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Supplementary Materials

Section [S1]includes auxiliary lemmas and the proofs of the theories in the main text. Sec-
tion [S2lincludes additional simulation results mentioned in the main text. A distributed version
of the Oracle-Trans-SQR algorithm as well as its theoretical properties is provided in Section
The proofs of theories in Section are placed in Section [S4 We put the proofs of the

auxiliary lemmas in Section

S1 Proof of Main Results

We first introduce some notations, which will be repeatedly used in the

sequel. Denote the empirical smoothed quantile loss on the pooled data by

(k) (%)

~ 1 Nk oo Tl )
Qfg(w):—(nAn+n0)h > Z/mpT(u)K <u+w Zzw Y; )du.

Y keA,u{0} i=1

Further define the empirical smoothed quantile losses on the target data
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and the pooled target data with the kth source data respectively as

Q) = (b)Y [ prlw (et w2l ) /b

and
ny T oK) (k)
(k) utw x;  —y,
3 (w) = S5O o Ayt ( )du.
(k)
(s +n0)h®) k’e{() K} im1 h
Define the integrated kernel function K : R — [0,1] as K (u) = [* _ K(t

The gradient of QA"( ), @535)(10), and @](1’2) (w) are given respectively by

VO () = 1, +m0) Y S UE((@®) w0 - y) k) - )

keA,U{0} i=1

vai, —1/noZ{K ) w0 =y ) /hu) = 73,
and
VO (w) = /(e +m0) 30 SR (@) w — o) /h)) =}l
K'e{0,k} i=1

Further define Q7 (w) = E[Q; (w)], Q};) (w) = E[Q};) (w)] and Q,1 (w) =
]E[Q\Ef)k) (w)]. The gradients of Q“,iz (w), Q,(g)(w), and Ql(ﬁ,l) (w) are given by
VQho(w) = E[VQ;(w)], VO (w) = E[VQ;)(w)] and VQ,0, (w) =

E[V Qh(k)( w)] respectively. In addition, define the ¢;-ball, fs-ball and ¢;-
cone as By(r) = {0 € R? : ||§||, < 7}, Ba(r) = {6 € R? : ||d]|2 < r} and

C(l) = {6 e R? : ||d]|1 < 1]|d]|2} respectively.
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S1.1 Auxiliary Lemmas

To facilitate the proof of the main results, some technical lemmas are given

here, of which the proofs are given in Section [S5]

Lemma S1.1. Assume C’ondz’tion@ holds. Then we have
[8%(], = {18 — w ], < earn.

Lemma S1.2. Under Conditions we have that

IV Q7 (w™)[la < loprah? /2, [[VQYL (B®)|l2 < lopra(h®)? /2,

and VO (B2 < loprah?/2.

Lemma S1.3. Under Conditions[}3, there exists a positive constan C' such

that

~ 1 B
P (HVQZ‘" (wn) = VQu (w)|oo < 2, /ﬂ) > 1—dp~ —(na +ng) ",
w w nA7, + nO
Ak) ¢ alk) (k) ¢ a(k) C'logp _1
P ||th(k) (/8 ) - VQh(k)(ﬂ )Hoo <2 e + 1o >1—4p—,

and

5 ¢z logp _
P <||VQ§£3<ﬂ> — V@I Bl <2/ ) >1—d4p,
The following two lemmas provide a core result for establishing error

bounds for our smoothed two-step QR estimators. They are related to the

local RSC property of the empirical smoothed quantile loss, which may be
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of independent interest. The RSC property plays a critical role in the theo-
retical analysis of regularized M-estimation in high dimensions (Negahban
et al., 2012; Loh and Wainwright, [2013; |Loh|, 2017) as well as in recent
literature on high-dimensional transfer learning (Li et al., 2022; Tian and

Feng, [2022).

Lemma S1.4. Assume C’onditions@ and@ hold. Supposeny, 2, hor~2log p
and 32v3r < hy < fi/(2lg). Then there exist positive constants a; and ay

depending only on (ki, fi, fu, Yp, V1), such that for all A € By(r), we have

h logp

ANA A R V7244 Ay 2 =Y
(V@2 (w™+A)=VQ, " (w™™), A) > ai(||All5—as (na, + 1o)r”

A |All2),
(S1.1)

with probability as least 1 — ¢y exp(—cologp) for some ¢; and c3 > 0.

Lemma S1.5. Assume Conditions hold. Suppose ng = hsr—2logp,

~

32vir < hs < fi/(2ly). Then there exist positive constants ay and ay de-

pending only on (K, fi, fusYp, V1), such that for all A € By(r), we have

hslogp
nor?

(VY (B+A) —VQY(8),A) > ai(| A2 — ay 1AL [ All2),
(S1.2)

with probability as least 1 — ¢y exp(—calogp) for some ¢; and c3 > 0.

Corollary S1.1. Assume Conditions@ and@ hold. Suppose ny, > h*) /r?logp

and 32v3r < h®) < f,/(2ly). Then there exist positive constants a; and as
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depending only on (ki, fi, fu, Yp, V1), such that for all A € Bo(r), we have

R log p

509 (glk 509 (glk 2
(VQyo (B +28)=VQ,0, (BY), A) = ar(|A]5~as (n + )2

A ]lA]l2),
(S1.3)

with probability as least 1 — ¢y exp(—calogp) for some ¢; and c3 > 0.

Remark 1. Lemma and Lemma characterize the curvature of

the smoothed quantile loss Q\;?:)(w) and Q\g?(w) respectively.

Remark 2. These two lemmas can be seen as a refinement of the local
RSC properties investigated in|Tan et al| (2022), where they restricted A €
Bo(r) N C; for some 150. By employing a peeling technique (van der Vaart
and Wellner, 1996;|Van de Geen, 2000), we remove this constraint to make
the local RSC properties hold uniformly in the ratio l. As we can see from
the proof of Theorem |1|, the establishment of our estimation error bounds

depends crucially on this uniformity.

S1.2 Proof of Theorem [

A1 _ wAr and = B — B denote the estimation bias of the trans-

Let u = w
ferring step and final estimator respectively. We first derive the estimation

bound for & on which we base to derive the bound for v.

Proof. Step 1: Bounds for u.
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We establish bound for & by providing upper and lower bounds for the
symmetric Bregman divergence <V@f£ (w™) — V@fu”)(w““"), u).

Upped bound: Firstly, by the optimality of @™, we have

V@f;’(ﬁf“”) + Awsgn(w™) = 0. (S1.4)

The convexity of Q\fz (w), together with the optimal condition in (S1.4

implies that

0 <(VQu (™) — V@ (w), )
= (—Awsgn(w™), @) — (VQ (w) — VQi (wh), @) — (VQi (w™), i)
(= Awsgn(@™), @) + [ VO (w) — Vi (w™)]| o |||y

A A
+ 1V Q5 (w) [l ||]l2,

(S1.5)
where we used Holder’s inequality in the last inequality.
By the convexity of || - ||;, we have
(—Awsgn(@™), @) < Al [li = A1 (51.6)

Define the deterministic quantity qa, = ||VQ;L4:)(’(UA”)H2. Plugging (S1.6

into (S1.5) and conditioning on the event &, = {A\, > QHV@Z‘:(w““") -
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V@ (wr)] o}, we have

. 1 N N
0 < Al |l = Al [ + SAwllel +qa, l[al

< N[ w1 — Ayl

3 R 1 . .
1+ §>\w||us||1 + 5/\w||usc||1 + qa, ||

< 22, |lws!

3 . 1 . .
1+ SAwllis] = SAwlds 1+ g, Il

3 R 1 R .
< 2Mpemm + §>\wHu$Hl - §>\wHuscH1 + qa, |2,
(S1.7)

where we used the triangle inequality in the third and the fourth inequalities
and the last inequality follows from Lemma

We can derive from (S1.7) that @ satisfies the cone-like constraint

|tsell1 < 3|lts|li + 2A5 qa, || @|l2 + 4ean, from which it follows that
llly < 4llieslls + 225 g, ]2 + 4dwern < (45 + 225, qa, ) @]z + deamn.

By Lemma [S1.2] we have qa, < lopikoh2, /2. Let h2, < Awy/s/(lopks),

then conditioning on &,,, w falls into the set U defined as
U= {uecR:||ul; <5Vs|ulz + 4cun}. (S1.8)

Lower bound: Define D(A) = <VQ\hAw" (wr + A) — V@;i:’;(w““"), A). To

derive a lower bound, we consider the event &, (r) defined as

D(A hwlogp ||Al1
>a|l—a , forall A eBy(r),.
{HAH - ( 2\ T, + ) 1A 3{r)

We set 1 = hyy/co with ¢g = 321}%. We use proof by contradiction to show

~—

NN
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that conditioning on &, N &/, (1),

X log p AwCMT)
<8 | S 24/ —c,. (S1.9
||’U,||2 S dA9CoCrr (’I’LAU T no)hwn + \/g + ar C ( )

In order to make use of the result on &/, (r), we let

haw 2 (1080/ (n4, +10) "\ + Mov/5 + 1108/ (4, +10)has) (S1.10)

such that r > ¢,. Consider w = tu for some t € (0,1). Choose t such
that ||@|, < r and |[@||; > c,. We can verify that @ € U. Denote w™" =
w*" + . The optimality of @ implies that G(@) > G(u) with G(u) =
@fg(w“‘l" + ) + A||w?” 4+ wll;. This together with the convexity of the

function G(u) leads to

o 3 3 ¢ A . o
(VQ;?Z (wA”)—i-)\wsgn(wA"), u) = m(VQfZ(wA")—i—)\wsgn(wA”),u—u) <0.

Therefore, we have
(VO (@) — VO (wn), i) < (—Apsgn(w™) — VO (wn), i)

Then conditioning on &, N &,,(r) and by the same argument in (S1.7)), it

can be shown that

logp

m”ﬂh”ﬂb < 20 V/s||@)2 + 2X .
n w

]| @[ — arazcy

(S1.11)

As long as Sascocy/slogp/((na, +no)hw) < 1/2, using the cone-like con-
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straint for w € U, we can derive from (S1.11]) that

LOTp | logp .
501”““% - (4@1(12006M W—no)hwn + 2)\w\/§> |2 — 2Awerrn < 0.

Consequently, we have a contradiction under the assumption that |||, >

¢y. Thus we can conclude from (S1.9) that conditioning on &, N E,,(r),

~ log p
< Aw Aw!.
]2 S (mﬁno)hw“ Vs + 1/ Awn

With the stated choices Ay, < \/log p/(na, + ng) and hZ, < Ay/s, we can

verify that (S1.10) holds as long as n < /s. Then we obtain

1 3
) slo lo 1 lo 8 1
e e e BV e IR R CTBE)
na, +no n4, + no na, +nNo

and

1
X 5 log p log p )4
ul|l; < 5vsl|lally +4eyn < s + sn +
il < 5l + e 5 [ (B
|
nAn—i—n()

It remains to bound the probability of the event &, N &, (r) when

(S1.13)

conditioning on &, N &, (7).

Mo = +/logp/(na, +no), which follows directly from Lemma and

Lemma [ST.4l Pulling these components together, we can finally conclude

that the bounds in (S1.12) and (S1.13) hold with probability at least 1 —

c1 exp(—cq log p) for some positive constant ¢; and c,.
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Step 2: Bounds for v.

Upper bound: By the optimality of 5An, we have
VQh (@ + 5 + Assgn(6™") = 0. (S1.14)

Consider the event & = {\s > 2||V@§:1) (B) — VQEL? (8)|lo} and define the

deterministic quantity gy = HVQEE{? (B)]]2- Conditioning on &5, the convexity

of @g? (w) and || - ||1, the optimal condition (S1.14]) and Hélder’s inequality

together imply that

0 <(VQY(B) — VQI(8),v)
—(—Assgn(87), ) — (VQ(B), ) — (VO (8) — VO (8), )
(15 = 1610 + qollélls + VL (8) — VL (B) Il

Ay ~ ~ )\6 A~
<As2[107 "l = 19llh) + aolloll2 + - ll0[h,
(S1.15)

A N A
where 6" =3 —w? = 4§

— b =8N — .
By Lemma , we have gy < loul,@h%/l Choose hs < v/ As such that

lopt1kah3/2 < As/4. Now combining this with (S1.15)) leads to
N Ay A
[0l[; < 8107 [l < 8(carn + [|4lh). (S1.16)

Lower bound: To derive a lower bound for <V@1(105) (B)— V@g? (B),v), define

DO(A) = <V@§3§)(,8 + A) — V@g(ﬂ), A) and consider the event &(r’)
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defined as

{D(O)(A> > a, (1 — ay halogp HA”1> forall A e ]]332(7“/)} .

A3 nor? || Al
We set 1’ = hg/co with ¢y = 32v?. We use proof by contradiction to show

that conditioning on & N (1),

N lo . As(|lwlls + ¢
[o]l2 < Bazcoy ﬂ(||u||1 + cnm) + \/2 (el + ear) =:¢,. (S1.17)
n0h6 aq

In order to make use of the result on (1), we let

hs Z (logp/no)"*||@ll + v/log p/ (nohs)||a[|x (S1.18)

such that ' > ¢,.

Choose t € (0,1) such that t||v||» <" and t||v|]2 > ¢, . Denote ¥ = tv

and B = B + ©. By the same arguments that lead to dSl.l?)I) and (]Sl.lGI),

and conditioning on £5(r’), we deduce that

log p
nohs

a1 (|95 — azco 19[4 ]|]|2) — 2Xs]|6 |1 < 0,

which contradicts with the assumption that |||y = ||| > c¢,.

Combining (S1.16|), (S1.17), and (S1.13) gives us

[6 < 0+ 5y/logp/(n4, + o) (S1.19)

and

[CIPRS

lo . _
Sl + vATal (31.20)

n
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With the stated choices A\s < +/logp/ng and h} =< As, we can verify that

(S1.18) holds as long as ||u||; < 1. Then we obtain

. lo i lo i lo i
foll s 5 (2E2) (2 ) v (E2) L s

na, + no no

It remains to investigate the probability of the event & N E5(r’), which
follows directly from Lemma and Lemma [ST.5] This completes the

proof of Theorem 1. O

S1.3 Proof of Theorem [2

Proof. Recall that T®) = Q(©) (B(k);zga)—@@) (B(O);Iga), where QO (w: Z) =

VIZ Y er pT(y(O) — (wi(o))Tw). We proof the result in Theorem 2 by show-

i

ing that under a proper choice of t, we have

P(inf 70 > QOB . ) v 0.01) > sup T®) 5 1. (S1.22)

ke As keAy
In order to establish (S1.22)), we first investigate the bound of Tk,
Define QO (w) = E[Q©® (w; Z3*)]. We have the following decomposition:
7% ={Q(B") - QW(8)} + {QV(B": 1) - QU (B": ) |

{ ;Iga)}
{A

QU(BY: 1) - QU (BT ~ (Q(BY) - QV(8) ) }

~(0)

(S1.23)
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We analyze the above four terms separately. We start with [1(k). By the

mean-value theorem, we have

T

1
1 = (8%—p)"E [ / (@) fuoj0 (@) (8 — B))dt| (89—,

for some t € (0,1). Therefore, under Condition , we have

sup ]()

keAy

3 . k .
<Xsup [|B% —B|2 and inf 1Y > A inf [|B® - B|2.
ke A, ke As ke Ag
(S1.24)

(k)

Now we investigate Iék). Let ugk) = (mgo))T(ﬁ(k) — 0B ) and V. (e) =7 —

I{e < 0}. By Knight’s Identity, we have

9
L' |Iva| > o0 = @)Y = oy~ ()7 8Y)

ZGI"a
1 ONT/ ak) k) ©) , (k)
:|Iva Z(wz ) (B =B )V(e +u)

@ )T (B —p®)

- Z/ {e” <t — o™} —1{e” < —uP1at.

Since | W, (-)| < max{r,1—7} and |I{e” <t—u®} —1{” < P} <1,

we have

|] |< Z | 0 I@(kz A k — Va| Z (k

(ISUAG

II%‘I

Conditioning on Z, {Zl( )}iezga are independent sub-gaussian random vari-

o (k
ables with parameter no more than fo,B( - B™]12. By tail bounds and
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noting that |Z3?| = ng/2, we obtain that

lo ~ (k) _
P(|1§’“|s (m%\/ - p) 14 —ﬁ(“Hz) S1opt (5125)
0

Similarly, we can derive that

lo - (0) _
P <|J§°>| < <u1+2v1 gp) 13 —g||2> >1-pl  (SL26)

no
From the result in|Tan et al.| (2022)), we have ||,3(0)—,8||2 < Qo = +/slogp/ng
with probability at least 1 — p~'. It remains to bound HB(k) — BV for
k € [K]. The following lemma provides a high probability upper bound for
the /5 estimation error of B(k). The proof of this lemma is similar to the

proof in the first step of Theorem 1 and is relegated to Section [S5.6]

Lemma S1.6. Under the conditions in Theorem[3, then for the estimator

B(k) obtained from the Trans-SQR algorithm, then we have

P (e s ) =1-5p7",

where Q, = /s'log p/(ni, +no) + (logp/(ny + 1)) 4/ + (logp/(ny, +

no))3/8(5,)_1/877,-

By Lemma and union bounds, we can conclude from ([S1.25) and

(S1.26]) that there exist a constant C' such that

lo
P (II&’“H +I| < (ul 420 fp) O(QmaXmo)) >1—8p L.

0

(S1.27)
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Lastly, we analyze [ ik). Again by Knight’s Identity, we obtain that

~E - ~ @) 8%) - p.(4” - (=")B)]

1 1
T 7 Z{Zil —Ez} + Tl Z{Zm —Ez;p},
|1 Z5?| |Z5°|

ielg” €Ty
where 2 = (2”)7(8 — B W) and zp = [P <
t} —1{\” < 0}dt. Note that Ez; = 0 and ¥,(-) is bounded and hence sub-
gaussian with parameter less than 1. Therefore, {zﬂ}iezga are vi| ,B(k) — B2
sub-exponential. Besides, |z;| < |(w§0))T(5(k) — B)|. Therefore, {zis}icrye

are independent sub-gaussian random variables with parameter almost v?||3* —

Bl|3. By tails bounds and union bounds, we obtain that

N

lo
P <|fi’“’| < 6oy —22) 3" —mu) >1-3p " (S1.28)

Combining (S1.23)), (S1.24), (S1.27)), and (S1.28) leads to

N _ lo
sup T® < X sup 8% — B2 + 6011/ —=L sup |8 — B2 + Ccn,  and
keA, Ny keA,

ke Ay

. 1
inf T7® > X inf |B® — B2 — 6011/ —22 sup [|B® — BlJs — Cen,
No keAg

ke Ag T ke
with probability 1 — 11p~!, where ¢, = (i1 + 2v1+/1og p/10) (Qmax + Qo).

Under Condition |7 infye ¢ T > A/2infre ¢ B™ — 8|3, and then we

can choose Asupye 4, 18" — 8|12 + /log p/no SUDje (] 18%) — Blla + cn S
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t S A/2infrea; 8% — 8|2 such that (S1.22) is satisfied. This proves the

claimed result. O

S2 Additional Simulation results

S2.1 QR Transfer with More Heterogeneous Designs

In this subsection, we conduct additional simulations to investigate the
impact of heterogeneous designs on the performance of the transferred es-
timators. Specifically, we consider the same setting as that in Section 4
of the main paper under Gaussian errors with the only difference in the
generation of covariates in the sources. We consider (¥ ~ N,(0,X) with

> = (0.7 , and z® ~ N (0,,% + e€”) with € ~ N (0,,6°1,) for

1<iy<
k=1,...,K. We fix h = 10, 7 = 0.5 and consider A € {4,8,12}. We
vary 0 from 0.5 to 1.5 with stepsize 0.2 and evaluate the change of perfor-
mance with respect to 6. The average estimation errors of the five methods
(41-SQR, Oracle-TSQR, Oracle-TQR, Naive-TSQR, and TSQR) over 100
replications are displayed in Figure [S2.1]

As we can see from Figure [S2.1] the performance of our Oracle-TSQR

as well as the TSQR remains stable as the heterogeneity parameter o of

the designs increases, while the performance of the Naive-TSQR and the
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Gaussian error

A=4 A=8 A=12

0.50-

Estimation Error

PR 3
-
e

-, > )
0.25-:’,0---.-.,.__—0--... ’,__(’ —-—

-
| 2P 1N -0~ hel=
o o-..9--® r__._--.--.--'-."".

' ' ' ' ' ' ' ' ' ' '
050 0.75 1.00 125 150050 075 1.00 125 150050 0.75 1.00 125 150
[}

method ® L1-SQR ® Oracle-TSQR ® Oracle-TQR @ Naive-TSQR ® TSQR

Figure S2.1: /5 estimation errors of various methods with respect to § under Gaussian
errors at quantile level 7 = 0.5 and n = 10, averaged over 100 replications. Here the

horizontal axis ¢ represents the heterogeneity parameter of the designs.

non-smoothed Oracle-TQR becomes slightly worse as ¢ increases. This

illustrates the stability of our smoothed QR transferring algorithms.

S2.2 Sensitivity to the smoothing bandwidths

We investigate the sensitivity of our Oracle-TSQR to the smoothing band-
widths in this subsection. Specifically, we consider the same setting as
that in Section 4 of the main paper under Gaussian errors with n fixed

at 10 and A fixed at 8. For simulations in the main text, we choose the

bandwidths as max{0.05, \/7(1 — 7){log(p)/n}'/*} as recommended in
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et al. (2022) for a specific n in the corresponding problem. For example,
for A = 8, we have h,, &~ 0.14 and hs ~ 0.07 at the quantile level 7 = 0.5.
Here we consider different choices of bandwidths (A, hs), both of which
take values in {0.05,0.10,...,0.3}. There are 36 different combinations in
total. For each combination choice of bandwidths, we replicate the simula-
tion 100 times, and here in Figure we present the average fo-estimation
errors for each combination. For better comparison, we also report the av-
erage estimation errors of the five methods (¢,-SQR, Oracle-TQR, Oracle-
TSQR, Naive-TSQR, and TSQR) with the smoother ones using bandwidths
max{0.05, /7(1 — 7){log(p)/n}/*} at n = 10 and A = 8 under different
quantile levels.

As we can see from Figure [S2.2] the estimation errors are not very sen-
sitive to the choice of the smoothing bandwidths h,, and hs under each
quantile level. Let us take 7 = 0.5 for illustration. As reported in Table
[S2.7], the average estimation error of Oracle-TSQR chosen by the recom-
mended bandwidths in Tan et al. (2022) is 0.1307 with a standard deviation
of 0.0471. We can see from the middle panel that the estimation errors un-
der various choices of h,, and hg fall between 0.1314 and 0.1449, the range of
which is approximately 1/3 of its standard deviation (0.0471). This suggests

that the performance of our proposed Oracle-TSQR is not really sensitive
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1=0.2 1=0.5 1=0.7

03-
Estimation error

02-

hd

0.1-

0?1 0:2 0:3 0?1 0?2 0:3 0?1 0?2 0:3
hw
Figure S2.2: /5 estimation errors of Oracle-TSQR with different choice of bandwidths

under Gaussian errors at 7 = 10, A = 8, and quantile levels 7 = 0.2,0.5,0.7.

Table S2.1: Estimation errors and standard deviations of various methods at n = 10
and A = 8 under different quantile levels, with the smoothed estimators based on the

recommended bandwidths.

L1-SQR Oracle-TSQR Oracle-TQR Naive-TSQR TSQR

T {y-estimation error (standard deviation)

0.2 0.7530 (0.2530) 0.1631 (0.0479) 0.1918 (0.0532) 0.6804 (0.1935) 0.1609 (0.0488)

0.5 0.5897 (0.1840) 0.1307 (0.0471) 0.1466 (0.0471) 0.6202 (0.1859) 0.1322 (0.0485)

0.7 0.6153 (0.1903) 0.1406 (0.0408) 0.1648 (0.0516) 0.6353 (0.1767) 0.1462 (0.0482)

to the smoothing bandwidths. We also note that under various choices of
bandwidths, the estimation errors of our Oracle-TSQR all perform slightly
better under the non-smoothed Oracle-TQR, which is 0.1466. This again
illustrates the benefit of our convolution smoothing.

Similar conclusions also apply for the quantile levels 7 = 0.2 and 7 =
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0.7 and thus omitted here. In conclusion, we recommend to choose the
bandwidths as that in |Tan et al. (2022), although in practice one can also

use CV for selecting the bandwidths for optimal numeric performance.

S3 Distributed QR Transfer

S3.1 Distributed QR Transfer Algorithm

Here we adopt the approximate Newton-type method proposed by [Shamir
et al.| (2014) and further examined in |Jordan et al| (2019) and Wang et al.
(2017)) to solve the transferring step in Algorithm|1|in a distributed manner.

With our loss of generality, we set A, = {1,...,|A,|}. Let o denote a
|A,| + 1-dimensional vector with the k + 1-th element being «j. We first
generate the pilot sample sizes {n}}rcaufoy from multinomial distribution
M(n,, o) with n, = po(n.a,+ng) for some py € (0,1). For each k € AU{0},
we randomly select nj samples from the k-th site, with the index set denoted
by Dj. Transfer {((:cik))T, yZ(k))}ieD; from the k-th site to the target site.

Denote the empirical smoothed quantile loss on the pilot pooled data
by

(k) (k)

@zxw):n*lh NS / p7<u>f<<“+“’ " )du

* keA,U{0} i€D;;
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. The gradient vectors of @;; (w) are given respectively by

VO (w) =1/n 3 STHR(@") w - y®)/h) — 7.

ke AU{0} i€D;,
Given an initial estimator w'®, consider the first-order Taylor expansion

of @\;iz (w) around w®:
Qi) = Q@) + (V7 (@) w0 — @) + BA(w),  (53.1)
haw hw haw ? ) .

where R (w) is the linear approximation error. In the distributed environ-
ment, the gradient V@fj)(ﬁ)(o)) can be easily be communicated. Therefore,
it suffices to find a good replacement of R (w). Here we propose to use
the analogous approximation error from the loss of the pilot pooled sample,

that is, we approximate R4"(w) by
RA(w) & R (w) = Q. (w) = Q;, (@)~ (VQ;, (@), w—a). (33.2)

Plugging (S3.2)) into (S3.1)) motivates us to consider the surrogate smoothed

quantile loss:
Qw) = @ (w) — (VQ;, (") - V51 (), w).

Consequently, a communication-efficient penalized estimator for w*" can

be obtained by solving

wW € argmin - Q(w) + \|jw]|;. (S3.3)

weRP
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The above procedure could be done iteratively. In fact, we can define shifted

losses Q) (w) = @;‘L(w) - (V@Z*(ﬂy(t_l)) - V@\fl(zb(t_l)), w) and obtain

a sequence of estimators by solving W € argminQ® (w) + \||w]|; for
weRP

t =2,...,T. The details for our distributed Trans-SQR are presented in

Algorithm 3]

Algorithm 3 Distributed-Oracle-Trans-SQR Algorithm
Input: Target data (X(O),y(o)), source data {(X(k),y(k))}k.eAn, pilot pooled sam-

ple {{(:cz(-k)7yz(k))}iepz}keAnu{o}, an initial estimate @'*), number of iterations 7T,
penalty parameters (Aw, As, {\¢ }1—q) and bandwidths (h, hs, hs)-

1: Distributed Transferring: For t = 1,...,T, compute

@® « argmin - QW (w) + A |lw]|1 (S3.4)
weRP

2: Debiasing: Compute

~(T T n
3" 1-8QR{(@, 5 — (@) @ T)}7,5 As, )

Output:

As we will show in Theorem [S3.1} a “good” estimator w® is needed
to guarantee the theoretical properties of w'™). Taking the heterogeneity

among the target and sources into consideration, we propose to obtain w®
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on the pilot pooled sample by solving

w©® € argmin  Q}_(w) + A, ||wl|;. (S3.5)

weRP
The optimization problem in (S3.4)) could be solved by the local adaptive

majorize-minimize (LAMM) algorithm (Fan et al.| [2018; Tan et al., [2022).

S3.2 Theory for Distributed-Oracle-Trans-SQR

Here we establish the analogous estimation error bounds for our distributed
QR transfer estimator. In addition to Condition [3| we impose the following

boundedness condition on the covariate vectors.

Condition S3.1. There exists some constant B > 1 such that maxc, ]xgk)\ <

B almost surely for all k =0,..., K.

To better understand the mechanism of the distributed QR transfer
estimator, we first present a deterministic result based on some “good”
events. Define the fo-ball By(r) = {d € R? : ||§||2 < r} and the cone-like
set A = A(s,n) = {u € R? : ||lu|; < 5vs||ull2 + 4eyn}. Consider the
events E(r) = {w® : w® — wh € By(r) N A} and Ep(Mw) = {dw >

2| V@5 (whn) — Vi (whn)]| oo }.

Proposition S3.1. Assume Conditions [I{J and hold. Define p. =

Viegp/(na, +19)/hw + \/1ogp/ni/h. for some h, > 0. Let 0 < hy <
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he <1 and M\ = Ay + p satisfy p < max{s 2(h2, + 1), Tn/5px + 1ps}
and h, Z \/log p/(n.he)n + Aiv/s + vV Ain. Then conditioning on the event
Eo(r.) N Ew(Mw), the one-step estimator w obtained by satisfies

wM e A and

inf P ([|[@% — wly < A5 + b2, + pors + o131 + pan)
BeO(s,n) (836)

> 1~ crexp(—cplogp),
where g = Spx + hy, 1 = (3*1/4\/h* + 81/4\/E)\/T_*+ s V4 + VA and

P2 = \/3px + \/px + \/10g p/ ().

The upper bound in (S3.6|) can be decomposed into three parts: (i) the
first two terms Ay+/S + h2, is the nearly optimal rate when all transferable
sources are used and there’s no heterogeneity among the sources and target;
(ii) the third term @or, is a contraction of the initial estimation error given
by @@ and (iii) the last two terms could be seen as the price we pay for
the heterogeneity among used data sets.

With large enough samples in the pilot and pooled sources, that is,
n, 2 s’logp and na, +no 2 s3log p, the contraction factor ¢, can be
strictly less than 1, which will consequently improve the convergence rate
of w.

When homogeneity is assumed among the sources and target—namely,

n = 0, Proposition degenerates to Theorem 11 in [Tan et al.| (2022).
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Therefore, it can be seen as an extension of the established results for
distributed smoothing QR estimators in [Tan et al.| (2022)) to allow for the
existence of heterogeneity in the high-dimensional setting.

~ (T
We are now ready to present the estimation error bounds for ﬁ( )from

Algorithm [3|

Theorem S3.1. Assume Conditions[]{J and hold. Suppose that n, 2

s?logp, na, 2 s*logp, n < sy/logp/n. and n < (s°logp/n.)'8. Choose

the regularization parameters (Ay, As) and bandwidths (hy, hs) as that in

Theorem . Further choose h, =< s'/?(logp/n,)"* and M\(t > 1) as

log p {32 logp s3logp } log p
Ao | —28P 4 max , JBE
na, + ny My na, “+ ny My

With the initial estimator W given by and the number of itera-

tions T < [log((na, +n0)/n.)|, the distributed QR transfer estimator B(T)

obtained from Algorithm[3 satisfies the error bounds

. ~(T lo 1/2
inf P (Hﬂ( "B S s (i> +an+n) > 1—c; exp (¢ log p),

BeO(s,n) nA" + ng
(1) logp) /* logp \*
inf P - < el
paf BB =Bl 2 ( o ) ﬁ(mﬁno) Vi /a

>1—cpexp(—calogp),

where a, = (slogp/n.)*®,/3m.

Remark 3. In comparison to the non-distributed results in Theorem [1], a
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stronger condition 1 < (sy/logp/ng) A (n3slogp/ng)t/* is needed in the

distributed setting for the improvement of estimation error.

S4 Proof of Results in Section S1

S4.1 Proof of Proposition

Proof. For simplicity, we write w = w¥ and 2 = w — w?. By the opti-
mality of @, we have VQ(w) 4+ Aysgn(w) = 0. Next, the convexity of Q(-)

and || - [|; implies that

0 < (VQ(w) — VQ(w™), 2) = (—\isgn(w), ) — (VQ(w™), 2)
(S4.1)
< Mflwt ||y = Afl@ls — (VQ(w™), 2)

Define the vector-index random processes
A A A A A A,
Ho(w) = VQ;, (w)-VQ; (w™), and H(w)=VQ,"(w)-VQ,"(w™).

Note that E@Z('w) = ;i" (w). Recall the definition of U in (S1.8)). For
r > 0, define the suprema of random processes over our interested region

W = {w : w — w? € By(r) N U}

Mo (r) = sup [|Ho(w) — EHo(w)l|o, TI(r) = sup |[H(w) — EH(w)|[

weWw weW

and the deterministic quantities

q(r) = sup [EH(w)—EHo(w)l|loo,  qa, = [VOu! (w2, and  q. = q(r.)+qa,.

weWw
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Following the proof of Theorem 11 in [Tan et al. (2022), we can show

that

(VG 2] < {11 + o) + 52 Pl + a0l (542

conditioning on the event & (r,) N &y (Aw). Combing (54.1) and (S4.2) and

using similar arguments that lead to (S1.7)), we arrive at
3 s 1 N
0 < 2M\enm+ (5/\1,0\/5“'_ g )| 2|2 — §>\w||Z$c||1; (54.3)

which implies ||Z]}; < (4v/s + 2(A1) 7 q.) || Z]l2 + 4eun < 552 ||2 + deu,

provided that A\y = Ay, + p with p being chosen such that

D=

<

1 1
q«S~ A1 and 5)\1" + I(r,) + p(ry) < 5)\1. (S4.4)

DN | —

Consequently, we have w € W.

The proof for the upper bound is similar to that used in Theorem [I]
Define D(A) = (VQ(w™ + A) — VQ(w™), A). We have that D(A) =
<V@2 (w4 A)— V@Z (wh7), A). With (@;12(), Puw, M, +1o) in Lemma
replaced by (@;‘;(), h.,n), we can show that with probability 1 —

c1 exp(—cy log p) occurs the event

h.logp
Nyr2

Eulry) = {D(A) > a; (HAH% — ay ||AH1HAH2> , forall A€ IB%Q(T*)} .

We set r, = h,/cy with ¢g = 32v}. Further choose t € (0,1) such that

t||z]l2 € By(r,). Let 2 = tz and w = w™ + 2. Then using the same
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arguments that lead to (S4.3|), we can show that

as long as 2¢,s~ /2 < \.
Conditioning on &, (r,), which provides lower bound for D(%), we obtain

that

log p

a1zl — arazco HZH 1Z]l2 < 2Mieam + 200 Vs 2]z (S4.5)

*

Via proof by contradiction, we can deduce from ) that

A
77+4/\1\/_+2 U/

(S4.6)

I1Z]]2 < 10agcocns

by choosing

hy 2 \/logp/(n.h)n + Mivs + v/ in (54.7)

such that r, > c.
It suffices to choose a A; large enough such that (S4.4) holds. To facil-
itate the proof, we present upper bounds for Ily(r),II(r), and ¢(r) in the

following two lemmas, with their proofs relegated to Section [S5.7 and [S5.8]

Lemma S4.1. Assume Conditions hold. For any r >0 and x > 0,

xT

with probability 1 — e™7,

2slog(2p) log(2p) + z Vs(log(2p) + x)
———+ 0 Cs
na, +no (na, + 10)hw (na, + 10)haw

1
H(?”) ST’ (Cl E

2log(2p) log(2p) + =
C ———— + Oy —————
( o na, + No ’ (na, +10)hw
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where Oy = 25k, B?, Cy = (2ky fups)'/?, Cs = 65k, B%/3, Cy = 4C1cpr/5
and Cs = 4Cscp /5. The same upper bound holds for y(r) with (na, +

no, hw) replaced by (ny, hy).

Lemma S4.2. Assume Conditions ] hold. Forr > 0, we have q(r) <

M2l0k1|h* — hw|7“

Lemma implies that with probability at least 1 — 2/p,

1 log p 1 /logp
H * H * < * 7 - 7 -
() + °<”~’”V5(hww/n,%+no+hg/ 2
1 | logp 1 /logp

+77<hw nAn+n0+h* ne |’

provided that 0 < h, < h, S 1.

Moreover, Lemma and Lemma together imply that ¢, <

lo(pi1koh?, /2+pokihar.). Therefore, with hy'y/log p/(na, + no)+h;'/logp/n.

denoted by p,, we can choose

p = max {s~2(h2, + hur), re/sp. + npa}
such that (S4.4)) holds with high probability. The claimed result follows
directly by plugging the rate of A\; into ([54.6)). n
S4.2 Proof of Theorem

Proof. The proof of Theorem is by verifying the conditions of Propo-

sition and applying it repeatedly. We start with the first iterate wW,
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Let A\ = Ay + p1 with p; < max{s*1/2(hfv + hary), re/Spe + nps . With

bandwidths h, < v/s(log p/n.)'/* and hy, < (slogp/(na, +ne))"*, we have

{_1 | logp (long))i }
P1=XMaX S 20 s, 4 [ ——— + | —— | 10,
nAn+n0 STy

s3logp i s?log p i
o= (22 + .
(n.An + 77,0) Ty

Then we can verify that (S4.7) is satisfied provided that

1 1 1
na, +no\* °] 8 4] 4
r*gmin{l, (M> },ngmin{si,(s ng) },T’*T),S (S ng) .
ST Ny Ny

(S4.8)

with

Examining the proof of Theorem (1|, we know that with high probabil-
ity w® — wt € By(r,) NU with r, < +/slog /n, + (logp/n*)l/‘*\/ﬁ +
(log p/n.)*/®s~1/8n. With the imposed conditions on 7, we can verify that

r. 2 +/slogp/n, and that 1} is satisfied for the first iteration. There-

fore, by Proposition and the first part of Lemma [ST.3] we obtain
@™ — whr||y < Copors + Ci(rw + h2,) + Copr/n + Cspan =: 11, (54.9)

where 7, = Awy/s and (po, @1, p2) are given in Theorem [S3.1l Define
v = Copo. With sufficiently large sample sizes, i.e., n, = s?logp and
na,+no 2 s3log p, v can be strictly less than 1. Consequently, w'® reduces

the estimation error of w®) when the remaining terms are relatively small.
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To move on to more iterations, we first note that

1 1 1 3

slogp ® log p 4 slogp\* _1 [logp)?®

< \/ = — < 1 .
o ( Ty ) rr (n.An + no R Ty s Ty

For t = 2,...,T, consider the event &(r;,) = {w"Y — w € By(r,) N U}

with

1_t

rei= e+ {C1(rw + ) + Coory/n + Capan 5 —77 '

For t > 2, we set \; = A\, + p; with

- 1 log p logp) *
P X Mmax s 2T, + n
na, + ng STy

= max {s’%gogr* + s*%@O {(rw + hi,) + 901\/5 + 90277} )

1
lo lo 4
| logp +< gp) n}-
nAn+nO STy

As long as (S4.8]) is satisfied, it can be verified that

1
h, 2 Oghpn + M5 + \/Xn, for all t > 2.

* ~
# 1 Ux

Then a repeated application of Proposition gives us that, conditioning

on & 1(ri—1) N Ew(rw), w® — wA € U and H'&J(t) — w|y < r, with

probability at least 1 — ¢; exp(—cz log p).
Let the number of iterations T" be chosen as [log(r./r)/log(1/7)] such

that v'r, < r.,, we have

3
- slo 1 (1o 8
Hw(T)—wA"||2§/\w\/§+hi,+( n”) r*n+s—i<§p) .

* *
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Plugging the rates of A\, and r, leads to

3 3

lo slo 8 1 [ lo 8
(1) Ayl < | S108D 8P -5 (282) ") (s4.10
[|w w | S nA,,+no+ . Vi+s . n. ( )

This together with the fact w® — w € U gives us

3
. lo lo 8
ottty S oy [ (S22) e s
n *

The claimed estimation error bounds for B(T) — B follows by combining

(S4.10)), (S4.11)), (S1.16|), and (S1.20]). This completes the proof. ]

S5 Proof of Auxiliary Lemmas

Here we provide the proofs of all the auxiliary lemmas mentioned in Section

and Section [S4]

S5.1 Proof of Lemma

Proof. Since 6 = M;&7 ZkeAnu{O} ar M ;6% by Condition |4, we have

1641, < | M M1 [16%]]y < earn.
n
ke A, U{0}
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S5.2 Proof of Lemma

Proof. Note that

gk _ )

ke AU{0}

where d®) = a:(k)T('wA” — w®). By integration by parts, we obtain

k k
E{[_( (d( )h_ el )) zc(k)}

- / K (u) Fevy ) (— haptt + d(k))du

hewu+d®)
= FLoy0 () / K(u / (Lot (£) — Lo (0))didu,

which together with the Lipschitz condition on feu) g (+) leads to

4k — B
E{|K | ——
= {7 (57

The moment condition on sup,cgp1 E|(az(k))T'u,| and ([S5.1)) together imply

[
w(k)} — Fewjem (d* ))‘ < 50 Fahz,. (S5.1)

that

_ [ d
”VQ;:‘S(“’A"HE = Z aglE {K (h—) — Few)fc(k)(d(k))} x®

ke AU{0}

lokoh?
< % Z aEx®
ke AU{0}

lokoh? l h?
2 peAl{0} uesr1 2

(S5.2)

where the first equality follows from the definition of w7 in (2.3)).
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The proof for [VQX), (8™l < lopra(h®)2/2, and [|[VQL (B)]|> <

lopt1k2h3 /2 is similar and thus omitted here. O

S5.3 Proof of Lemma

Proof. Let cf,’?=f<<<<x<’“>>Tw<'f>—y§’f>>/h )= and (%) = K () wi—

v@An ('lU'A") _ VQAU (wA")

+ o Z Z{CHCL‘ - [z?w(k)]} (85.3)

keAU{0} i=1
P S5 (B - Eica).
Ay T L 0t0y i=1

We start by analyzing the second line in ([S5.3). Note that since |Cl(li)| < (1—

T)V T, {{Ci(ﬁ)}?:’“l}ke Aufoy are independent sub-Gaussain random variables

with parameter bounded by 1.

In addition, £ is sub-Gaussian with E[(a;(l-f)

)2 < 4v? for cach j =

1,...,p. For a mean zero sub-exponential random variable z with pa-
rameter (v, ), we have E(e!®) < exp(v?*t?/2) for |t| < 1/a. Therefore,

{{(955;“))2 — E[(ng))Q] bk Yreaugoy are sub-exponential variables with param-
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eter (256v, 16v7). Applying Bernstein’s inequality gives us

Nk

1 (k)y2 (k)\2

0 keaufoy | i=1

+ t? t
= zeXp{_nAn2 ~min (256 16 2)}
U1 U1

By choosing t = 32v{,/log p/(n.a, + no) and the union bound, we have

>1

1 () (k)2 logp
P [ max —— 7;;)* —E > 3207
S oy, 2 |20l o

< 26Xp<_ logp)v

which implies the event &, := {maxje[p 1/(na, +10) Xpeavqoy 2oim (7 )) < cz}

occurs with probability at least 1 — 2p~! for some constant ¢, > 4v? +

32vi+/log p/(na, +no).

Therefore, we have

_ k) (k) | c.logp
g » T 10 kE%:{O}ZZ—: {CZ L KZ v ]} = na, + No
Pl 2 Z{czlsc ~E[Wa])|| > &fﬁoxe L R(ED)

ke AU{0} =1 .

czlogp
< pmaxP 5 5 {(Z k) B )x(k) } > 2 [ ——— | +P(&;
iclp) A, na, + 1o ke AU{0} i=1 v Kl | na, +nNo (&)

4c, + lo
< WEx |exp | — cz(na, +no)logp n

2
n k)N 2 =
ZkeAU{O} D it (Iz(‘j)) p

4
<=,
p

Here we use Ex to denote the expectation with respect to {af:(k)}ke AU{0} -



S5. PROOF OF AUXILIARY LEMMAS 36

It remains to bound the third line in (S5.3)). By the mean value theorem,

KN T k KN\ T
C(g)x(k) LK<(;L‘£ )) 'w(k)_|_vi( )(CCE )) (wA—w(k))) )

—ap(k)
io Tij I ™ w—w'").

Under Condition 2(c) and Condition 3, we note that Cl-(z)xz(?) is a (cp +
1)%n* MZv?-subexponential variable. By tail bounds of subexponential vari-
ables and union bounds, we have

lo
A o Z Z{Czk) v K-z,k) (k)]} > (CM+1>MKU177U%
"0 e asqoy i=1 A, T 1o

o0

with probability less than (n4, + no)fl. This completes the proof of the
first part by union bounds and choosing C' = 2max{c,, (car + 1) Mgvy }.
The proof for the second and the third part is similar and thus omitted.

]

S5.4 Proof of Lemma

Proof. Define dl(k) = (mgk))T(’wA" —w®). Note that

*N)T (gpo W
D Z{ < ) ( h:A) y)

"0 e ooy i=1

- d(k) (k)
- K G — & AT
( hw

> o Y @)

Y keAU{0} i=1

where the event E ) is defined as E; ) — {|e(k k)| < hw/2}ﬁ{|ATm§k)| <

1A |she/(2)} on which [y — (@™ (w4 + A)| < hy for all A € By(r).

7
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The last inequality follows from the mean value theorem along with Con-
dition 21

Define the function

U2, if |U’ S ga
Or(u) = {u— Rsign(v)}?, if £ <|u| <R, (S5.4)
0, if |u| > R,

Note that ¢g(-) is R-Lipschitz with homogeneity property ¢.(cu) =

¢(u). We also note that

[uI{R/2 < |u] < R} < w’I{|u| < R}, (S5.5)

which implies
D(A) 1 AT N
HM%WHWMEZZ%M 29 /AN, ($5.6)

keAU{0} i=1

(.

v~

Do(A)

with " defined as I{|e" — d®| < hy,/2}.
Under Condition [I} we have

EO | 2H) = hay fu g (d9)]

A fhe /2 i
< | fet 0 (E) = Fetrr g (d™)] < Toh2, /4.

A" —hap /2

Under Conditionand applying Holder’s inequality, we have \dgk)| < Hzcz(k) oo || 6747 —
5(k)||1 < by. Given that hy, < f;/(2ly), we conclude that

—flh < IE( B g k)) < = fuhw almost surely. (S5.7)

| ©
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Combining (S5.5))-((S5.7)) leads to

ATz®
E | Ohew/cr) | 77— ng)
T4 .
7flhw [ T (k { T ) hw||A||2
> E|(ATz") 1] |ATa <=1
8[lA|13 4r

Cauchy-Schwartz inequality and tail bounds for sub-Gaussians imply that

(ATal)2 f Arg0) o Pel Al
HAHz S A

2P| M) (85.9)
- HA||2 - 4

<dviexp ( 1287207 ) <7

as long as r < hy,/(3207).

E

Plugging (55.8)) and (S5.9) into Dy(A) gives us

E[Do(A)] > ;—;fﬁp, for all A € By(r), (S5.10)

provided that 32v?r < hy, < fi1/(2lp).

Now we bound the random fluctuation Dy(A) — E[Dy(A)] over A €
Bo(r). We first consider the set B, = Bo(r) N C(I). Further define 7, =
supacp, |Do(A) — E[Do(A)]|. Following a similar argument in the proof
of Proposition 4.2 in [Tan et al.| (2022), it can be shown that there exist

positive constants C; and C5 such that

fuhwlogp fuhwlogp
Z, < Chogly |2 o 4 o, [ Lew ol S$5.11
L= (na, +mno)r? ? (N4, +no)r? ( )
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with probability at least 1—p~!, as long as hy, 2 logp/(na, +ng). Combing

(1S5.6)),(S5.10) and (S5.11]), we can conclude that

/ Juhaw logp
/ilfl')/p - ClUll/{ll W—HO)TQ’ for all A € Bl, (8512)

as long as Cg\/fuhw log p/((n.a, +no)r?) <5 fiyp/32.

D(A)

>
IA]

TS
N | —

Now we employ a peeling technique (van der Vaart and Wellner, (1996;
Van de Geer| 2000) to extend the bound in (S5.12)) to one that is uniform

in [|All1/||All2. Consider the event

D(A) _ 1 fuhwlogp || AL
&= > —K — Cink , forall AeS(r);,
{IIAH% = gl = G G AL ")

where

1/2
Al fi (na, o)t

S(r)={A € By(r) : .
=1 () [Ally = 2C101 fuha logp J
Define D4 = {(X™ y®)}, 4 and the functions

1 D(A)

FAD) =~k fryp — T

270 A3

along with

fuhw logp HAH1
) = Ciolkyy | ——m—, d h(A)= :
g( ) 1V1LR; (nAn —|—no>7"2 al ( ) HAHQ

The inequality (S5.12)) implies that

P ( sup f(A; D) > g(€)> < -, forany ¢>0.
AeS(

r),h(A)<L

=
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Since 1 < h(A) < fi/(2C1v1)\/(n4, + no)r?/(fuhw log p), we have

Cronre Juhwlogp  Kifiy

over the region of interest. Define the set

g(h(A)) €

Vie={A]2"'b < g(h(A)) <2™}, m=1,..., M,

where b = Cv1k;\/ fuhw log p/((na, + no)r?) and M is taken as the small-

est integer such that 2 > fi7,/(2C1v1)(na, + 10)"/?r/(fuhw log p)'/%. Since

3207 < hy < fi/(2ly), we can take M = [log{c\/(na, + no)/logp}].
By a union bound, there exist some positive constants ¢; and ¢y such

that

P(A € V,, s.t.f(A; D) > 2g(h(A)))

WE

P(&°) <

1

3
Il

P < sup f(A;DA”) > 2mb> (8513)
h(A)

‘ <g~1(2mb)

3
I

< M/p < ¢y exp(—calogp).
This proves the claimed result with by taking a; = %/@l fiyp and ay =

2017)1/(fl7p)- D

S5.5 Proof of Lemma

Proof. Lemma is a special case of Lemma and hence we omit its

proof here. O]
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S5.6 Proof of Lemma

Proof. Define @® = B(k) — B% and ¢ = ||VQh(k) (B")||,. By Lemma
S1.2, we have ¢*) < louika(h®)?/2. For k € A, consider the event
& = 2IvQ%, (8%) — v, (8%)]|lw < A®}. Now following the same
arguments used in (S1.6) and (S1.7)), we obtain that

<(vo™ (8") = vQ®, ("), a®)

~ (k)

=(=\Wsgn(87), a) — (VQ; (8") = VO, (8), a®)

—(VQ), (w™), aM)

~ (k) 1 . .
ABBE 1y — AP 8™ + §>\(k)||u(k)||1 +¢®)a®,

1

k 3 - (k (K N
<8 1+ SAV Nl = S g+ e,

Provided that (h*))2 < A®)/s/(lu1k9) and together with Condition

@, this leads to the cone-like constraint for @®:

! I < 3llag) 1 +200%) @@ + 4185 |1
(S5.14)
< 4V |l aW |, + 47,
from which it follows that
[a®™ ]y < 5/s]|a®]s + 4n'. (85.15)

Next, we provide a lower bound for D®(A) := (V@gﬁ,{) (BY + A) -

Qh(k) (BM), A). Consider the event

D®(A) h®logp  [|A]
)y = = A s g (1 - ! for all A € By(r®) 5.
e { lalg =" N\ ) (R AL ) Bl
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We set %) = h(®) /¢y with ¢q = 3202,
Conditioning on & NE&,(r®) and using the same techinique for deriving

(S1.9), we can deduce from ([S5.15|) that

lo NE) !
AL < 8 / &P IO N T _. .k
||’U, ||2 < BA9C (nk T no)h(k)n + \/8_+ a ¢,

by choosing h*) > +/log p/((ng + n0)h®)n’ + AXB/s" + \/AB1y such that

r® > P With the stated choices A(*) < V9ogp/(ny, + ng) and A®) <

VAR (514 as long as i’ < V/s', we have

3
R )U4v47+- ED )y =
~ Vo, +ng nE + no n + no b

(S5.16)

It remains to bound the probability of the event & N &L (r*)) when A®) =<

V/1og p/(ni + ng), which follows from Lemma and Corollary [S1.1, [J

S5.7 Proof of Lemma

Proof. Recall that d = ()T (w—w®), Hy(w) = VQ; (w)-VQ;_(wn),
and H(w) = V@;ij('w) - V@f;’(w““”). To facilitate proof, for z € R?, de-

fine

(R)\NT (k) (k) (k) (k)
k () z+dy — ¢ —[d;7 — €
e {m () ()

n k k
and Vj = SUD,co_ (v, 1) |1/ (14, +10) Ypen, ooy i Vi (2) — BV (2)]

where O,(r1,7m) = {z € R 1 ||z||; < 7y, ||2]|2 < 2}
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With the notations above, we have

sup ||H(w) — EH(w)|lw = maxV; (S5.17)

weB,(r1,r2) JE[p]

By similar arguments as used in the proof of Lemma 19 in Tan et al. (2022]),

it can be shown that

sup
z2€0, (Tl ,TQ)

vig@(z)\ < kB2 /ha, (5.18)

e[V < kufun) [E(fo))ﬂ; (B, z>4]é < ko fupshlrs, (S5.19)

for all z € ©,(r,72) and k € AU {0}, and also
EV; < 4k, B*r1/hwy/210g(2p)/N, for all j € [p]. (S5.20)

By applying Bousquet’s version of Talagrand’s inequality Bousquet| (2003)),

we obtain that for any ¢t > 0,

1
5 (k) 2|2 2t 13 9 it
V., < -EV:+ sup {E{VZ z } 1 —t—k,Bf—
! 4 ! zE@z(Tl,TQ) J ( ) n.A»,, + No 3 (n.An + n0>hw
(S5.21)

with probability at least 1 — 2e~t. Finally, the claimed result follows by

combining (S5.17))-(S5.21) and taking ¢t = log(2p)/x, ro = r, and r; =

5\/sr + deam. O
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S5.8 Proof of Lemma

Proof. The Hessian matrix of Q;ij('w) is given by

]_ ag(k) Tw-A’/] — (k)
vl - 3 we{li (LU e

ke AU{0}

Define z = w — w*". Recall that d*) = (2®) T (wA — w®).By the mean
value theorem, we have

1
EH(w) = /0 V2QhA1Z (W + tz)dt(w — wn)

1 1 (BN T (2994 (k)
:/ Z akE{h K ((1‘ ) (w h+tz) Yy )x(k)<m(k)>r}dtz
0 kea,u{o} w

= orE {/ / K(u fe) o (tz + d®) hwu)dudtw(k)(a:(k))T} z.

keAnu{O}

Similarly, we can show that

EHo(w) = Y akE{// K (1) fo0 g0 (t2 + d¥) — hou)dudta® (™) T }z.

ke A,U{0}

The above two equalities and the lipschitz continuity of f.x) L () imply
|EH (w) — EHo(w)l|2

< sup akE // K(u ‘f(k)‘m(k) tz+d — hytt)

ueSPTl u{o}

— femjpw (tz + d¥ = )| dudt |(®) " 2] [(™) Tu }

<ty [ i)l — s B el

—o0 uesp—1
<loki|hw — hapars.

This completes the proof. n



REFERENCES 45

References

Bousquet, O. (2003). Concentration inequalities for sub-additive functions
using the entropy method. In Stochastic inequalities and applications, pp.

213-247. Springer.

Fan, J., Liu, H., Sun, Q., Zhang, T. (2018). I-lamm for sparse learning: Si-
multaneous control of algorithmic complexity and statistical error. Annals

of statistics 46(2), 814.

Jordan, M. 1., Lee, J. D., Yang, Y. (2019). Communication-efficient dis-
tributed statistical inference. Journal of the American Statistical Associ-

ation 114(526), 668-681.

Li, S., Cai, T. T., Li, H. (2022). Transfer learning for high-dimensional
linear regression: Prediction, estimation and minimax optimality. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 84 (1),

149-173.

Loh, P.-L. (2017). Statistical consistency and asymptotic normality for
high-dimensional robust m-estimators. The Annals of Statistics 45(2),

866-896.

Loh, P.-L., Wainwright, M. J. (2013). Regularized m-estimators with non-



REFERENCES 46

convexity: Statistical and algorithmic theory for local optima. Journal of

Machine Learing Research 16, 559-616.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., Yu, B. (2012). A
unified framework for high-dimensional analysis of m-estimators with de-

composable regularizers. Statistical science 27(4), 538-557.

Shamir, O., Srebro, N., Zhang, T. (2014). Communication-efficient dis-
tributed optimization using an approximate newton-type method. In In-

ternational conference on machine learning, pp. 1000-1008. PMLR.

Tan, K. M., Battey, H., Zhou, W.-X. (2022). Communication-constrained
distributed quantile regression with optimal statistical guarantees. Jour-

nal of Machine Learning Research 23, 1-61.

Tan, K. M., Wang, L., Zhou, W. (2022). High-dimensional quantile re-
gression: Convolution smoothing and concave regularization. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 84 (1),

205-233.

Tian, Y., Feng, Y. (2022). Transfer learning under high-dimensional gener-

alized linear models. Journal of the American Statistical Association (to

appear).



REFERENCES 47

Van de Geer, S. A. (2000). Empirical Processes in M-estimation, Volume 6.

Cambridge university press.

van der Vaart, A. W., Wellner, J. (1996). Weak convergence and empirical
processes: with applications to statistics. Springer Science & Business

Media.

Wang, J., Kolar, M., Srebro, N., Zhang, T. (2017). Efficient distributed
learning with sparsity. In International conference on machine learning,

pp. 3636-3645. PMLR.



	Proof of Main Results
	Auxiliary Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Additional Simulation results
	QR Transfer with More Heterogeneous Designs
	Sensitivity to the smoothing bandwidths

	Distributed QR Transfer
	Distributed QR Transfer Algorithm
	Theory for Distributed-Oracle-Trans-SQR

	Proof of Results in Section S1
	Proof of Proposition S3.1
	Proof of Theorem S3.1

	Proof of Auxiliary Lemmas
	Proof of Lemma S1.1
	Proof of Lemma S1.2
	Proof of Lemma S1.3
	Proof of Lemma S1.4
	Proof of Lemma S1.5
	Proof of Lemma S1.6
	Proof of Lemma S4.1
	Proof of Lemma S4.2


