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S1 Technical Proofs

S1.1 Proofs of Section 2.2

Proof of Theorem 1.

Since Cn,1−α := {y ∈ Y(T ) : δy > α}, then Cn,1−α := {y ∈ Y(T ) : (l + 1)δy > (l + 1)α}.

Under the hypothesis of the theorem, (l + 1)δY ∼ U{1, 2, . . . , l + 1} holds. As a consequence:

P (Yn+1 ∈ Cn,1−α) = P ((l + 1)δY > (l + 1)α)

= 1− P ((l + 1)δY ≤ (l + 1)α)

= 1− ⌊(l + 1)α⌋
l + 1

.
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In addition, since

⌊(l + 1)α⌋
l + 1

≤ (l + 1)α

l + 1
= α

then P (Yn+1 ∈ Cn,1−α) ≥ 1− α, i.e. Cn,1−α is valid. Finally, since

⌊(l + 1)α⌋
l + 1

>
(l + 1)α− 1

l + 1
= α− 1

l + 1

then P (Yn+1 ∈ Cn,1−α) < 1− α+ 1
l+1

.

Proof that smoothed split conformal prediction sets are exact.

Let us consider the hypothesis of Theorem 1. Let us notice that

δy,τn+1 :=
|{j ∈ I2 : Rj > Rn+1}|+ τn+1 |{j ∈ I2 ∪ {n+ 1} : Rj = Rn+1}|

l + 1

=
τn+1

l + 1
+

|{j ∈ I2 : Rj ≥ Rn+1}|
l + 1

.

Under the hypothesis of Theorem 1, |{j ∈ I2 : Rj ≥ Rn+1}| ∼ U{0, 1, . . . , l} holds. As a conse-

quence:

P
(
Yn+1 ∈ Cn,1−α,τn+1 |τn+1

)
= P

(
δY,τn+1 > α|τn+1

)
= P (|{j ∈ I2 : Rj ≥ Rn+1}| > (l + 1)α− τn+1|τn+1)

= 1− P (|{j ∈ I2 : Rj ≥ Rn+1}| ≤ (l + 1)α− τn+1|τn+1)

= 1− ⌊(l + 1)α− τn+1⌋+ 1

l + 1
.

Let us call f(τn+1) = 1 · 1{τn+1 ∈ [0, 1]}. Then

P
(
Yn+1 ∈ Cn,1−α,τn+1

)
=

∫ 1

0

P
(
Yn+1 ∈ Cn,1−α,τn+1 |τn+1

)
f(τn+1)dτn+1

=1−(∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1+

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

)
.
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Let us consider
∫ (l+1)α−⌊(l+1)α⌋
0

⌊(l+1)α−τn+1⌋+1

l+1
dτn+1. Since if τn+1 ≤ (l+1)α−⌊(l+1)α⌋

then ⌊(l + 1)α− τn+1⌋ = ⌊(l + 1)α⌋, we can notice that

∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

=

∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α⌋+ 1

l + 1
dτn+1

=
⌊(l + 1)α⌋+ 1

l + 1
· ((l + 1)α− ⌊(l + 1)α⌋) .

Let us consider
∫ 1

(l+1)α−⌊(l+1)α⌋
⌊(l+1)α−τn+1⌋+1

l+1
dτn+1. Since if τn+1 > (l+1)α−⌊(l+1)α⌋

then ⌊(l + 1)α− τn+1⌋ = ⌊(l + 1)α⌋ − 1, we can notice that

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

=

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α⌋
l + 1

dτn+1

=
⌊(l + 1)α⌋

l + 1
· (1− ((l + 1)α− ⌊(l + 1)α⌋)) .

Then

P
(
Yn+1 ∈ Cn,1−α,τn+1

)
=1−(

⌊(l + 1)α⌋+ 1

l + 1
· ((l + 1)α− ⌊(l + 1)α⌋)+

⌊(l + 1)α⌋
l + 1

· (1− ((l + 1)α− ⌊(l + 1)α⌋))

)

=1− α.
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S1.2 Proofs of Section 2.3

Proof that the concatenation of pointwise prediction intervals leads to a prediction

band that is a subset of the simultaneous prediction band (2.4).

Let Un,1−α be the pointwise prediction set. Let us define R̃j(t) := |yj(t)− gI1(t)| ∀t ∈

T , j ∈ I2, R̃n+1(t) := |y(t)− gI1(t)| for a given y ∈ Y(T ) and k̃(t) the ⌈(l + 1)(1 − α)⌉th

smallest value in the set {R̃h(t) : h ∈ I2}. By construction Rj = ess supt∈T R̃j(t), and so

Rj ≥ R̃j(t) ∀t ∈ T , j ∈ I2 and then k ≥ k̃(t) ∀t ∈ T . Let us consider y ∈ Un,1−α, i.e. y(t) ∈

[gI1(t)− k̃(t), gI1(t)+ k̃(t)] ∀t ∈ T . Since k ≥ k̃(t), also y(t) ∈ [gI1(t)−k, gI1(t)+k] ∀t ∈ T ,

i.e. y ∈ Cn,1−α.

Since the converse is not necessarily true (in the sense that y ∈ Cn,1−α does not imply

y ∈ Un,1−α), we conclude that Un,1−α ⊆ Cn,1−α.

S1.3 Proofs of Section 2.4

Proof of the prediction set induced by the nonconformity measure A({yh : h ∈ I1}, y) =

ess supt∈T

∣∣∣ y(t)−gI1
(t)

sI1
(t)

∣∣∣.
For a given y ∈ Y(T ), let us define

δsy :=

∣∣{j ∈ I2 ∪ {n+ 1} : Rs
j ≥ Rs

n+1

}∣∣
l + 1

.

The split conformal prediction set is defined as Cs
n,1−α :=

{
y ∈ Y(T ) : δsy > α

}
. As a conse-

quence, y ∈ Cs
n,1−α ⇐⇒ Rs

n+1 ≤ ks, with ks the ⌈(l + 1)(1 − α)⌉th smallest value in the set

{Rs
h : h ∈ I2}. Then:

ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks

⇐⇒
∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks ∀t ∈ T

⇐⇒ y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T .
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Therefore, the split conformal prediction set is

Cs
n,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T } .

Proof of Remark 7.

Let us define Cλ·s
n,1−α the prediction set obtained by considering the modulation function

λ · sI1 . The nonconformity scores are

Rλ·s
j =ess sup

t∈T

∣∣∣∣yj(t)− gI1(t)

λ · sI1(t)

∣∣∣∣ = 1

λ
Rs

j , j ∈ I2

Rλ·s
n+1 =ess sup

t∈T

∣∣∣∣y(t)− gI1(t)

λ · sI1(t)

∣∣∣∣ = 1

λ
Rs

n+1.

Let us also define

δλ·sy :=

∣∣{j ∈ I2 ∪ {n+ 1} : Rλ·s
j ≥ Rλ·s

n+1

}∣∣
l + 1

.

The split conformal prediction set is defined as Cλ·s
n,1−α :=

{
y ∈ Y(T ) : δλ·sy > α

}
. As a conse-

quence, y ∈ Cλ·s
n,1−α ⇐⇒ Rλ·s

n+1 ≤ kλ·s, with kλ·s the ⌈(l+1)(1−α)⌉th smallest value in the set

{Rλ·s
h : h ∈ I2}. In addition, since Rλ·s

j = Rs
j/λ ∀j ∈ I2, then kλ·s = ks/λ. Then:

Rλ·s
n+1 ≤ kλ·s

⇐⇒ 1

λ
Rs

n+1 ≤ ks

λ

⇐⇒ Rs
n+1 ≤ ks,

and since y ∈ Cs
n,1−α ⇐⇒ Rs

n+1 ≤ ks, then Cλ·s
n,1−α = Cs

n,1−α.

Adjustment procedure of s̄cI1
and s̄I1

If maxj∈H2 |yj(t)−gI1(t)| = 0 for at least one value t but the condition
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt ̸= 0 still holds, in order to ensure that s̄cI1
(t) > 0 ∀t ∈ T it is sufficient to add an
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arbitrarily (small) positive value to s̄cI1
(t) ∀t ∈ T and to adjust the normalization constant

accordingly. The pathological case in which
∫
T maxj∈H2 |yj(t)− gI1(t)|dt = 0 is addressed only

when yj(t) = gI1(t) ∀j ∈ H2 and almost every t ∈ T and it represents a case of no practical

interest.

Should ∃ t ∈ T such that maxj∈H1 |yj(t)− gI1(t)| = 0, the same procedure is developed.

Proof of Theorem 2.

Let us focus on s̄I1(t). Since m/n = θ with 0 < θ < 1, if n → +∞ then m → +∞. By

definition, the scalar γ is the empirical quantile of order ⌈(m+1)(1−α)⌉) of {ess supt∈T |yh(t)−

gI1(t)| : h ∈ I1}. First of all note that

lim
m→+∞

⌈(m+ 1)(1− α)⌉
m

= lim
m→+∞

m+ 1− ⌊(m+ 1)α⌋
m

and since

(m+ 1)α− 1

m
≤ ⌊(m+ 1)α⌋

m
≤ (m+ 1)α

m
∀m ∈ N

and

lim
m→+∞

(m+ 1)α− 1

m
= lim

m→+∞

(m+ 1)α

m
= α

then by the squeeze theorem (also known as the sandwich theorem) we obtain that

lim
m→+∞

⌊(m+ 1)α⌋
m

= α

and then

lim
m→+∞

⌈(m+ 1)(1− α)⌉)
m

= 1− α.

As a consequence, γ is the empirical quantile of order 1− α when m → +∞.

For convenience, let us define xi := ess supt∈T |yi(t) − gI1(t)| ∀ i ∈ I1. The random

variables {Xh : h ∈ I1} from which {xh : h ∈ I1} are drawn are continuous and they are
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asymptotically i.i.d. as Var[gI1(t)] → 0. The Glivenko-Cantelli theorem ensures that the em-

pirical distribution function of these variables converges uniformly (and almost surely pointwise)

to its distribution function, and then also the empirical quantiles converge in distribution (and

so in probability) to the corresponding theoretical quantiles, as shown for example by Van der

Vaart (2000, chap. 21). Specifically, empirical quantile γ converges to q1−α, the theoretical

quantile of order 1− α. As a consequence, when m → +∞:

H1 := {j ∈ I1 : ess sup
t∈T

|yj(t)− gI1(t)| ≤ q1−α}

with q1−α deterministic quantity. Let us focus on the numerator of s̄I1(t) since the denominator

is just a normalizing constant. ∀t ∈ T , the sequence {maxj∈H1 |yj(t)− gI1(t)|}m is eventually

bounded by q1−α and is eventually increasing since {|H1|}m is eventually increasing. By the

monotone convergence theorem, the sequence converges to its supremum.

In order to prove the convergence of the numerator of s̄cI1
to the same limit function, it is

sufficient to consider the previous computations by noting that if n → +∞ then l = n(1− θ) →

+∞ and by substituting γ with k, m with l, H1 with H2 and I1 with I2 (except for gI1 that

is naturally not substituted by gI2). Since the numerators of s̄I1 and s̄cI1
converge to the same

function, also the two normalizing constants converge to the same quantity. In view of this and

since Cs̄
n,1−α and Cs̄c

n,1−α are defined as

Cs̄
n,1−α :=

{
y ∈ Y(T ) : y(t) ∈ [gI1(t)− ks̄s̄I1(t), gI1(t) + ks̄s̄I1(t)] ∀t ∈ T

}
,

Cs̄c

n,1−α :=
{
y ∈ Y(T ) : y(t) ∈ [gI1(t)− ks̄c s̄cI1

(t), gI1(t) + ks̄c s̄cI1
(t)] ∀t ∈ T

}

then limn→+∞ Cs̄
n,1−α = limn→+∞ Cs̄c

n,1−α.

Proof of Theorem 3.

The proof consists of two steps. At the first step we show that ks̄c =
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt, a fundamental result to obtain, at the second step, the proof of the theorem.
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I step

In order not to overcomplicate the proof, first of all let us consider the case in which

|H2| = ⌈(l + 1)(1 − α)⌉. It is important to notice that under the assumption concerning the

continuous joint distribution of {Rh : h ∈ I2} made in Section 2.2 such condition is always

satisfied. However, the result proved at this first step holds also when this assumption is

violated, and its proof requires just minor changes. Therefore, for the sake of completeness such

proof is addressed below.

• ∀i ∈ H2 the following relationship holds ∀t ∈ T :

∣∣∣∣∣yi(t)− gI1(t)

s̄cI1
(t)

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ·
|yi(t)− gI1(t)|

maxj∈H2 |yj(t)− gI1(t)|

≤
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt,

and then

Rs̄c

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

s̄cI1
(t)

∣∣∣∣∣ ≤
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Specifically, ∃ i ∈ H2 such that Rs̄c

i =
∫
T maxj∈H2 |yj(t)− gI1(t)|dt since ∀t ∈ T at least

one function yi satisfies |yi(t)− gI1(t)| = maxj∈H2 |yj(t)− gI1(t)|.

• Let us define CH2 := I2 \ H2 and let t∗i be the value such that

|yi(t∗i )− gI1(t
∗
i )| = ess sup

t∈T
|yi(t)− gI1(t)| ∀i ∈ I2.

If t∗i is not unique, it is randomly chosen from the values that satisfy that condition.

∀i ∈ CH2, by definition ofH2 we obtain that |yi(t∗i )− gI1(t
∗
i )| > maxj∈H2 |yj(t∗i )−gI1(t

∗
i )|
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and so the following relationship holds:

∣∣∣∣∣yi(t∗i )− gI1(t
∗
i )

s̄cI1
(t∗i )

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ·
|yi(t∗i )− gI1(t

∗
i )|

maxj∈H2 |yj(t∗i )− gI1(t
∗
i )|

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

As a consequence,

Rs̄c

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

s̄cI1
(t)

∣∣∣∣∣ >
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∀i ∈ H2 R
s̄c

i ≤
∫
T maxj∈H2 |yj(t)−gI1(t)|dt and ∃ i ∈ H2 such thatRs̄c

i =
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt

• ∀i ∈ CH2 Rs̄c

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

we conclude that ks̄c =
∫
T maxj∈H2 |yj(t) − gI1(t)|dt, with ks̄c the ⌈(l + 1)(1 − α)⌉th

smallest value in the set {Rs̄c

h : h ∈ I2}.

If |H2| > ⌈(l + 1)(1 − α)⌉, then Rs̄c

i =
∫
T maxj∈H2 |yj(t) − gI1(t)|dt is valid ∀i ∈ H2

such that ess supt∈T |yi(t)− gI1(t)| = k and in the same way we can conclude that ks̄c =∫
T maxj∈H2 |yj(t)− gI1(t)|dt.

II step

Let us define ∀i ∈ I2

Rs0

i := ess sup
t∈T

∣∣∣∣yi(t)− gI1(t)

s0(t)

∣∣∣∣ = |T | ess sup
t∈T

|yi(t)− gI1(t)| .
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Since ks0 is the ⌈(l + 1)(1− α)⌉th smallest value in the set {Rs0

h : h ∈ I2}, by definition of H2

we obtain that

ks0 = |T | max
j∈H2

(
ess sup

t∈T
|yj(t)− gI1(t)|

)
= |T | ess sup

t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)
.

Since at the first step we proved that ks̄c =
∫
T maxj∈H2 |yj(t)− gI1(t)|dt, we obtain that

ks0 − ks̄c = |T | ess sup
t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)
−
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Since the right side of the equation is greater than or equal to 0 by the integral mean value

theorem, then Q(s0) ≥ Q(s̄cI1
).

The same theorem ensures that

|T | ess sup
t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)

=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt

⇐⇒ max
j∈H2

|yj(t)− gI1(t)| is constant almost everywhere,

i.e. if and only if s̄cI1
(t) = s̄0(t) almost everywhere.

Proof of Theorem 4.

We have already shown at the first step of the previous proof that ks̄c =
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt. Since by assumption sdI1
(t∗i ) ≤ s̄cI1

(t∗i ) ∀i ∈ CH2 and |H2| = ⌈(l + 1)(1 − α)⌉, let us

define ai ≥ 0 ∀i ∈ CH2 the value such that sdI1
(t∗i ) = s̄cI1

(t∗i )− ai.
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• Case 1 : If ∃ x ∈ CH2 s.t. ax > 0, ∃ i ∈ H2 such that

∣∣∣∣∣yi(t∗x)− gI1(t
∗
x)

sdI1
(t∗x)

∣∣∣∣∣
=

∣∣∣∣∣yi(t∗x)− gI1(t
∗
x)

s̄cI1
(t∗x)− ax

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t∗x)− gI1(t
∗
x)|

maxj∈H2 |yj(t∗x)− gI1(t
∗
x)| − ax ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t∗x) at least one function yi satisfies |yi(t) − gI1(t)| =

maxj∈H2 |yj(t)− gI1(t)|.

Case 2 : If ai = 0 ∀i ∈ CH2, there exist at least two values t↓, t↑ ∈ T ∗ such that

sdI1
(t↓) < s̄cI1

(t↓) and sdI1
(t↑) > s̄cI1

(t↑) since otherwise sdI1
(t) = s̄cI1

(t) ∀t ∈ T ∗. Let us

define a↓ > 0 the value such that sdI1
(t↓) = s̄cI1

(t↓)− a↓. Therefore ∃ i ∈ H2 such that

∣∣∣∣∣yi(t↓)− gI1(t↓)

sdI1
(t↓)

∣∣∣∣∣
=

∣∣∣∣∣yi(t↓)− gI1(t↓)

s̄cI1
(t↓)− a↓

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t↓)− gI1(t↓)|
maxj∈H2 |yj(t↓)− gI1(t↓)| − a↓ ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t↓) at least one function yi satisfies |yi(t) − gI1(t)| =

maxj∈H2 |yj(t)− gI1(t)|.

As a consequence, in both cases (∃x ∈ CH2 s.t. ax > 0 and ai = 0 ∀i ∈ CH2) we obtain
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that ∃ i ∈ H2 such that

Rsd

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

sdI1
(t)

∣∣∣∣∣ >
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

• ∀i ∈ CH2, by definition ofH2 we obtain that |yi(t∗i )− gI1(t
∗
i )| > maxj∈H2 |yj(t∗i )−gI1(t

∗
i )|

and so the following relationship holds:

∣∣∣∣∣yi(t∗i )− gI1(t
∗
i )

sdI1
(t∗i )

∣∣∣∣∣
=

∣∣∣∣∣yi(t∗i )− gI1(t
∗
i )

s̄cI1
(t∗i )− ai

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t∗i )− gI1(t
∗
i )|

maxj∈H2 |yj(t∗i )− gI1(t
∗
i )| − aj ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

As a consequence,

Rsd

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

sdI1
(t)

∣∣∣∣∣ >
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∃ i ∈ H2 such that Rsd

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

• ∀i ∈ CH2 Rsd

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

we conclude that ksd >
∫
T maxj∈H2 |yj(t) − gI1(t)|dt, i.e. ksd > ks̄c , with ksd the ⌈(l +

1)(1− α)⌉th smallest value in the set {Rsd

h : h ∈ I2}.

Proof that Theorem 4 does not imply Theorem 3.
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Theorem 4 does not imply Theorem 3 since s0 may not fulfill s0(t∗i ) ≤ s̄cI1
(t∗i ) ∀i ∈ CH2.

In fact, ∀i ∈ CH2:

s0(t∗i ) ≤ s̄cI1
(t∗i ) ⇐⇒

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

|T | ≤ max
j∈H2

|yj(t∗i )− gI1(t
∗
i )|

and the condition on the right side is not always satisfied because no constraints are imposed

on yj(t
∗
i ), with j ∈ H2, i ∈ CH2.

S1.4 Proofs about Smoothed Conformal Predictor

Proof of the smoothed conformal prediction set

By considering the notation of Section 2, first of all let us notice that, by definition,

Cn,1−α,1 = Cn,1−α.

Since δy,τn+1 can not be less than τn+1/(l+1) and can not be greater than (l+τn+1)/(l+1),

we consider the case in which α ∈ [τn+1/(l + 1), (l + τn+1)/(l + 1)). Let us define w the

⌈l + τn+1 − (l + 1)α⌉th smallest value in the set {Rh : h ∈ I2}, and rn (vn respectively) the

number of elements in the set {Rh : h ∈ I2} that are equal to w and that are to the right

(left respectively) of w in the sorted version of the set. Under the assumption concerning

the continuous joint distribution of {Rh : h ∈ I2} made in Section 2.2 rn = vn = 0 holds,

but generally speaking we assume rn, vn ∈ N≥0 such that rn + vn ≤ l − 1. By performing

calculations similar to those needed in the non-randomized scenario, we obtain that:

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rn

rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 ≤ w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈ [gI1(t)− w,

gI1(t) + w] ∀t ∈ T }
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• if

τn+1 ≤ (l + 1)α− ⌊(l + 1)α− τn+1⌋+ rn
rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 < w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− w,

gI1(t) + w
)

∀t ∈ T }.

Also the introduction of the modulation function presented in Section 2.4 can be easily

generalized in the smoothed conformal context. Let us define for a given y ∈ Y(T )

δsy,τn+1
:=

∣∣{j ∈ I2 : Rs
j > Rs

n+1

}∣∣+ τn+1

∣∣{j ∈ I2 ∪ {n+ 1} : Rs
j = Rs

n+1

}∣∣
l + 1

Cs
n,1−α,τn+1

:=
{
y ∈ Y(T ) : δsy,τn+1

> α
}
.

By reconsidering the previous computations and by substituting δy,τn+1 with δsy,τn+1
, w with

ws, Rh with Rs
h, rn with rsn and vn with vsn it is possible to notice that

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn

rsn + vsn + 2

then

Cs
n,1−α,τn+1

= {y ∈ Y(T ) : y(t) ∈ [gI1(t)− wssI1(t),

gI1(t) + wssI1(t)] ∀t ∈ T }

• if

τn+1 ≤ (l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn
rsn + vsn + 2

then

Cs
n,1−α,τn+1

= {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− wssI1(t),

gI1(t) + wssI1(t)
)

∀t ∈ T }.
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Proof of Remark 10.

The functions s̄cI1
and s̄I1 are defined as in Section 2.4 except for k (γ respectively)

that is the ⌈l + τn+1 − (l + 1)α⌉th (⌈m + τn+1 − (m + 1)α⌉th respectively) smallest value

in the corresponding set; similarly, if ⌈m + τn+1 − (m + 1)α⌉ > m then H1 = I1 and if

⌈m+τn+1− (m+1)α⌉ ≤ 0 we arbitrarily set s̄I1 = s0. The theorems of Section 2.4 still hold by

substituting ⌈(l+1)(1−α)⌉, ⌈(m+1)(1−α)⌉ with ⌈l+ τn+1 − (l+1)α⌉, ⌈m+ τn+1 − (m+1)α⌉.

S2 Simulation Study

S2.1 Study Design

In this section, we summarize the results of a two-stage simulation study comparing our ap-

proach with four alternative methods from the literature that will be detailed in the following:

Naive, Band Depth, Modified Band Depth, Extremal depth and Bootstrap. In Section S2.2

the empirical coverage is evaluated for each approach in three different scenarios, whereas in

Section S2.3 the prediction bands obtained by the methods that guarantee a proper coverage

are compared in terms of efficiency. The simulation study has been mainly performed in the R

programming language using the conformalInference.fd package (Diquigiovanni et al. 2022).

The code to reproduce the simulations and the analyses of the test case is available upon request

to the authors. The hierarchical structure of the simulation study reflects the “nested” nature

of the two features we are considering, i.e. coverage and size: indeed, the size of a prediction set

should be investigated only after verifying that the method which outputted that specific pre-

diction set guarantees the desired coverage, which represents the primary aspect when assessing

prediction sets.

Specifically, the three scenarios allow to compare the methods in three different frameworks:
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when data show a constant variability over the domain (Scenario 1), when data show a different

variability over the domain (Scenario 2) and when data are characterized by outliers (Scenario

3). The data generating processes of the three scenarios are:

• Scenario 1. ∀i = 1, . . . , n

yi(t) = xi1 + xi2 cos(6π( t+ ui)) + xi3 sin(6π (t+ ui))

with T = [0, 1], (x11, x12, x13)
T , . . . , (xn1, xn2, xn3)

T i.i.d. realizations of

X ∼ N3

(
0,
[

1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

])

and u1, . . . , un i.i.d. realizations of

U ∼ Unif

[
−1

6
,
1

6

]
.

• Scenario 2. ∀i = 1, . . . , n

yi(t) =

13∑
j=1

cijB
ω
j (t)

with T = [0, 1], Bω
j (t) the b-spline basis system of order 4 with interior knots ω =

(0.1, 0.2, . . . , 0.9) and (c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T i.i.d. realizations of C =

(C1, . . . , C13) ∼ N13 (0,Σ) such that Var[Ci] = 0.032 ∀i ̸= 7, Var[C7] = 0.0032 and

Cov[Ci, Cj ] = 0 for i, j = 1, . . . , 13, i ̸= j.

• Scenario 3. The scenario is the previous one after contamination with outliers. Formally,

(c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T are i.i.d. realizations of a vector random variable

whose probability density function is a Gaussian mixture density with weights (1− β, β),

shared mean vector 0, the covariance matrix defined as in Scenario 2 for the first group

and such that Var[C7] = 0.32 instead of Var[C7] = 0.0032 for the second group.
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Figure S2.1: Graphical representation of the scenarios. The sample size is n = 18.

A graphical representation of a replication for each scenario with n = 18 is provided in Fig-

ure S2.1. The Conformal approach presented in Section 2 is evaluated in the non-smoothed

framework and considering three different modulation functions: s0, the normalised pointwise

standard deviation function sσI1
as natural representative of functions that capture data vari-

ability, and s̄I1 . Since the focus of the work is not on the construction of sophisticated point

predictors gI1 but rather on the construction of valid prediction bands around any point pre-

dictor gI1 , we hereby simply set gI1(t) = ȳI1(t).

The performance of our approach is compared to four alternative methods. These are:

Naive method, which outputs prediction bands defined as {y ∈ Y(T ) : y(t) ∈ [qα
2
(t) , q1−α

2
(t)]

∀t ∈ T } with qα (t) empirical quantile of order α for (y1(t), . . . , yn(t)). Such approach represents

a very naive solution to the prediction task we are considering and we expect it to suffer

greatly from undercoverage; BD and MBD methods, which output the sample (1 − α) central

region induced by the band depth (BD) and the modified band depth (MBD) respectively (Sun

& Genton 2011); Extremal which output the sample (1 − α) central region induced by the
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extremal depth (Narisetty & Nair 2016); Boot. method, which outputs the band based on

2500 bootstrap samples, as proposed by Degras (2011). We consider α = 0.1, β = 0.06 and

three different sample sizes: n = 18, n = 198, n = 1998. In order not to overcomplicate the

simulation study, the ratio ρ = l/n is kept fixed and equal to 0.5 as commonly suggested in

the Conformal literature. A deeper investigation about the possible effect of the ratio ρ = l/n

on efficiency - even though possibly interesting - is out of the scope of this work. The atypical

values of n in the simulations have been simply chosen to have a miscoverage exactly equal to

α (indeed in these cases ⌊(l+1)α⌋/(l+1) = α) and consequently making the simulation results

easier to read. Similar results would have been attained with rounded values of n (e.g. n = 20,

n = 200, n = 2000) by evaluating the empirical miscoverage considering the theoretical one:

⌊(l+ 1)α⌋/(l+ 1) (see Theorem 1). The simulations are achieved by using the R Programming

Language (R Core Team 2018) and the computation of the band depth and the modified band

depth by roahd package (Tarabelloni et al. 2018). Finally, every combination of scenario and

sample size is evaluated considering N = 500 replications.

S2.2 Coverage

In this section we focus on the sample mean and the standard deviation of the empirical condi-

tional coverage provided by the prediction bands generated by each method for each combination

of sample size and scenario (see Table S2.1). Specifically, the empirical conditional coverage of a

given prediction band (i.e. the empirical coverage obtained conditioning on the prediction band

obtained by the observed data) is computed as the fraction of times that 10,000 new functions -

independent from and identically distributed to the original sample - belong to such prediction

band. The purpose of this scheme is twofold: first of all, by averaging the N = 500 empirical

conditional coverages obtained for each combination of scenario and sample size it is possible to
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Conformal Method Alternative Methods

s0 sσI1
s̄I1

Naive MBD BD Ext. Depth Boot.

n = 18 Scenario 1 0.902 0.900 0.900 0.409 0.504 0.547 0.498 0.875

(0.088) (0.085) (0.087) (0.092) (0.109) (0.111) (0.107) (0.064)

Scenario 2 0.901 0.910 0.909 0.048 0.123 0.145 0.119 0.922

(0.089) (0.081) (0.083) (0.021) (0.044) (0.051) (0.042) (0.042)

Scenario 3 0.904 0.904 0.907 0.049 0.124 0.148 0.122 0.932

(0.084) (0.089) (0.085) (0.023) (0.049) (0.055) (0.048) (0.061)

n = 198 Scenario 1 0.901 0.902 0.901 0.625 0.861 0.900 0.826 0.865

(0.029) (0.030) (0.031) (0.031) (0.028) (0.028) (0.028) (0.019)

Scenario 2 0.901 0.899 0.900 0.189 0.733 0.788 0.678 0.897

(0.029) (0.031) (0.029) (0.019) (0.036) (0.032) (0.033) (0.015)

Scenario 3 0.897 0.900 0.899 0.197 0.742 0.798 0.688 0.892

(0.031) (0.030) (0.031) (0.020) (0.034) (0.030) (0.033) (0.020)

n = 1998 Scenario 1 0.900 0.899 0.900 0.666 0.942 0.918 0.885 0.866

(0.010) (0.010) (0.010) (0.011) (0.006) (0.008) (0.008) (0.008)

Scenario 2 0.900 0.900 0.899 0.233 0.958 0.971 0.858 0.899

(0.009) (0.010) (0.010) (0.007) (0.006) (0.005) (0.008) (0.008)

Scenario 3 0.900 0.899 0.900 0.240 0.959 0.973 0.859 0.884

(0.010) (0.010) (0.010) (0.008) (0.006) (0.005) (0.008) (0.007)

Table S2.1: For each combination of sample size and scenario, the first line shows the

sample mean of the empirical conditional coverage, the second line the sample standard

deviation in brackets.

obtain the empirical coverage, which is an estimate of the (unconditional) coverage. Secondly,

this scheme allows to evaluate the variability of the conditional coverage when the observed

sample varies, a particularly useful indication in real applications.
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The simulation study fully confirms the theoretical property concerning the validity of split

conformal prediction sets with 53 out of the 54 99%-confidence intervals associated to conformal

bands including the nominal value 1−α. The evidence provided is particularly appealing since

the desired coverage is guaranteed also when a very small sample size (n = 18) is considered, a

framework in which such property is traditionally hard to obtain. Vice versa, in almost all cases

the alternative methods do not ensure the desired coverage with some estimates dramatically

far from 1 − α, especially for small sample sizes (i.e., n = 18). In view of this, in Section S2.3

only the efficiency of the Conformal methods is evaluated and compared.

S2.3 Efficiency

In this section the sample mean and the standard deviation of the size defined as in (2.7) of

the prediction bands computed in the previous section are evaluated for each combination of

modulation function, sample size and scenario (see Table S2.2). First of all, it is noticeable that

when n = 18 the absence of modulation (i.e. s0) seems to provide smaller prediction bands

than those induced by sσI1
and s̄I1 , conceivably because the extremely low number of functions

belonging to the training set (m = 9) leads to an unstable and possibly misleading modulation

function supporting the statistical intuition that for small sample sizes simpler modulation

functions should be preferred.

More deeply, focusing now on each scenario separately and considering the remaining

sample sizes, Scenario 1 represents a framework in which a constant width prediction band is the

ideal candidate since the horizontal shift due to the random variable U induces constant variance

along the domain. As a consequence, the pointwise evaluations Y (t) are equally distributed

∀t ∈ T and so one is justified in expecting sσI1
and s̄I1 to be of no practical use. The results

confirm this conjecture, but the differences between the three modulation functions seems to
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s0 sσI1
s̄I1

Mean st.dev Mean st.dev Mean st.dev

n = 18 Scenario 1 8.113 (2.044) 10.088 (3.618) 11.638 (4.309)

Scenario 2 0.142 (0.025) 0.165 (0.041) 0.185 (0.049)

Scenario 3 0.246 (0.192) 0.448 (0.550) 0.505 (0.633)

n = 198 Scenario 1 7.175 (0.560) 7.295 (0.608) 7.556 (0.647)

Scenario 2 0.127 (0.006) 0.109 (0.005) 0.120 (0.006)

Scenario 3 0.139 (0.013) 0.139 (0.013) 0.137 (0.020)

n = 1998 Scenario 1 7.059 (0.179) 7.065 (0.176) 7.128 (0.184)

Scenario 2 0.125 (0.002) 0.106 (0.001) 0.117 (0.002)

Scenario 3 0.136 (0.003) 0.137 (0.004) 0.131 (0.003)

Table S2.2: Size of the prediction bands.

decrease as the sample size grows (see, for example, the difference between s0 and s̄I1 when n

increases from 198 to 1998).

Scenario 2 represents a completely different setting, in which a modulation process is

appropriate since the curves highlight a reduction of variability in the central part of the domain.

As expected, s0 induces larger predictions bands (on average) than those obtained by sσI1
and

s̄I1 and it forces the band to be unnecessary large around t = 0.5. On the other hand, the

other two modulation functions (especially sσI1
) provide a better performance since they allow

the band width to be adapted according to the behavior of data over T .

Scenario 3 is obtained by contaminating Scenario 2 with outliers. Table S2.2 suggests that

s̄I1 outperforms both s0 and - unlike Scenario 2 - also sσI1
. In order to clarify this evidence, let
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Figure S2.2: The prediction bands obtained considering a combination of modulation

functions (s0 at the top, sσI1
in the middle, s̄I1

at the bottom) and sample (the original

one on the left, the contaminated one on the right). In all cases, the dashed line represents

gI1
.

us consider a sample y1, . . . , y198 generated as in Scenario 2 that, after being created, is exposed

to a contamination process in which each function yi, i = 1, . . . , 198, becomes an outlier as

described in Scenario 3 with probability β = 0.06. Figure S2.2 shows examples of prediction

bands induced by the three modulation functions (s0 at the top, sσI1
in the middle, s̄I1 at the

bottom) obtained by considering the original sample (on the left) and the contaminated one

(on the right). Moving from Scenario 2 to Scenario 3 and focusing on sσI1
, it is possible to



S2. SIMULATION STUDY

notice that the increased variability in the central part of the domain due to the contamination

process involves an increase in the band width around t = 0.5. This behavior, although not

surprising, is counterproductive since the purpose of the method is to create prediction bands

with coverage at the level 1− α = 0.9 and in this specific case ∼ 94% of the functions tends to

be highly concentrated around gI1 in the central part of the domain, and not overdispersed. By

contrast, s̄I1 by construction removes the most extreme (in terms of measure (2.3)) functions

and properly modulates data on the basis of the non-extreme functions keeping the band shape

unchanged. From a methodological point of view, this is due to the dependency of s̄I1 on α

which allows only a portion of the training set - chosen according to the specific level 1 − α -

to be taken into account and the trend of the “misleading” functions to be completely ignored.

Overall, the evidence provided by this example - together with the results provided by Table

S2.2 - suggests that s0 is not affected by the contamination process (pro) but does not modulate

(con), sσI1
modulates (pro) but overreacts to the contamination process (con), whereas s̄I1 is

able to simultaneously modulate (pro) and manage the contamination process (pro).

In short, the three scenarios seem to highlight that s0 is an outstanding candidate when

the sample size is very small, whereas a modulation process is useful in the very common case in

which the variability over T varies and the sample size is either moderate or large. Specifically,

s̄I1 provides encouraging results in some complex scenarios as it focuses on the specific behavior

of the central (according to the level 1− α) portion of data.

As an additional step, and to further evaluate the robustness of the proposed prediction

method with respect to the use of different point forecasting methods, we inspect the sample

mean and the standard deviation of the size, defined as in (2.7), of the prediction bands com-

puted using different point predictors. Namely, we propose a table similar to S2.2, with the same

declination in different sample sizes and different scenarios, but we explicitly explore different
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point prediction methods (S2.3. The explored methods are a baseline case, represented by the

sample mean (stylised ”Mean”, already used as a candidate in all the previous simulations.

The baseline is accompanied by two less standard cases, represented by a functional median

case (stylised ”Median”), where the point predictor is represented by the deepest curve of the

sample, according to MBD. The third case is instead represented by a trimmed mean, computed

excluding the 10% of the shallowest curves in the sample, again according to MBD. In all the

simulations the modulation function selected is s̄I1 .

In our specific simulation scenario, the use of more complex methods does not seem to

be justified by a statistically significant increase in prediction performance, nevertheless deeper

explorations of this important and relatively overlooked topic are in order.

Mean Median Trimmed Mean 90%

Mean st.dev Mean st.dev Mean st.dev

n = 18 Scenario 1 11.749 (4.458) 11.849 (4.269) 11.749 (4.458)

Scenario 2 0.183 (0.046) 0.195 (0.050) 0.183 (0.046)

Scenario 3 0.491 (0.605) 0.506 (0.604) 0.491 (0.605)

n = 198 Scenario 1 7.509 (0.648) 7.582 (0.663) 7.522 (0.660)

Scenario 2 0.120 (0.006) 0.130 (0.007) 0.120 (0.006)

Scenario 3 0.138 (0.023) 0.149 (0.023) 0.138 (0.026)

n = 1998 Scenario 1 7.134 (0.186) 7.144 (0.188) 7.133 (0.188)

Scenario 2 0.117 (0.002) 0.128 (0.006) 0.117 (0.002)

Scenario 3 0.131 (0.003) 0.143 (0.007) 0.131 (0.003)

Table S2.3: Size of the prediction bands for different point predictors, modulated using

s̄I1
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