexportal.org/. This

dataset contains gene expression levels from 49 tissues of 838 individuals,

a total of 1,207,976 observations of 38,187 genes. We study the CNS gene

regulations in different tissues. The CNS-related genes were assembled as

MODULE 137, which includes 545 genes in total as well as 1,632 additional

genes that are significantly enriched in the same experiments as the genes of

the module (see http://robotics.stanford.edu/ erans/cancer/modules/module 137

for a detailed description of this module).

Specifically, we are interested in predicting the expression level of gene

JAM2 in a target tissue using other CNS genes. We consider 13 brain

tissues as our target tissues. The corresponding models are estimated one

by one. The average sample sizes of the target dataset and source datasets

are 177 and 14837 respectively. For each model, we split the target dataset

into five folds with each fold being predicted using the remaining four folds

as the training data. The regularization parameters are selected by five-fold

cross-validation.

Figure 4 reports the relative prediction errors of the Naive-TSQR and

our proposed TSQR to the ℓ1-SQR estimator based solely on the target

data. As we expected, transferring-based methods reduce prediction errors

in most cases. In addition, the Naive-TSQR without the source detection
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Figure 4: Prediction errors of the Naive-TSQR and TSQR relative to the

L1-SQR for the expression level of gene JAM2 in 13 brain tissues under

quantile levels 0, 2, 0.5 and 0.7, evaluated via fivefold cross-validation. The

black horizontal line here represents ratio 1.

procedure performs worse than L1-SQR on the Hemisphere and Cerebellum

tissues, while our proposed TSQR reflects its robustness to avoid including

unrelated sources across all scenarios. In the best scenario, TSQR reduces
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the prediction error by about 40%, see the prediction of the JAM2 expres-

sion at the 0.7-th quantile on the S.C.cervical tissue for example.

Another interesting finding is that in comparison to the analogous em-

pirical analysis results in Li et al. (2022a), where transfer learning improves

the prediction error by about 30% in the mean regression world for the

Hippocampus tissue, here in the quantile regression world, we find that the

inclusion of sources seems to be less useful at quantile levels 0.5 and 0.7

but becomes quietly helpful at the lower quantile level 0.2. This indicates

that the similarity between the target and the sources may vary with the

distribution of our responses. Since the expression level of JAM2 at the

lower quantile is of more interest to us, our QR model for transfer learning

is more flexible than that of the mean regression.

6. Discussion

In this article, we study the high-dimensional quantile regression problem

under the transfer learning setting. We propose a two-step framework for

QR transfer via convolution smoothing as well as a clustering-based source

detection procedure to avoid negative transfer. Numerical experiments as

well as an empirical study about GTEx data validate the effectiveness of

our proposed method.
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There are several avenues for future research. Firstly, there may exist

subgroup structures in the target dataset, which may be exploited for pre-

cise transfer learning. Specifically, we may consider the target parameter βg

with g ∈ {1, . . . , G} indicating the subgroup and borrow information from

other sources with a similar group structure. Secondly, transfer learning of

datasets with more complex structures, like matrices or tensors may be of

interest as well.

Supplementary Material

The supplementary materials contain all technical proofs, additional sim-

ulation results about the sensitivity of our proposed estimators to more

heterogeneous designs and the smoothing parameters, and a distributed

version of the Oracle-Trans-SQR algorithm.
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