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Improved regression inference

using a second overlapping regression model

Liang Peng1 and John H.J. Einmahl2

Abstract. Two time series of financial losses may be observed in different overlapping win-

dows, serially dependent, heteroscedastic, and cross-sectionally dependent. Fitting a regression

model to each of the two time series, we construct an improved least squares estimator in one se-

ries exploiting the cross-sectional dependence with the other series. We employ a random weight

bootstrap method to define the new estimator and to establish its asymptotic normality. The

developed inference is robust against heteroscedasticity as we do not estimate the heteroscedastic

errors. Simulations confirm the efficiency improvement through substantial variance reduction,

especially when the cross-sectional dependence is strong and the second series is longer. We

illustrate the usefulness of the method by analyzing mutual funds’ returns.

Key words and phrases: Cross-sectional dependence; Heteroscedasticity; Random weight

bootstrap; Regression model; Variance reduction.

1 Introduction

Regression is a standard technique in exploring the relationship between predictors and response;

see, e.g., Davison (2011). Consider two parametric regressions for forecasting financial returns
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or losses {Yt,k}Tt=1 of two different assets or institutions (k = 1, 2) using predictors {Xt,k}Tt=1:

Yt,k = fk(Xt,k;θk) + εt,k, (1)

where E(εt,k) = 0 and fk has a known parametric form with unknown parameters θk ∈ Rdk

for k = 1 and 2. For example, in evaluating mutual funds’ performances, researchers and

practitioners often use the one-factor model in Jensen (1968), or the three-factor model in Fama

and French (1996), or the four-factor model in Carhart (1997), where Xt,1 = Xt,2. A simple

estimator of θk without modeling the distribution of the εt,k is the least squares estimator

θ̃k = argmin
θk

T∑
t=1

{Yt,k − fk(Xt,k;θk)}2.

When {(εt,1, εt,2)}Tt=1 are independent and identically distributed random vectors with a para-

metric bivariate density, joint inference (that is, taking into account the dependence structure)

leads to improved estimators compared to the “marginal” least squares estimators θ̃1 and θ̃2,

see Patton (2006), which uses a parametric copula model and allows for a different length of

these two sequences. When {(εt,1, εt,2)}Tt=1 follows from a bivariate GARCH model, one can

model the residuals parametrically to get the conditional likelihood for (εt,1, εt,2) and employ an

efficient likelihood inference. However, if we do not model and infer the heteroscedasticity, it is

infeasible to specify a likelihood or conditional likelihood for (εt,1, εt,2) and employ a parametric

likelihood procedure. Hence, a natural question is whether one can improve the efficiency of θ̃1

by using the series {Yt,2,Xt,2} nonparametrically when εt,1 and εt,2 in (1) are correlated.

When one has a sequence of responses and a longer sequence of predictors, it is shown in

Zhang, Brown and Cai (2019) that the extra predictors can improve the inference for a regression

model based on pairs of responses and predictors and it is called a semi-supervised model. When

one has two dependent sequences with different lengths, Ahmed and Einmahl (2019) show that

extreme-value index estimation for the short sequence can be improved by using the longer
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sequence. As far as we know, the above question for two regression models has not been studied

in the literature, although such a data structure often appears in, e.g., financial econometrics.

This paper answers this question positively when both series are observed in different time

windows, the second series has a time overlap with the first series, and there is dependence

between the regression errors of the two series. More specifically, we construct a class of estima-

tors combining the least squares estimator calculated from the first series and the difference of

some statistics based on the second series for the overlapping period and the longer entire sec-

ond period, respectively. Because the expectation of the product of the centered least squares

estimator for the first series and the above difference is unequal to 0, we can minimize the

asymptotic variance of this class of estimators to obtain a novel estimator, more efficient than

the least squares estimator. To actually obtain this optimal estimator, we employ a random

weight bootstrap method to estimate the asymptotic variances of this class of estimators. Be-

cause we allow heteroscedastic errors and do not infer them, the proposed inference is robust

against heteroscedasticity misspecification, and the usual residual-based bootstrap method does

not apply.

A particular application of the improved inference is mutual funds performance evalua-

tion, where funds are often observed in different but overlapping time windows and have cross-

sectional dependence. After fitting the popular one-factor, three-factor, or four-factor model to

excess returns of the fund, researchers and practitioners use the intercept and the coefficient

related to market excess returns to measure the skill and risk attitude of the fund manager,

respectively. Because many funds have a smaller sample size, an interesting question is how

to improve the classical least squares inference when there are other funds with a longer time

series. Using US mutual funds’ daily returns from September 1, 1998 to December 31, 2018, we

compare least squares estimation and our novel inference for some funds with a shorter length
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and use as a second series the average returns of 654 funds with the largest sample size in our

data set.

We organize this paper as follows. Section 2 presents the methodology and asymptotic

results. Sections 3 and 4 contain the simulation study and the mutual fund’s data analysis,

respectively. Section 5 concludes. The proofs of the main results are deferred to the Appendix.

2 Methodology and Asymptotic Results

Suppose we observe {Yt,1,Xt,1}T1
t=t1

and {Yt,2,Xt,2}T2
t=t2

, with t2 < T1 < T2, from the regression

models (1), that is, there is an overlapping period between these two series. We allow both

cases: t1 ≥ t2 and t1 < t2. The first one is generally called the semi-supervised model; see,

e.g., Zhang, Brown and Cai (2019) and the references therein. The least squares estimators for

θ1 ∈ Rd1 and θ2 ∈ Rd2 are

θ̃1 = argmin
θ1

T1∑
t=t1

{Yt,1 − f1(Xt,1;θ1)}2 and θ̃2 = argmin
θ2

T2∑
t=t2

{Yt,2 − f2(Xt,2;θ2)}2.

The question is if one can improve the efficiency of θ̃1 using the data {Yt,2,Xt,2}T2
t=t2

nonpara-

metrically. To better appreciate the proposed methodology, we consider estimating γ1 = K(θ1),

where K is a known function from Rd1 to R, and we would like to improve the least squares

estimator γ̃1 = K(θ̃1). For example, when f1 is a linear function, K(θ1) being the intercept

(coefficient) is an important quantity in studying the skill (risk attitude) of a fund manager

in finance. The critical idea of improving the least squares estimation is to make use of the

dependence between εt,1 and εt,2 in combination with the additional information on εt,2 outside

the overlapping period, without modeling and estimating the dependence structure explicitly.

Generalizing the idea to a multivariate γ1 is straightforward; see Remark 2 below.

4
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2.1 Uncorrelated errors

We first consider uncorrelated but heteroscedastic errors as in condition C1) below. Put ε̃t,k =

Yt,k − fk(Xt,k; θ̃k), k = 1, 2. To improve the efficiency of γ̃1, we study a class of linear combi-

nations of γ̃1 and some estimators with no asymptotic bias but correlated with γ̃1. Specifically,

we consider the class of estimators

γ̃1 + hτ∆2, (2)

where hτ denotes the transpose of the vector h, and

∆2 =
1

T1 − (t1 ∨ t2) + 1

T1∑
t=t1∨t2

G(ε̃t,2,Xt,2, θ̃2)−
1

T2 − t2 + 1

T2∑
t=t2

G(ε̃t,2,Xt,2, θ̃2) (3)

with G being a known vector of functions and t1 ∨ t2 denoting the maximum of t1 and t2. The

choice of this class of estimators with ∆2 and G is a very general form of the usual estimators

in semi-supervised models, see Zhang, Brown and Cai (2019). The vector ∆2 compares the

behavior of the second series on the entire period with that on the overlapping period and has

an asymptotically zero mean. Below, in (5), we will choose a specific G based on score functions.

Under appropriate regularity conditions given later,

∆2 =
1

T1 − (t1 ∨ t2) + 1

T1∑
t1∨t2

G(εt,2,Xt,2,θ2)

+
1

T1 − (t1 ∨ t2) + 1

T1∑
t1∨t2

{
∂G(εt,2,Xt,2,θ2)

∂εt,2
(ε̃t,2 − εt,2) +

∂G(εt,2,Xt,2,θ2)

∂θτ
2

(θ̃2 − θ2)

}

+op

(
1√

T1 − (t1 ∨ t2)

)
− 1

T2 − t2 + 1

T2∑
t2

G(εt,2,Xt,2,θ2)

− 1

T2 − t2 + 1

T2∑
t2

{
∂G(εt,2,Xt,2,θ2)

∂εt,2
(ε̃t,2 − εt,2) +

∂G(εt,2,Xt,2,θ2)

∂θτ
2

(θ̃2 − θ2)

}
+ op

(
1√

T1 − (t1 ∨ t2)

)

=
1

T1 − (t1 ∨ t2) + 1

T1∑
t1∨t2

G(εt,2,Xt,2,θ2)−
1

T2 − t2 + 1

T2∑
t2

G(εt,2,Xt,2,θ2) + op

(
1√

T1 − (t1 ∨ t2)

)
, (4)

where the second and fifth terms are combined for the last equality. This result simplifies the

study of the asymptotic behavior of the new estimators in (2), since the plug-in estimator θ̃2 in

∆2 plays, directly and indirectly through the ε̃t,k, no role asymptotically.
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By minimizing E(γ̃1 + hτ∆2 − γ1)
2 with respect to h, we obtain the optimal h as

h0 = −{E(∆2∆
τ
2)}

−1E{(γ̃1 − γ1)∆2}.

Note that ∆2 is a difference of two statistics computed from the overlapping period and the

entire period of the second series, respectively. When the proportion {T1 − (t1 ∨ t2)}/(T1 − t1),

the relative overlap of the series {Yt,2,Xt,2}T2
t=t2

with the series {Yt,1,Xt,1}T1
t=t1

, stays positive,

the expectation E{(γ̃1 − γ1)∆2} will in general be nonzero and the newly obtained “estimator”

with h0 will have a smaller asymptotic variance than γ̃1 itself. More precisely, the variance gain

is equal to

E(γ̃1 − γ1)
2 − E(γ̃1 + hτ0∆2 − γ1)

2 = E{(γ̃1 − γ1)∆
τ
2} {E(∆2∆

τ
2)}

−1E{(γ̃1 − γ1)∆2},

which is always nonnegative. Clearly, when the residuals in both regressions are independent,

E{(γ̃1 − γ1)∆2} = E(γ̃1 − γ1)E(∆2) → 0 and h0 → 0, i.e., no improvement. There are many

possible choices for G when constructing ∆2, and it is challenging to find an optimal one.

However, the very natural choice for G that we will employ here is the one using score functions,

that is,

G(ε̃t,2,Xt,2, θ̃2) = ε̃t,2ḟ2(Xt,2; θ̃2), (5)

where ḟ2(x;θ2) =
∂f2(x;θ2)

∂θ2
. Observe that in this case,

∆2 =
1

T1 − (t1 ∨ t2) + 1

T1∑
t=t1∨t2

ε̃t,2ḟ2(Xt,2; θ̃2)

=
1

T1 − (t1 ∨ t2) + 1

T1∑
t=t1∨t2

(Yt,2 − f2(Xt,2; θ̃2))ḟ2(Xt,2; θ̃2),

since the second part of ∆2 in (3) is zero because θ̃2 is the least squares estimator.

To estimate h0 without deriving the approximations of E{(γ̃1 − γ1)∆2} and E(∆2∆
τ
2), we

adopt the random weight bootstrap method in Jin, Ying and Wei (2001) and Zhu (2016).

An interesting feature of our approach is that the proposed estimator is robust against the
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heteroscedasticity of the εt,k as we do not infer it. Also, because we do not estimate this

heteroscedasticity, the usual residual-based bootstrap method does not apply. Although one

can employ other bootstrap methods, such as the wild bootstrap in Mammen (1993) without

estimating heteroscedasticity, it generally requires generating bootstrap samples from the model

and becomes more computationally intensive than the random weighted bootstrap method. The

random weight bootstrap procedure is as follows:

• Step Ai) Draw a random sample with size T2 from a probability distribution with mean 1

and variance 1, say the standard exponential distribution. Denote it by {δbt}
T2
t=1.

• Step Aii) Compute

θ̃
b

1 = argmin
θ1

T1∑
t=t1

δbt{Yt,1 − f1(Xt,1;θ1)}2, γ̃b1 = K(θ̃
b

1),

θ̃
b

2 = argmin
θ2

T2∑
t=t2

δbt{Yt,2 − f2(Xt,2;θ2)}2,

ε̃bt,2 = Yt,2 − f2(Xt,2; θ̃
b

2), for t = t2, . . . , T2,

∆b
2 =

∑T1
t=t1∨t2 δ

b
t ε̃

b
t,2ḟ2(Xt,2; θ̃

b

2)∑T1
t=t1∨t2 δ

b
t

.

• Step Aiii) Repeat the above two steps B times to obtain {γ̃b1,∆b
2}Bb=1.

Next, we estimate E{(γ̃1 − γ1)∆2} and E(∆2∆
τ
2) by

1

B

B∑
b=1

(γ̃b1 − γ̃1)(∆
b
2 −∆2) and

1

B

B∑
b=1

(∆b
2 −∆2)(∆

b
2 −∆2)

τ ,

respectively, which yields

ĥ0 = −

{
1

B

B∑
b=1

(∆b
2 −∆2)(∆

b
2 −∆2)

τ

}−1
1

B

B∑
b=1

(γ̃b1 − γ̃1)(∆
b
2 −∆2).

Hence, our improved estimator for γ1 becomes

γ̂1 = γ̃1 + ĥτ0∆2. (6)
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When fk(Xt,k;θk) = θτ
kXt,k for k = 1 and 2, we have the following explicit formulas

θ̃k = (
1

Tk

Tk∑
t=tk

Xt,kX
τ
t,k)

−1 1

Tk

Tk∑
t=tk

Yt,kXt,k and θ̃
b

k = (
1

Tk

Tk∑
t=tk

δbtXt,kX
τ
t,k)

−1 1

Tk

Tk∑
t=tk

δbtYt,kXt,k

for k = 1 and 2,

∆2 =
1

T1 − t1 ∨ t2 + 1

T1∑
t=t1∨t2

(Yt,2 −Xτ
t,2θ̃2)Xt,2, and ∆b

2 =

∑T1
t=t1∨t2 δ

b
t (Yt,2 −Xτ

t,2θ̃
b

2)Xt,2∑T1
t=t1∨t2 δ

b
t

.

To establish the asymptotic limit of γ̂1 and quantify its uncertainty, we use the following

regularity conditions, where θ0
k is the true value of θk, k = 1, 2.

• C1) For k = 1 and 2, we assume

εt,k = σt,kηt,k, σ2
t,k = wk +

pk∑
i=1

ai,kε
2
t−i,k +

qk∑
j=1

bj,kσ
2
t−j,k

for some wk > 0, a1,k ≥ 0, . . . , apk,k ≥ 0, b1,k ≥ 0, . . . , bqk,k ≥ 0, where {(ηt,1, ηt,2)τ}T2
t=1 is

a sample of independent and identically distributed random vectors with E(ηt,k) = 0 and

E(η2t,k) = 1. Further, assume

pk∑
i=1

ai,k +

qk∑
j=1

bj,k < 1, for k = 1, 2.

• C2) {Xt,k}T2
t=1 is stationary and ergodic, and E(ηt,k | {Xs,1,Xs,2}ts=1) = 0, for k = 1, 2.

• C3) For k = 1, 2 and θk = (θk,1, . . . , θk,dk)
τ , there exist a neighborhood Ωk of θ0

k and

δ0 > 0 such that for 1 ≤ l1, l2, l3 ≤ dk,

E sup
θk∈Ωk

∣∣∣∣∂fk(Xt,k;θk)

∂θk,l1

∂2fk(Xt,k;θk)

∂θk,l2∂θk,l3

∣∣∣∣ < ∞, E sup
θk∈Ωk

∣∣∣∣εt,k ∂3fk(Xt,k;θk)

∂θk,l1∂θk,l2∂θk,l3

∣∣∣∣ < ∞,

E sup
θk∈Ωk

∣∣∣∣∂fk(Xt,k;θk)

∂θk,l1

∂fk(Xt,k;θk)

∂θk,l2

∣∣∣∣1+δ0

< ∞, E sup
θk∈Ωk

∣∣∣∣εt,k ∂2fk(Xt,k;θk)

∂θk,l1∂θk,l2

∣∣∣∣1+δ0

< ∞,

E sup
θk∈Ωk

∣∣∣∣εt,k ∂fk(Xt,k;θk)

∂θk,l1

∣∣∣∣2+δ0

< ∞.

• C4) T1−(t1∨t2)
T1−t1

→ q ∈ (0, 1] as T1 − t1 → ∞.
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We use the popular GARCH models introduced in Engle (1982) and Bollerslev (1986) in C1) for

heteroscedasticity and allow general, cross-sectional dependence between ηt,1 and ηt,2. However,

the proposed inference does not estimate the GARCHmodels and the cross-sectional dependence.

Hence, it is easy to relax the GARCH errors to some general positively measurable functions

σt,k = gk(ηt−1,k, ηt−2,k, · · · ) such as in the generalized GARCH models in Zhu and Ling (2015).

Condition C2) holds when {Xt} is independent of {(ηt,1, ηt,2)τ}. Condition C3) ensures that

the least squares estimator is asymptotically normal. When fk is linear in Xt,k for k = 1 and 2,

the partial derivatives of fk with order larger than one are zero, hence condition C3) becomes

E(|εt,k(1 + ||Xt,k||)|2+δ0) < ∞ and E(||Xt,k||2+δ0) < ∞ for some δ0 > 0. Recall that we focus

on the particular function G defined in (5) and γ̂1 as given in (6).

Theorem 1. Suppose model (1), with T = T2, satisfies conditions C1)–C4). Then, as T1−t1 →

∞ and B → ∞,

γ̃1 − γ1
σ̃1

d→ N(0, 1) and
γ̂1 − γ1

σ̂1

d→ N(0, 1),

where

σ̃2
1 =

1

B

B∑
b=1

(γ̃b1 − γ̃1)
2, σ̂2

1 = σ̃2
1 − ĥτ0

{
1

B

B∑
b=1

(∆b
2 −∆2)(∆

b
2 −∆2)

τ

}
ĥ0.

In the simulation study section and the application section, it will become clear that the

variance reduction when using γ̂1 instead of γ̃1 can be sizable.

Remark 1. In case a third time series {Yt,3,Xt,3}T3
t=t3

is observed, which overlaps or has a

different length from the first sequence, we can consider the class of estimators

γ̃1 + hτ∆2 + hτ1∆3,

where ∆3 is constructed similarly as ∆2 for some known vector of functions G1 (instead of G).

As before, we choose h and h1 by minimizing the asymptotic variance of the above estimators.

Then an extension of Theorem 1 could be derived under appropriate assumptions. Adding the
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third time series improves the performance of the new estimator, in particular, if the first and

second time series as well as the first and third time series are strongly dependent, whereas the

second and third time series are less dependent. The case of three or more time series is beyond

the scope of this paper and will not be pursued. See Ahmed and Einmahl (2019), Section 3, for

results along these lines in extreme value statistics.

Remark 2. When γ1 = K(θ1) is a vector with K a known function from Rd1 to Rd3, we can

still consider the class of estimators γ̃1 + hτ∆2 and find an optimal h by minimizing

E{(γ̃1 − γ1 + hτ∆2)
τ (γ̃1 − γ1 + hτ∆2)} = E{(γ̃1 − γ1 + hτ∆21d3)

τ (γ̃1 − γ1 + hτ∆21d3)},

where 1d3 denotes a d3-vector with all elements being one, which leads to

h0 = −{E(∆2∆
τ
2)}

−1E{(1τd3(γ̃1 − γ1))∆2}

and the new estimator γ̃1+ ĥτ0∆2, where ĥ0 is an estimator of h0 via the same random weighted

bootstrap method as in Theorem 1. More effectively but tediously, we can minimize the asymptotic

variance of the class of estimators γ̃1 +H∆2 with H being a matrix instead of a vector.

2.2 Correlated errors

Next, we generalize the method to correlated and heteroscedastic errors by considering the

following models with autoregressive (AR) errors:

Yt,k = fk(Xt,k;θk) + Ut,k, Ut,k =

sk∑
j=1

ϕj,kUt−j,k + εt,k (7)

for k = 1, 2, where the εt,k satisfy C1) as before. Put ϕk = (ϕ1,k, . . . , ϕsk,k)
τ . Like in Hall

and Yao (2003) and Liu, Chen and Yao (2010), we can take the AR structure into account to

estimate θk by

(θ∗
k,ϕ

∗
k) = arg min

θk,ϕk

Tk∑
t=tk

{Yt,k − fk(Xt,k;θk)−
sk∑
j=1

ϕj,k(Yt−j,k − fk(Xt−j ;θk))}2. (8)

10
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To improve the estimator γ∗1 = K(θ∗
1) with the aid of the second series, we minimize the mean

squared error within the class of estimators

γ∗1 + hτ∆∗
2,

where

∆∗
2 =

1

T1 − (t1 ∨ t2) + 1

T1∑
t=t1∨t2

∂

∂θ2

Yt,2 − f2(Xt,2;θ
∗
2)−

s2∑
j=1

ϕ∗
j,2(Yt−j,2 − f2(Xt−j ;θ

∗
2))


2

.

As before, we can use the following random weight bootstrap method to estimate the optimal

h and obtain the new estimator:

• Step Bi) Draw a random sample with size T2 from a probability distribution with mean

one and variance one, say the standard exponential distribution. Denote it by {δbt}
T2
t=1.

• Step Bii) Compute

(θ∗b
1 ,ϕ∗b

1 ) = argmin
θ1,ϕ1

T1∑
t=t1

δbt{Yt,1 − f1(Xt,1;θ1)−
s1∑
j=1

ϕj,1(Yt−j,1 − f1(Xt−j,1;θ1))}2,

γ∗b1 = K(θ∗b
1 ),

(θ∗b
2 ,ϕ∗b

2 ) = argmin
θ2,ϕ2

T2∑
t=t2

δbt{Yt,2 − f2(Xt,2;θ2)−
s2∑
j=1

ϕj,2(Yt−j,2 − f2(Xt−j,2;θ2))}2,

∆∗b
2 =

∑T1
t=t1∨t2 δ

b
t

∂
∂θ2

{
Yt,2 − f2(Xt,2;θ

∗b
2 )−

∑s2
j=1 ϕ

∗b
j,2(Yt−j,2 − f2(Xt−j ;θ

∗b
2 ))
}2

∑T1
t=t1∨t2 δ

b
t

.

• Step Biii) Repeat the above two steps B times to get {γ∗b1 ,∆∗b
2 }Bb=1.

Therefore,

h∗0 = −

{
1

B

B∑
b=1

(∆∗b
2 −∆∗

2)(∆
∗b
2 −∆∗

2)
τ

}−1
1

B

B∑
b=1

(γ∗b1 − γ∗1)(∆
∗b
2 −∆∗

2),

and the proposed estimator for γ1 becomes

γ̂∗1 = γ∗1 + h∗τ0 ∆∗
2.
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Theorem 2. Suppose model (7) satisfies conditions C1)–C4) with the {Ut,k} being strictly sta-

tionary. Then, as T1 − t1 → ∞ and B → ∞,

γ∗1 − γ1
σ∗
1

d→ N(0, 1) and
γ̂∗1 − γ1

σ̂∗
1

d→ N(0, 1),

where

σ∗2
1 =

1

B

B∑
b=1

(γ∗b1 − γ∗1)
2 and σ̂∗2

1 = σ∗2
1 − h∗τ0

{
1

B

B∑
b=1

(∆∗b
2 −∆∗

2)(∆
∗b
2 −∆∗

2)
τ

}
h∗0.

An application is the performance evaluation of mutual funds, where researchers and prac-

titioners often use the one-factor model in Jensen (1968), the three-factor model in Fama and

French (1996), or the four-factor model in Carhart (1997) to model the fund returns:
Yt,k = αk + βτ

kXt + Ut,k, Ut,k =
∑sk

j=1 ϕj,kUt−j,k + εt,k,

εt,k = σt,kηt,k, σ2
t,k = wk +

∑pk
i=1 ai,kε

2
t−i,k +

∑qk
j=1 bj,kσ

2
t−j,k,

(9)

where αk ∈ R, βk = (βk,1, . . . , βk,d)
τ ∈ Rd, Xt = (Xt,1, . . . , Xt,d)

τ and Xt,1 denotes the market

excess return. In this case, αk measures the stock picking skill for the kth fund, and βk,1

(> 1,= 1, < 1) represents the fund manager’s risk attitude (risk loving, neutral, averse). Often

least squares inference is employed for αk and βk. In practice, funds are usually observed in

different windows and cross-sectionally dependent, and some funds have a short time series.

Hence, it is important to improve the statistical inference for such funds with a short series

using funds with longer time series. In the data analysis below, we consider models (1) and

(7) with fk(Xt,k;θk) = αk + βτ
kXt, θk = (αk,β

τ
k)

τ , and apply the improved inference to some

funds with a short time window (i.e., k = 1 in the model) in a US mutual funds dataset with

daily returns from September 1, 1998 to December 31, 2018. The longer series (i.e., k = 2 in

the model) consists of the average daily returns of 654 funds.
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3 Simulation Study

This section examines the finite sample performance of the improved estimation method. To

better appreciate the applicability, we study the following settings adopted from the dataset

analyzed in the next section.

We draw 10000 random samples from the one-factor model with uncorrelated, heteroscedastic

errors 
Yt,k = αk + βkXt + εt,1, εt,k = σt,kηt,k, σ2

t,k = wk + akε
2
t−1,k + bkσ

2
t−1,k,

Xt = µ̄+ ϕ̄Xt−1 + ε̄t, ε̄t = σ̄tη̄t, σ̄2
t = w̄ + āε̄2t−1 + b̄σ̄2

t−1.

We use the fund with the fund’s identifier wficn=601187 and the largest sample size 5116 in our

data set to get

α2 = 0.0082, β2 = 0.9190, w2 = 0.0027, a2 = 0.0606, b2 = 0.9312,

µ̄ = 0.0772, ϕ̄ = −0.0386, w̄ = 0.0102, ā = 0.0974, b̄ = 0.9000,

and the fund with the fund’s identifier wficn=105877 and sample size 254 to get

α1 = −0.0194, β1 = 0.8063, w1 = 0.0103, a1 = 0.0915, b1 = 0.8768.

We draw the (ηt,1, ηt,2) from a bivariate normal distribution with means zero, variances one,

and correlation coefficient ρ = 0.3, 0.4, 0.5 and independently draw the η̄t from the N(0, 1)-

distribution. We consider if the underlying first series is completely inside or only overlaps with

the other longer series:

• Case i) We observe the second series from t = 1, . . . , 5000 and the first series from t =

1, . . . , 5000p with p = 0.05, 0.1, 0.3, 0.5. Hence, the first series is inside the second one.

• Case ii) We observe the first series from t = 1, . . . , 1000 and the second one from t =

1000p + 1, . . . , 1000p + 5000 with p = 0.25, 0.5, 0.75. Hence, the first series overlaps with

the second one.
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For implementing the new inference method, we use B = 10000 in the random weight bootstrap

method.

Using the aforementioned 10000 random samples, we compute the simulated means of α̃1

and α̂1 to examine the performance, the ratio of the simulated variance of α̂1 to that of α̃1 to

see the efficiency improvement, the average of the ratios of the estimated variance of α̂1 to its

simulated variance to check the accuracy of the proposed random weight bootstrap method for

uncertainty quantification. We also calculate similar quantities for β̃1 and β̂1 based on these

10000 repetitions. Tables 1 and 2 report these quantities for Cases i) and ii), respectively.

The results for the averages of the estimators show that the proposed estimators and the least

squares estimators have similar small biases, but, more importantly, the results in the columns

of Vα̂1
/Vα̃1

and V
β̂1
/V

β̃1
show that the new estimators have substantially smaller variances than

the least squares estimators, especially when the two series are moderately correlated (ρ = 0.5)

the variance reduction can increase to 23%. The averages of the ratios of the estimated variances

to the simulated variances support that the random weight bootstrap method performs well for

quantifying the estimation uncertainty.

4 Analysis of Mutual Funds

We consider the daily returns of US mutual funds from September 1, 1998 to December 31,

2018. We look at funds with the largest sample size of 5116 and smaller sample sizes of 254,

506, 1025, 1534, and 2053, which are about 0.05, 0.1, 0.2, 0.3, and 0.4, of the largest sample

size. The fund identifier is “wficn”. The number of funds with the largest sample size is 654.

We use the average daily returns of these 654 funds as our Yt,2 and the daily returns of each

of the funds with a smaller sample size as our Yt,1. We employ the one-factor model in Jensen

(1968) with GARCH(1,1) errors and both Xt,1 = Xt,2 being the market excess return. That is,
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Table 1: Case i)

p α̃1 α̂1 Vα̂1
/Vα̃1

V̂α̂1
/Vα̂1

β̃1 β̂1 V
β̂1
/V

β̃1
V̂
β̂1
/V

β̂1

ρ = 0.3

0.05 −0.0189 −0.0188 0.9187 0.9764 0.8067 0.8067 0.9439 0.9414

0.1 −0.0192 −0.0193 0.9275 0.9915 0.8063 0.8063 0.9382 0.9666

0.3 −0.0191 −0.0191 0.9553 1.0051 0.8063 0.8063 0.9357 0.9778

0.5 −0.0192 0.0193 0.9701 1.0200 0.8061 0.8061 0.9568 0.9811

ρ = 0.4

0.05 −0.0189 −0.0188 0.8529 0.9822 0.8066 0.8066 0.8772 0.9457

0.1 −0.0193 −0.0193 0.8690 0.9920 0.8063 0.8063 0.8794 0.9694

0.3 −0.0191 −0.0191 0.9126 1.0070 0.8063 0.8063 0.8857 0.9806

0.5 −0.0192 −0.0193 0.9401 1.0245 0.8061 0.8061 0.9215 0.9813

ρ = 0.5

0.05 −0.0190 −0.0188 0.7704 0.9837 0.8066 0.8066 0.7940 0.9494

0.1 −0.0192 −0.0192 0.7963 0.9866 0.8061 0.8062 0.7991 0.9798

0.3 −0.0191 −0.0191 0.8553 1.0086 0.8063 0.8063 0.8212 0.9839

0.5 −0.0192 −0.0192 0.8961 1.0414 0.8061 0.8061 0.8736 0.9924

Based on 10000 repetitions, this table reports the averages of the estimators (α̃1, α̂1, β̃1, β̂1), the ratios of the

simulated variances of the improved estimators to the least squares estimators (Vα̂1/Vα̃1 , Vβ̂1
/Vβ̃1

), and the average

ratios of the estimated variances to the simulated variances of α̂1 and β̂1, that is, V̂α̂1/Vα̂1 and V̂β̂1
/Vβ̂1

.
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Table 2: Case ii)

p α̃1 α̂1 Vα̂1
/Vα̃1

V̂α̂1
/Vα̂1

β̃1 β̂1 V
β̂1
/V

β̃1
V̂
β̂1
/V

β̂1

ρ = 0.3

0.25 −0.0195 −0.0195 0.9472 1.0257 0.8062 0.8062 0.9526 0.9522

0.5 −0.0195 −0.0195 0.9648 0.9935 0.8060 0.8061 0.9673 0.9933

0.75 −0.0190 −0.0190 0.9796 1.0056 0.8062 0.8062 0.9881 0.9665

ρ = 0.4

0.25 −0.0195 −0.0195 0.9041 1.0263 0.8062 0.8062 0.9093 0.9510

0.5 −0.0195 −0.0195 0.9349 0.9930 0.8060 0.8061 0.9365 0.9907

0.75 −0.0190 −0.0190 0.9628 1.0072 0.8062 0.8062 0.9723 0.9660

ρ = 0.5

0.25 −0.0195 −0.0195 0.8506 1.0239 0.8062 0.8062 0.8565 0.9441

0.5 −0.0195 −0.0195 0.8959 0.9930 0.8060 0.8061 0.8966 0.9874

0.75 −0.0190 −0.0190 0.9414 1.0086 0.8062 0.8061 0.9515 0.9655

Based on 10000 repetitions, this table reports the averages of the estimators (α̃1, α̂1, β̃1, β̂1), the ratios of the

simulated variances of the improved estimators to the least squares estimators (Vα̂1/Vα̃1 , Vβ̂1
/Vβ̃1

), and the average

ratios of the estimated variances to the simulated variances of α̂1 and β̂1, that is, V̂α̂1/Vα̂1 and V̂β̂1
/Vβ̂1

.
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we consider

Yt,k = αk + βkXt + εt,k, εt,k = σt,kηt,k, σ2
t,k = wk + akε

2
t−1,k + bkσ

2
t−1,k.

We use B = 10000 in the random weight bootstrap method and the ‘fGarch’ R package to fit

the GARCH(1,1) models to the fitted residuals of the one-factor model and estimate E(ηt,1ηt,2)

by the sample mean. We only report funds where this average exceeds 0.2 in absolute value.

Note that we do not estimate the GARCH errors when we study the least squares estimation

and improved inference for αk and βk.

Table 3 presents the sample mean corresponding to E(ηt,1ηt,2), the least squares estimators

and the improved ones, and the ratios of estimated variances. We see a variance reduction for

all cases; the reduction can be as large as 24%. Table 4 reports 90% confidence intervals based

on the improved estimators and the least squares estimators using the random weight bootstrap

method for estimating the asymptotic variances. Using the confidence intervals, we summarize

the different conclusions from these two methods:

• For fund wficn=401297 with size 254, least squares estimation suggests α1 = 0 and β1 = 0,

whereas the improved inference shows α1 > 0 and β1 > 0.

• For fund wficn=101466 with size 506, least squares estimation shows risk averse (β1 < 1),

whereas the improved inference suggests risk neutral (β1 = 1).

• For funds wficn=105279, and wficn=106044 with size 506, the least squares estimation

suggests α1 = 0, but the improved inference shows α1 < 0.

• For fund wficn=410526 with size 1025, least squares estimation shows α1 < 0, but the

improved inference suggests α1 = 0.

• For fund wficn=400286 with size 2053, the least squares estimation shows risk loving

(β1 > 1), but the improved inference suggests risk neutral.
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5 Conclusion

Financial returns/losses from different business lines or institutions may be observed in different

but overlapping time windows with cross-sectional dependence. Hence, after modeling each series

of losses by a parametric regression, the two regression errors are correlated and overlapping. In

this setting, we present an improved inference method over the standard least squares estimation

by combining the least squares estimator from the underlying series and the score functions

of another series computed for the overlapping period. A simulation study shows that the

improvement is already substantial when the two regression errors are moderately correlated.

Applying mutual funds reveals that the novel estimation method frequently leads to different

conclusions on fund managers’ skills and risk attitudes.

Appendix: Proofs

Proof Theorem 1. Define m1 = T1 − t1 + 1, m2 = T2 − t2 + 1, m12 = T1 − (t1 ∨ t2) + 1,

Γkℓ = E{ḟk(Xt,k;θk)ḟ
τ
ℓ (Xt,ℓ;θℓ)}, and Σkℓ = E{εt,kḟk(Xt,k;θk)εt,ℓḟ

τ
ℓ (Xt,ℓ;θℓ)}.

Then, it can be shown using a Taylor expansion, conditions C1)–C4), and the weak law of large

numbers and central limit theorem for martingale differences in Hall and Heyde (1980) that for

k = 1, 2

√
mk(θ̃k − θk) = Γ−1

kk

1
√
mk

Tk∑
t=tk

εt,kḟk(Xt,k;θk) + op(1),

implying that

√
m1(γ̃1 − γ1) = K̇τ (θ1)Γ

−1
11

1√
m1

∑T1
t=t1

εt,1ḟ1(Xt,1;θ1) + op(1)

d→ N
(
0, K̇τ (θ1)Γ

−1
11 Σ11Γ

−1
11 K̇(θ1)

)
.

(10)

Noting that

E{εs,1εt,2ḟ1(Xs,1;θ1)ḟ
τ
2 (Xt,2;θ2)} = 0 for s ̸= t,
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Table 3: US mutual funds analysis: estimates

wficn size E(ηt,1ηt,2) α̃1 α̂1 V̂α̂1
/V̂α̃1

β̃1 β̂1 V̂
β̂1
/V̂

β̃1

105877 254 −0.3335 −0.0194 −0.0324 0.8612 0.8063 0.7571 0.8614

401297 254 0.3388 0.0634 0.1340 0.8758 0.0896 0.2080 0.9105

101466 506 0.4625 0.0758 0.1170 0.8124 0.7862 0.9424 0.8772

101588 506 0.3533 0.0480 0.1020 0.9324 1.1247 1.2130 0.9648

101589 506 0.4141 0.0520 0.0224 0.8841 1.2393 1.3408 0.9322

105279 506 −0.3818 −0.0257 −0.0441 0.8814 0.9928 0.9772 0.9719

105704 506 0.5228 0.0351 0.0121 0.8262 0.9249 0.9882 0.9870

106044 506 0.4636 −0.0158 −0.0335 0.8056 0.5618 0.6012 0.9484

401173 506 0.4537 0.0074 0.0456 0.8172 0.3570 0.4781 0.8755

105511 1025 0.2975 0.0242 0.0025 0.9345 0.2531 0.3200 0.9651

107563 1025 −0.4882 −0.0062 −0.0070 0.9030 0.9631 0.9540 0.9857

410526 1025 0.3754 −0.0092 −0.0041 0.8953 0.7924 0.7786 0.7614

500982 1534 −0.3515 −0.0071 −0.0094 0.9194 1.0585 1.0656 0.9888

226946 2053 0.4260 −0.0067 −0.0076 0.8481 0.8919 0.8887 0.9152

400286 2053 0.5349 −0.0003 −0.0019 0.8098 1.0361 1.0010 0.8842

Using the one-factor model and B = 10000 in the random weight bootstrap method, this table reports estimators

of α̃1, α̂1, β̃1, β̂1, the ratios of estimated variances (V̂α̂1/V̂α̃1 and V̂β̂1
/V̂β̃1

), and the sample mean corresponding to

E(ηt,1ηt,2) after fitting GARCH(1,1) models to the first and second residuals.
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Table 4: US mutual funds analysis: 90% confidence intervals

wficn size α̃1 α̂1 β̃1 β̂1

105877 254 (−0.0748, 0.0360) (−0.0838, 0.0190) (0.7629, 0.8496) (0.7168, 0.7973)

401297 254 (−0.0782, 0.2051) (0.0015, 0.2665) (−0.0264, 0.2056) (0.0973, 0.3186)

101466 506 (0.0074, 0.1441) (0.0553, 0.1786) (0.7185, 0.8539) (0.8790, 1.0058)

101588 506 (−0.0659, 0.1620) (−0.0081, 0.2120) (1.0419, 1.2076) (1.1317, 1.2944)

101589 506 (−0.0145, 0.1185) (−0.0401, 0.0850) (1.1868, 1.2918) (1.2901, 1.3915)

105279 506 (−0.0611, 0.0097) (−0.0773, −0.0109) (0.9627, 1.0228) (0.9426, 1.0019)

105704 506 (−0.0473, 0.1176) (−0.0628, 0.0871) (0.8463, 1.0036) (0.9101, 1.0664)

106044 506 (−0.0441, 0.0125) (−0.0589, −0.0081) (0.5386, 0.5851) (0.5786, 0.6238)

401173 506 (−0.0586, 0.0716) (−0.0125, 0.1036) (0.3015, 0.4125) (0.4261, 0.5300)

105511 1025 (−0.0136, 0.0621) (−0.0341, 0.0391) (0.2196, 0.2867) (0.2871, 0.3530)

107563 1025 (−0.0187, 0.0062) (−0.0188, 0.0049) (0.9516, 0.9747) (0.9426, 0.9655)

410526 1025 (−0.0177, −0.0007) (−0.0122, 0.0039) (0.7749, 0.8101) (0.7631, 0.7940)

500982 1534 (−0.0175, 0.0033) (−0.0193, 0.0006) (1.0468, 1.0702) (1.0539, 1.0772)

226946 2053 (−0.0190, 0.0057) (−0.0190, 0.0037) (0.8765, 0.9072) (0.8740, 0.9034)

400286 2053 (−0.0132, 0.0127) (−0.0136, 0.0097) (1.0191, 1.0531) (0.9850, 1.0170)

This table reports 90% confidence intervals based on α̃1, α̂1, β̃1, β̂1 using the one-factor model and B = 10000 in

the random weight bootstrap method.
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and, as already indicated in (4),

∆2 =
1

m12

T1∑
t=t1∨t2

εt,2ḟ2(Xt,2;θ2)−
1

m2

T2∑
t=t2

εt,2ḟ2(Xt,2;θ2) + op(1/
√
m12),

it can be shown that

E{m1(γ̃1 − γ1)∆
τ
2}

=

{
1

m12
− 1

m2

}
K̇τ (θ1)Γ

−1
11

T1∑
t=t1∨t2

E{εt,1εt,2ḟ1(Xt,1;θ1)ḟ
τ
2 (Xt,2;θ2)}+ o(1)

=

{
1− m12

m2

}
K̇τ (θ1)Γ

−1
11 E{εt,1εt,2ḟ1(Xt,1;θ1)ḟ

τ
2 (Xt,2;θ2)}+ o(1) (11)

=

{
1− m12

m2

}
K̇τ (θ1)Γ

−1
11 Σ12 + o(1).

Similarly, for k = 1, 2

√
mk(θ̃

b

k − θk) = Γ−1
kk

1
√
mk

Tk∑
t=tk

δbtεt,kḟk(Xt,k;θk) + op(1),

and hence,

√
mk(θ̃

b

k − θ̃k) = Γ−1
kk

1
√
mk

Tk∑
t=tk

(δbt − 1)εt,kḟk(Xt,k;θk) + op(1).

This yields that

√
m1(γ̃

b
1 − γ̃1) = K̇τ (θ1)Γ

−1
11

1
√
m1

T1∑
t=t1

(δbt − 1)εt,1ḟ1(Xt,1;θ1) + op(1), (12)

∆b
2−∆2 =

1

m12

T2∑
t=t1∨t2

(δbt−1)εt,2ḟ2(Xt,2;θ2)−
1

m2

T2∑
t=t2

(δbt−1)εt,2ḟ2(Xt,2;θ2)+op(1/
√
m12), (13)

E{m1(γ̃
b
1 − γ̃1)(∆

b
2 −∆2)

τ}

=

{
1

m12
− 1

m2

}
K̇τ (θ1)Γ

−1
11

T1∑
t=t1∨t2

E{(δbt − 1)2εt,1εt,2ḟ1(Xt,1;θ1)ḟ
τ
2 (Xt,2;θ2)}+ o(1)

=

{
1− m12

m2

}
K̇τ (θ1)Γ

−1
11 E{εt,1εt,2ḟ1(Xt,1;θ1)ḟ

τ
2 (Xt,2;θ2)}+ o(1)

=

{
1− m12

m2

}
K̇τ (θ1)Γ

−1
11 Σ12 + o(1). (14)

Using (10)–(14), we can show that

m1σ̃
2
1 = K̇τ (θ1)Γ

−1
11 Σ11Γ

−1
11 K̇(θ1) + op(1),
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1

B

B∑
b=1

m1(γ̃
b
1 − γ̃1)(∆

b
2 −∆2)

τ

= (1− m12

m2
)E{K̇τ (θ̃1)Γ

−1
1 εt,1εt,2ḟ1(Xt,1;θ2)ḟ

τ
2 (Xt,2;θ2)}+ op(1),

= m1E{(γ̃1 − γ1)∆2}+ op(1),

m1

B

B∑
b=1

(∆b
2 −∆2)(∆

b
2 −∆2)

τ = m1E{∆2∆
τ
2}+ op(1), ĥ0 = h0 + op(1),

and

m1σ̂
2
1 = m1E(γ̃1 − γ1)

2 − hτ0m1E{∆2∆
τ
2}h0 + op(1)

= K̇τ (θ1)Γ
−1
11 Σ11Γ

−1
11 K̇(θ1)

−(1− m12
m2

)2K̇τ (θ1)Γ
−1
11 Σ12{E(m1∆2∆

τ
2)}−1Στ

12Γ
−1
11 K̇(θ1) + op(1).

(15)

Hence, the theorem follows.

The proof of Theorem 2 can be given along the same lines as that of Theorem 1 and will

therefore be omitted.
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