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Supplementary Materials

Section S1 includes auxiliary lemmas and the proofs of the theories in the main text. Sec-

tion S2 includes additional simulation results mentioned in the main text. A distributed version

of the Oracle-Trans-SQR algorithm as well as its theoretical properties is provided in Section

S3. The proofs of theories in Section S3 are placed in Section S4. We put the proofs of the

auxiliary lemmas in Section S5.

S1 Proof of Main Results

We first introduce some notations, which will be repeatedly used in the

sequel. Denote the empirical smoothed quantile loss on the pooled data by

Q̂
Aη

hw
(w) =

1

(nAη + n0)hw

∑
k∈Aη∪{0}

nk∑
i=1

∫ ∞

−∞
ρτ (u)K

(
u+w⊤x

(k)
i − y

(k)
i

hw

)
du.

Further define the empirical smoothed quantile losses on the target data
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and the pooled target data with the kth source data respectively as

Q̂
(0)
hδ
(w) = 1/(n0hδ)

n0∑
i=1

∫ ∞

−∞
ρτ (u)K((u+w⊤x

(0)
i − y

(0)
i )/hδ)du,

and

Q̂
(k)

h(k)(w) =
1

(nk + n0)h(k)

∑
k′∈{0,k}

nk′∑
i=1

∫ ∞

−∞
ρτ (u)K

(
u+w⊤x

(k′)
i − y

(k′)
i

h(k′)

)
du.

Define the integrated kernel function K̄ : R→ [0, 1] as K̄(u) =
∫ u

−∞K(t)dt.

The gradient of Q̂Aη

hw
(w), Q̂(0)

hδ
(w), and Q̂

(k)

h(k)(w) are given respectively by

∇Q̂Aη

hw
(w) = 1/(nAη + n0)

∑
k∈Aη∪{0}

nk∑
i=1

{K̄(((x
(k)
i )

⊤
w − y

(k)
i )/hw)− τ}x(k)

i ,

∇Q̂(0)
hδ
(w) = 1/n0

n0∑
i=1

{K̄(((x
(0)
i )

⊤
w − y

(0)
i )/hw)− τ}x(0)

i ,

and

∇Q̂(k)

h(k)(w) = 1/(nk + n0)
∑

k′∈{0,k}

nk′∑
i=1

{K̄(((x
(k′)
i )

⊤
w − y

(k′)
i )/h(k′))− τ}x(k′)

i .

Further define QAη

hw
(w) = E[Q̂Aη

hw
(w)], Q̂(0)

hδ
(w) = E[Q̂(0)

hδ
(w)] and Q

(k)

h(k)(w) =

E[Q̂(k)

h(k)(w)]. The gradients of QAη

hw
(w), Q(0)

hδ
(w), and Q

(k)

h(k)(w) are given by

∇QAη

hw
(w) = E[∇Q̂Aη

hw
(w)], ∇Q(0)

hδ
(w) = E[∇Q̂(0)

hδ
(w)] and ∇Q(k)

h(k)(w) =

E[∇Q̂(k)

h(k)(w)] respectively. In addition, define the ℓ1-ball, ℓ2-ball and ℓ1-

cone as B1(r) = {δ ∈ Rp : ∥δ∥1 ≤ r}, B2(r) = {δ ∈ Rp : ∥δ∥2 ≤ r} and

C(l) = {δ ∈ Rp : ∥δ∥1 ≤ l∥δ∥2} respectively.
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S1.1 Auxiliary Lemmas

To facilitate the proof of the main results, some technical lemmas are given

here, of which the proofs are given in Section S5.

Lemma S1.1. Assume Condition 4 holds. Then we have

∥∥δAη
∥∥
1
=
∥∥β −wAη

∥∥
1
≤ cMη.

Lemma S1.2. Under Conditions 1-3, we have that

∥∇QAη

hw
(wAη)∥2 ≤ l0µ1κ2h

2
w/2, ∥∇Q(k)

h(k)(β
(k))∥2 ≤ l0µ1κ2(h

(k))2/2,

and ∥∇Q(0)
hδ
(β)∥2 ≤ l0µ1κ2h

2
δ/2.

Lemma S1.3. Under Conditions 2-3, there exists a positive constan C such

that

P

(
∥∇Q̂Aη

hw
(wAη)−∇QAη

hw
(wAη)∥∞ ≤ 2

√
C log p

nAη + n0

)
≥ 1−4p−1−(nA + n0)

−1,

P

(
∥∇Q̂(k)

h(k)(β
(k))−∇Q(k)

h(k)(β
(k))∥∞ ≤ 2

√
C log p

nk + n0

)
≥ 1− 4p−1,

and

P

(
∥∇Q̂(0)

hδ
(β)−∇Q(0)

hδ
(β)∥∞ ≤ 2

√
cx log p

n0

)
≥ 1− 4p−1.

The following two lemmas provide a core result for establishing error

bounds for our smoothed two-step QR estimators. They are related to the

local RSC property of the empirical smoothed quantile loss, which may be
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of independent interest. The RSC property plays a critical role in the theo-

retical analysis of regularized M-estimation in high dimensions (Negahban

et al., 2012; Loh and Wainwright, 2013; Loh, 2017) as well as in recent

literature on high-dimensional transfer learning (Li et al., 2022; Tian and

Feng, 2022).

Lemma S1.4. Assume Conditions 1-3 and 5 hold. Suppose nAη ≳ hwr
−2 log p

and 32v21r ≤ hw ≤ fl/(2l0). Then there exist positive constants a1 and a2

depending only on (κl, fl, fu, γp, v1), such that for all ∆ ∈ B2(r), we have

⟨∇Q̂Aη

hw
(wAη+∆)−∇Q̂Aη

hw
(wAη),∆⟩ ≥ a1(∥∆∥22−a2

√
hw log p

(nAη + n0)r2
∥∆∥1∥∆∥2),

(S1.1)

with probability as least 1− c1 exp(−c2 log p) for some c1 and c2 > 0.

Lemma S1.5. Assume Conditions 1-3 hold. Suppose n0 ≳ hδr
−2 log p,

32v21r ≤ hδ ≤ fl/(2l0). Then there exist positive constants a1 and a2

depending only on (κl, fl, fu, γp, v1), such that for all ∆ ∈ B2(r), we have

⟨∇Q̂(0)
hδ
(β +∆)−∇Q̂(0)

hδ
(β),∆⟩ ≥ a1(∥∆∥22 − a2

√
hδ log p

n0r2
∥∆∥1∥∆∥2),

(S1.2)

with probability as least 1− c1 exp(−c2 log p) for some c1 and c2 > 0.

Corollary S1.1. Assume Conditions 1-3 and 5 hold. Suppose nk ≳ h(k)/r2 log p

and 32v21r ≤ h(k) ≤ fl/(2l0). Then there exist positive constants a1 and a2



S1. PROOF OF MAIN RESULTS 5

depending only on (κl, fl, fu, γp, v1), such that for all ∆ ∈ B2(r), we have

⟨∇Q̂(k)

h(k)(β
(k)+∆)−∇Q̂(k)

h(k)(β
(k)),∆⟩ ≥ a1(∥∆∥22−a2

√
h(k) log p

(nk + n0)r2
∥∆∥1∥∆∥2),

(S1.3)

with probability as least 1− c1 exp(−c2 log p) for some c1 and c2 > 0.

Remark 1. Lemma S1.4 and Lemma S1.5 characterize the curvature of

the smoothed quantile loss Q̂
Aη

hw
(w) and Q̂

(0)
hδ
(w) respectively.

Remark 2. These two lemmas can be seen as a refinement of the local

RSC properties investigated in Tan et al. (2022), where they restricted

∆ ∈ B2(r) ∩ Cl for some l>0. By employing a peeling technique (van der

Vaart and Wellner, 1996; Van de Geer, 2000), we remove this constraint

to make the local RSC properties hold uniformly in the ratio l. As we can

see from the proof of Theorem 1, the establishment of our estimation error

bounds depends crucially on this uniformity.

S1.2 Proof of Theorem 1

Let û = ŵAη−wAη and v̂ = β̂−β denote the estimation bias of the trans-

ferring step and final estimator respectively. We first derive the estimation

bound for û on which we base to derive the bound for v̂.

Proof. Step 1: Bounds for û.
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We establish bound for û by providing upper and lower bounds for the

symmetric Bregman divergence ⟨∇Q̂Aη

hw
(ŵAη)−∇Q̂Aη

hw
(wAη), û⟩.

Upped bound: Firstly, by the optimality of ŵAη , we have

∇Q̂Aη

hw
(ŵAη) + λwsgn(ŵ

Aη) = 0. (S1.4)

The convexity of Q̂
Aη

hw
(w), together with the optimal condition in (S1.4)

implies that

0 ≤⟨∇Q̂Aη

hw
(ŵAη)−∇Q̂Aη

hw
(wAη), û⟩

=⟨−λwsgn(ŵ
Aη), û⟩ − ⟨∇Q̂Aη

hw
(wAη)−∇QAη

hw
(wAη), û⟩ − ⟨∇QAη

hw
(wAη), û⟩

≤⟨−λwsgn(ŵ
Aη), û⟩+ ∥∇Q̂Aη

hw
(wAη)−∇QAη

hw
(wAη)∥∞∥û∥1

+ ∥∇QAη

hw
(wAη)∥2∥û∥2,

(S1.5)

where we used Hölder’s inequality in the last inequality.

By the convexity of ∥ · ∥1, we have

⟨−λwsgn(ŵ
Aη), û⟩ ≤ λw∥wAη∥1 − λw∥ŵAη∥1. (S1.6)

Define the deterministic quantity qAη = ∥∇QAη

hw
(wAη)∥2. Plugging (S1.6)

into (S1.5) and conditioning on the event Ew = {λw ≥ 2∥∇Q̂Aη

hw
(wAη) −
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∇QAη

hw
(wAη)∥∞}, we have

0 ≤ λw∥wAη∥1 − λw∥ŵAη∥1 +
1

2
λw∥û∥1 + qAη∥û∥2

≤ λw∥wAη

Sc ∥1 − λw∥ŵAη

Sc ∥1 +
3

2
λw∥ûS∥1 +

1

2
λw∥ûSc∥1 + qAη∥û∥2

≤ 2λw∥wAη

Sc ∥1 +
3

2
λw∥ûS∥1 −

1

2
λw∥ûSc∥1 + qAη∥û∥2

≤ 2λwcMη +
3

2
λw∥ûS∥1 −

1

2
λw∥ûSc∥1 + qAη∥û∥2,

(S1.7)

where we used the triangle inequality in the third and the fourth inequalities

and the last inequality follows from Lemma S1.1.

We can derive from (S1.7) that û satisfies the cone-like constraint

∥ûSc∥1 ≤ 3∥ûS∥1 + 2λ−1
w qAη∥û∥2 + 4cMη, from which it follows that

∥û∥1 ≤ 4∥ûS∥1 + 2λ−1
w qAη∥û∥2 + 4λwcMη ≤ (4

√
s+ 2λ−1

w qAη)∥û∥2 + 4cMη.

By Lemma S1.2, we have qAη ≤ l0µ1κ2h
2
w/2. Let h2

w ≤ λw

√
s/(l0µ1κ2),

then conditioning on Ew, û falls into the set U defined as

U = {u ∈ Rp : ∥u∥1 ≤ 5
√
s∥u∥2 + 4cMη}. (S1.8)

Lower bound: Define D(∆) = ⟨∇Q̂Aη

hw
(wAη + ∆) − ∇Q̂Aη

hw
(wAη),∆⟩. To

derive a lower bound, we consider the event E ′w(r) defined as{
D(∆)

∥∆∥22
≥ a1

(
1− a2

√
hw log p

(nAη + n0)r2
∥∆∥1
∥∆∥2

)
, for all ∆ ∈ B2(r)

}
.

We set r = hw/c0 with c0 = 32v21. We use proof by contradiction to show
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that conditioning on Ew ∩ E ′w(r),

∥û∥2 ≤ 8a2c0cM

√
log p

(nAη + n0)hw

η + 4λw

√
s+ 2

√
λwcMη

a1
=: cu. (S1.9)

In order to make use of the result on E ′w(r), we let

hw ≳ (log p/(nAη + n0))
1/4√η+ λw

√
s+

√
log p/((nAη + n0)hw)η (S1.10)

such that r > cu. Consider ũ = tû for some t ∈ (0, 1). Choose t such

that ∥ũ∥2 ≤ r and ∥ũ∥2 ≥ cu. We can verify that ũ ∈ U. Denote w̃Aη =

wAη + ũ. The optimality of û implies that G(ũ) ≥ G(û) with G(u) =

Q̂
Aη

hw
(wAη + u) + λw∥wAη + u∥1. This together with the convexity of the

function G(u) leads to

⟨∇Q̂Aη

hw
(w̃Aη)+λwsgn(w̃

Aη), ũ⟩ = t

1− t
⟨∇Q̂Aη

hw
(w̃Aη)+λwsgn(w̃

Aη), û−ũ⟩ ≤ 0.

Therefore, we have

⟨∇Q̂Aη

hw
(w̃Aη)−∇Q̂Aη

hw
(wAη), û⟩ ≤ ⟨−λwsgn(w̃

Aη)−∇Q̂Aη

hw
(wAη), û⟩

Then conditioning on Ew ∩ E ′w(r) and by the same argument in (S1.7), it

can be shown that

a1∥ũ∥21 − a1a2c0

√
log p

(nAη + n0)hw

∥ũ∥1∥ũ∥2 ≤ 2λw

√
s∥ũ∥2 + 2λwcMη.

(S1.11)

As long as 5a2c0c
√
s log p/((nAη + n0)hw) ≤ 1/2, using the cone-like con-
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straint for ũ ∈ U, we can derive from (S1.11) that

1

2
a1∥ũ∥22 −

(
4a1a2c0cM

√
log p

(nAη + n0)hw

η + 2λw

√
s

)
∥ũ∥2 − 2λwcMη ≤ 0.

Consequently, we have a contradiction under the assumption that ∥ũ∥2 ≥

cu. Thus we can conclude from (S1.9) that conditioning on Ew ∩ E ′w(r),

∥û∥2 ≲
√

log p

(nAη + n0)hw

η + λw

√
s+

√
λwη.

With the stated choices λw ≍
√
log p/(nAη + n0) and h2

w ≍ λw

√
s, we can

verify that (S1.10) holds as long as η ≲ √s. Then we obtain

∥û∥2 ≲
√

s log p

nAη + n0

+

(
log p

nAη + n0

) 1
4√

η +

(
log p

nAη + n0

) 3
8

s−
1
8η, (S1.12)

and

∥û∥1 ≤ 5
√
s∥û∥2 + 4cMη ≲ s

√
log p

nAη + n0

+

(
log p

nAη + n0

) 1
4√

sη + η

≲ s

√
log p

nAη + n0

+ η,

(S1.13)

conditioning on Ew ∩ E ′w(r).

It remains to bound the probability of the event Ew ∩ E ′w(r) when

λw ≍
√
log p/(nAη + n0), which follows directly from Lemma S1.3 and

Lemma S1.4. Pulling these components together, we can finally conclude

that the bounds in (S1.12) and (S1.13) hold with probability at least 1 −

c1 exp(−c2 log p) for some positive constant c1 and c2.
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Step 2: Bounds for v̂.

Upper bound: By the optimality of δ̂Aη , we have

∇Q̂(0)
hδ
(ŵAη + δ̂

Aη
) + λδsgn(δ̂

Aη
) = 0. (S1.14)

Consider the event Eδ = {λδ ≥ 2∥∇Q̂(0)
hδ
(β) − ∇Q(0)

hδ
(β)∥∞} and define

the deterministic quantity q0 = ∥∇Q(0)
hδ
(β)∥2. Conditioning on Eδ, the

convexity of Q̂(0)
hδ
(w) and ∥ · ∥1, the optimal condition (S1.14) and Hölder’s

inequality together imply that

0 ≤⟨∇Q̂(0)
hδ
(β̂)−∇Q̂(0)

hδ
(β), v̂⟩

=⟨−λδsgn(δ̂
Aη
), v̂⟩ − ⟨∇Q(0)

hδ
(β), v̂⟩ − ⟨∇Q̂(0)

hδ
(β)−∇Q(0)

hδ
(β), v̂⟩

≤λδ(∥δ̌
Aη∥1 − ∥δ̂

Aη∥1) + q0∥v̂∥2 + ∥∇Q̂(0)
hδ
(β)−∇Q(0)

hδ
(β)∥∞∥v̂∥1

≤λδ(2∥δ̌
Aη∥1 − ∥v̂∥1) + q0∥v̂∥2 +

λδ

2
∥v̂∥1,

(S1.15)

where δ̌
Aη

= β − ŵA = δ̂
Aη − v̂ = δAη − ŵAη .

By Lemma S1.2, we have q0 ≤ l0µ1κ2h
2
δ/2. Choose hδ ≲

√
λδ such that

l0µ1κ2h
2
δ/2 < λδ/4. Now combining this with (S1.15) leads to

∥v̂∥1 ≤ 8∥δ̌Aη∥1 ≤ 8(cMη + ∥û∥1). (S1.16)

Lower bound: To derive a lower bound for ⟨∇Q̂(0)
hδ
(β̂)−∇Q̂(0)

hδ
(β), v̂⟩, define

D(0)(∆) = ⟨∇Q̂(0)
hδ
(β + ∆) − ∇Q̂(0)

hδ
(β),∆⟩ and consider the event E ′δ(r′)
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defined as{
D(0)(∆)

∥∆∥22
≥ a1

(
1− a2

√
hδ log p

n0r2
∥∆∥1
∥∆∥2

)
, for all ∆ ∈ B2(r

′)

}
.

We set r′ = hδ/c0 with c0 = 32v21. We use proof by contradiction to show

that conditioning on Eδ ∩ E ′δ(r′),

∥v̂∥2 ≤ 8a2c0

√
log p

n0hδ

(∥û∥1 + cMη) +

√
2
λδ(∥û∥1 + cMη)

a1
=: cv. (S1.17)

In order to make use of the result on E ′δ(r′), we let

hδ ≳ (log p/n0)
1/4∥û∥1 +

√
log p/(n0hδ)∥û∥1 (S1.18)

such that r′ > cv.

Choose t ∈ (0, 1) such that t∥v̂∥2 ≤ r′ and t∥v̂∥2 ≥ cv . Denote ṽ = tv̂

and β̃ = β̂ + ṽ. By the same arguments that lead to (S1.13) and (S1.16),

and conditioning on E ′δ(r′), we deduce that

a1(∥ṽ∥22 − a2c0

√
log p

n0hδ

∥ṽ∥1∥ṽ∥2)− 2λδ∥δAη∥1 ≤ 0,

which contradicts with the assumption that ∥ṽ∥2 = t∥v̂∥2 ≥ cv.

Combining (S1.16), (S1.17), and (S1.13) gives us

∥v̂∥1 ≲ η + s
√

log p/(nAη + n0) (S1.19)

and

∥v̂∥2 ≲
√

log p

n0hδ

∥û∥1 +
√

λδ∥û∥1. (S1.20)
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With the stated choices λδ ≍
√

log p/n0 and h2
δ ≍ λδ, we can verify that

(S1.18) holds as long as ∥û∥1 ≲ 1. Then we obtain

∥v̂∥2 ≲
√
s

(
log p

n0

) 1
4
(

log p

nAη + n0

) 1
4

+
√
η

(
log p

n0

) 1
4

. (S1.21)

It remains to investigate the probability of the event Eδ ∩ E ′δ(r′), which

follows directly from Lemma S1.3 and Lemma S1.5. This completes the

proof of Theorem 1.

S1.3 Proof of Theorem 2

Proof. Recall that T̂ (k) = Q̂(0)(β̂
(k)
; Iva0 )−Q̂(0)(β̂

(0)
; Iva0 ), where Q̂(0)(w; I) =

1/|I|
∑

i∈I ρτ (y
(0)
i − (xi

(0))
⊤
w). We proof the result in Theorem 2 by show-

ing that under a proper choice of t, we have

P( inf
k∈Ac

η

T̂ (k) ≥ t(Q̂(0)(β̂
(0)
; Iva0 ) ∨ 0.01) ≥ sup

k∈Aη

T̂ (k))→ 1. (S1.22)

In order to establish (S1.22), we first investigate the bound of T̂ (k).

Define Q(0)(w) = E[Q̂(0)(w; Iva0 )]. We have the following decomposition:

T̂ (k) =
{
Q(0)(β(k))−Q(0)(β)

}
+
{
Q̂(0)(β̂

(k)
; Iva0 )− Q̂(0)(β(k); Iva0 )

}
+
{
Q̂(0)(β; Iva0 )− Q̂(0)(β̂

(0)
; Iva0 )

}
+
{
Q̂(0)(β(k); Iva0 )− Q̂(0)(β; Iva0 )−

(
Q(0)(β(k))−Q(0)(β)

)}
≡I(k)1 + I

(k)
2 + I

(0)
3 + I

(k)
4 .

(S1.23)
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We analyze the above four terms separately. We start with I
(k)
1 . By the

mean-value theorem, we have

I
(k)
1 = (β(k)−β)⊤E

[∫ 1

0

x(0)(x(0))
⊤
fϵ(0)|x(0)(t(x(0))

⊤
(β(k) − β))dt

]
(β(k)−β),

for some t ∈ (0, 1). Therefore, under Condition 7, we have

sup
k∈Aη

I
(k)
1 ≤ λ̄ sup

k∈Aη

∥β(k) − β∥22 and inf
k∈Ac

η

I
(k)
1 ≥ λ inf

k∈Ac
η

∥β(k) − β∥22.

(S1.24)

Now we investigate I
(k)
2 . Let u

(k)
i = (x

(0)
i )⊤(β(k) − β̂

(k)
) and Ψτ (ϵ) = τ −

I{ϵ < 0}. By Knight’s Identity, we have

I
(k)
2 =

1

|Iva0 |
∑
i∈Iva

0

[
ρτ (y

(0)
i − (x

(0)
i )⊤β̂

(k)
)− ρτ (y

(0)
i − (x

(0)
i )⊤β(k))

]
=

1

|Iva0 |
∑
i∈Iva

0

(x
(0)
i )⊤(β(k) − β̂

(k)
)Ψτ (ϵ

(0)
i + u

(k)
i )

+
1

|Iva0 |
∑
i∈Iva

0

∫ (x
(0)
i )⊤(β̂

(k)−β(k))

0

I{ϵ(0)i ≤ t− u
(k)
i } − I{ϵ(0)i ≤ −u

(k)
i }dt.

Since |Ψτ (·)| ≤ max{τ, 1− τ} and |I{ϵ(0)i ≤ t−u
(k)
i }− I{ϵ(0)i ≤ −u

(k)
i }| ≤ 1,

we have

|I(k)2 | ≤
2

|Iva0 |
∑
i∈Iva

0

|(x(0)
i )⊤(β(k) − β̂

(k)
)| := 2

|Iva0 |
∑
i∈Iva

0

z
(k)
i .

Conditioning on Itr0 , {z(k)i }i∈Iva
0

are independent sub-gaussian random vari-

ables with parameter no more than v21∥β̂
(k)
− β(k)∥22. By tail bounds and
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noting that |Iva0 | = n0/2, we obtain that

P

(
|I(k)2 | ≤

(
µ1 + 2v1

√
log p

n0

)
∥β̂

(k)
− β(k)∥2

)
≥ 1− p−1. (S1.25)

Similarly, we can derive that

P

(
|I(0)3 | ≤

(
µ1 + 2v1

√
log p

n0

)
∥β̂

(0)
− β∥2

)
≥ 1− p−1. (S1.26)

From the result in Tan et al. (2022), we have ∥β̂(0)
−β∥2 ≲ Ω0 =

√
s log p/n0

with probability at least 1 − p−1. It remains to bound ∥β̂(k)
− β(k)∥2 for

k ∈ [K]. The following lemma provides a high probability upper bound for

the ℓ2 estimation error of β̂(k). The proof of this lemma is similar to the

proof in the first step of Theorem 1 and is relegated to Section S5.6.

Lemma S1.6. Under the conditions in Theorem 2, then for the estimator

β̂
(k) obtained from the Trans-SQR algorithm, then we have

P
(
∥û(k)∥2 ≲ Ωk

)
≥ 1− 5p−1,

where Ωk =
√
s′ log p/(nk + n0) + (log p/(nk + n0))

1/4
√
η′ + (log p/(nk +

n0))
3/8(s′)−1/8η′.

By Lemma S1.6 and union bounds, we can conclude from (S1.25) and

(S1.26) that there exist a constant C such that

P

(
|I(k)2 |+ |I

(0)
3 | ≤

(
µ1 + 2v1

√
log p

n0

)
C(Ωmax + Ω0)

)
≥ 1− 8p−1.

(S1.27)
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Lastly, we analyze I
(k)
4 . Again by Knight’s Identity, we obtain that

I
(k)
4 =

1

|Iva0 |
∑
i∈Iva

0

[
ρτ (y

(0)
i − (x

(0)
i )⊤β(k))− ρτ (y

(0)
i − (x

(0)
i )⊤β)

]
− E

[
ρτ (y

(0)
i − (x

(0)
i )⊤β(k))− ρτ (y

(0)
i − (x

(0)
i )⊤β)

]
=

1

|Iva0 |
∑
i∈Iva

0

{zi1 − Ezi1}+
1

|Iva0 |
∑
i∈Iva

0

{zi2 − Ezi2},

where zi1 = (x
(0)
i )⊤(β − β(k))Ψτ (ϵ

(0)
i ) and zi2 =

∫ (x
(0)
i )⊤(β(k)−β)

0
I{ϵ(0)i ≤

t}−I{ϵ(0)i ≤ 0}dt. Note that Ezi1 = 0 and Ψτ (·) is bounded and hence sub-

gaussian with parameter less than 1. Therefore, {zi1}i∈Iva
0

are v21∥β(k)−β∥22-

sub-exponential. Besides, |zi2| ≤ |(x(0)
i )⊤(β(k) − β)|. Therefore, {zi2}i∈Iva

0

are independent sub-gaussian random variables with parameter almost v21∥β(k)−

β∥22. By tails bounds and union bounds, we obtain that

P

(
|I(k)4 | ≤ 6v1

√
log p

n0

∥β(k) − β∥2

)
≥ 1− 3p−1. (S1.28)

Combining (S1.23), (S1.24), (S1.27), and (S1.28) leads to

sup
k∈Aη

T̂ (k) ≤ λ̄ sup
k∈Aη

∥β(k) − β∥22 + 6v1

√
log p

n0

sup
k∈Aη

∥β(k) − β∥2 + Ccn, and

inf
k∈Ac

η

T̂ (k) ≥ λ inf
k∈Ac

η

∥β(k) − β∥22 − 6v1

√
log p

n0

sup
k∈Ac

η

∥β(k) − β∥2 − Ccn,

with probability 1− 11p−1, where cn = (µ1 + 2v1
√

log p/n0)(Ωmax + Ω0).

Under Condition 7, infk∈Ac
η
T̂ (k) ≥ λ/2 infk∈Ac

η
∥β(k)−β∥22, and then we

can choose λ̄ supk∈Aη
∥β(k) − β∥22 +

√
log p/n0 supk∈[K] ∥β(k) − β∥2 + cn ≲
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t ≲ λ/2 infk∈Ac
η
∥β(k) − β∥22 such that (S1.22) is satisfied. This proves the

claimed result.

S2 Additional Simulation results

S2.1 QR Transfer with More Heterogeneous Designs

In this subsection, we conduct additional simulations to investigate the

impact of heterogeneous designs on the performance of the transferred es-

timators. Specifically, we consider the same setting as that in Section 4

of the main paper under Gaussian errors with the only difference in the

generation of covariates in the sources. We consider x(0) ∼ Np(0,Σ) with

Σ =
(
0.7|i−j|)

1≤i,j≤p
and x(k) ∼ N

(
0p,Σ+ ϵϵT

)
with ϵ ∼ N (0p, δ

2Ip) for

k = 1, . . . , K. We fix h = 10, τ = 0.5 and consider A ∈ {4, 8, 12}. We

vary δ from 0.5 to 1.5 with stepsize 0.2 and evaluate the change of perfor-

mance with respect to δ. The average estimation errors of the five methods

(ℓ1-SQR, Oracle-TSQR, Oracle-TQR, Naive-TSQR, and TSQR) over 100

replications are displayed in Figure S2.1.

As we can see from Figure S2.1, the performance of our Oracle-TSQR

as well as the TSQR remains stable as the heterogeneity parameter δ of

the designs increases, while the performance of the Naive-TSQR and the
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Figure S2.1: ℓ2 estimation errors of various methods with respect to δ under Gaussian

errors at quantile level τ = 0.5 and η = 10, averaged over 100 replications. Here the

horizontal axis δ represents the heterogeneity parameter of the designs.

non-smoothed Oracle-TQR becomes slightly worse as δ increases. This

illustrates the stability of our smoothed QR transferring algorithms.

S2.2 Sensitivity to the smoothing bandwidths

We investigate the sensitivity of our Oracle-TSQR to the smoothing band-

widths in this subsection. Specifically, we consider the same setting as

that in Section 4 of the main paper under Gaussian errors with η fixed

at 10 and A fixed at 8. For simulations in the main text, we choose the

bandwidths as max{0.05,
√
τ(1− τ){log(p)/n}1/4} as recommended in Tan
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et al. (2022) for a specific n in the corresponding problem. For example,

for A = 8, we have hw ≈ 0.14 and hδ ≈ 0.07 at the quantile level τ = 0.5.

Here we consider different choices of bandwidths (hw, hδ), both of which

take values in {0.05, 0.10, ..., 0.3}. There are 36 different combinations in

total. For each combination choice of bandwidths, we replicate the simula-

tion 100 times, and here in Figure S2.2 we present the average ℓ2-estimation

errors for each combination. For better comparison, we also report the av-

erage estimation errors of the five methods (ℓ1-SQR, Oracle-TQR, Oracle-

TSQR, Naive-TSQR, and TSQR) with the smoother ones using bandwidths

max{0.05,
√

τ(1− τ){log(p)/n}1/4} at η = 10 and A = 8 under different

quantile levels.

As we can see from Figure S2.2, the estimation errors are not very sen-

sitive to the choice of the smoothing bandwidths hw and hδ under each

quantile level. Let us take τ = 0.5 for illustration. As reported in Table

S2.1, the average estimation error of Oracle-TSQR chosen by the recom-

mended bandwidths in Tan et al. (2022) is 0.1307 with a standard deviation

of 0.0471. We can see from the middle panel that the estimation errors un-

der various choices of hw and hδ fall between 0.1314 and 0.1449, the range of

which is approximately 1/3 of its standard deviation (0.0471). This suggests

that the performance of our proposed Oracle-TSQR is not really sensitive
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Figure S2.2: ℓ2 estimation errors of Oracle-TSQR with different choice of bandwidths

under Gaussian errors at η = 10, A = 8, and quantile levels τ = 0.2, 0.5, 0.7.

Table S2.1: Estimation errors and standard deviations of various methods at η = 10

and A = 8 under different quantile levels, with the smoothed estimators based on the

recommended bandwidths.

L1-SQR Oracle-TSQR Oracle-TQR Naive-TSQR TSQR

τ ℓ2-estimation error (standard deviation)

0.2 0.7530 (0.2530) 0.1631 (0.0479) 0.1918 (0.0532) 0.6804 (0.1935) 0.1609 (0.0488)

0.5 0.5897 (0.1840) 0.1307 (0.0471) 0.1466 (0.0471) 0.6202 (0.1859) 0.1322 (0.0485)

0.7 0.6153 (0.1903) 0.1406 (0.0408) 0.1648 (0.0516) 0.6353 (0.1767) 0.1462 (0.0482)

to the smoothing bandwidths. We also note that under various choices of

bandwidths, the estimation errors of our Oracle-TSQR all perform slightly

better under the non-smoothed Oracle-TQR, which is 0.1466. This again

illustrates the benefit of our convolution smoothing.

Similar conclusions also apply for the quantile levels τ = 0.2 and τ =
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0.7 and thus omitted here. In conclusion, we recommend to choose the

bandwidths as that in Tan et al. (2022), although in practice one can also

use CV for selecting the bandwidths for optimal numeric performance.

S3 Distributed QR Transfer

S3.1 Distributed QR Transfer Algorithm

Here we adopt the approximate Newton-type method proposed by Shamir

et al. (2014) and further examined in Jordan et al. (2019) and Wang et al.

(2017) to solve the transferring step in Algorithm 1 in a distributed manner.

With our loss of generality, we set Aη = {1, . . . , |Aη|}. Let α denote a

|Aη| + 1-dimensional vector with the k + 1-th element being αk. We first

generate the pilot sample sizes {n∗
k}k∈A∪{0} from multinomial distribution

M(n∗,α) with n∗ = ρ0(nAη+n0) for some ρ0 ∈ (0, 1). For each k ∈ A∪{0},

we randomly select n∗
k samples from the k-th site, with the index set denoted

by D∗
k. Transfer {((x(k)

i )⊤, y
(k)
i )}i∈D∗

k
from the k-th site to the target site.

Denote the empirical smoothed quantile loss on the pilot pooled data

by

Q̂∗
h∗(w) =

1

n∗h∗

∑
k∈Aη∪{0}

∑
i∈D∗

k

∫ ∞

−∞
ρτ (u)K

(
u+w⊤x

(k)
i − y

(k)
i

h∗

)
du
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. The gradient vectors of Q̂∗
h∗
(w) are given respectively by

∇Q̂∗
h∗(w) = 1/n∗

∑
k∈A∪{0}

∑
i∈D∗

k

{K̄(((x
(k)
i )

⊤
w − y

(k)
i )/h∗)− τ}x(k)

i .

Given an initial estimator w̃(0), consider the first-order Taylor expansion

of Q̂Aη

hw
(w) around w̃(0):

Q̂
Aη

hw
(w) = Q̂

Aη

hw
(w̃(0)) + ⟨∇Q̂Aη

hw
(w̃(0)),w − w̃(0)⟩+RAη(w), (S3.1)

where RAη(w) is the linear approximation error. In the distributed environ-

ment, the gradient ∇Q̂Aη

hw
(w̃(0)) can be easily be communicated. Therefore,

it suffices to find a good replacement of RAη(w). Here we propose to use

the analogous approximation error from the loss of the pilot pooled sample,

that is, we approximate RAη(w) by

RAη(w) ≈ R∗(w) = Q̂∗
h∗(w)− Q̂∗

h∗(w̃
(0))−⟨∇Q̂∗

h∗(w̃
(0)),w−w̃(0)⟩. (S3.2)

Plugging (S3.2) into (S3.1) motivates us to consider the surrogate smoothed

quantile loss:

Q̃(w) = Q̂∗
h∗(w)− ⟨∇Q̂∗

h∗(w̃
(0))−∇Q̂Aη

hw
(w̃(0)),w⟩.

Consequently, a communication-efficient penalized estimator for wAη can

be obtained by solving

w̃(1) ∈ argmin
w∈Rp

Q̃(w) + λ1∥w∥1. (S3.3)
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The above procedure could be done iteratively. In fact, we can define shifted

losses Q̃(t)(w) = Q̂∗
h∗
(w) − ⟨∇Q̂∗

h∗
(w̃(t−1)) −∇Q̂Aη

hw
(w̃(t−1)),w⟩ and obtain

a sequence of estimators by solving w̃(t) ∈ argmin
w∈Rp

Q̃(t)(w) + λt∥w∥1 for

t = 2, . . . , T . The details for our distributed Trans-SQR are presented in

Algorithm 3.

Algorithm 3 Distributed-Oracle-Trans-SQR Algorithm
Input: Target data (X(0),y(0)), source data {(X(k),y(k))}k∈Aη

, pilot pooled sam-

ple {{(x(k)
i , y

(k)
i )}i∈D∗

k
}k∈Aη∪{0}, an initial estimate w̃(0), number of iterations T ,

penalty parameters (λw, λδ, {λt}Tt=1) and bandwidths (hw, hδ, h∗).

1: Distributed Transferring: For t = 1, . . . , T , compute

w̃(t) ← argmin
w∈Rp

Q̃(t)(w) + λt∥w∥1 (S3.4)

2: Debiasing: Compute

δ̃
(T )
← ℓ1-SQR({(x(0)

i , y
(0)
i − (x

(0)
i )

⊤
w̃(T ))}n0

i=1;λδ, hδ)

Output:

β̃
(T )

= w̃(T ) + δ̃
(T )

As we will show in Theorem S3.1, a “good” estimator w̃(0) is needed

to guarantee the theoretical properties of w̃(T ). Taking the heterogeneity

among the target and sources into consideration, we propose to obtain w̃(0)
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on the pilot pooled sample by solving

w̃(0) ∈ argmin
w∈Rp

Q̂∗
h∗(w) + λ∗∥w∥1. (S3.5)

The optimization problem in (S3.4) could be solved by the local adaptive

majorize-minimize (LAMM) algorithm (Fan et al., 2018; Tan et al., 2022).

S3.2 Theory for Distributed-Oracle-Trans-SQR

Here we establish the analogous estimation error bounds for our distributed

QR transfer estimator. In addition to Condition 3, we impose the following

boundedness condition on the covariate vectors.

Condition S3.1. There exists some constant B ≥ 1 such that maxj∈[p] |x(k)
j | ≤

B almost surely for all k = 0, . . . , K.

To better understand the mechanism of the distributed QR transfer

estimator, we first present a deterministic result based on some “good”

events. Define the ℓ2-ball B2(r) = {δ ∈ Rp : ∥δ∥2 ≤ r} and the cone-like

set Λ = Λ(s, η) = {u ∈ Rp : ∥u∥1 ≤ 5
√
s∥u∥2 + 4cMη}. Consider the

events E0(r) = {w̃(0) : w̃(0) − wAη ∈ B2(r) ∩ Λ} and Ew(λw) = {λw ≥

2∥∇Q̂Aη

hw
(wAη)−∇QAη

hw
(wAη)∥∞}.

Proposition S3.1. Assume Conditions 1-5 and S3.1 hold. Define ρ∗ =√
log p/(nAη + n0)/hw +

√
log p/n∗/h∗ for some h∗ > 0. Let 0 < hw ≤
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h∗ ≲ 1 and λ1 = λw + ρ satisfy ρ ≍ max{s−1/2(h2
w + h∗r∗), r∗

√
sρ∗ + ηρ∗}

and h∗ ≳
√

log p/(n∗h∗)η + λ1

√
s+
√
λ1η. Then conditioning on the event

E0(r∗) ∩ Ew(λw), the one-step estimator w̃(1) obtained by (S3.3) satisfies

w̃(1) ∈ Λ and

inf
B∈Θ(s,η)

P
(
∥w̃(1) −wAη∥2 ≲ λw

√
s+ h2

w + φ0r∗ + φ1
√
η + φ2η

)
≥ 1− c1 exp(−c2 log p),

(S3.6)

where φ0 = sρ∗ + h∗, φ1 = (s−1/4
√
h∗ + s1/4

√
ρ∗)
√
r∗ + s−1/4hw +

√
λw and

φ2 =
√
sρ∗ +

√
ρ∗ +

√
log p/(n∗h∗).

The upper bound in (S3.6) can be decomposed into three parts: (i) the

first two terms λw

√
s+ h2

w is the nearly optimal rate when all transferable

sources are used and there’s no heterogeneity among the sources and target;

(ii) the third term φ0r∗ is a contraction of the initial estimation error given

by w̃(0) and (iii) the last two terms could be seen as the price we pay for

the heterogeneity among used data sets.

With large enough samples in the pilot and pooled sources, that is,

n∗ ≳ s2 log p and nAη + n0 ≳ s3 log p, the contraction factor φ0 can be

strictly less than 1, which will consequently improve the convergence rate

of w̃(0).

When homogeneity is assumed among the sources and target—namely,

η = 0, Proposition S3.1 degenerates to Theorem 11 in Tan et al. (2022).
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Therefore, it can be seen as an extension of the established results for

distributed smoothing QR estimators in Tan et al. (2022) to allow for the

existence of heterogeneity in the high-dimensional setting.

We are now ready to present the estimation error bounds for β̃
(T )from

Algorithm 3.

Theorem S3.1. Assume Conditions 1-5 and S3.1 hold. Suppose that n∗ ≳

s2 log p, nAη ≳ s3 log p, η ≲ s
√

log p/n∗ and η ≲ (s5 log p/n∗)
1/8. Choose

the regularization parameters (λw, λδ) and bandwidths (hw, hδ) as that in

Theorem 1. Further choose h∗ ≍ s1/2(log p/n∗)
1/4 and λt(t ≥ 1) as

λt ≍

√
log p

nAη + n0

+max

{
s2 log p

n∗
,
s3 log p

nAη + n0

}√
log p

n∗
.

With the initial estimator w̃(0) given by (S3.5) and the number of itera-

tions T ≍ ⌈log((nAη + n0)/n∗)⌉, the distributed QR transfer estimator β̃
(T )

obtained from Algorithm 3 satisfies the error bounds

inf
B∈Θ(s,η)

P

(
∥β̃(T ) − β∥1 ≲ s

(
log p

nAη + n0

)1/2

+ aη + η

)
≥ 1−c1 exp (−c2 log p),

inf
B∈Θ(s,η)

P

(
∥β̃(T ) − β∥2 ≲

(
log p

n0

)1/4
(
√
s

(
log p

nAη + n0

)1/4

+
√
η +
√
aη

))

≥ 1− c1 exp (−c2 log p),

where aη = (s log p/n∗)
3/8√sη.

Remark 3. In comparison to the non-distributed results in Theorem 1, a
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stronger condition η ≪ (s
√

log p/n0) ∧ (n3
∗s log p/n

4
0)

1/4 is needed in the

distributed setting for the improvement of estimation error.

S4 Proof of Results in Section S1

S4.1 Proof of Proposition S3.1

Proof. For simplicity, we write w̃ = w̃(1) and z̃ = w̃ −wAη . By the opti-

mality of w̃, we have ∇Q̃(w̃) + λ1sgn(w̃) = 0. Next, the convexity of Q̃(·)

and ∥ · ∥1 implies that

0 ≤ ⟨∇Q̃(w)−∇Q̃(wAη), z̃⟩ = ⟨−λ1sgn(w̃), z̃⟩ − ⟨∇Q̃(wAη), z̃⟩

≤ λ1∥wAη∥1 − λ1∥w̃∥1 − ⟨∇Q̃(wAη), z̃⟩
(S4.1)

Define the vector-index random processes

H0(w) = ∇Q̂∗
h∗(w)−∇Q̂∗

h∗(w
Aη), and H(w) = ∇Q̂Aη

hw
(w)−∇Q̂Aη

hw
(wAη).

Note that EQ̂∗
h∗
(w) = Q

Aη

h∗
(w). Recall the definition of U in (S1.8). For

r > 0, define the suprema of random processes over our interested region

W := {w : w −wAη ∈ B2(r) ∩ U}

Π0(r) = sup
w∈W
∥H0(w)− EH0(w)∥∞, Π(r) = sup

w∈W
∥H(w)− EH(w)∥∞

and the deterministic quantities

q(r) = sup
w∈W
∥EH(w)−EH0(w)∥∞, qAη = ∥∇QAη

hw
(wAη)∥2, and q∗ = q(r∗)+qAη .
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Following the proof of Theorem 11 in Tan et al. (2022), we can show

that

∣∣∣⟨∇Q̃(wAη), z̃⟩
∣∣∣ ≤ {Π(r∗) + Π0(r∗) +

λw

2

}
∥z̃∥1 + q∗∥w̃∥2, (S4.2)

conditioning on the event E0(r∗)∩ Ew(λw). Combing (S4.1) and (S4.2) and

using similar arguments that lead to (S1.7), we arrive at

0 ≤ 2λ1cMη + (
3

2
λw

√
s+ q∗)∥z̃∥2 −

1

2
λw∥z̃Sc∥1, (S4.3)

which implies ∥z̃∥1 ≤ (4
√
s + 2(λ1)

−1q∗)∥z̃∥2 + 4cMη ≤ 5
√
s∥z̃∥2 + 4cMη,

provided that λ1 = λw + ρ with ρ being chosen such that

q∗s
− 1

2 ≤ 1

2
λ1 and 1

2
λw +Π(r∗) + Π0(r∗) ≤

1

2
λ1. (S4.4)

Consequently, we have w̃ ∈W.

The proof for the upper bound is similar to that used in Theorem 1.

Define D̃(∆) = ⟨∇Q̃(wAη + ∆) − ∇Q̃(wAη),∆⟩. We have that D̃(∆) =

⟨∇Q̂∗
h∗
(wAη +∆)−∇Q̂∗

h∗
(wAη),∆⟩. With (Q̂

Aη

hw
(·), hw, nAη +n0) in Lemma

S1.4 replaced by (Q̂∗
h∗
(·), h∗, n∗), we can show that with probability 1 −

c1 exp(−c2 log p) occurs the event

E∗(r∗) =

{
D̃(∆) ≥ a1

(
∥∆∥22 − a2

√
h∗ log p

n∗r2∗
∥∆∥1∥∆∥2

)
, for all ∆ ∈ B2(r∗)

}
.

We set r∗ = h∗/c0 with c0 = 32v21. Further choose t ∈ (0, 1) such that

t∥z̃∥2 ∈ B2(r∗). Let ž = tz̃ and w̌ = wAη + ž. Then using the same
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arguments that lead to (S4.3), we can show that

D̃(ž) ≤ 2λ1cMη + 2λw

√
s∥ž∥2,

as long as 2q∗s
−1/2 ≤ λ1.

Conditioning on E∗(r∗), which provides lower bound for D̃(ž), we obtain

that

a1∥ž∥22 − a1a2c0

√
log p

n∗h∗
∥ž∥1∥ž∥2 ≤ 2λ1cMη + 2λw

√
s∥ž∥2. (S4.5)

Via proof by contradiction, we can deduce from (S4.5) that

∥z̃∥2 ≤ 10a2c0cM

√
log p

n∗h∗
η + 4λ1

√
s+ 2

√
λ1cMη

a1
=: c∗u, (S4.6)

by choosing

h∗ ≳
√

log p/(n∗h∗)η + λ1

√
s+

√
λ1η (S4.7)

such that r∗ > c∗u.

It suffices to choose a λ1 large enough such that (S4.4) holds. To facil-

itate the proof, we present upper bounds for Π0(r),Π(r), and q(r) in the

following two lemmas, with their proofs relegated to Section S5.7 and S5.8.

Lemma S4.1. Assume Conditions 1-S3.1 hold. For any r > 0 and x > 0,

with probability 1− e−x,

Π(r) ≤r

(
C1

1

hw

√
2s log(2p)

nAη + n0

+ C2

√
log(2p) + x

(nAη + n0)hw

+ C3

√
s(log(2p) + x)

(nAη + n0)hw

)

+ η

(
C4

1

hw

√
2 log(2p)

nAη + n0

+ C5
log(2p) + x

(nAη + n0)hw

)
,
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where C1 = 25kuB
2, C2 = (2kufuµ4)

1/2, C3 = 65kuB
2/3, C4 = 4C1cM/5

and C5 = 4C3cM/5. The same upper bound holds for Π0(r) with (nAη +

n0, hw) replaced by (n∗, h∗).

Lemma S4.2. Assume Conditions 1-S3.1 hold. For r > 0, we have q(r) ≤

µ2l0k1|h∗ − hw|r.

Lemma S4.1 implies that with probability at least 1− 2/p,

Π(r∗) + Π0(r∗) ≲r∗
√
s

(
1

hw

√
log p

nAη + n0

+
1

h∗

√
log p

n∗

)

+ η

(
1

hw

√
log p

nAη + n0

+
1

h∗

√
log p

n∗

)
,

provided that 0 < hw ≤ h∗ ≲ 1.

Moreover, Lemma S1.2 and Lemma S4.2 together imply that q∗ ≤

l0(µ1k2h
2
w/2+µ2k1h∗r∗). Therefore, with h−1

w

√
log p/(nAη + n0)+h−1

∗
√
log p/n∗

denoted by ρ∗, we can choose

ρ ≍ max
{
s−1/2(h2

w + h∗r∗), r∗
√
sρ∗ + ηρ∗

}
,

such that (S4.4) holds with high probability. The claimed result follows

directly by plugging the rate of λ1 into (S4.6).

S4.2 Proof of Theorem S3.1

Proof. The proof of Theorem S3.1 is by verifying the conditions of Propo-

sition S3.1 and applying it repeatedly. We start with the first iterate w̃(1).
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Let λ1 = λw + ρ1 with ρ1 ≍ max{s−1/2(h2
w + h∗r∗), r∗

√
sρ∗ + ηρ∗}. With

bandwidths h∗ ≍
√
s(log p/n∗)

1/4 and hw ≍ (s log p/(nAη +n0))
1/4, we have

ρ1 ≍ max

{
s−

1
2φ0r∗,

√
log p

nAη + n0

+

(
log p

sn∗

) 1
4

η

}
,

with

φ0 ≍
(

s3 log p

(nAη + n0)

) 1
4

+

(
s2 log p

n∗

) 1
4

.

Then we can verify that (S4.7) is satisfied provided that

r∗ ≲ min

{
1,

(
nAη + n0

sn∗

) 1
4

}
, η ≲ min

{
s

1
4 ,

(
s5 log p

n∗

) 1
8

}
, r∗η ≲

(
s4 log p

n∗

) 1
4

.

(S4.8)

Examining the proof of Theorem 1, we know that with high probabil-

ity w̃(0) − wAη ∈ B2(r∗) ∩ U with r∗ ≍
√

s log /n∗ + (log p/n∗)
1/4√η +

(log p/n∗)
3/8s−1/8η. With the imposed conditions on η, we can verify that

r∗ ≳
√

s log p/n∗ and that (S4.8) is satisfied for the first iteration. There-

fore, by Proposition S3.1 and the first part of Lemma S1.3, we obtain

∥w̃(1) −wAη∥2 ≤ C0φ0r∗ + C1(rw + h2
w) + C2φ1

√
η + C3φ2η =: r1, (S4.9)

where rw = λw

√
s and (φ0, φ1, φ2) are given in Theorem S3.1. Define

γ = C0φ0. With sufficiently large sample sizes, i.e., n∗ ≳ s2 log p and

nAη+n0 ≳ s3 log p, γ can be strictly less than 1. Consequently, w̃(1) reduces

the estimation error of w̃(0) when the remaining terms are relatively small.
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To move on to more iterations, we first note that

φ1 ≲
(
s log p

n∗

) 1
8 √

r∗+

(
log p

nAη + n0

) 1
4

, φ2 ≲
(
s log p

n∗

) 1
4

+s−
1
4

(
log p

n∗

) 3
8

.

For t = 2, . . . , T , consider the event Et(rt) = {w̃(t) − wAη ∈ B2(rt) ∩ U}

with

rt := γtr∗ +
{
C1(rw + h2

w) + C2φ1
√
η + C3φ2η

} 1− γt

1− γ
.

For t ≥ 2, we set λt = λw + ρt with

ρt ≍ max

{
s−

1
2φ0rt1 ,

√
log p

nAη + n0

+

(
log p

sn∗

) 1
4

η

}

≍ max
{
s−

1
2φt

0r∗ + s−
1
2φ0

{
(rw + h2

w) + φ1
√
η + φ2η

}
,√

log p

nAη + n0

+

(
log p

sn∗

) 1
4

η

}
.

As long as (S4.8) is satisfied, it can be verified that

h∗ ≳
√

log p

n∗h∗
η + λt

√
s+

√
λtη, for all t ≥ 2.

Then a repeated application of Proposition S3.1 gives us that, conditioning

on Et−1(rt−1) ∩ Ew(rw), w̃(t) − wAη ∈ U and ∥w̃(t) − wAη∥2 ≤ rt with

probability at least 1− c1 exp(−c2 log p).

Let the number of iterations T be chosen as ⌈log(r∗/rw)/ log(1/γ)⌉ such

that γtr∗ ≤ rw, we have

∥w̃(T ) −wAη∥2 ≲ λw

√
s+ h2

w +

(
s log p

n∗

)
√
r∗η + s−

1
4

(
log p

n∗

) 3
8

η.
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Plugging the rates of λw and r∗ leads to

∥w̃(T )−wAη∥2 ≲
√

s log p

nAη + n0

+

(
s log p

n∗

) 3
8 √

η+ s−
1
4

(
log p

n∗

) 3
8

η. (S4.10)

This together with the fact w̃(t) −wAη ∈ U gives us

∥w̃(T ) −wAη∥1 ≲ s

√
log p

nAη + n0

+ s
7
8

(
log p

n∗

) 3
8 √

η + η. (S4.11)

The claimed estimation error bounds for β̃
(T ) − β follows by combining

(S4.10), (S4.11), (S1.16), and (S1.20). This completes the proof.

S5 Proof of Auxiliary Lemmas

Here we provide the proofs of all the auxiliary lemmas mentioned in Section

S1 and Section S4.

S5.1 Proof of Lemma S1.1

Proof. Since δAη = M−1
Aη

∑
k∈Aη∪{0} αkM kδ

(k), by Condition 4, we have

∥δAη∥1 ≤
∑

k∈Aη∪{0}

αk∥M−1
Aη
M k∥1∥δ(k)∥1 < cMη.
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S5.2 Proof of Lemma S1.2

Proof. Note that

∇QAη

hw
(w) =

∑
k∈A∪{0}

αkE
{
K̄

(
d(k) − ϵ(k)

hw

)
− τ

}
x(k)

where d(k) = x(k)⊤(wAη −w(k)). By integration by parts, we obtain

E
{
K̄

(
d(k) − ϵ(k)

hw

)∣∣∣∣x(k)

}
=

∫ ∞

−∞
K(u)Fϵ(k)|x(k)(−hwu+ d(k))du

=Fϵ(k)|x(k)(d(k)) +

∫ ∞

−∞
K(u)

∫ −hwu+d(k)

d(k)
(fϵ(k)|x(k)(t)− fϵ(k)|x(k)(0))dtdu,

which together with the Lipschitz condition on fϵ(k)|x(k)(·) leads to

∣∣∣∣E{∣∣∣∣K̄ (d(k) − ϵ(k)

hw

)∣∣∣∣x(k)

}
− Fϵ(k)|x(k)(d(k))

∣∣∣∣ ≤ l0
2
κ2h

2
w. (S5.1)

The moment condition on supu∈Sp−1 E|(x(k))
⊤
u| and (S5.1) together imply

that

∥∇QAη

hw
(wAη)∥2 =

∥∥∥∥∥∥
∑

k∈A∪{0}

αkE
{
K̄

(
d(k) − ϵ(k)

hw

)
− Fϵ(k)|x(k)(d(k))

}
x(k)

∥∥∥∥∥∥
2

≤ l0κ2h
2
w

2

∥∥∥∥∥∥
∑

k∈A∪{0}

αkEx(k)

∥∥∥∥∥∥
2

≤ l0κ2h
2
w

2
sup

k∈A∪{0}
sup

u∈Sp−1

E
∣∣∣(x(k))

⊤
u
∣∣∣ ≤ l0µ1κ2h

2
w

2
,

(S5.2)

where the first equality follows from the definition of wAη in (2.4).
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The proof for ∥∇Q(k)

h(k)(β
(k))∥2 ≤ l0µ1κ2(h

(k))2/2, and ∥∇Q(0)
hδ
(β)∥2 ≤

l0µ1κ2h
2
δ/2 is similar and thus omitted here.

S5.3 Proof of Lemma S1.3

Proof. Let ζ(k)i,1 = K̄(((x
(k)
i )

⊤
w(k)−y(k)i )/hw)−τ and ζ

(k)
i,2 = K̄(((x

(k)
i )

⊤
wAη−

y
(k)
i )/hw)− K̄(((x

(k)
i )

⊤
w(k) − y

(k)
i )/hw). Then we have

∇Q̂Aη

hw
(wAη)−∇QAη

hw
(wAη)

=
1

nAη + n0

∑
k∈A∪{0}

nk∑
i=1

{
ζ
(k)
i,1 x

(k)
i − E[ζ(k)i,1 x

(k)
i ]
}

+
1

nAη + n0

∑
k∈A∪{0}

nk∑
i=1

{
ζ
(k)
i,2 x

(k)
i − E[ζ(k)i,2 x

(k)
i ]
}
.

(S5.3)

We start by analyzing the second line in (S5.3). Note that since |ζ(k)i,1 | ≤ (1−

τ) ∨ τ , {{ζ(k)i,1 }
nk
i=1}k∈A∪{0} are independent sub-Gaussain random variables

with parameter bounded by 1.

In addition, x(k) is sub-Gaussian with E[(x(k)
ij )2] ≤ 4v21 for each j =

1, . . . , p. For a mean zero sub-exponential random variable z with pa-

rameter (v, α), we have E(etx) ≤ exp(v2t2/2) for |t| ≤ 1/α. Therefore,

{{(x(k)
ij )2−E[(x(k)

ij )2]}nk
i=1}k∈A∪{0} are sub-exponential variables with param-
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eter (256v41, 16v
2
1). Applying Bernstein’s inequality gives us

P

 1

(nAη + n0)

∑
k∈A∪{0}

∣∣∣∣∣
nk∑
i=1

(x
(k)
ij )2 − E[(x(k)

ij )2]

∣∣∣∣∣ > t


≤ 2 exp

{
−
nAη + n0

2
min

(
t2

256v41
,

t

16v21

)}
.

By choosing t = 32v21
√
log p/(nAη + n0) and the union bound, we have

P

max
j∈[p]

1

(nAη + n0)

∑
k∈A∪{0}

∣∣∣∣∣
nk∑
i=1

(x
(k)
ij )2 − E[(x(k)

ij )2]

∣∣∣∣∣ > 32v21

√
log p

nAη + n0


≤ 2 exp(− log p),

which implies the event Ex :=
{
maxj∈[p] 1/(nAη + n0)

∑
k∈A∪{0}

∑nk

i=1(x
(k)
ij )2 < cx

}
occurs with probability at least 1 − 2p−1 for some constant cx > 4v21 +

32v21
√
log p/(nAη + n0).

Therefore, we have

P

∥∥∥∥∥∥ 1

nAη + n0

∑
k∈A∪{0}

nk∑
i=1

{
ζ
(k)
i,1 x

(k)
i − E[ζ(k)i,1 x

(k)
i ]
}∥∥∥∥∥∥

∞

> 2

√
cx log p

nAη + n0


= P

∥∥∥∥∥∥ 1

nAη + n0

∑
k∈A∪{0}

nk∑
i=1

{
ζ
(k)
i,1 x

(k)
i − E[ζ(k)i,1 x

(k)
i ]
}∥∥∥∥∥∥

∞

> 2

√
cx log p

nAη + n0

| Ex

+ P(Ecx)

≤ pmax
j∈[p]

P

∣∣∣∣∣∣ 1

nAη + n0

∑
k∈A∪{0}

nk∑
i=1

{
ζ
(k)
i,1 x

(k)
ij − E[ζ(k)i,1 x

(k)
ij ]
}∣∣∣∣∣∣ > 2

√
cx log p

nAη + n0

+ P(Ecx)

≤ 2pEX

exp
− 4cx(nAη + n0) log p∑

k∈A∪{0}
∑nk

i=1 (x
(k)
ij )

2

+
2

p
≤ 4

p
.

Here we use EX to denote the expectation with respect to {x(k)}k∈A∪{0}.
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It remains to bound the third line in (S5.3). By the mean value theorem,

ζ
(k)
i,2 x

(k)
ij =

1

hw

K

(
(x

(K)
i )

⊤
w(k) + v

(k)
i (x

(K)
i )

⊤
(wA −w(k))

hw

)
x
(k)
ij (x

(K)
i )

⊤
(wA−w(k)).

Under Condition 2(c) and Condition 3, we note that ζ
(k)
i,2 x

(k)
ij is a (cM +

1)2η2M2
Kv

2
1-subexponential variable. By tail bounds of subexponential vari-

ables and union bounds, we have∥∥∥∥∥∥ 1

nAη + n0

∑
k∈A∪{0}

nk∑
i=1

{
ζ
(k)
i,2 x

(k)
i − E[ζ(k)i,2 x

(k)
i ]
}∥∥∥∥∥∥

∞

> (cM+1)MKv1η

√
log p

nAη + n0

with probability less than (nAη + n0)
−1. This completes the proof of the

first part by union bounds and choosing C = 2max{cx, (cM + 1)MKv1}.

The proof for the second and the third part is similar and thus omitted.

S5.4 Proof of Lemma S1.4

Proof. Define d
(k)
i = (x

(k)
i )⊤(wAη −w(k)). Note that

D(∆) =
1

nAη + n0

∑
k∈Aη∪{0}

nk∑
i=1

{
K̄

(
(x

(k)
i )

⊤
(wAη +∆)− y

(k)
i

hw

)

−K̄

(
d
(k)
i − ϵ

(k)
i

hw

)}
∆⊤x

(k)
i

≥ κl

(nAη + n0)hw

∑
k∈A∪{0}

nk∑
i=1

(∆⊤x
(k)
i )

2
I{E(k)

i },

where the event E(k)
i is defined as E(k)

i = {|ϵ(k)i −d
(k)
i | ≤ hw/2}∩{|∆⊤x

(k)
i | ≤

∥∆∥2hw/(2r)} on which |y(k)i − (x
(k)
i )

⊤
(wAη +∆)| ≤ hw for all ∆ ∈ B2(r).
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The last inequality follows from the mean value theorem along with Con-

dition 2.

Define the function

ϕR(u) =



u2, if |u| ≤ R
2
,

{u−R sign(u)}2, if R
2
≤ |u| ≤ R,

0, if |u| > R,

(S5.4)

Note that ϕR(·) is R-Lipschitz with homogeneity property ϕc(cu) =

c2ϕ(u). We also note that

|u|I{R/2 ≤ |u| ≤ R} ≤ u2I{|u| ≤ R}, (S5.5)

which implies

D(∆)

∥∆∥22
≥ 1

(nAη + n0)hw

∑
k∈A∪{0}

nk∑
i=1

ϕhw/(2r)(∆
⊤x

(k)
i /∥∆∥2)χ(k)

i︸ ︷︷ ︸
D0(∆)

, (S5.6)

with χ
(k)
i defined as I{|ϵ(k)i − d

(k)
i | ≤ hw/2}.

Under Condition 1, we have

|E(χ(k)
i | x

(k)
i )− hwfϵ(k)|x(k)(d

(k)
i )|

≤
∫ d

(k)
i +hw/2

d
(k)
i −hw/2

|fϵ(k)|x(k)(t)− fϵ(k)|x(k)(d
(k)
i )| ≤ l0h

2
w/4.

Under Condition 5 and applying Hölder’s inequality, we have |d(k)i | <

∥x(k)
i ∥∞∥δ

Aη − δ(k)∥1 < b0. Given that hw ≤ fl/(2l0), we conclude that
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7

8
flhw ≤ E(χ(k)

i | x
(k)
i ) ≤ 9

8
fuhw almost surely. (S5.7)

Combining (S5.5)-(S5.7) leads to

E

[
ϕhw/(2r)

(
∆⊤x

(k)
i

∥∆∥2

)
χ
(k)
i

]

≥ 7flhw

8∥∆∥22
E
[
(∆⊤x

(k)
i )

2
I

{
|∆⊤x

(k)
i | ≤

hw∥∆∥2
4r

}]
.

(S5.8)

Cauchy-Schwartz inequality and tail bounds for sub-Gaussians imply that

E

[
(∆⊤x

(k)
i )2

∥∆∥22
I

{
|∆⊤x

(k)
i | ≥

hw∥∆∥2
4r

}]

≤

√
E[(∆⊤x

(k)
i )4]

∥∆∥22

√
P
(
|∆⊤x

(k)
i | ≥

hw∥∆∥2
4r

)
≤4v21 exp

(
− h2

w

128r2v21

)
≤ γp

4
,

(S5.9)

as long as r ≤ hw/(32v
2
1).

Plugging (S5.8) and (S5.9) into D0(∆) gives us

E[D0(∆)] ≥ 21

32
flγp, for all ∆ ∈ B2(r), (S5.10)

provided that 32v21r ≤ hw ≤ fl/(2l0).

Now we bound the random fluctuation D0(∆) − E[D0(∆)] over ∆ ∈

B2(r). We first consider the set Bl = B2(r) ∩ C(l). Further define Zl =

sup∆∈Bl
|D0(∆) − E[D0(∆)]|. Following a similar argument in the proof

of Proposition 4.2 in Tan et al. (2022), it can be shown that there exist
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positive constants C1 and C2 such that

Zl ≤ C1v1l

√
fuhw log p

(nAη + n0)r2
+ C2

√
fuhw log p

(nAη + n0)r2
, (S5.11)

with probability at least 1−p−1, as long as hw ≳ log p/(nAη+n0). Combing

(S5.6),(S5.10) and (S5.11), we can conclude that

D(∆)

∥∆∥22
≥ 1

2
κlflγp − C1v1lκl

√
fuhw log p

(nAη + n0)r2
, for all ∆ ∈ Bl, (S5.12)

as long as C2

√
fuhw log p/((nAη + n0)r2) ≤ 5flγp/32.

Now we employ a peeling technique (van der Vaart and Wellner, 1996;

Van de Geer, 2000) to extend the bound in (S5.12) to one that is uniform

in ∥∆∥1/∥∆∥2. Consider the event

E =

{
D(∆)

∥∆∥22
≥ 1

2
κlflγp − C1v1κl

√
fuhw log p

(nAη + n0)r2
∥∆∥1
∥∆∥2

, for all ∆ ∈ S(r)

}
,

where

S(r) = {∆ ∈ B2(r) :
∥∆∥1
∥∆∥2

≤ fl
2C1v1

(nAη + n0)r
2

fuhw log p

1/2

}.

Define DAη = {(X(k),y(k))}k∈Aη and the functions

f(∆;DAη) =
1

2
κlflγp −

D(∆)

∥∆∥22

along with

g(l) = C1v1lκl

√
fuhw log p

(nAη + n0)r2
, and h(∆) =

∥∆∥1
∥∆∥2

.
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The inequality (S5.12) implies that

P

(
sup

∆∈S(r),h(∆)≤ℓ

f(∆;DAη) ≥ g(ℓ)

)
≤ 1

p
, for any ℓ > 0.

Since 1 ≤ h(∆) ≤ fl/(2C1v1)
√
(nAη + n0)r2/(fuhw log p), we have

g(h(∆)) ∈

[
C1v1κl

√
fuhw log p

(nAη + n0)r2
,
κlflγp
2

]

over the region of interest. Define the set

Vm = {∆ | 2m−1b ≤ g(h(∆)) ≤ 2mb}, m = 1, . . . ,M,

where b = C1v1κl

√
fuhw log p/((nAη + n0)r2) and M is taken as the small-

est integer such that 2M ≥ flγp/(2C1v1)(nAη + n0)
1/2r/(fuhw log p)1/2. Since

32v21r ≤ hw ≤ fl/(2l0), we can take M = ⌈log{c
√
(nAη + n0)/ log p}⌉.

By a union bound, there exist some positive constants c1 and c2 such

that

P(Ec) ≤
M∑

m=1

P(∃∆ ∈ Vm, s.t.f(∆;DAη) ≥ 2g(h(∆)))

≤
M∑

m=1

P

(
sup

h(∆)≤g−1(2mb)

f(∆;DAη) ≥ 2mb

)

≤M/p ≤ c1 exp(−c2 log p).

(S5.13)

This proves the claimed result with by taking a1 = 1
2
κlflγp and a2 =

2C1v1/(flγp).
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S5.5 Proof of Lemma S1.5

Proof. Lemma S1.5 is a special case of Lemma S1.4 and hence we omit its

proof here.

S5.6 Proof of Lemma S1.6

Proof. Define û(k) = β̂
(k)
− β(k) and q(k) = ∥∇Q(k)

h(k)(β
(k))∥2. By Lemma

S1.2, we have q(k) ≤ l0µ1κ2(h
(k))2/2. For k ∈ A, consider the event

Ek = {2∥∇Q̂(k)

h(k)(β
(k)) − ∇Q(k)

h(k)(β
(k))∥∞ ≤ λ(k)}. Now following the same

arguments used in (S1.6) and (S1.7), we obtain that

0 ≤⟨∇Q̂(k)

h(k)(β̂
(k)
)−∇Q̂(k)

h(k)(β
(k)), û(k)⟩

=⟨−λ(k)sgn(β̂
(k)
), û(k)⟩ − ⟨∇Q̂(k)

h(k)(β
(k))−∇Q(k)

h(k)(β
(k)), û(k)⟩

− ⟨∇Q(k)

h(k)(w
(k)), û(k)⟩

≤λ(k)∥β(k)∥1 − λ(k)∥β̂
(k)
∥1 +

1

2
λ(k)∥û(k)∥1 + q(k)∥û(k)∥2

≤2λ(k)∥β(k)
Sc
k
∥1 +

3

2
λ(k)∥û(k)

Sk
∥1 −

1

2
λ(k)∥û(k)

Sc
k
∥1 + q(k)∥û(k)∥2.

Provided that (h(k))2 ≤ λ(k)
√
s/(l0µ1κ2) and together with Condition

6, this leads to the cone-like constraint for û(k):

∥û(k)
Sc
k
∥1 ≤ 3∥û(k)

Sk
∥1 + 2(λ(k))−1q(k)∥û(k)∥2 + 4∥β(k)

Sc
k
∥1

≤ 4
√
s′∥û(k)∥2 + 4η′,

(S5.14)

from which it follows that

∥û(k)∥1 ≤ 5
√
s∥û(k)∥2 + 4η′. (S5.15)
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Next, we provide a lower bound for D(k)(∆) := ⟨∇Q̂(k)

h(k)(β
(k) + ∆) −

∇Q̂(k)

h(k)(β
(k)),∆⟩. Consider the event

E ′k(r(k)) =

{
D(k)(∆)

∥∆∥22
≥ a1

(
1− a2

√
h(k) log p

(nk + n0)(r(k))2
∥∆∥1
∥∆∥2

)
, for all ∆ ∈ B2(r

(k))

}
.

We set r(k) = h(k)/c0 with c0 = 32v21.

Conditioning on Ek∩E ′k(r(k)) and using the same techinique for deriving

(S1.9), we can deduce from (S5.15) that

∥û(k)∥2 ≤ 8a2c0

√
log p

(nk + n0)h(k)
η′ + 4λ(k)

√
s′ + 2

√
λ(k)η′

a1
=: c(k)u ,

by choosing h(k) ≳
√

log p/((nk + n0)h(k))η′ + λ(k)
√
s′ +

√
λ(k)η′ such that

r(k) > c
(k)
u . With the stated choices λ(k) ≍

√
log p/(nk + n0) and h(k) ≍

√
λ(k)(s′)1/4, as long as η′ ≲

√
s′, we have

∥û(k)∥2 ≲
√

s′ log p

nk + n0

+

(
log p

nk + n0

)1/4√
η′ +

(
log p

nk + n0

) 3
8

s−
1
8η′ = Ωk.

(S5.16)

It remains to bound the probability of the event Ek ∩ E ′k(r(k)) when λ(k) ≍√
log p/(nk + n0), which follows from Lemma S1.3 and Corollary S1.1.

S5.7 Proof of Lemma S4.1

Proof. Recall that d(k)i = (x
(k)
i )⊤(wAη−w(k)), H0(w) = ∇Q̂∗

h∗
(w)−∇Q̂∗

h∗
(wAη),

and H(w) = ∇Q̂Aη

hw
(w)−∇Q̂Aη

hw
(wAη). To facilitate proof, for z ∈ Rp, de-
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fine

V
(k)
ij (z) :=

{
K̄

(
(x

(k)
i )⊤z + d

(k)
i − ϵ

(k)
i

hw

)
− K̄

(
d
(k)
i − ϵ

(k)
i

hw

)}
x
(k)
ij

and Vj := supz∈Θz(r1,r2) |1/(nAη + n0)
∑

k∈Aη∪{0}
∑nk

i=1 V
(k)
ij (z) − EV (k)

ij (z)|

where Θz(r1, r2) = {z ∈ Rp : ∥z∥1 ≤ r1, ∥z∥2 ≤ r2}.

With the notations above, we have

sup
w∈Θz(r1,r2)

∥H(w)− EH(w)∥∞ = max
j∈[p]

Vj (S5.17)

By similar arguments as used in the proof of Lemma 19 in Tan et al. (2022),

it can be shown that

sup
z∈Θz(r1,r2)

∣∣∣V (k)
ij (z)

∣∣∣ ≤ kuB
2r1/hw, (S5.18)

E
[
V

(k)
ij

]2
≤ kufuh

−1
w

[
E(x(k)

ij )4
] 1

2
[
E⟨x(k)

i , z⟩4
] 1

2 ≤ kufuµ4h
−1
w r2, (S5.19)

for all z ∈ Θz(r1, r2) and k ∈ A ∪ {0}, and also

EVj ≤ 4kuB
2r1/hw

√
2 log(2p)/N, for all j ∈ [p]. (S5.20)

By applying Bousquet’s version of Talagrand’s inequality Bousquet (2003),

we obtain that for any t > 0,

Vj ≤
5

4
EVj+ sup

z∈Θz(r1,r2)

[
E
{
V

(k)
ij (z)

}2
] 1

2

√
2t

nAη + n0

+
13

3
kuB

2 r1t

(nAη + n0)hw

,

(S5.21)
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with probability at least 1 − 2e−t. Finally, the claimed result follows by

combining (S5.17)-(S5.21) and taking t = log(2p)/x, r2 = r, and r1 =

5
√
sr + 4cMη.

S5.8 Proof of Lemma S4.2

Proof. The Hessian matrix of QAη

hw
(w) is given by

∇2Q
Aη

hw
(w) =

∑
k∈A∪{0}

αkE
{

1

hw

K

(
(x(k))⊤wAη − y(k)

hw

)
x(k)(x(k))⊤

}
.

Define z = w −wAη . Recall that d(k) = (x(k))⊤(wAη −w(k)).By the mean

value theorem, we have

EH(w) =

∫ 1

0

∇2Q
Aη

hw
(wAη + tz)dt(w −wAη)

=

∫ 1

0

∑
k∈Aη∪{0}

αkE
{

1

hw

K

(
(x(k))⊤(wAη + tz)− y(k)

hw

)
x(k)(x(k))⊤

}
dtz

=
∑

k∈Aη∪{0}

αkE
{∫ 1

0

∫ ∞

−∞
K(u)fϵ(k)|x(k)(tz + d(k) − hwu)dudtx

(k)(x(k))⊤
}
z.

Similarly, we can show that

EH0(w) =
∑

k∈Aη∪{0}

αkE
{∫ 1

0

∫ ∞

−∞
K(u)fϵ(k)|x(k)(tz + d(k) − h∗u)dudtx

(k)(x(k))⊤
}
z.
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The above two equalities and the lipschitz continuity of fϵ(k)|x(k)(·) imply

∥EH(w)− EH0(w)∥2

≤ sup
u∈Sp−1

∑
k∈Aη∪{0}

αkE
{∫ 1

0

∫ ∞

−∞
K(u)

∣∣fϵ(k)|x(k)(tz + d(k) − hwu)

−fϵ(k)|x(k)(tz + d(k) − h∗u)
∣∣ dudt ∣∣(x(k))⊤z

∣∣ ∣∣(x(k))⊤u
∣∣ }

≤l0
∫ ∞

−∞
|u|K(u)du|hw − h∗| sup

u∈Sp−1

E{((x(k))⊤u)}2∥z∥2

≤l0κ1|hw − h∗|µ2r2.

This completes the proof.

References

Bousquet, O. (2003). Concentration inequalities for sub-additive functions

using the entropy method. In Stochastic inequalities and applications, pp.

213–247. Springer.

Fan, J., H. Liu, Q. Sun, and T. Zhang (2018). I-lamm for sparse learn-

ing: Simultaneous control of algorithmic complexity and statistical error.

Annals of statistics 46(2), 814.

Jordan, M. I., J. D. Lee, and Y. Yang (2019). Communication-efficient

distributed statistical inference. Journal of the American Statistical As-

sociation 114(526), 668–681.



REFERENCES 46

Li, S., T. T. Cai, and H. Li (2022). Transfer learning for high-dimensional

linear regression: Prediction, estimation and minimax optimality. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 84(1),

149–173.

Loh, P.-L. (2017). Statistical consistency and asymptotic normality for

high-dimensional robust m-estimators. The Annals of Statistics 45(2),

866–896.

Loh, P.-L. and M. J. Wainwright (2013). Regularized m-estimators with

nonconvexity: Statistical and algorithmic theory for local optima. Journal

of Machine Learing Research 16, 559–616.

Negahban, S. N., P. Ravikumar, M. J. Wainwright, and B. Yu (2012).

A unified framework for high-dimensional analysis of m-estimators with

decomposable regularizers. Statistical science 27(4), 538–557.

Shamir, O., N. Srebro, and T. Zhang (2014). Communication-efficient dis-

tributed optimization using an approximate newton-type method. In In-

ternational conference on machine learning, pp. 1000–1008. PMLR.

Tan, K. M., H. Battey, and W.-X. Zhou (2022). Communication-

constrained distributed quantile regression with optimal statistical guar-

antees. Journal of Machine Learning Research 23, 1–61.



REFERENCES 47

Tan, K. M., L. Wang, and W.-X. Zhou (2022). High-dimensional quantile

regression: Convolution smoothing and concave regularization. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 84(1),

205–233.

Tian, Y. and Y. Feng (2022). Transfer learning under high-dimensional gen-

eralized linear models. Journal of the American Statistical Association (to

appear).

Van de Geer, S. A. (2000). Empirical Processes in M-estimation, Volume 6.

Cambridge university press.

van der Vaart, A. W. and J. Wellner (1996). Weak convergence and empirical

processes: with applications to statistics. Springer Science & Business

Media.

Wang, J., M. Kolar, N. Srebro, and T. Zhang (2017). Efficient distributed

learning with sparsity. In International conference on machine learning,

pp. 3636–3645. PMLR.


	Proof of Main Results
	Auxiliary Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Additional Simulation results
	QR Transfer with More Heterogeneous Designs
	Sensitivity to the smoothing bandwidths

	Distributed QR Transfer
	Distributed QR Transfer Algorithm
	Theory for Distributed-Oracle-Trans-SQR

	Proof of Results in Section S1
	Proof of Proposition S3.1
	Proof of Theorem S3.1

	Proof of Auxiliary Lemmas
	Proof of Lemma S1.1
	Proof of Lemma S1.2
	Proof of Lemma S1.3
	Proof of Lemma S1.4
	Proof of Lemma S1.5
	Proof of Lemma S1.6
	Proof of Lemma S4.1
	Proof of Lemma S4.2


