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Abstract: Rare and Weak models for multiple hypothesis testing assume that only a small propor-

tion of the tested hypotheses concern non-null effects and the individual effects are only moderately

large, so they generally do not stand out individually, for example in a Bonferroni analysis. Such

models have been studied in quite a few settings, for example in some cases studies focused on an

underlying Gaussian means model for the hypotheses being tested; in some others, Poisson and

Binomial. Such seemingly different models have the following common structure. Summarizing

the evidence of individual tests by the negative logarithm of its P-value, the model is asymptot-

ically equivalent to a situation in which most negative log P-values have a standard exponential

distribution but a small fraction might have an alternative distribution which is approximately

noncentral chisquared on one degree of freedom. This log-chisquared approximation is different

from the log-normal approximation of Bahadur. The latter is unsuitable for analyzing Rare and

Weak multiple-testing models.

We characterize the asymptotic performance of global tests combining asymptotic log-chisquared

P-values in terms of the chisquared mixture parameters: the scaling parameter controlling het-

eroscedasticity, the non-centrality parameter, and the parameter controlling the rarity of individual

non-null effects. In a phase space involving the last two parameters, we derive a region where all

tests are asymptotically powerless. Outside of this region, the Berk-Jones and the Higher Criti-

cism tests have maximal power. Inference techniques based on the minimal P-value, false-discovery

rate controlling, and Fisher’s combination test have sub-optimal asymptotic phase diagrams. Our

analysis yields the asymptotic power of global testing in various new rare and weak models, in-

cluding two-sample heteroscedastic normal mixtures and binomial experiments with perturbed
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probabilities of success.

Key words and phrases: multiple testing, sparse mixture, heterogeneous mixture, higher criticism,

P-values.

1. Introduction

1.1 Motivation

Consider a multiple hypothesis testing situation, each test involves a different feature of

the data where different features are independent. We are interested in testing a global

null hypothesis against the following alternative: the non-null effects are concentrated in

a small, but unknown, subset of the hypotheses. In the most challenging situation, effects

are not only rare but also weak in the sense that the non-null test statistics are unlikely

to provide evidence after Bonferroni’s correction. Rare and weak multiple hypothesis

testing problems of this nature arise in a wide range of situations (Donoho and Jin,

2015). Specific examples include:

• Sparse (rare) signal detection. We are interested in intercepting a transmission that

occupies few frequency bands out of potentially many, while the occupied bands are

unknown to us (Tandra and Sahai, 2008; Bayer and Seljak, 2020). The features are

periodogram ordinates associated with individual frequency bands. Evidence for

the presence of a signal can be gathered by testing each ordinate against the same

exponential distribution.

• Classification. Classifying images or other high-dimensional signals usually involves

hundreds or more features. In a one-versus-all classification setup, we view the

typical response of the features under each class as the null hypothesis. Testing

against this null amounts to determining whether the tested signal is associated
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1.1 Motivation

with that class or not. A situation of wide interest is when inter-class discrimination

is due to a small proportion of features out of potentially many, and we do not know

which ones they are likely to be (Donoho and Jin, 2009; Ingster et al., 2009; Jin,

2009).

• Detecting rare changes between two high-dimensional distributions. Testing whether

two high-dimensional datasets are simply two different realizations of the same

data-generating mechanism is a classical problem in statistics, computer science,

and information theory (Acharya et al., 2012; Balakrishnan and Wasserman, 2018;

Donoho and Kipnis, 2022). This scenario is formulated as a two-sample testing

problem; the null hypothesis states that both samples were obtained from the same

high-dimensional parent distribution. The alternative hypothesis states that dif-

ferences between the mechanisms occur in a small and unknown subspace of the

parameters.

Applications as above have motivated a significant body of work in rare and weak multi-

ple testing settings throughout the past two decades, providing fruitful insights for signal

detection, feature selection, and classification problems in high dimensions (Jin and Ke,

2016). Specific examples of rare and weak multiple testing settings include normal mix-

tures (Ingster and Suslina, 2012; Jin, 2003; Donoho and Jin, 2004; Abramovich et al.,

2006), binomial mixtures (Mukherjee et al., 2015), linear regression model under Gaus-

sian noise (Arias-Castro et al., 2011; Ingster et al., 2010), Poisson mixtures (Arias-Castro

and Wang, 2015), heteroscedastic normal mixtures (Cai et al., 2011), general mixtures

(Cai and Wu, 2014; Arias-Castro and Wang, 2017), mixture of unknown distributions

(Delaigle and Hall, 2009; Delaigle et al., 2011; Arias-Castro and Wang, 2017), and sev-

eral two-sample settings (Donoho and Kipnis, 2022; Galili et al., 2023).
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1.2 Contributions

In this article, we study one rare and weak multiple testing setting that subsumes the

vast majority of these previously studied ones. Our setting is not tied to a specific data-

generating model. Instead, we model the behavior of a collection of P-values, each P-value

summarizes the evidence of one test statistic against the global null. These P-values may

be obtained either from one- or two-sample tests and may represent responses over a

variety of models. More generally, the advantages of modeling the distribution of the

P-values rather than the data are discussed in (Lambert, 1981; Lambert and Hall, 1982;

Sackrowitz and Samuel-Cahn, 1999; Boos and Stefanski, 2011).

Recall that a deviation from the mean of a sequence X1, X2, . . . , of standardized and

identically and independently distributed random variables is said to be moderate if it

is of the form
√

q log(n)/n for some q > 0 (Rubin and Sethuraman, 1965; Dembo and

Zeitouni, 1998). For such deviations, Cramér’s theorem implies

Pr

[∣∣∣∣X1 + . . .+Xn√
n

∣∣∣∣ >√2q log(n)

]
∼ n−q, uniformly in q ≥ a > 0, (1.1)

provided the moment-generating function exists. Our key insight says that the log-

chisquared approximation (see (4.2) below) – and not the log-normal approximation of

(Bahadur, 1960; Lambert and Hall, 1982) – is accurate for characterizing the asymptotic

power of testing in rare and weak models involving departures on the moderate scale.

Consequently, our setting unifies all previously studied rare and weak settings in which

moderate deviations analysis applies (Donoho and Jin, 2004; Cai et al., 2011; Delaigle

et al., 2011; Arias-Castro et al., 2011; Cai and Wu, 2014; Arias-Castro and Wang, 2015;

Mukherjee et al., 2015; Donoho and Kipnis, 2022) under one setting we denote as the Rare

Moderate Departures (RMD) model. This unification provides new characterizations for
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1.3 The log-chisquared approximation

Departures model
Chisquared
parameters

studied in

ρ σ

Normal means (heteroscedastic) r s (Cai et al., 2011)
Two-sample normal means
(homoscedastic)

r/2 1 (Donoho and Kipnis, 2022)

Two-sample normal means
(heteroscedastic)

r/2
√

1+s2

2

Poisson means r 1 (Arias-Castro and Wang, 2015)
Two-sample Poisson means r/2 1 (Donoho and Kipnis, 2022)
Binomial success probability r s · r

Table 1: Rare and weak multiple testing settings that are carried under our RMD
formulation and their noncentral chisquared parameters. Models appearing in bold are
new.

the power of some global testing procedures in those earlier studied settings and in several

new settings as summarized in Table 1. Additionally, our analysis guides the calibration

of parameters of new high-dimensional signal models to experience a phase transition

between the rarity and strength of individual effects; see (Galili et al., 2023) for an

example in the context of survival analysis.

1.3 The log-chisquared approximation

In order to introduce the log-chisquared perturbation model, suppose that the i-th test

statistic yields the P-value pi, for i = 1, . . . , n. We further assume that pi ∼ Unif(0, 1)

under the global null, corresponding to the case where the model underlying the i-th test

statistics has a continuous distribution (we relax this assumption later on). Consequently,

−2 log(pi) ∼ Exp(2), where Exp(2) is the exponential distribution with mean 2 (or rate

1/2), also known as the chisquared distribution with two degrees of freedom χ2
2. Our

model proposes the following alternative: Roughly nϵ of the P-values depart from their
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1.4 Log-chisquared versus log-normal

uniform distribution and instead obey

−2 log(pi)
D
≈ (µ+ σZ)2 , Z ∼ N (0, 1). (1.2)

Here
D
≈ indicates a specific form of approximation in distribution that we formalize in

Section 2 below. Leaving the details of this approximation aside for now, (1.2) says that

−2 log(pi) is approximately distributed as a scaled noncentral chisquared random variable

(RV) over one degree of freedom with noncentrality parameter µ, and scaling parameter σ.

We focus on the case where the rarity parameter ϵ vanishes while the intensity parameter

µ is only moderately large, making our global testing problem challenging; in some cases,

impossible. As we shall see, in this regime the non-null effects are not only rare but are

also weak in the sense that they generally do not stand out individually in a Bonferroni

analysis.

1.4 Log-chisquared versus log-normal

The emergence of the log-chisquared approximation for P-values is somewhat surprising

because this approximation is different from the log-normal approximation developed in

(Bahadur, 1960) and (Lambert and Hall, 1982). In Section 4, we show that the log-

chisquared distribution fits the distribution of the P-values under moderate departures

significantly better than the log-normal distribution. Furthermore, the log-normal ap-

proximation does not indicate the correct asymptotic performance of tests under rare

and weak multiple testing settings. To summarize this last point, we establish here that

a rare multiple hypothesis testing setting in which the departures are on the moderate

scale corresponds to detecting a few noncentral chisquared signals against an exponential

background, rather than detecting a few normal signals as one might have proposed in

view of the log-normal approximation. Potential applications of this improved approxi-
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mation, beyond the asymptotic power analysis of multiple hypothesis testing we discuss

in this paper, include better estimates of the so-called “reproducibility probability” of

experiments (Boos and Stefanski, 2011) and empirical Bayes method for identifying dis-

coveries in large-scale inference (Efron et al., 2001; Pounds and Morris, 2003); we leave

these topics as future work.

We note that the logarithmic scoring scale for P-values goes back to Fisher, who

initially suggested it as a method of ranking success in card-guessing games (Fisher,

1924). For global testing, Fisher proposed the statistic (Fisher, 1992)

Fn :=
n∑

i=1

−2 log(pi), (1.3)

which has a χ2
2n distribution under the global null. A test based on Fn is known to be

effective in the presence of small effects distributed across the bulk of cases, but not

effective under relatively rare and somewhat stronger but individually still weak as our

model proposes; see a formal statement about the inadequacy of Fn in our setting in

Theorem 6 below. The logarithmic scale for P-values is now standard in genome-wide

association studies (GWAS) (e.g., (Balding, 2006; Pearson and Manolio, 2008; Price et al.,

2010; Harold et al., 2009)) and in other areas (Li, 2012; Quaino et al., 2014; Boos and

Stefanski, 2011; Gibson, 2021). Our setting yields an explicit model for testing rare and

weak effects in these applications: testing chisquared departures against an exponential

background. A similar model arises in detecting the presence of rare and weak sinusoids in

white noise based on the periodogram. For this setting, Fisher’s periodogram test is based

on the largest periodogram ordinate (Fisher, 1929) which is analogous to a Bonferroni

analysis.
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1.5 Paper Organization

In Section 2 we define the RMD setting and analyze the asymptotic properties of tests. In

Section 3 we explore several rare and weak signal detection problems that conform to the

RMD model formulation. In Section 4 we compare our log-chisquared approximation for

the distribution of P-values under the alternative hypothesis and the classical log-normal

approximation. Additional discussions are provided in Section 5. All proofs are in the

Supplementary Material (Kipnis, 2024).

2. Rare Moderate Departures Setting and Analysis

The description in the Introduction above depicts the following global hypothesis testing

setting involving a sequence of P-values p1, . . . , pn.

H0 : −2 log(pi) ∼ Exp(2), i = 1, . . . , n,

H
(n)
1 : −2 log(pi) ∼ (1− ϵ)Exp(2) + ϵQ

(n)
i , i = 1, . . . , n,

(2.1)

where Q
(n)
i is a probability distribution specifying the non-null behavior of the i-th P-

value.

We calibrate the rarity parameter ϵ to n according to

ϵ = ϵn := n−β, (2.2)

where β ∈ (0, 1). This calibration proposes that for an overwhelming majority of the

individual tests, the response under the alternative is indistinguishable from the null.

The expected proportion of the non-null effects (rarity) of most interest under RMD

is n−β for β ∈ (1/2, 1). Indeed, for less rare effects (β < 1/2), the signal may be viewed

as “dense” in the sense that tests that are powerful against small but frequent departures
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can also be asymptotically powerful (Arias-Castro et al., 2011).

2.1 The Log-Chisquared Approximation

We compare Q
(n)
i to the non-central and scaled chisquared distribution as in the right-

hand side of (1.2) with non-centrality parameter µ is calibrated to n as in:

µ = µn(ρ) :=
√

2ρ log(n), ρ > 0, (2.3)

and with a fixed scaling parameter σ. Specifically, define the moderately perturbed and

scaled chisquared distribution

χ2(ρ, σ)
D
= (µn(ρ) + σZ)2, Z ∼ N (0, 1),

where
D
= indicates equality in distribution. For the sake of formalizing the approximation

in (1.2), we introduce the function

α(q; ρ, σ) :=

(√
q −√

ρ

σ

)2

, (2.4)

and note that

lim
n→∞

− log Pr [χ2(ρ, σ) ≥ 2q log(n)]

log(n)
= α(q; r, σ), q > ρ.

A sequence of distributions {Q(n)
i }ni=1 with Pr

[
Q

(n)
i ≥ 2q log(n)

]
> 0 for all i = 1, . . . , n

is said to be uniformly moderate chisquared if, for every q > ρ,

lim
n→∞

max
i=1,...,n

∣∣∣∣∣∣
− log Pr

[
Q

(n)
i ≥ 2q log(n)

]
log(n)

− α(q; ρ, σ)

∣∣∣∣∣∣ = 0. (2.5)
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Namely, we require that the moderate tail probability of Q
(n)
i is identical to that of the

non-central and scaled chisquared χ2(ρ, σ). Henceforth, we refer to hypothesis testing

problems of the form (2.1) in which {Q(n)
i }ni=1 is uniformly moderate chisquared as Rare

Moderate Departures (RMD) model with log-chisquared parameters (ρ, σ). A useful

criterion for the validity of (2.5) is

Q
(n)
i

D
= (µn(ρ) + σZ)2 (1 + op(1)) , ρ > 0, n → ∞, (2.6)

where op(1) indicates a sequence of RVs tending to zero in probability uniformly in i as

n → ∞.

2.2 Asymptotically Uniform P-values

We now extend our setting (2.1) to situations in which p1, . . . , pn are not uniformly

distributed under the null. We do so by considering, instead of (2.1),

H
(n)
0 : −2 log(pi) ∼ E

(n)
i , i = 1, . . . , n,

H
(n)
1 : −2 log(pi) ∼ (1− ϵ)E

(n)
i + ϵQ

(n)
i , i = 1, . . . , n,

(2.7)

where Q
(n)
i satisfies (2.5) and where the probability distribution E

(n)
i converges to Exp(2)

in the sense that

lim
n→∞

max
i=1...,n

∣∣∣∣∣∣
− log Pr

[
E

(n)
i ≥ 2q log(n)

]
log(n)

− q

∣∣∣∣∣∣ = 0 (2.8)

for every fixed q > 0. This extension of the RMD setting is particularly useful when

the distribution of the P-values under the null is only super uniform as in some discrete

models (Westfall and Wolfinger, 1997), or when we consider asymptotic P-values rather

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0128



2.3 Strong Log-Chisquared Approximation

than exact P-values which is common in large-scale inference from multiple tests (Efron,

2012). Most of the properties of RMD models we derive in this paper hold under this

extended setting. In this sense, condition (2.8) provides a range of deviation from the

specification of the null distribution under which current and previous results concerning

rare and moderately large effects hold.

2.3 Strong Log-Chisquared Approximation

Stronger forms of the chisquared and exponential approximations (2.5) and (2.8) are

needed to establish an information-theoretic limit of global testing under models (2.1)

and (2.7). For the chisquared approximation, we require that

lim
n→∞

max
i=1...,n

∣∣∣∣log( dQ
(n)
i

dχ2(ρ,σ)
(2q log(n))

)∣∣∣∣
log(n)

= 0 (2.9)

for any q > ρ. For the exponential approximation, we require that

lim
n→∞

max
i=1...,n

∣∣∣∣log( dE
(n)
i

dExp(2)
(2q log(n))

)∣∣∣∣
log(n)

= 0 (2.10)

for any fixed q > 0. The type of equivalence between Q
(n)
i and χ2(ρ, σ) described in (2.9)

is similar to the setting of (Cai and Wu, 2014). Henceforth, we refer to hypothesis testing

problems of the form (2.1) under the condition (2.9) and (2.10) as the strong RMD. In

the Supplementary Material (Kipnis, 2024), we show that (2.9) implies (2.5) and that

(2.10) implies (2.8). Note that (2.9) holds whenever the distribution of each Q
(n)
i has a

density and satisfies (2.6).
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2.4 Asymptotic Power and Phase Transition

RMD models experience a phase transition phenomenon in the following sense. For some

choice of the parameters r, β, and σ, the two hypotheses are completely indistinguish-

able. In another region, some tests can asymptotically distinguish H
(n)
1 from H

(n)
0 with

probability tending to one. Formally, for a given sequence of statistics {Tn}∞n=1, we say

that {Tn}∞n=1 is asymptotically powerful if there exists a sequence of thresholds {hn}∞n=1

such that

Pr
H0

(Tn > hn) + Pr
H

(n)
1

(Tn ≤ hn) → 0,

as n goes to infinity. In contrast, we say that {Tn}∞n=1 is asymptotically powerless if

Pr
H0

(Tn > hn) + Pr
H

(n)
1

(Tn ≤ hn) → 1,

for any sequence {hn}n∈N. The so-called phase transition curve is the boundary of the

region in the parameter space (β, r) in which all tests are asymptotically powerless.

Our would-be phase transition curve is

ρ∗(β, σ) :=



(2− σ2)(β − 1/2) 1
2
< β < 1− σ2

4
, 0 < σ2 < 2,

(
1− σ

√
1− β

)2
1− σ2

4
≤ β < 1, 0 < σ2 < 2,

0 1
2
< β < 1− 1

σ2 , σ2 ≥ 2,

(
1− σ

√
1− β

)2
1− 1

σ2 ≤ β < 1, σ2 ≥ 2.

(2.11)

2.5 Information Theoretic Lower Bound

One side of the phase transition follows from an information-theoretic lower bound. This

bound requires the strong RMD formulation of (2.9) and (2.10).
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Theorem 1. Consider the hypothesis testing problem (2.7). For every i = 1, . . . , n,

assume that Q
(n)
i is absolutely continuous with respect to E

(n)
i , and let

L
(n)
i (x) :=

dQ
(n)
i

dE
(n)
i

(x) (2.12)

be the likelihood ratio between the mixture components. Suppose that there exists γ > 0

such that, for any q ∈ (r, 1 + γ),

lim
n→∞

max
i=1,...,n

− log
(
E

X∼E
(n)
i

[
L
(n)
i (X)1{X>2q log(n)}

])
log(n)

≥ α(q; ρ, σ), (2.13a)

and

lim
n→∞

max
i=1,...,n

− log
(
E

X∼Q
(n)
i

[
L
(n)
i (X)1{X≤2q log(n)}

])
log(n)

≥ α∗(q; ρ, σ), (2.13b)

where

α∗(q; ρ, σ) := min
y∈[0,q]

{2α(y; ρ, σ)− y} . (2.13c)

If ρ < ρ∗(β, σ), all tests are asymptotically powerless.

Theorem 1 implies

Corollary 1. Consider the hypothesis testing problem (2.7) under the strong RMD for-

mulation of (2.9) and (2.10). If ρ < ρ∗(β, σ), all tests are asymptotically powerless.

Theorem 1 provides conditions for the impossibility of discriminating H
(n)
0 from H

(n)
1

in (2.7) that are more general than those provided in (Cai and Wu, 2014) and in other

studies when specialized to our setting.

Figure 1 depicts ρ∗(β, σ) for three choices of σ. The function ρ∗(β, σ) was first derived
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Figure 1: Phase Diagram. The phase transition curve ρ∗(β, σ) of (2.11) defines the
detection boundary in all Rare Moderate Departure models. For ρ < ρ∗(β, σ), all tests
are asymptotically powerless. For ρ > ρ∗(β, σ), some tests, including Higher Criticism
and Berk-Johns, are asymptotically powerful.

in (Cai et al., 2011) to describe the detection boundary of rare and weak normal means

with heteroscedastic components. Theorems 1 extends this result from (Cai et al., 2011)

to general rare and weak multiple testing models obeying the RMD formulation. We

discuss several such models in Section 3 below.

2.6 Optimal Tests

To complete the phase transition characterization of RMD models initiated in Theorem 1,

we consider two tests that are asymptotically powerful whenever ρ > ρ∗(β, σ).

2.6.1 Higher Criticism Test

The Higher Criticism (HC) of the P-values p1, . . . , pn is defined as

HC∗
n := max

1≤i≤nγ0

√
n

i/n− p(i)√
p(i)
(
1− p(i)

) ,
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where p(i) is the i-th order statistic of p1, . . . , pn, and 0 < γ0 < 1 is a fixed parameter

(Donoho and Jin, 2004). The HC test rejects H
(n)
0 for large values of HC∗

n.

In order to characterize the asymptotic power of HC under (2.7), we restrict the

potential sub-uniformity of p1, . . . , pn under H
(n)
0 beyond what is permitted by (2.8) by

requiring

max
i=1,...,n

− log Pr
[
E

(n)
i ≥ 2q log(n)

]
≤ q log(n)− log(1 + n

q−1
2 ) (2.14)

for all n larger than some n0 ∈ N and for all q ∈ (0, 1]. This restriction is not a concern

when p1, . . . , pn are P-values since any super-uniform seqeunce of RVs {E(n)
i } satisfies

(2.14).

Theorem 2. Consider the hypothesis testing problem (2.7) under (2.5), and suppose

that {E(n)
i } obey (2.8) and (2.14). Fix γ0 ∈ (0, 1/2). If ρ > ρ∗(β, σ), then HC∗

n is

asymptotically powerful.

2.6.2 Berk-Jones Test

Define the P-values

πi := Pr
(
Beta(i, n− i+ 1) < p(i)

)
, i = 1, . . . , n,

where Beta(a, b) is the Beta distribution with shape parameters a, b > 0. The Berk-Jones

(BJ) test statistic is defined as (Berk and Jones, 1979; Moscovich et al., 2016)

Mn := min{M−
n ,M

+
n }, M−

n := min
i

πi, M+
n := min

i
(1− πi).

Theorem 3. Consider the hypothesis testing problems (2.1) under the RMD condition
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(2.5). If ρ > ρ∗(β, σ), than 1/Mn is asymptotically powerful.

2.7 Sub-optimal Tests

2.7.1 Bonferroni and false-discovery rate controlling

Bonferroni and false-discovery rate (FDR) controlling methods are two popular ap-

proaches for inference in a multiple testing scenario (Efron, 2012). For testing against the

family H
(n)
0 , Bonferroni type inference uses the minimal P-value p(1) as the test statistics.

The Benjamini-Hochberg (BH) FDR controlling procedure with parameter q ∈ (0, 1) se-

lects the smallest k∗ P-values, where k∗ is the largest integer k satisfying p(k) ≤ qk/n

(Benjamini and Hochberg, 1995). A global test based on this procedure rejects H
(n)
0 at

level α if at least one P-value is selected when q = h(α), for some critical value h(α) < 1

designed to reject H
(n)
0 with probability at most α under H

(n)
0 . Namely,

Reject H
(n)
0 if and only if min

1≤i≤n

p(i)
i/n

≤ h(α). (2.15)

Note that since the BH procedure controls the family-wise error rate at level q, one can

use h(α) = α, but our analysis is not restricted to this choice of h(α).

For a RMD model, both procedures turn out to be asymptotically powerful (respec-

tively, powerless) within the exact same region. The phase transition curve distinguishing

powerfulness from powerlessness is given by

ρBonf(β, σ) :=



(
1− σ

√
1− β

)2
, 1/2 < β < 1, σ2 < 2,

(
1− σ

√
1− β

)2
1− 1

σ2 ≤ β < 1, σ2 > 2,

0, β < 1− 1
σ2 , σ2 > 2.

(2.16)
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Theorem 4. Consider the hypothesis testing problem (2.7) under the RMD conditions

(2.5) and (2.8). TBonf
n = − log(p(i)) is asymptotically powerless whenever ρ < ρBonf(β, σ)

and asymptotically powerful whenever ρ > ρBonf(β, σ).

Theorem 5. Consider the hypothesis testing problem (2.7) under the RMD conditions

(2.5) and (2.8). A test based on (2.15) is asymptotically powerless whenever r < ρBonf(β, σ)

and asymptotically powerful whenever r > ρBonf(β, σ).

Theorems 4 and 5 imply that both Bonferroni and FDR type inference are asymptot-

ically optimal for σ < 2 only when β < 1/2 or (4 − σ2)/4 < β. This situation is similar

to the case of the Gaussian means model studied in (Donoho and Jin, 2004), implying

that under small variances and moderate rarity the evidence for discriminating H
(n)
0 from

H
(n)
1 are not amongst sets of the form {pi, : pi < qk/n, q ∈ (0, 1), k = 1, . . . , n}. Asymp-

totically, in this case, optimal discrimination is achieved by considering P-values in the

much wider range {pi, : pi < n−(1−δ)} for some δ > 0. This range is considered by HC

and BJ, but not by FDR or Bonferroni.

2.7.2 Fisher’s Combination Test

We conclude this section by noting that Fisher’s combination test (1.3) is asymptotically

powerless for all β > 1/2.

Theorem 6. Consider the hypothesis testing problem (2.7) under (2.5). Fn of (1.3) is

asymptotically powerless whenever β > 1/2.

3. Examples of Rare Moderate Departures Models

We consider below various examples of rare and weak multiple testing settings that are

carried under our RMD formulation. We summarize those in Table 1. In most cases, these
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3.1 Heteroscedastic Normal Mixture

settings were previously studied, however, without the RMD formulation and without

deriving all properties stated in Theorems 1-6. We indicate these earlier studies at the

end of each example.

3.1 Heteroscedastic Normal Mixture

Consider testing the presence of a rare location and variance departure in a Gaussian

model as in

H0 : Xi ∼ N (0, 1), i = 1, . . . , n,

H1 : Xi ∼ (1− ϵ)N (0, 1) + ϵN (µ, s2), i = 1, . . . , n,

(3.1)

with s > 0. The relation between the model (3.1) to (2.1) is via the test

pi = Φ̄(Xi), Φ̄(x) := Pr(N (0, 1) > x), i = 1, . . . , n. (3.2)

Standard facts about Mills’ ratio (see, e.g., (Grimmett and Stirzaker, 2020)) imply

−2 log
(
Φ̄(x)

)
∼ −2 log

(
ϕ(x)

|x|

)
= x2(1 + o(1)), (3.3)

as x → ∞. Consequently, under H1, the distribution of −2 log(pi) is of the form

(1− ϵ)Exp(2) + ϵQi(µ, s),

where Qi(µ, s) is a probability distribution obeying

Qi(µ, s)
D
= (sZ + µ)2(1 + op(1)), Z ∼ N (0, 1), (3.4)
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3.2 Two-Sample Heteroscedastic Normal Mixture

as µ → ∞. For µ = µn(r) =
√

2r log(n), the last evaluation implies that Qi(µ, s) satisfies

(2.5). Since each Qi(µ, s) also has a density, the P-values of (3.2) correspond to the strong

RMD model formulation with log-chisquared parameters (ρ, σ) = (r, s).

Previous studies of the setting (3.1) were conducted by (Cai et al., 2011), which

derived the optimal phase transition curve ρ∗(β, σ) and showed that it is attained by HC

of the P-values (3.2). The homoscedastic case s2 = 1 was initially studied by (Ingster,

1996), (Jin, 2003), and (Donoho and Jin, 2004).

3.2 Two-Sample Heteroscedastic Normal Mixture

A two-sample version of (3.1) takes the form:

H0 : Xi, Yi ∼ N (νi, 1), i = 1, . . . , n,

H1 :


Xi ∼ N (νi, 1),

Yi ∼ (1− ϵ)N (νi, 1) + ϵN (νi + µ, s2)

, i = 1, . . . , n,

(3.5)

where ν1, . . . , νn is a sequence of unknown means. For this setting, consider the P-values

pi := Φ̄

(
Yi −Xi√

2

)
. (3.6)

Notice that, with Ỹi ∼ N (νi + µ, s2) and Xi ∼ N (νi, 1), Mills’ ratio (3.3) implies

−2 log

(
Φ̄

(
Ỹi −Xi√

2

))
D
=

(√
1 + s2

2
Z +

µ√
2

)2

(1 + op(1)), Z ∼ N (0, 1),
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3.2 Two-Sample Heteroscedastic Normal Mixture

as µ → ∞. Therefore, under H1, we have that the distribution of −2 log(pi) is of the

form

(1− ϵ)Exp(2) + ϵQi(µ, s), (3.7)

where Qi(µ, s) is a probability distribution obeying

Qi(µ, s)
D
=

(√
1 + s2

2
Z +

µ√
2

)2

(1 + op(1)), Z ∼ N (0, 1),

as µ → ∞. It follows that with µ calibrated to n as in (2.3), Qi(µ, s) satisfies (2.5) with

mean parameter µ′
n(r) = µn(r)/

√
2 =

√
r log(n) and scaling parameter

√
(1 + s2)/2,

hence the P-values (3.6) corresponds to the strong RMD model formulation with log-

chisquared parameters ρ = r/2 and σ =
√

(1 + s2)/2.

In order to derive a phase transition curve for this model, we start from (2.11),

adjusting for the scaling factor 2 in the non-centrality parameter compared to (2.3), and

substituting
√

(1 + s2)/2 for the standard deviation. We obtain:

ρ∗two−sample(β, s) :=



(3− s2)(β − 1/2) 1
2
< β < 7−s2

8
, 0 < s2 < 3,

2
(
1− 1+s2

2

√
1− β

)2
7−s2

8
≤ β < 1, 0 < s2 < 3,

0 1
2
< β < s2−1

s2+1
, s2 ≥ 3,

2
(
1− 1+s2

2

√
1− β

)2
s2−1
s2+1

≤ β < 1, s2 ≥ 3.

(3.8)

Figure 2 depicts ρ∗two−sample(β, s) for several values of s and compare it with 2ρ∗(β, s).

To the best of our knowledge, the curve ρ∗two−sample(β, s) is new; the case s = 1 was

considered in (Donoho and Kipnis, 2022).
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Figure 2: Two-Sample Phase Diagram. The phase transition curve ρ∗two−sample(β, s) of
(3.8) defines the detection boundary for an asymptotically log-chisquared perturbation
model (2.1). For r < ρ∗two−sample(β, s), all tests are powerless. For r > ρ∗two−sample(β, s), the
Higher Criticism and the Berk-Jones tests are asymptotically powerful. The faint lines
correspond to 2ρ∗(β, s), where we have ρ∗two−sample(β, 1) = 2ρ∗(β, 1).

3.3 Poisson Means

Consider the hypothesis testing problem

H0 : Xi
iid∼ Pois(λi), i = 1, . . . , n,

H1 : Xi
iid∼ (1− ϵ)Pois(λi) + ϵPois(λ′

i), i = 1, . . . , n,

(3.9)

where λ1, . . . , λn is a sequence of known means and where each λ′
i is obtained by perturb-

ing λi upwards. For this model, we have the P-values

pi = P̄(Xi;λi), i = 1, . . . , n, (3.10)

where P̄(x;λi) := Pr [Pois(λi) ≥ x]. We suppose that the Poisson rates increase with n

such that

(minλi)/ log(n) → ∞, (3.11)
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3.3 Poisson Means

and the perturbed means are given by

λ′
i = λi + µn(r)

√
λi, i = 1, . . . , n. (3.12)

Noting that log(n)/λ′
i → 0 and λ′

i−λi → ∞, the behavior of pi under H
(n)
1 is obtained

using a moderate deviation estimate of the RVs Υλ′
i
∼ Pois(λ′

i). This is provided by the

following proposition.

Proposition 7. Suppose that λi and λ′
i satisfy (3.11) and (3.12). Let Xi

iid∼ Pois(λ′
i) and

Si = −2 log P̄(Xi;λi). For every q > ρ ≥ 0,

lim
n→∞

max
1≤i≤n

∣∣∣∣− log Pr [Si ≥ 2q log(n)]

log(n)
− α(q; ρ, 1)

∣∣∣∣ . (3.13)

We conclude that under H1, (3.10) -(3.12),

pi ∼ (1− ϵ)E
(n)
i + ϵQ

(n)
i , i = 1, . . . , n

where {Q(n)
i }ni=1 obey (2.5) and {E(n)

i }ni=1 obey (2.8). Consequently, the model of (3.9)

with P-values (3.10) is RMD with log-chisquared parameters ρ = r and σ = 1.

(Arias-Castro and Wang, 2015) studied the Poisson Rates model (3.9). They derived

the optimal phase transition ρ∗(β, 1), the Bonferroni phase transition ρBonf(β, 1), and

showed that a version of HC is asymptotically powerful whenever r > ρ∗(β, 1).
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3.4 Two-Sample Poisson Means

3.4 Two-Sample Poisson Means

A two-sample version of (3.9) is given as:

H0 : Xi, Yi
iid∼ Pois(λi), i = 1, . . . , n.

H1 :


Xi

iid∼ Pois(λi)

Yi
iid∼ (1− ϵ)Pois(λi) + ϵPois(λ′

i)

, i = 1, . . . , n.

(3.14)

Here λ1, . . . , λn is a sequence of unknown Poisson rates that satisfy (3.11), while λ′
1, . . . , λ

′
n

are defined as in (3.12). We summarize the significance of the pair (Xi, Yi) associated

with the i-th coordinate by the RV:

pi := Φ̄
(√

2Yi −
√
2Xi

)
. (3.15)

In order to analyze the behavior of p1, . . . , pn under H
(n)
0 and H

(n)
1 , note that the trans-

formed Poisson RV
√
X, X ∼ Pois(λ), is variance stable:

2
√
X − 2

√
λ → N (0, 1).

Under H1, (3.11) and (3.12) imply

√
λ′
i(1 + o(1)) =

√
λi + µn(r)/2, (3.16)

where o(1) → 0 as n → ∞ uniformly in i. Consequently, with Υλ′
i
∼ Pois(λ′

i),

√
2Υλ′

i
−
√

2Xi =
√

2Υλ′
i
−
√

2λ′
i −
(√

2Xi −
√

2λi

)
+
(√

2λ′
i −
√

2λi

)
D
=
(
Z + µn(r)/

√
2
)
(1 + op(1)), Z ∼ N (0, 1),
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3.4 Two-Sample Poisson Means

as n → ∞. By setting

πi := Φ̄
(√

2Υλ′
i
−
√

2Xi

)
,

combining Mill’s ratio (3.3) and (3.16), we obtain

−2 log(πi)
D
= (Z + µn(r)/

√
2)2(1 + op(1)) (3.17)

= (Z +
√

r log(n))2(1 + op(1)).

The last evaluation suggests that (2.6) holds with log-chisquared parameters (ρ, σ) =

(r/2, 1). The full argument follows from the proposition below.

Proposition 8. Suppose that λ1, . . . , λn satisfy

minλi/ log(n) → ∞ as n → ∞.

Set λ′
i(r) := λi +

√
rλi log(n) for some r ≥ 0. Assume that X ∼ Pois(λi), Y ∼ Pois(λ′

i),

and let

πi := Φ̄
(√

2Yi −
√

2Xi

)
, i = 1, . . . , n.

Then

lim
n→∞

max
1≤i≤n

∣∣∣∣− log Pr [−2 log(πi) ≥ 2q log(n)]

log(n)
− α(q; r/2, 1)

∣∣∣∣ = 0.

(Donoho and Kipnis, 2022) studied a two-sided perturbation model similar to (3.14)

and proposed to use P-values of an exact binomial test as in

p′i := Pr

[∣∣∣∣Bin(Xi + Yi, 1/2)−
Xi + Yi

2

∣∣∣∣ ≤ ∣∣∣∣Xi − Yi

2

∣∣∣∣] , (3.18)
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3.5 Perturbed Binomial Experiments

which have several advantages over (3.15) in practice. Our RMD formulation shows that

the asymptotic properties of the tests in Section 2 based on either collection of P-values

under (3.5) are identical, e.g., the optimal phase transition is given by ρ∗two−sample(β, 1).

3.5 Perturbed Binomial Experiments

Suppose that our data consists of n independent samples from a binomial distribution:

Xi
iid∼ Bin(mi, qi), mi ∈ N, i = 1, . . . , n. (3.19)

We are interested in testing the null hypothesis H0 : q1 = . . . = qn = 1/2 against an

alternative in which we have qi > 1/2 for a small fraction of the indices. It is natural to

use P-values from the exact binomial test

pi := pBin(Xi) := Pr [Bin(mi, 1/2) ≥ Xi] , (3.20)

although other options are available, e.g. testing for overdispersion (Dean, 1992). The

alternative hypothesis is specified as

H
(n)
1 : Xi

iid∼ (1− ϵ)Bin(mi, 1/2) + ϵBin(mi, 1/2 + δ), i = 1, . . . , n,

for small δ and ϵ.

For Xi ∼ Bin(mi, qi), the normal approximation

Xi ≈ N (miqi,miqi(1− qi)) .
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3.5 Perturbed Binomial Experiments

suggests that deviations on the moderate scale arise by the calibration

mi =
2 log(n)

s
(1 + o(1)) and δ =

√
s · r/4, (3.21)

where s > 0 and r ≥ 0 are parameters satisfying r · s < 1. The proposition below implies

that under such calibration and with ϵ = n−β for β ∈ (1/2, 1), (3.19) with the P-values

(3.20) corresponds to RMD model with ρ = r and σ2 = 1− sr.

Proposition 9. Consider X ∼ Bin(m, 1/2+δ) with δ and m calibrated to n as in (3.21).

Then for all q ≥ r,

lim
n→∞

max
1≤i≤n

∣∣∣∣− log Pr [−2 log (pBin(X))] ≥ 2q log(n)

log(n)
− α

(
q; r,

√
1− s · r

)∣∣∣∣ = 0. (3.22)

The optimal phase transition of the RMD model corresponding to (3.19) under (3.20)

is defined by triplets (s, r, β) satisfying

r =


(1 + s · r) (β − 1/2) 1

2
< β < 3+s·r

4
,(

1−
√

(1− s · r)(1− β)
)2

3+s·r
4

≤ β < 1.

When s < 1/(β − 1/2), the last relation defines the curve

ρ∗Bin(β, s) :=



β− 1
2

1−s(β− 1
2
)

1
2
< β <

3+ 1−
√
1−s

1+
√
1−s

4
, s ≤ 1,(

1−
√

(1−β)(1−sβ)

1+s(1−β)

)2
3+ 1−

√
1−s

1+
√
1−s

4
≤ β < 1, s ≤ 1,

β− 1
2

1−s(β− 1
2
)

1
2
< β < 1

2
+ 1

s
, s ≥ 1,

∞ 1
2
+ 1

s
≤ β, s ≥ 1;

(3.23)

see an illustration in Figure 3. Consequently, for r < ρ∗Bin(β, s) or s > 1/(β − 1/2),
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Figure 3: Phase transitions of multiple binomial experiments with perturbed proba-
bilities of success of (3.19). The phase transition curve ρ∗Bin(β, s) of (3.23) defines the
detection boundary in the multiple binomials model of (3.19) under the calibration (3.21).
The parameter s controls the number of experiments in individual binomial trails accord-
ing to (3.21) (larger s means fewer trials). ρ∗Bin(β, s = 9/4) asymptotes to the dashed line.
The case s → 0 corresponds to the homoscedastic case analyzed in (Mukherjee et al.,
2015).

all tests are asymptotically powerless while some tests are asymptotically powerful when

s ≤ 1 and r > ρ∗Bin(β, s).

To the best of our knowledge, the curve ρ∗Bin(β, s) is new. (Mukherjee et al., 2015)

studied the model (3.19) in the context of sparse binary regression under a coarser cali-

bration that corresponds to the limit s → 0 in (3.21). In this case, ρ∗Bin(β, s) converges

to ρ∗(β, 1), in accordance with the results of (Mukherjee et al., 2015).

4. Log-Chisquared versus Log-Normal

4.1 The Log-normal Approximation

The log-normal approximation of a P-value under the alternative hypothesis is a tool

developed by Bahadur to study the interplay among the test’s size, power, and the “cost”

of attaining new data which is most commonly associated with the sample size (Bahadur,
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1960; Gleser, 1964; Lambert and Hall, 1982). Informally, suppose that the alternative

hypothesis is characterized by a parameter θ and that an is a sequence tending to infinity

with n describing the cost of sampling from the population of interest. Bahadur’s log-

normal approximation says that, under some conditions including asymptotic normality

of the test statistic, a P-value π under the alternative H1 = H1(θ, an) obeys

log(π) + anc(θ)√
an

D−→ N
(
0, τ 2(θ)

)
, (4.1)

as n → ∞. In the terminology of (Lambert and Hall, 1982), c(θ) is Bahadur’s half-slope

describing the asymptotic behavior of the test’s size, i.e., the rate at which π goes to zero.

The test’s power is determined both by τ(θ) and c(θ). It is convenient to write (4.1) as

log(π)
D
≈ N

(
anc(θ), anτ

2(θ)
)
. (4.2)

In the sections below, we compare our log-chisquared approximation to the log-normal

approximation of (4.2) for P-values under the alternative hypothesis.

4.2 Formal Comparison

It is well-recognized that (4.2) is a large deviation estimate of the test statistic in the sense

that c(θ) is a transformation of the statistic’s rate function whenever this statistic satisfies

a large deviation principle (Sievers, 1969; Gleser, 1984; Singh, 1980). In contrast, in all

RMD models of Section 3 the alternative hypothesis corresponds to a moderate deviation

of each test statistic from its null (Rubin and Sethuraman, 1965). Consequently, the log-

normal approximation of (4.2) cannot correctly indicate the asymptotic power of tests

under the RMD formulation.
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We formally show this last point in the homoscedastic RMD normal mixture model:

H0 : Xi
iid∼ N (0, 1), i = 1, . . . , n,

H1 : Xi
iid∼ (1− ϵ)N (0, 1) + ϵN (µ, 1), , i = 1, . . . , n,

(4.3)

with the P-values pi = Φ̄(Xi). This is the model (3.1) with s = 1. Under H1,

−2 log pi ∼ (1− ϵ)Exp(2) + ϵQi, (4.4)

where the probability distribution Qi is the subject of our approximation. When µ and

ϵ are calibrated to n as in (2.3) and (2.2), respectively, we propose in this paper the

log-chisquared approximation

Qi = Q
(n)
i

D
≈ (µn(r) + Z)2 . (4.5)

On the other hand, we have

(µ+ Z)2 = (µ2 + 2µZ)(1 + op(1)), µ → ∞,

implying the log-normal approximation:

Q
(n)
i

D
≈ N (µ2

n(r), 4µ
2
n(r)) = N (2r log(n), 8r log(n)) . (4.6)

In particular, θ = r, an = log(n), c(θ) = 2r, and τ 2(θ) = 8r in the notation of (4.2). We

now compare approximations (4.5) and (4.6). Observe that the success of HC and the
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BJ tests follows from the behavior of

Pr(πi < n−q), −2 log(πi) ∼ Q
(n)
i

for r < q < 1 as n → ∞; see the proofs of Theorems 2 and 3 in the Supplementary

Materials and Donoho and Kipnis (2024). With Q
(n)
i as in (4.5),

Pr(πi < n−q) = Pr(−2 log(πi) > 2q log(n))

∼ Pr
(
(µn(r) + Z)2 ≥ 2q log(n)

)
(4.7)

∼ Pr
(
Z ≥

√
log(n)(

√
2q −

√
2r)
)
.

A standard evaluation of the behavior of HC under H
(n)
1 uses (4.7) to show that it is

asymptotically powerful for r > ρ(β, 1) (Donoho and Jin, 2004). On the other hand, with

Q
(n)
i as in (4.6),

Pr(πi < n−q) = Pr(−2 log(πi) > 2q log(n))

∼ Pr
(
µn(r)

2 + 2µn(r)Z ≥ 2q log(n)
)

= Pr

(
Z ≥

√
log(n)

q − r√
2r

)
. (4.8)

Since

q − r√
2r

≥
√

2q −
√
2r, q ≥ r > 0,

using the log-normal approximation in a formal exercise of would-be power analysis of

HC by replacing (4.7) with (4.8), incorrectly predicts that HC is powerless for some

r > ρ(β, 1). Specifically, the log-normal approximation incorrectly predicts the phase
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transition curve:

ρ†(β, 1) =


2
3
(2β − 1) 7

8
< β,

3− 2β − 2
√

(2− β)(1− β) 1
2
< β ≤ 7

8
,

which satisfies ρ†(β, 1) > ρ(β, 1) for β ∈ (1/2, 1).

4.3 Empirical Comparison

We now provide an empirical comparison between the log-normal and the log-chisquared

approximation under moderate departures using Monte Carlo simulations involving fixed

effects (i.e., not rare). In each simulation, we sample data x1, . . . , xn independently

from N (µn(r), 1) and consider πi = Φ̄(xi) as a P-value under H0 : Xi
iid∼ N (0, 1), i =

1, . . . , n. Of course, in this model, we can characterize the distribution of πi analytically,

as well as the deviation of this distribution from the log-chisquared and the log-normal

distributions, respectively. The purpose of the simulation is to illustrate the better fit

of the log-chisquared approximation. Figure 4 illustrates the results of one simulation

with n = 1, 000 (top panels) and one simulation with n = 100, 000 (bottom panels),

while the departure intensity parameter r = 1 is fixed in both cases. The panels on the

left show the histogram of {−2 log(πi)}ni=1 with the density of the normal distribution

N (µ̂, σ̂2) and the density of the noncentral chisquared distribution χ2
2(λ̂), where µ̂ and

σ̂2 are the standard mean and variance estimates and λ̂ = µ̂ − 2 is the non-centrality

estimate. The middle and right panels illustrate QQ-plots of the empirical distribution

of {−2 log(πi)}ni=1 against χ2
2(λ̂) and N (µ̂, σ̂2), respectively, showing the better fit of the

empirical distribution of {−2 log(πi)}ni=1 to χ2
2(λ̂).

Figure 5 illustrates the results of 1, 000 Monte Carlo simulations with many configu-

rations of n and r. For each configuration, we conducted an Anderson-Darling (AD)
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Figure 4: Comparing log-normal and log-chisquared approximations to moderately per-
turbed P-values π1, . . . , πn. Here πi ∼ Φ̄(Xi), Xi = N (

√
2r log(n), 1), with n = 103 (top)

and n = 105 (bottom). Left: histogram of {−2 log(πi)}ni=1. Middle: QQ-plots of the
empirical distribution of {−2 log(πi)}ni=1 against the noncentral chisquared distribution.
Right: QQ-plots of the empirical distribution of {−2 log(πi)}ni=1 against the normal dis-
tribution.

goodness-of-fit test of {−2 log(pi)}ni=1 against χ2
2(λ̂) and N (µ̂, σ̂2). The test against

the normal (respectively, chisquared) rejects when the AD statistic exceeds its simu-

lated .95-th quantile under the null obtained by sampling 10, 000 times from the normal

(chisquared) distribution. It follows from Figure 5 that the log-chisquared distribution

fits the distribution of the P-values under fixed moderate effects much better than the

log-normal distribution. The lack of fit of the log-chisquared distribution is only visible

when the sample size is very large or when the signal is very weak. The analysis in

Section 2 implies that this lack of fit is insignificant when the effects are also rare in the

sense that the log-chisquared approximation provides the information-theoretic limit of

signal detection under RMD.
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Figure 5: Comparing the fit of the empirical distribution of moderately perturbed P-
values to the normal and noncentral chisquared distributions. Both panels show the
rejection rate of the Anderson-Darling (AD) Goodness-of-fit test at a significance level of
0.05 (smaller rejection rate indicates a better fit). Left: rejection rate versus perturbation
intensity parameter r; n = 1, 000 is fixed. Right: rejection rate versus sample size n; r = 2
is fixed.

5. Additional Discussion

5.1 Heteroscedasticity in RMD models

The phase transition described by ρ(β, σ) can be seen as the result of two phenomena:

(i) location shift controlled by ρ, and (ii) heteroscedasticity controlled by σ2. Roughly

speaking, increasing the effect of either (i) or (ii) eases detection and reduces the phase

transition curve, as seen in Figure 1. We refer to (Cai et al., 2011) for a more comprehen-

sive discussion on the effect of (ii) on the phase transition curves. With obvious changes,

this discussion is also relevant to the curves ρtwo−sample(β;σ) of (3.8) and ρ∗Bin(β, s) of

(3.23) with s ̸= 1.

Comparing the effect of heteroscedasticity in one- versus two-sample setting, we see

that

ρtwo−sample(β, 1) = 2ρ(β, 1),

an observation first made in (Donoho and Kipnis, 2022). Interestingly, as shown in

Figure 2, this relation between ρtwo−sample(β, s) and ρ(β, s) does not hold when s ̸= 1.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0128



5.2 Other Generalizations of Rare and Weak Models

Specifically, detection in the two-sample homeostatic setting (s = 1) asymptotically re-

quires twice the effect size. On the other hand, compared to the one-sample case, more

than twice the effect size is needed for overdispersed mixtures (s > 1) and less for under-

dispersed ones (s < 1).

5.2 Other Generalizations of Rare and Weak Models

(Cai and Wu, 2014) considered general rare and weak signal detection models character-

ized by the asymptotic behavior of the likelihood ratio between the mixture components

on the moderate deviation scale which is similar to (2.9). For rare and weak departures

from the exponential distribution, the information-theoretic lower bound of Theorem 1

generalizes (Cai and Wu, 2014, Thm. 3) by allowing for non-identically distributed co-

ordinates and by providing conditions that involve integrated versions of the likelihood

ratio.

Another generalization of rare and weak signal detection models is provided by (Arias-

Castro and Wang, 2017), which considered a symmetric null distribution and proposed

non-parametric HC- and Bonferroni-type tests that possess interesting optimality prop-

erties. Our RMD formulation applies to the setting of (Arias-Castro and Wang, 2017)

when the non-symmetric behavior of an individual test statistic under the alternative

hypothesis is on the moderate deviation scale.

For the HC test, (Donoho and Kipnis, 2024) considered rare mixtures of P-values

with non-null component Q
(n)
i obeying

max
i

Pr
Xi∼Q

(n)
i

[pi > 2q log(n)] = max
i

EX∼Exp(2)

[
Li(X)1{X>2q log(n)}

]
= n−α′(q;ρ)+o(1),
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for some continuous, non-negative bivariate function α′(q; ρ) that is increasing in q and

decreasing in ρ. They showed that HC of such P-values is powerless in the region

ΞHC ≡
{
(ρ, β) : max

q∈[0,1]

(
1 + q

2
− α′(q; ρ)

)
< β

}
.

The region ΞHC coincide with {(ρ, β) : ρ < ρ(β, σ)} in the RMD setting for which we

have α′(q; ρ) = max{α(q; ρ, σ), 0}.

Examples of rare and weak multiple testing settings with non-moderate departures

include the sparse positive dependence model of (Arias-Castro et al., 2020), rare mixtures

involving distributions of polynomial tails with a location shift of order µn(r) as the

alternative studied in (Arias-Castro and Ying, 2019), and the two-sample Poisson means

in the low-counts case of (Donoho and Kipnis, 2022).

Supplementary Materials

Contain the proof of all Theorems and Propositions.
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