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Abstract: Reinforcement learning was developed mainly for discrete-time Markov decision pro-

cesses. This paper establishes a novel learning approach based on temporal-difference and non-

parametric smoothing to solve reinforcement learning problems in a continuous-time setting

with noisy data, where the true model to learn is governed by an ordinary differential equa-

tion, and data samples are generated from a stochastic differential equation that is considered

as a noisy version of the ordinary differential equation. Continuous-time temporal-difference

learning developed for deterministic models is unstable and in fact diverges when applied to

data generated from stochastic models. Furthermore, because there are measurement errors or

noises in the observed data, a new reinforcement learning framework is needed to handle the

learning problems with noisy data. We show that the proposed learning approach has a robust

performance for learning deterministic functions based on noisy data generated from stochastic

models governed by stochastic differential equations. An asymptotic theory is established for

the proposed approach, and a numerical study is carried out to solve a pendulum reinforcement

learning problem and check the finite sample performance of the proposed method.

Key words and phrases: HJB equation, Markov decision process, nonparametric smoothing, ordi-

nary differential equation, policy, reinforcement learning, reward function, stochastic differential

equation, value function.
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1. Introduction

As one of three basic machine learning paradigms, reinforcement learning (RL) deals

with how an agent takes action in an environment to maximize rewards. It is currently

very popular and has drawn significant attention. Its many applications include the

famous Alpha Go (Silver et al., 2017) and Deep Q-Network (DQN) (Mnih et al., 2015).

Most of RL methods apply to discrete-time Markov decision processes (MDP) (Sutton

and Barto, 2018). However, many real problems, such as those involving financial as-

sets and physical processes, are traditionally described in a continuous-time stochastic

framework and naturally fit to the continuous-time RL paradigm. A large volume of

literature is devoted to study these problems in stochastic control and applied mathe-

matics, yet there is relatively little work on the study of these problems from the RL

perspective (Bertsekas, 2017; Kushner and Dupuis, 2001; Pham, 2009).

A common way of handling continuous RL problems is to discretize continuous-time

stochastic processes to fit with the discrete RL framework. However, discretization

results in errors caused by partition states, actions, and times, and learning algorithms

such as DQN and deep deterministic policy gradient collapse when time steps in the

discretization decrease (Lillicrap et al., 2015; Tallec, Blier, and Ollivier, 2019).

Alternative approaches include working directly in the continuous-time framework. The

direct approaches may be advantageous in that they avoid the issues encountered in the

discretization approach. Continuous temporal-difference (TD) learning was introduced

by Doya (2000) for a deterministic setting in which the underlying model is deterministic

and governed by an ordinary differential equation. However, this approach is unstable
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and may even diverge when applying to data generated from the deterministic model

contaminated with noise. This paper considers a continuous-time stochastic diffusion

model as a noisy version of a deterministic model. Because of noise, there are measure-

ment errors in the observed data. We provide a new RL framework to handle the RL

problem and propose a novel RL approach based on nonparametric kernel smoothing

and temporal-difference to solve the RL problem with noisy data. We investigate its

asymptotic properties and check its finite-sample behaviors. Our study demonstrates

the good performance of the proposed method.

The rest of this paper is organized as follows. Section 2 introduces basic concepts and

methodologies in RL. Section 3 describes continuous-time RL for an ODE model and

continuous-time stochastic control for a SDE model and establishes their asymptotic

relationship. Section 4 provides a new RL framework for an ODE model in which

the RL learning problem is based on data generated from a SDE model, which can

be viewed as a noisy version of the ODE model. We propose a novel methodology

based on nonparametric smoothing and continuous-time TD to solve the continuous-

time RL problem. Section 5 presents a numerical study on a pendulum-swinging RL

task to check the performance of the proposed RL methodology. Section 6 features our

concluding remarks. Finally, all the technical proofs are compiled in the Supplementary

Materials.
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2. Brief review of reinforcement learning

2.1 MDP and dynamic programming

RL is usually described through an environment, an agent, and their interaction in

terms of the Markov decision process (MDP). An MDP consists of a Markov system

(environment) and a controller (agent). The system generates a state, and the controller

produces an action according to the state and its associated reward. Next, the system

generates another state based on the given state and action and the associated reward,

and again the controller produces another action in response to the new state and its

associated reward. The system and controller continue to interact and yield states and

actions to maximize rewards, as illustrated in Figure 1.

Environment

Agent

Figure 1: The agent-environment interaction in an MDP.

Consider an MDP system and denote its state space and action space by S and A,

respectively. Let t = 0, 1, 2, . . . be discrete time steps. Start at the initial state S0

and action A0. At each time step t, the controller receives a system state St ∈ S and

responds by producing an action At = π(St) ∈ A, where π(·) is called a policy that

specifies the rule for the controller to choose action in response to a given state. A
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2.2 RL approaches

reward Rt+1 = r(St, At) is calculated based on the given state St and action At, where

r(·, ·) is called a reward function. Then, the system generates a new state St+1, and

the controller produces a new action At+1 = π(St+1) after receiving the new state St+1

and the associated reward Rt+1. This cycle repeats until the process terminates. We

call S0, A0, S1, R1, A1, S2, . . . , a trajectory or an episode. The RL goal is to learn an

optimal policy to maximize a value function that is defined as an expected cumulated

reward as follows:

V π(s) = Eπ

(
∞∑
t=0

γtr(St, At)

∣∣∣∣∣S0 = s

)
,

where γ ∈ (0, 1) is a constant called the discounted factor. Denote the optimal value

function by V (s) = maxπ V
π(s). An optimal policy is defined as a policy whose value

function is equal to the optimal value function. The value function V π(s) satisfies the

Bellman equation,

V π(s) = Eπ[r(s, π(s)) + γV π(S1) | S0 = s], (2.1)

and the optimal value function obeys the Bellman optimality equation,

V (s) = sup
a∈A

E[r(s, a) + γV (S1) | S0 = s, A0 = a]. (2.2)

Dynamic programming algorithms are available to solve these equations to obtain the

optimal value function and thus an optimal policy (Bellman, 1956; Bertsekas, 2017;

Howard, 1960; Szepesvári, 2010).

2.2 RL approaches

Dynamic programming described in Section 2.1 requires the knowledge of the under-

lying MDP, like the Markov transition probability kernel for evaluating the optimal
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2.2 RL approaches

value function and finding an optimal policy. In the RL setup, we use observed data

to estimate value function V π(·), optimal value function V (·), and an optimal policy.

Three basic RL approaches are dynamic programming, Monte-Carlo, and TD learning

methods (Sutton and Barto, 2018; Szepesvári, 2010); Figure 2 provides an intuitive

illustration of their similarities and differences. Dynamic programming methods take

advantage of treating the Bellman equations as fixed point equations to develop greedy

algorithms for learning a value function and estimating an optimal policy. However,

it requires the entire state set of the MDP, rather than the sample experience used by

Monte-Carlo and TD methods. Monte-Carlo methods estimate value function V π(s)

based on n episodes, where an episode refers to a sample sequence of states, actions, and

rewards from an actual or simulated interaction between the environment and agent un-

der an underlying policy π. Denote the t-th episode by Et = (S1t, A1t, R2t, S2t, A2t, . . . )

and its corresponding total reward by Gt. Then, V π(s) is estimated by an average of

Gt.

TD is widely regarded as a central and novel idea in RL. Denote by V̂ (·) the estimated

value function, and define the TD(0) error as follows:

δt = Rt+1 + γV̂ (St+1)− V̂ (St) ,

which is the difference between the estimated value function of the current state and

its one-step ahead estimation using the estimated value function of the next state. The

TD(0) algorithm uses the TD(0) error to update the estimated value function of the

current state to obtain the following iterative updating rule for the finite state space
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2.2 RL approaches

(a) Dynamic Programing

(b) Monte Carlo (c) TD

Figure 2: Learning diagram in the Markov decision process. The roots are initial states

of the Markov process. Nodes with a cross are the terminated states. The shaded areas

represent states used in one learning update.

case:

V̂(St)← V̂ (St) + η
[
Rt+1 + γV̂ (St+1)− V̂ (St)

]
, (2.3)

where η is a step-size parameter. We may generalize the one-step ahead estimation

used in TD(0) to the k-step estimation and obtain a corresponding so-called k-step TD

method. Because TD methods involve the bootstrapping of MDP dynamic program-

ming, such as Bellman equations, we refer to TD as a bootstrapping procedure in RL.

TD methods update at every step but do not require episode experience. In contrast,

Monte Carlo methods must wait till the end of an episode to have the final reward Gt

so that we can form error Gt − V̂(St) to update the estimated value function of the
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current state and learn the value function.

TD(λ) provides a bridge to unify TD(0) and Monte Carlo methods. It is defined as

a weighted sum of the k-step TD with weight λk−1(1 − λ), k = 0, 1, 2, · · · , where λ

is a parameter and belongs to [0, 1]. TD(λ) with λ = 1 corresponds to Monte Carlo

methods, while TD(λ) with λ = 0 reduces to TD(0). The value of λ between 0 and

1 controls the weights of the k-step TD and produces intermediate methods between

these two extreme methods. TD(λ) algorithms are usually described using eligibility

trace. Assign et and wt to denote the eligibility trace and weight vectors, respectively.

Let V̂ (St, wt) be an estimated value function that depends on state St and weight wt.

The TD(λ) updating rule for the continuous state space case is given by

et ← γλet−1 +∇V̂ (St, wt), (2.4)

δt ← Rt+1 + γV̂ (St+1, wt)− V̂ (St, wt) , (2.5)

wt+1 ← wt + ηδtet, (2.6)

where the gradient ∇ in (2.4) is taken with respect to wt, and η is a step-size parameter.

3. Continuous-time reinforcement learning

3.1 Continuous-time dynamic programing and RL

The continuous analog of MDP dynamic programming presented in Section 2.1 is es-

tablished in stochastic control. Consider a diffusion processes governed by the following

stochastic differential equation (SDE):

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt, (3.1)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0407



3.1 Continuous-time dynamic programing and RL

where αt and Wt are, respectively, a control stochastic process and a Brownian motion

defined on a filtered probability space (Ω,F , {F}t≥0, P ) that satisfies the usual con-

ditions in stochastic calculus, and b(·, ·) and σ(·, ·) are drift and diffusion coefficients,

respectively, which satisfy common Lipschitz and growth conditions to guarantee the ex-

istence and uniqueness of a solution to SDE (3.1) (Ikeda and Watanabe, 1989; Karatzas

and Shreve, 1997; Kloeden and Platen, 1995; Pham, 2009).

Similar to the discrete case, denote by r(·, ·) a reward function and π(·) a policy with

αt = π(Xt). Define a value function

V π(x) = E

[∫ ∞

0

e−βtr(Xt, αt)dt

∣∣∣∣X0 = x

]
, (3.2)

where β is a constant often called the continuous discounted factor. The optimal value

function is defined as V (s) = maxπ V
π(s).

The continuous counterparts of the Bellman equations (2.1)-(2.2) in the discrete case

are two partial differential equations for the continuous-time case (Recht, 2019; Powell

and Ma, 2011; Pham, 2009; Kushner and Dupuis, 2001; Bertsekas, 2017), described as

follows:

βV π(x) = b(x, a)
∂V π

∂x
+

1

2
tr

(
σ(x, a)σ′(x, a)

∂2V π

∂x2

)
+ r(x, a), a = π(x), (3.3)

and

βV (x) = sup
a

{
b(x, a)

∂V

∂x
+

1

2
tr

(
σ(x, a)σ′(x, a)

∂2V

∂x2

)
+ r(x, a)

}
. (3.4)

Equation (3.4) is called the Hamilton-Jacobi-Bellman (HJB) equations in the continuous-

time stochastic control. Continuous-time RL has been studied for the SDE model

(3.1), and RL approaches are investigated for the corresponding setup (Jia and Zhou,

2022a,b,c; Wang et al., 2020).
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3.2 Continuous-time reinforcement learning in the deterministic case

3.2 Continuous-time reinforcement learning in the deterministic case

Consider a deterministic continuous-time system with an underlying process to obey

the following ordinary differential equation (ODE),

dXt = b(Xt, αt)dt, (3.5)

where αt is a control process governed by a policy π(·) through αt = π(Xt). ODE (3.5)

corresponds to SDE (3.1) with σ(·, ·) = 0. Given a value function V (Xt) at time t, the

continuous TD error is defined to be

δ(t) = r(Xt, π(Xt)) + V̇ (Xt)− βV (Xt), (3.6)

where V̇ (Xt) denotes the derivative of V (Xt) with respect to t.

Approximating the derivative V̇ (Xt) in a continuous TD error by the backward Euler

approximation scheme,

V̇ (Xt) ≈
V (Xt)− V (Xt−∆t)

∆t
,

we convert (3.6) into

δ(t) ≈ r(Xt, π(Xt)) +
V (Xt)− V (Xt−∆t)

∆t
− βV (Xt)

= r(Xt, π(Xt)) +
1

∆t
[(1− β∆t)V (Xt)− V (Xt−∆t)]

≈ r(Xt, π(Xt)) +
1

∆t

[
e−β∆tV (Xt)− V (Xt−∆t)

]
,

(3.7)

which matches the discrete TD(0) error with time step ∆t, except for a scaling factor

1
∆t
.

The value function learning in a continuous state space usually relies on some function

approximation, such as linear combinations of features or weights. Denote by w(t) a
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3.2 Continuous-time reinforcement learning in the deterministic case

feature or weight parameter and V̂ (Xt, w(t)) the current estimate of the value function

based on w(t). Given the continuous TD error δ(t), the continuous TD(λ) learning has

the following eligibility trace e(t), weight w(t), and associated updating rules:

ẇ(t) = ηδ(t)e(t), (3.8)

δ(t) = r(Xt, π(Xt)) +
dV̂ (Xt,w(t))

dt
− βV̂ (Xt, w(t)), (3.9)

ė(t) = − 1
κ
e(t) + ∂V̂ (Xt;w(t))

∂w(t)
(3.10)

where 0 < κ ≤ 1/β is the time constant of the eligibility trace (Doya, 2000).

With the estimated value function V̂ (x) by the TD method, the HJB equation leads to

the the following greedy action:

π(x) = argmax
a∈A

[
r(x, a) +

∂V̂ (x)

∂x
b(x, a)

]
. (3.11)

Assume that

b(x, a) is linear in a, and r(x, a) = r0(x)−
d∑

j=1

rj (aj) , (3.12)

where a = (a1, · · · , ad)T , r0(·) is the reward for state x, and r1(a1), · · · , rd(ad) are

cost functions for action variables a1, · · · , ad. Suppose that rj are convex, and their

derivatives are denoted by ṙj. Then we have

π(x) =

{
ṙ−1
j

(
∂b(x, a)

∂aj

∂V̂ (x)

∂x

)
, j = 1, · · · , d

}
. (3.13)

Furthermore, a small perturbation is put into the greedy action by adding noise in the

function ṙ−1
j (·) to increase exploration:

π(x) =

{
ṙ−1
j

(
∂b(x, a)

∂aj

∂V̂ (x)

∂x
+ noise

)
, j = 1, · · · , d

}
. (3.14)
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3.3 Asymptotic analysis of optimal value functions and optimal policies under
deterministic and stochastic models

3.3 Asymptotic analysis of optimal value functions and optimal policies

under deterministic and stochastic models

We consider an RL problem for a deterministic model with noise contamination. Specif-

ically, the problem is to learn the deterministic model (3.5) based on data generated

from a form of the stochastic model (3.1). Continuous TD developed for deterministic

processes cannot handle stochastic processes like (3.1), because the stochastic processes

are not differentiable. Also, TD approaches based on the HJB optimality equation (3.4)

require the knowledge of drift and diffusion coefficients, where the coefficients are hard

to statistically estimate from discrete samples. This section establishes some relation-

ships between the value functions for the deterministic and stochastic models. In the

next section, we present a new framework for the RL problem and use nonparametric

kernel smoothing to develop an RL method to solve the RL problem.

DenoteXt(σ) as a solution to SDE (3.1). Here, the notationXt(σ) makes its dependence

on σ explicitly, and Xt(0) corresponds to a deterministic solution to ODE (3.5). The

stochastic model (3.1) is considered as a noisy version of the deterministic model (3.5).

We need the following technical assumptions to facilitate our analysis.

Assumptions

(A1) π(x) and σ(x, π(x)) are bounded.

(A2) b(x, a), σ(x, a), and π(x) are continuously differentiable and Lipschitz continu-

ous with Lipschitz constants L1, L2, and M , respectively; that is, |b(x1, a1) −

b(x2, a2))| ≤ L1(|x1 − x2|+ |a1 − a2|), and |σ(x1, a1)− σ(x2, a2)| ≤ L2(|x1 − x2|+

|a1 − a2|), and |π(x1)− π(x2)| ≤M |x1 − x2|.
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3.3 Asymptotic analysis of optimal value functions and optimal policies under
deterministic and stochastic models

(A3) Var (Xt(σ)) and Var (b (Xt(σ), π(Xt(σ)))) as functions of t are bounded over t in

any bounded interval.

(A4) The reward function r(x, a) is bounded, continuously differentiable, and Lipschitz

continuous with a Lipschitz constant Lr (i.e., |r(x1, a1) − r(x2, a2))| ≤ Lr[|x1 −

x2|+ |a1 − a2|]).

The following theorem shows the closeness of the underlying processes between the

deterministic and stochastic models when the diffusion coefficient is very small.

Theorem 1. Assume assumptions (A1) - (A4), and suppose that σ can be decomposed

as a product of two factors ε and ς; that is, σ = ες, where ε is a constant, and ζ is

bounded. We have

sup
0≤t≤T,π∈LipM

E
[
|Xt(ες)−Xt(0)|2 | X0(ες) = X0(0) = x

]
≤ ε2Mx

T ,

where LipM denotes the class of policies that are bounded by a constant and Lipschitz

continuous with Lipschitz constant M , gε(t, x) = E
[∫ t

0
ς2(Xs(ες), π(Xs(ες)))ds | X0(ες) = x

]
,

Mx
T = 2

(
gε(T, x) + 2L2T

∫ T

0

gε(s, x) exp{2L2T (T − s)}ds
)
,

and L = max{L1, L2}(M + 1). For the given T , both gε(t, x) and Mx
T are bounded for

t ∈ [0, T ] and all ε and x.

Remark 1. Theorem 1 indicates that as ε → 0, the diffusion coefficient goes to zero,

and the difference between the diffusion process Xt(σ) and the deterministic process

Xt(0) converges in mean-square to zero. That is, Xt(σ) and Xt(0) have a negligible

difference when σ is small enough. This implies that for very small σ, the effect of
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3.3 Asymptotic analysis of optimal value functions and optimal policies under
deterministic and stochastic models

random noise in SDE (3.1) is negligible, and the stochastic process Xt(σ) generated

from SDE (3.1) is close to the deterministic Xt(0) generated from ODE (3.5). Thus,

when σ is negligibly small, we may practically treat Xt(σ) as Xt(0), and the continuous

policy evaluation and improvement developed for the deterministic model (3.5) can be

effectively applied to the stochastic model (3.1).

In the next theorem, we show the closeness of value functions, optimal value functions,

and optimal policies between the deterministic and stochastic cases when the diffusion

coefficient is very small. Denote by V π
σ (x) and V π

0 (x) the value functions under policy

π for models (3.1) and (3.5), respectively, and define the corresponding optimal value

functions as follows:

V ∗,M
σ (x) = sup

π∈LipM
V π
σ (x), V ∗,M

0 (x) = sup
π∈LipM

V π
0 (x),

where LipM stands for the class of Lipschtiz-M policies given in Theorem 1. Denote

by π∗,M
σ (x) and π∗,M

0 (x) the optimal policies corresponding to V ∗,M
σ (x) and V ∗,M

0 (x),

respectively.

Theorem 2. Assume assumptions (A1) - (A4), and σ = ες as in Theorem 1. We have

that as ε → 0, V π
ες(x) → V π

0 (x) uniformly over π ∈ LipM , and V ∗,M
ες (x) → V ∗,M

0 (x).

Furthermore, as ε → 0, any optimal policy π∗,M
ες (x) under the stochastic model (3.1)

must converge to an optimal policy π∗,M
0 (x) under the deterministic model (3.5).

Remark 2. Theorem 2 establishes the convergence of value functions, optimal value

functions, and optimal policies for the stochastic model to the corresponding coun-

terparts of the deterministic model when the diffusion coefficient of the stochastic
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model goes to zero. It provides theoretical foundations for the proposed nonparametric

smoothing-based RL approach, which will be presented in the next section.

4. Nonparametric smoothing-based RL approaches in the continuous-time

stochastic setting

Consider a continuous-time RL problem where the underlying ideal model is the de-

terministic model (3.5), but observed samples are generated from a special form of

the stochastic model (3.1), which is treated as a noisy version of the ideal determin-

istic model (3.5). The approach developed in Section 3 cannot be directly applied,

because Theorem 2 requires a very small σ in model (3.1). Typical continuous-time RL

problems with model (3.1) often do not have a negligibly small diffusion coefficient σ.

Nonparametric smoothing comes to our rescue. Furthermore, because of noises, there

are measurement errors in the observed data. Thus, we need a new RL framework to

accommodate the RL problem.

4.1 A new RL framework for noisy data

Consider an RL problem where the true model to learn is the deterministic ODE model

(3.5), and observed data are generated from some form of the SDE model (3.1), which

is viewed as a noisy version of the deterministic ODE model. Because the true model

is not directly observable, the observed data are sampled from a noisy version of the

true model; namely, a form of the SDE model (3.1). The standard RL framework

may not be suitable to accommodate RL learning with noisy data. Recall that the
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4.1 A new RL framework for noisy data

standard RL framework contains a system and an agent. The system produces a state,

and the agent generates an action according to the state and evaluates its associated

reward. Next, the system produces another state based on the given state, action,

and the associated reward. The agent then generates another action in response to

the new state and evaluates its associated reward. The system and agent continue to

interact and produce states and actions to maximize rewards. Applying the standard

RL framework to the described noisy RL problem results in the usual RL problem

and its associated solution for the SDE model (3.1) (Bertsekas, 2017; Jia and Zhou,

2022a,b,c; Pham, 2009; Wang et al., 2020). In our case, the model (3.1) is simply

a noisy version of the true model (3.5). An RL solution to the model (3.1) can be

heavily influenced by the stochastic component driven by a Brownian motion, which is

considered as noise in our case and thus provides a spurious solution to the described

RL problem with the true model (3.5). The phenomenon has been widely investigated

in machine learning, such as classification for noisy data Friedman et al. (2001). For

the purpose of simple illustration, consider an RL problem for the finite discrete MDP

model described in Section 2.1 where the true states of the MDP are not observable, and

the system generates noisy states of the MDP—states of a corresponding hidden Markov

model. Just as the control and RL solutions for models (3.5) and (3.1) differ, so do the

solutions for the Markov and hidden Markov models (Elliott et al., 2008; Szepesvári,

2010). For the RL learning with noisy data, because the agent must have some proxy

of the true states to generate actions and evaluate rewords, we need de-noising or error

removing in the RL framework to recover or estimate the true states from the noisy
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4.2 An RL approach based on nonparametric smoothing

state data so that the interaction of the system and agent can be carried out. Since

statistical procedures of de-noising or error removing require multiple observations (Yi,

2017; Cappé et al., 2005; Elliott et al., 2008), at each interaction of the system and agent,

the system needs to generate multiple noisy states to estimate the true states. Then,

the agent produces an action according to the last estimated state and its associated

reward. The next section describes the RL problem with the true model (3.5) and noisy

data generated from the model (3.1).

4.2 An RL approach based on nonparametric smoothing

Given the data Xt(σ) observed from (3.1), we apply a kernel method to smooth the

data Xt(σ) and use the smoothed data to estimate Xt(0) from (3.5). Then, we apply

the smoothed data to the continuous-time RL methods, such as the TD developed for

the deterministic model (3.5). The proposed approach is based on Theorems 1 and

2 and the fact that smoothing reduces the random effect (noises or errors) and can

make the smoothed Xt(σ) close to Xt(0). Thus, the value functions and policies for the

smoothed Xt(σ) are close to those for Xt(0).

Given an estimated state at current time t, evaluate the policy π(·) at the current

estimated state to produce an action αt. Then, use the same action αt to generate m

states from (3.1) and denote them by Xti(σ), where ti ∈ [t, t + ∆t], m = #{ti : t ≤

ti ≤ t + ∆t}, and ∆t denotes the length of the time window. Let K(x) be a kernel

function with support on [0, 1]. We apply kernel smoothing to Xti(σ) to obtain a kernel

estimator, denoted by X̃h
t (σ), as illustrated in Figure 3, where h denotes the bandwidth
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4.2 An RL approach based on nonparametric smoothing

in the kernel smoothing (Friedman et al., 2001). Specially, we define

∆Xh
t (σ) :=

1

m

m∑
i=1

K

(
ti − t

h

)
[Xti(σ)−Xt(σ)] . (4.1)

The new process X̃h
t (σ) is obtained by the following procedure: Given the current

estimated state X̃h
t (σ), we estimate the state at the next step t+∆t by

X̃h
t+∆t(σ) = X̃h

t (σ) + ∆Xh
t (σ). (4.2)

m=1
m=2

m=3
m=4

m=5

m=2
m=3

m=4
m=5

m=1

Figure 3: Smoothing scheme with bandwidth h.

The framework and interaction setup is summarized by a pseudo code in Table 1 and

described as follows. Given the current estimated state X̃h
t (σ), we can produce an

action αt = π(X̃h
t (σ)), evaluate the associated reward r(X̃h

t (σ), π(X̃
h
t (σ))), and then

use the same action αt to generate m states Xti(σ), ti ∈ [t, t + ∆t], i = 1, · · · ,m,

from the SDE model (3.1). We then compute the next state estimator X̃h
t+∆t(σ) by
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4.2 An RL approach based on nonparametric smoothing

Table 1: Pseudo code for RL with noisy data

Input: an initial state, policy π(·), and reward r(·, ·).

Step 1. Given the current estimated state X̃h
t (σ), compute αt = π(X̃h

t (σ)) and

r(X̃h
t (σ), π(X̃

h
t (σ))); use αt to generate m states Xti(σ), ti ∈ [t, t+∆t],

from (3.1).

Step 2. Calculate the next state estimator X̃h
t+∆t(σ) by (4.1)-(4.2), and compute

αt+∆t = π(X̃h
t+∆t(σ)) and r(X̃h

t+∆t(σ), π(X̃
h
t+∆t(σ))); use αt+∆t to generate

m states Xti(σ), ti ∈ [t+∆t, t+ 2∆t], from (3.1).

Step 3. Repeat Step 1 and Step 2.

(4.1)-(4.2), produce an action αt+∆t = π(X̃h
t+∆t(σ)), evaluate the associated reward

r(X̃h
t+∆t(σ), π(X̃

h
t+∆t(σ))), and then use the same action αt+∆t to generate m states

Xti(σ), ti ∈ [t + ∆t, t + 2∆t], i = 1, · · · ,m, from the SDE model (3.1). The interac-

tion process continues and the proposed method yields estimated states and actions to

maximize rewards.

Nonparametric smoothing indicates that as ∆t→ 0, h→ 0, m→∞, and mh→ 0, the

estimated state X̃h
t (σ) is a smoothed process with a negligible noise component, and

thus X̃h
t (σ) is close to the deterministic solution Xt(0) of ODE (3.5). Hence, the gener-

ated action π(X̃h
t (σ)) and the associated reward r(X̃h

t (σ), π(X̃
h
t (σ))) are approximately

equal to their true counterparts π(Xt(0)) and r(Xt(0), π(Xt(0))), respectively. Conse-

quently, we can compute the TD error δ(t) from (3.6) and carry out the policy evaluation

and improvement by the TD learning and greedy algorithms from (3.8)-(3.11).
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4.3 Procedure to implement RL based on nonparametric smoothing

We apply the 4th order Runge-Kutta (RK) method to solve the ODE given below. For

any T > 0, consider the ODE

Ẋt = f(Xt, ϖ(Xt), t), t ∈ [0, T ], (4.3)

and obtain an iterative algorithm as follows:

Ytℓ = Ytℓ−1
+

1

6

(
Υℓ−1

1 + 2Υℓ−1
2 + 2Υℓ−1

3 +Υℓ−1
4

)
, ℓ = 1, · · · , N, (4.4)

where Yt0 is an initial value,

Υℓ−1
1 = (T/N)f

(
Ytℓ−1

, ϖ(Ytℓ−1
), tℓ−1

)
,

Υℓ−1
2 = (T/N)f

(
Ytℓ−1

+Υℓ−1
1 /2, ϖ(Ytℓ−1

), tℓ−1 + T/(2N)
)
,

Υℓ−1
3 = (T/N)f

(
Ytℓ−1

+Υℓ−1
2 /2, ϖ(Ytℓ−1

), tℓ−1 + T/(2N)
)
,

Υℓ−1
4 = (T/N)f

(
Ytℓ−1

+Υℓ−1
3 , ϖ(Ytℓ−1

), tℓ−1 + T/N
)
,

(4.5)

f and ϖ are appropriate functions, N denotes the number of iterations, and tℓ = ℓT/N

with step size T/N . That is, we recursively apply the algorithm (4.4)-(4.5) over time

interval [0, T ], and the resultant N iterations provide the numerical solution of (4.3) at

N time points tℓ.

We take the function f(Xt, ϖ(Xt), t) in (4.3) to be b(Xt, αt) for the deterministic case

of ODE (3.5), and denote the resulting discrete process by X̌tℓ(0). In the stochastic

case of SDE (3.1), we proceed as follows. Denote by Ẇt the white noise (i.e., the

derivative of Brownian motion Wt in the generalized function sense). We take the

function f(Xt, ϖ(Xt), t) in (4.3) to be b(Xt, αt) + σ(Xt, αt)Ẇt and use the 4th order
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4.3 Procedure to implement RL based on nonparametric smoothing

RK method (4.4)-(4.5) to generate discrete samples and apply kernel smoothing (4.1)

and (4.2) to the generated discrete samples. We denote the resulting discrete smoothed

samples by X̃h
tk
(σ) at discrete points tk = kT/n = kmT/N , k = 1, · · · , n = N/m.

Specifically, the discrete smoothed samples are iteratively defined as follows:

X̃h
tk
(σ) = X̃h

tk−1
(σ) + ∆Xh

tk−1
(σ)

= X̃h
tk−1

(σ) +
1

m

m∑
j=1

K

(
tk−1+j − tk−1

h

)[
X̌tk−1+j

(σ)− X̃h
tk−1

(σ)
]
,

(4.6)

where states X̌tk−1+j
(σ), j = 1, · · · ,m, are assumed to be generated from the same ac-

tion αtk−1
= π(X̃h

tk−1
(σ)) using the algorithm (4.4)-(4.5) withϖ(X̃h

tk−1+j
) = π(X̃h

tk−1
(σ)),

and 

X̌tk(σ) = X̃h
tk−1

(σ) + 1
6

(
Υk−1,0

1,σ + 2Υk−1,0
2,σ + 2Υk−1,0

3,σ +Υk−1,0
4,σ

)
,

X̌tk+1
(σ) = X̌tk(σ) +

1
6

(
Υk−1,1

1,σ + 2Υk−1,1
2,σ + 2Υk−1,1

3,σ +Υk−1,1
4,σ

)
,

...

X̃tk−1+m
(σ) = X̌tk−1+m−1

(σ)

+1
6

(
Υk−1,m−1

1,σ + 2Υk−1,m−1
2,σ + 2Υk−1,m−1

3,σ +Υk−1,m−1
4,σ

)
,

(4.7)
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where

Υk−1,i
1,σ = T

N
b
(
X̌tk−1+i

(σ), π(X̃h
tk−1

(σ))
)

+ T
N
σ
(
X̌tk−1+i

(σ), π(X̃h
tk−1

(σ))
)
W̌i(tk−1)

Υk−1,i
2,σ = T

N
b
(
X̌tk−1+i

(σ) + Υk−1,i
1,σ /2, π(X̃h

tk−1
(σ))

)
+ T

N
σ
(
X̌tk−1+i

(σ) + Υk−1,i
1,σ /2, π(X̃h

tk−1
(σ))

)
W̌i(tk−1 + T/(2N))

Υk−1,i
3,σ = T

N
b
(
X̌tk−1+i

(σ) + Υk−1,i
2,σ /2, π(X̃h

tk−1
(σ))

)
+ T

N
σ
(
X̌tk−1+i

(σ) + Υk−1,i
2,σ /2, π(X̃h

tk−1
(σ))

)
W̌i(tk−1 + T/(2N))

Υk−1,i
4,σ = T

N
b
(
X̌tk−1+i

(σ) + Υk−1,i
3,σ , π(X̃h

tk−1
(σ))

)
+ T

N
σ
(
X̌tk−1+i

(σ) + Υk−1,i
3,σ , π(X̃h

tk−1
(σ))

)
W̌i(tk−1 + T/N)

(4.8)

for i = 0, 1, . . . ,m−1, and W̌i in (4.8) are discrete white noises corresponding to Ẇ and

independent of X̃h
tk−1

(σ). If the kernel function K is chosen to be a constant function,

we obtain

X̃h
tk
(σ) = X̃h

tk−1
(σ) +

1

m

[
X̌tk−1+m

(σ)− X̃h
σ (tk−1)

]
= X̃h

tk−1
(σ) +

1

6m

m−1∑
i=0

(
Υk−1,i

1,σ + 2Υk−1,i
2,σ + 2Υk−1,i

3,σ +Υk−1,i
4,σ

)
. (4.9)

Given X̃h
tk
(σ), we compute the associated reward and the TD error by (3.6)-(3.7),

estimate the corresponding value function, and perform the TD learning using (3.8)-

(3.11).

4.4 Asymptotic theory

We fix notations to facilitate the development of the asymptotic theory. We fix the

notations for value functions under deterministic and stochastic cases as follows:
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1. V π
0 (x) denotes the value function for the deterministic Xt(0); namely,

V π
0 (x) =

∫∞
0

e−βtr(Xt(0), π(Xt(0)))dt, given X0(0) = x. Let V ∗,M
0 (x) be the

corresponding optimal value function that is the maximum of V π
0 (x) over π ∈

LipM . Denote by π∗,M
0 (x) an optimal policy, that is, π∗,M

0 (x) = argmax
π∈LipM

V π
0 (x).

2. V π
σ (x) denotes the value function for the stochastic Xt(σ); namely,

V π
σ (x) = E

[∫∞
0

e−βtr(Xt(σ), π(Xt(σ))dt
∣∣X0(σ) = x

]
. Let V ∗,M

σ (x) be the corre-

sponding optimal value function that is the maximum of V π
σ (x) over π ∈ LipM .

Denote by π∗,M
σ (x) an optimal policy for Xt(σ); that is, π

∗,M
σ (x) = argmax

π∈LipM
V π
σ (x).

We specify the continuous-time process, value function, optimal value function, and

optimal policy for the smoothed samples X̃h
tk
(σ) as follows.

1. Define a continuous-time process by interpolating X̃h
tk
(σ), and denote by X̃h

t (σ)

the resulting continuous-time smoothed process.

2. Let Ṽ h,π
σ (x) = E

[∫∞
0

e−βtr(X̃h
t (σ), π(X̃

h
t (σ)))dt

∣∣∣ X̃h
0 (σ) = x

]
be the value func-

tion for X̃h
t (σ).

3. Let Ṽ h,∗,M
σ (x) = supπ∈LipM Ṽ h,π

σ (x) be the optimal value function for X̃h
t (σ).

4. Denote by π̃h,∗,M
σ (x) an optimal policy for X̃h

t (σ); namely, π̃h,∗,M
σ (x) = argmax

π∈LipM
Ṽ h,π
σ (x).

We have the following theorem to demonstrate that the smoothed samples X̃h
tk
are close

to the deterministic samples Xtk(0).

Theorem 3. Under assumptions (A1)-(A3), we have that for each x, as h→ 0, m→
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∞ and mh→ 0,

sup
tk=kT/n,1≤k≤n

E
[{

X̃h
tk
(σ)−Xtk(0)

}2
∣∣∣∣X0(σ) = X0(0) = x

]
= O

(
m−1

)
,

where the asymptotic notation O(m−1) means a bound Cm−1 for constant C that may

depend on x but is free of (h,m, n).

Remark 3. Theorem 3 shows that the mean square error between the smoothed sam-

ples X̃h
tk
(σ) defined by (4.6)-(4.8) and the deterministic samples Xtk(0) converges to 0

uniformly over tk = kT/n, k = 1, · · · , n = N/m.

The following theorem establishes the convergence of the value function, the optimal

value function, and the optimal policy for the smoothed process X̃h
t (σ) to the corre-

sponding counterparts of the deterministic Xt(0).

Theorem 4. Under assumptions (A1)-(A4), we have that as h → 0, m → ∞ and

mh→ 0,

sup
π∈LipM

|Ṽ h,π
σ (x)− V π

0 (x)| → 0,

and

Ṽ h,∗,M
σ (x)→ V ∗,M

0 (x).

Furthermore, as h → 0, m → ∞ and mh → 0, any optimal policy π̃h,∗,M
σ (x) under the

stochastic model (3.1) must converge to an optimal policy π∗,M
0 (x) under the determin-

istic model (3.5).

Remark 4. Theorem 4 indicates that the value function, the optimal value function,

and the optimal policy for the smoothed process X̃h
t (σ) converge to the corresponding

targets for the deterministic Xt(0).
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Remark 5. We consider a continuous-time RL task where the underlying ideal model

is the deterministic model (3.5), but data samples are generated from the stochastic

model (3.1), which is treated as a noisy version of the ideal deterministic model (3.5).

Using Theorems 3 and 4, the proposed approach can obtain smoothed samples close to

the deterministic samples from the ideal model, and the value functions, optimal value

functions, and optimal polices for the smoothes samples converge to the corresponding

counterparts for the deterministic samples. Thus, Theorems 3 and 4 together may

validate the proposed RL approach by applying the continuous-time deterministic RL

methods, such as TD, to the smoothed samples X̃h
tk
(σ) to render good solutions for the

stochastic RL task.

5. A numerical study on a real RL task

We carried out a numerical study to check the performance of the proposed method.

The study is about the continuous-time RL task of a pendulum swinging upwards with

limited torque illustrated in Figure 4.

Figure 4: Pendulum
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5.1 The RL setup

Denote the state variable of the pendulum by Xt(σ) = (θt, ωt), where θt represents the

angle at time t between the pendulum position and the vertical up direction, with ωt

as its derivative. θt and ωt are assumed to obey the following SDE:
dθt = ωtdt, t ∈ [0, T ],

dωt =
1

ML2 (−µωt +MgL sin θt + α)dt+ σdWt,

(5.1)

where Wt is a standard Brownian motion, σ is a constant to represent the noise level

in the problem, α denotes the control variable with αmax = 5.0, and (M,L, g, µ) are

physical constants with assigned values M = L = 1, g = 9.8, and µ = 0.01. When

σ = 0, the model (5.1) reduces to the deterministic physics model of the pendulum in the

ideal setting described by Doya (2000), and the noise model (5.1) is used to describe the

pendulum behavior in a practical situation. To make the pendulum swinging upwards,

the agent needs to swing it several times to build up momentum, and then decelerate it

early enough to prevent the pendulum from falling over. The task is non-trivial when

the maximal output torque αmax is smaller than the maximal load torque LMg. In

our simulation study, we take T = 20 seconds and a step size equal to 0.002 in the 4th

order RK method to simulate the process Xt(σ).

We start every trial in an initial state X0(σ) = (θ0, ω0), where ω0 = 0, and θ0 is chosen

at random from the interval (−π, π]. Each trial is carried out to last for 20 seconds,

unless the pendulum is over-rotated to the degree that the angle exceeds 5π. Upon such

a failure, we terminate the trial and assign a reward r(θ, a) = −1 for one second. We

define a measure of the swing-up performance by the time, tup, in which the pendulum
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5.2 Numerical results

stays up at an angle between −π/4 and π/4. We consider a trial a success if tup exceeds

10 seconds. Following (Doya, 2000) we adopt the reward function

r(θ, a) = cos(θ)− 0.1αmax

(
4

π2

)
log

(
cos

(
πa

2αmax

))
,

and the policy

π(Xt) =
2

π
αmax arctan

(
5π

ML2

∂V (Xt)

∂Xt

+ 0.5min{1,max[0, 1− V (Xt)]}Ξt

)
,

where Ξt is a noise process satisfying dΞt

dt
= −Ξt+ϖt, and ϖt are independent Gaussian

random variables with zero mean and unit variance, and we model the value function

by

V (x) =
225∑
k=1

ν1kbk(x), bk(x) =
e−∥ν2k(x−ν3k)∥∑225
j=1 e

−∥ν2j(x−ν3j)∥
,

where (ν1k, ν2k, ν3k) are parameters. See (Doya, 2000) for details about the specifications

of the reward function, policy, and value function.

5.2 Numerical results

Discrete smoothing samples are simulated from the model (5.1) using the 4th order

RK method with T = 20, a step size equal to 0.002, and σ between 5 and 11, and by

the proposed smoothing method. Denote the smoothed samples by X̃h
tk
, k = 1, · · · , n,

where the step size is equal to T/N , n = N/m; m denotes the number of observations

in the smoothing window, the smoothing bandwidth is given by h = mT/N , and the

kernel function is chosen to be a constant function. Thus, N = T/0.002 = 10, 000, and

n = 10, 000/m. We selectm as from 1 to 5 and the bandwidth as h = 0.002m. We apply

the continuous TD(λ) algorithm to the smoothed samples X̃h
tk
and test the performance
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Table 2: Experiments settings with 4th order RK method.

step size σ m Method

0.002
5, 6, 7, 8, 9,

10, 11

1 continuous TD

2 smoothing & continuous TD with bandwidth h = 1 step size

3 smoothing & continuous TD with bandwidth h = 2 step size

4 smoothing & continuous TD with bandwidth h = 3 step size

5 smoothing & continuous TD with bandwidth h = 4 step size

under various scenarios, as illustrated in Table 2. In each testing experiment, 100 trials

of 20-second runs are used to train the TD algorithm. To increase exploration, we add

in (3.14) a normal noise with mean zero and standard deviation 0.5. To account for

the randomness of the training process, each test setting is repeated 500 times. Fig-

ure 5 shows the best performance for each 500 repetitions. From Figure 5 (a)-(d), we

can observe that as the noise level increases, the deterministic continuous RL methods

start to deteriorate and eventually fail completely. In contrast, the proposed approach

provides good solutions to the RL problem. The numerical results indicate that the

existing deterministic continuous RL methods do not work for the RL problem in the

stochastic setting, and the proposed continuous RL approach based on nonparamet-

ric smoothing can solve the stochastic RL problem. We also compare the proposed

approach with relevant existing algorithms, namely the online actor-critic (OAC) algo-

rithm for the continuous-time case (Jia and Zhou, 2022b) and a discretized version of

the continuous-time actor-critic (CAC) algorithm (Doya, 2000). We display in Figure
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5 (e)-(f) the obtained results for the proposed method in comparison with the OAC

and CAC algorithms. The results imply the better performance of our method over the

existing algorithms. The findings confirm the established theory for the proposed RL

methodology and that the existing methods are unable to handle RL problems with

noisy data.
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Figure 5: Plot of the stay-up time tup against trials for solving the noisy pendulum

swing-up RL problem by the existing and proposed methods under various combinations

of bandwidth h = 0.002m and noise level σ, where m = 1, 2, 3, 4, 5 correspond to curves

in (a)-(d) with five different line types, σ = 5, 7, 9, 11 are for plots (a)-(d), and plots (e)

and (f) correspond to curves for the comparison of the proposed smoothed TD (STD)

method with the OAC and CAC algorithms, respectively.
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6. Concluding remarks

In this paper, we develop a new learning approach based on temporal-difference and

nonparametric smoothing to solve reinforcement learning problems in a continuous-

time stochastic setting, where the underlying ideal model is governed by an ODE, and

data samples are generated from a SDE that is considered as a noisy version of the

ODE model. Reinforcement learning methods have been widely developed for discrete-

time MDP, but few RL techniques available for continuous-time stochastic processes.

For example, continuous-time temporal-difference learning was developed for determin-

istic ODE models, but it is not applicable to stochastic models. In fact, the existing

continuous-time temporal-difference learning method is unstable and diverges when ap-

plied to data generated from stochastic models. Furthermore, no RL techniques have

been developed to handle RL problems with noisy data. We developed an approach

based on nonparametric smoothing to handle the described continuous-time stochastic

RL tasks with noisy data. We established an asymptotic theory for the proposed ap-

proach and conducted a numerical study to solve a pendulum RL task and check the

finite sample performance of the proposed method. The theoretical analysis and nu-

merical study show that the proposed learning approach delivers a robust performance.

There are extensive research works in the literature on stochastic control for continuous-

time stochastic processes governed by SDEs. However, there is a lack of good RL ap-

proaches for these continuous-time stochastic models, particularly the statistical aspect

of RL. Some recent attempts have been made in this direction (Wang et al., 2020; Jia

and Zhou, 2022a,b,c). Despite the extensive research on RL for discrete MDP, little
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work has been done on RL with noisy data. We hope that our paper will contribute to

the recent RL works to stimulate further research on continuous-time RL and RL with

noisy data.

Supplementary Materials

The Supplementary Materials include the proofs of Theorem 1-Theorem 4.
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Cappé, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden Markov Models.

Springer.

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural compu-

tation, 12(1):219–245.

Elliott, R. J., Aggoun, L., and Moore, J. B. (2008). Hidden Markov Models: Estimation

and Control, volume 29. Springer, second edition.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0407



REFERENCES

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical Learn-

ing. Springer series in statistics New York, second edition.

Howard, R. (1960). Dynamic Programming and Markov Processes. Technology Press

of Massachusetts Institute of Technology.

Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion

Processes, volume 24. North-Holland, second edition.

Jia, Y. and Zhou, X. (2022a). Policy evaluation and temporal-difference learning in

continuous time and space: a martingale approach. Journal of Machine Learning

Research, 23:1–55.

Jia, Y. and Zhou, X. (2022b). Policy gradient and actor-critic learning in continuous

time and space: theory and algorithms. Journal of Machine Learning Research,

23:1–50.

Jia, Y. and Zhou, X. (2022c). q-learning in continuous time. arXiv:2207.00713v1.

Karatzas, I. and Shreve, S. E. (1997). Brownian Motion and Stochastic Calculus, volume

113. Springer, second edition.

Kloeden, P. E. and Platen, E. (1995). Numerical Solution of Stochastic Differential

Equations, volume 23. Springer.

Kushner, H. J. and Dupuis, P. (2001). Numerical Methods for Stochastic Control Prob-

lems in Continuous Time, volume 24. Springer, second edition.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0407



REFERENCES

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).

Continuous control with deep reinforcement learning. arXiv:1509.02971.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

et al. (2015). Human-level control through deep reinforcement learning. Nature,

518(7540):529–533.

Pham, H. (2009). Continuous-time Stochastic Control and Optimization with Financial

Applications, volume 61. Springer.

Powell, W. B. and Ma, J. (2011). A review of stochastic algorithms with continuous

value function approximation and some new approximate policy iteration algorithms

for multidimensional continuous applications. Journal of Control Theory and Appli-

cations, 9(3):336–352.

Recht, B. (2019). A tour of reinforcement learning: The view from continuous control.

Annual Review of Control, Robotics, and Autonomous Systems, 2:253–279.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.

(2017). Mastering the game of go without human knowledge. Nature, 550(7676):354–

359.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction,

volume 135. MIT press Cambridge, second edition.
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