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S1 Definitions

Definition 1. We denote the Fréchet regression function of Y given X = x

and Z = z

m⊕(x, z) = argmin
y∈Y

E(d2(Y, y)|X = x, Z = z).

The partially-global Fréchet regression model is said to hold if

m⊕(x, z) = s⊕(x, z) for any x ∈ X , z ∈ Z,

where

s⊕(x, z) = argmin
y∈Y

S⊕(y;x, z)

and

S⊕(y;x, z) = E(d2(Y, y)|Z = z) +
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(x− E(X|Z = z))T (cov(X− E(X|Z)))−1cov(X− E(X|Z), d2(Y, y)− E(d2(Y, y)|Z)).

Definition 2. As n → ∞ and h → 0, the small ball probability of random

objects Z ∈ Z and Y ∈ Y are defined as

φZ,z(h) = P (Z ∈ BZ(z, h)) and φY,y(h) = P (Y ∈ BY(y, h))

respectively, where

BZ(z, h) = {z′ ∈ Z, δ(z′, z) ≤ h} and BY(y, h) = {z′ ∈ Y , d(y′, y) ≤ h}.

Note: When Z = R and is equipped with the Euclidean distance d,

φZ,z(h) =
∫ z+h

z−h
dFZ . Thus, in this case, φZ,z = O(h).

Definition 3. Let Ω1 be the set of probability distributions. The 2-

Wasserstein metric distance between two distributions with CDFs H(·) and

G(·) is defined as

dW (H,G) =

√∫ 1

0

(H−1(t)−G−1(t))2dt.

We denote (Ω1, dW ) as the metric space of probability distributions equipped

with the Wasserstein distance.

Definition 4. Let Ω2 be the set of symmetric, positive definite (SPD)

matrices. Let P1 and P2 be two SPD matrices. Then, under the Cholesky

decomposition, we can write P1 = (P
1/2
1 )TP

1/2
1 and P2 = (P

1/2
2 )TP

1/2
2 ,

where P
1/2
1 and P

1/2
2 are upper triangle matrices with positive diagonal
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components. The Cholesky decomposition metric distance between two

SPD matrices, P1 and P2, is defined as

dC(P1,P2) =

√
trace

(
(P

1/2
1 −P

1/2
2 )T (P

1/2
1 −P

1/2
2 )
)
.

We denote (Ω2, dC) as the metric space of SPD matrices equipped with the

Cholesky decomposition distance.

Definition 5. i) A function K from R into R+ such that
∫
K = 1 is called

a kernel of type I if there exist two real constants 0 < C1 < C2 < ∞ such

that:

C11[0,1] ≤ K ≤ C21[0,1].

ii) A function K from R into R+ such that
∫
K = 1 is called a kernel of

type II if its support is [0, 1] and if its derivative K ′ exists on [0, 1] and

satisfies for two real constants −∞ < C3 < C4 < 0:

C3 ≤ K ′ ≤ C4.

The following two definitions involve the concept of almost complete

convergence, as defined in Ferraty and Vieu (2006).

Definition 6. One says that a sequence of real r.v.’s (Tn)n∈N converges

almost completely to some real r.v. T , if and only if

∀ϵ > 0,
∑
n∈N

P (|Tn − T | > ϵ) < ∞,
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and the almost complete convergence of (Tn)n∈N to T is denoted by

lim
n→∞

Tn = Ta.co.

It can be verified that convergence almost completely implies conver-

gence almost surely and convergence in probability.

Definition 7. One says that the rate of almost complete convergence of

(Tn)n∈N to T is of order un if and only if

∃ϵo > 0,
∑
n∈N

P (|Tn − T | > ϵ0 un) < ∞,

and we write

Tn − T = Oa.co.(un).

S2 Assumptions

S2.1 Required for Local Linear Smoothing, Euclidean Z, and

Euclidean X

Assumptions K1, L1 - L4, and P1 are analagous to Assumptions (K0), (L0)

- (L3), and (P1) found in Petersen and Müller (2019), respectively.

Assumption K1. The kernel K is a probability density function, sym-

metric around zero. Furthermore, defining Kkj =
∫
R
Kk(u)ujdu, |K14| and

|K26| are both finite.
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Assumption L1. The object s⊕(x, z) exists and is unique. For all n,

s̃⊕(x, z) and ŝ⊕(x, z) exist and are unique, the latter almost surely. Addi-

tionally, for any ϵ > 0,

inf
d(y,s⊕(x,z))>ϵ

{S⊕(y;x, z)− S⊕(s⊕(x, z);x, z)} > 0

and

lim inf
n→∞

inf
d(y,s̃⊕(x,z))>ϵ

{S̃n(y;x, z)− S̃n(s̃⊕(x, z);x, z)} > 0.

Assumption L2. The marginal densities fX and fZ , as well as the joint

conditional densities gy of Z|Y = y, hy of X|Y = y, and py of X, Z|Y = y

exist and are twice continuously differentiable for y ∈ Y . The joint condi-

tional density qx of Z|X = x exists and is twice continuously differentiable

for x ∈ X . For gy and qx, supy,z |g
′′
y (z)| < ∞ and supx,z |q

′′
x(z)| < ∞. Addi-

tionally, for any open U ⊂ Y ,
∫
U
dFY |Z(y, z) is continuous as a function of

z, and
∫
U
dFY |X(y,x) is continuous as a function of x.

Assumption L3. There exists η1 > 0, C6 > 0, and β1 > 1 such that

S⊕(y;x, z)− S⊕(s⊕(x, z);x, z) ≥ C6d(y, s⊕(x, z))
β1 ,

provided d(y, s⊕(x, z)) < η1.

Assumption L4. There exists η2 > 0, C7 > 0, and β2 > 1 such that

lim inf
n→∞

{S̃n(y;x, z)− S̃n(s̃⊕(x, z);x, z)} ≥ C7d(y, s̃⊕(x, z))
β2 .
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Note: When Y = R, with the Euclidean distance d, it can be verified that

β1 = β2 = 2 (Petersen and Müller 2019).

Assumption P1. For the ballBY(s⊕(x, z), h) ⊂ Y , letN(ϵ, BY(s⊕(x, z), h), d)

be its covering number using balls of size ϵ. Then∫ 1

0

√
1 + log N(hϵ, BY(s⊕(x, z), h), d)dϵ = O(1) as h → 0.

S2.2 Required for Local Constant Smoothing, Non-Euclidean Z,

and Euclidean X

Assumption N1. ∀ϵ > 0, P (Z ∈ BZ(z, ϵ)) = φZ,z(ϵ) > 0.

This extends the assumption that the marginal density f of Z is strictly

positive.

Assumption N2. lim
n→∞

h = 0, lim
n→∞

logn
nφZ,z(h)

= 0, and lim
n→∞

nh2 = ∞.

The following assumption allows us to still consider unbounded Z.

Assumption N3. ∀m ≥ 1, ∀y ∈ Y , and ∀z ∈ Z, E(d2m(Y, y)|Z = z) <

σY m(z) < ∞ and E(|Xj|m|Z = z) < σXjm(z) < ∞ for j = 1, ..., p, where

σY m, σX1m, ..., σXpm are continuous at z.

To control the effect of δ in the rate of convergence of the bias term,

d(s⊕(z), s̃⊕(z)), we make the following Lipschitz-type assumption.
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Assumption N4. There exists β0X > 0 and β0Y > 0 such that

E(Xj|Z) ∈ LipZ,β0X

for j = 1, ..., p, and for any y ∈ Y ,

E(d2(Y, y)|Z) ∈ LipZ,β0Y
,

where

LipZ,β0X
= {f : Z → R, ∃C0 > 0,∀z, z′ ∈ Z, |f(z)− f(z′)| < C0δ(z, z

′)β0X}

and

LipZ,β0Y
= {f : Z×Y → R,∃C0 > 0,∀z, z′ ∈ Z, |f(y, z)−f(y, z′)| < C0δ(z, z

′)β0Y }.

Assumption K2. K is a kernel of type I or K is a kernel of type II and

satisfies

∃C5 > 0, ∃ϵ0, ∀ϵ < ϵ0,

∫ ϵ

0

φZ,z(u)du > C5ϵφZ,z(ϵ).

S3 Theoretical Results and Proofs

S3.1 Case of Local Linear Smoothing, Euclidean Z, and Eu-

clidean X

Lemma 1. For the special case of partially linear regression model, we have

s⊕(x, z) = xTβ + f(z) for any x and z.



DANIELLE C. TUCKER AND YICHAO WU

Proof of Lemma 1. Recall that the partially linear model assumes that Y =

XTβ + f(Z) + ϵ with E(ϵ|X) = 0 and E(ϵ|Z) = 0. Consequently we have

E(d2(Y, y)|Z = z) = E((Y − y)2|Z = z) = y2 − 2yE(Y |Z = z) + E(Y 2|Z = z)

= y2 − 2y
{
(E(X|Z = z))T β + f(z)

}
+ E(Y 2|Z = z),

and

d2(Y, y)− E(d2(Y, y)|Z)

= (Y − y)2 −
[
y2 − 2y

{
(E(X|Z))T β + f(Z)

}
+ E(Y 2|Z)

]
= −2y

{
(X− E(X|Z))T β + ϵ

}
+ Y 2 − E(Y 2|Z). (S3.1)

It then implies that

cov(X− E(X|Z), d2(Y, y)− E(d2(Y, y)|Z))

= −2ycov(X− E(X|Z))β − 2ycov(X− E(X|Z), ϵ) + cov(X− E(X|Z), Y 2 − E(Y 2|Z))

= −2ycov(X− E(X|Z))β + cov(X− E(X|Z), Y 2 − E(Y 2|Z)).

All of the above implies that the entire right hand side of (S1.1) is equal

to

y2 − 2y
{
(E(X|Z = z))T β + f(z)

}
− 2y(x− E(X|Z = z))Tβ + extra terms

= y2 − 2y
{
xTβ + f(z)

}
+ extra terms, (S3.2)

where the extra terms do not involve y. Therefore, the minimizer of (S3.2)

is given by xTβ + f(z), which completes the proof.
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The following lemma is simply an extension of Lemma 1 found in Pe-

tersen and Müller (2019).

Lemma 2. Let µ̃j(z) = E(Kh(Z−z)(Z−z)j) and µ̂j(z) =
1
n

∑n
i=1Kh(zi−

z)(zi−z)j, as well as τj(z, y) = E(Kh(Z−z)(Z−z)j|Y = y) and γj(x, z) =

E(Kh(Z − z)(Z − z)j|X = x), for j = 0, 1, 2. If Assumptions K1 and L3

hold, then

µ̃j(z) = hj[fZ(z)K1j + hf ′
Z(z)K1(j+1) +O(h2)]

and µ̂j(z) = µ̃j(z) +Op((h
2j−1n−1)1/2) for j = 0, 1, 2. Further,

τj(z, y) = hj[gy(z)K1j + hg′y(z)K1(j+1) +O(h2)]

and

γj(x, z) = hj[qx(z)K1j + hq′x(z)K1(j+1) +O(h2)].

Proof of Lemma 2. The results for µ̃j(z), τj(z, y), and γj(x, z) can be shown

using a 2nd order Taylor expansion of fZ(z), gy(z), and qx(z). The proof

for µ̂j(z) can be found in Petersen and Müller (2019).

Theorem 1. If assumptions P1, K1, L2, L1, and L3 hold, then

d(s⊕(x, z), s̃⊕(x, z)) = O(h2/(β1−1))

as h → 0.
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Proof of Theorem 1. Recall equations (8), (9), (12), (13), and (14) in the

main manuscript. Using the same proof technique as Theorem 3 in Pe-

tersen and Müller (2019), we can show that
dFY |Z(z,y)

dFY (y)
= gy(z)

fZ(z)
for all z

such that fZ(z) > 0. Then, by applying Lemma 2 and again following

the proof of Theorem 3 in Petersen and Müller (2019), one can show that

E(ζh(Z, z)|Y ) = gy(z)

fZ(z)
+O(h2), where the error term is uniform over y ∈ Y .

Then, using the fact that
dFY |Z(z,y)

dFY (y)
= gy(z)

fZ(z)
,

E
(
ζh(Z, z)d

2(Yi, y)
)

=

∫
d2(y′, y)ζh(z

′, z)dFZ,Y (z, y)

=

∫
d2(y′, y)

gy(z)

fZ(z)
dFY (y) +O(h2)

=

∫
d2(y′, y)dFZ|Y (z, y) +O(h2)

= E(d2(Y, y)|Z = z) +O(h2).

That is, using the notation in (10) and (12) in the main manuscript, we have

that w̃0(y; z) = w0(y; z) + O(h2). Now, take a look at the second piece of

(12). Once again using the techniques of Theorem 3 and applying Lemma 2

in Petersen and Müller (2019), we have that E(ζh(Z, z)X) = qx(z)
fZ(z)

+O(h2).

Further, one can show that
dFX|Z
dFX

= qx(z)
fZ(z)

using the same approach as above.

Thus,

E(ζh(Z, z)X) = E(X|Z = z) +O(h2).

Putting this together, we get that w̃1(x, z)w
−1
2 w3(y) = w1(x, z)w

−1
2 w3(y) +
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O(h2), and furthermore,

S̃n(y;x, z) = w0(y; z) + w1(x, z)w
−1
2 w3(y) +O(h2)

= S⊕(y;x, z) +O(h2).

Then, by L1, we have that d(s⊕(x, z), s̃⊕(x, z)) = o(1) as h = hn → 0.

Next, define rh = h
− β1

β1−1 and set Cj,n = {y : 2j−1 < rhd(y, s⊕(x, z))
β1/2 ≤

2j}. Then, for any M > 0, using similar arguments as Theorem 2 and

Theorem 3 in Petersen and Müller (2019) and using L3, there exists a > 0

such that, for large n,

I(rhd(s̃(x, z), s⊕(x, z))
β1/2 > 2M) ≤ a

∑
j≥M

22j(1−β1)/β1

r
2(1−β1)/β1

h h−2

≤ a
∑
j≥M

(
1

4(β1−1)/β1

)j

, (S3.3)

which converges because β1 > 1. Thus, for some M > 0, we have

d(s̃(x, z), s⊕(x, z)) ≤ 22M/β1h2/(β1−1).

Lemma 3. Suppose assumptions K1 and L1 hold, Y is bounded and that

h → 0 and nh2 → ∞ as n → ∞. Then

d(s̃⊕(x, z), ŝ⊕(x, z)) = op(1).
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Proof of Lemma 3. First, as in Petersen and Müller (2019), we will show

that S̃n − Ŝn converges weakly to 0. Combining this with Assumption L1,

we will have the result.

Let ζhi(z) ≡ ζh(Zi, z) for all i = 1, ..., n. We can write

Ŝn(y;x, z)− S̃n(y;x, z) = ŵ0(y; z)− w̃0(y; z) (S3.4)

+ ŵ1(x, z)ŵ
−1
2 ŵ3(y)− w̃1(x, z)w

−1
2 w3(y) .(S3.5)

In Lemma 2 of Petersen and Müller (2019), it is shown that the term

on the right hand side of (S3.4) is Op((nh)
−1/2). Then we just need to show

that (S3.5) is Op((nh)
−1/2).

First of all, notice that we can easily extend the result of Lemma 2

to ŵ1(x, z) and w̃1(x, z). That is, we have that ŵ1(x, z) = w̃1(x, z) +

Op((nh)
−1/2).

Then, using Theorem 1 from Speckman (1988) and keeping our assump-

tions, we have that each element in the vector ŵ−1
2 ŵ3(y) converges in prob-

ability to the corresponding element in w−1
2 w3(y) at a rate of O(hn−1/2) +

Op(n
−1/2).

Thus, the rate of convergence is dominated by (S3.4), and since conver-

gence almost completely implies convergence in probability, we have that

Ŝn(y;x, z)− S̃n(y;x, z) = Op((nh)
−1/2).
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Therefore, we have that S̃n(y;x, z) − Ŝn(y;x, z) = op(1) when h → 0,

nh2 → ∞ and n → ∞. According to Theorem 1.5.4 in van der Vaart and

Wellner (1996), we lastly need to show that for any η > 0,

limsup
n

P

(
sup

d(y1,y2)<δ

|(S̃n − Ŝn)(y1;x, z)− (S̃n − Ŝn)(y2;x, z)| > η

)
→ 0

(S3.6)

as δ → 0.

Since E(|ζhi(z)|) = O(1) and E(ζ2hi(z)) = O(h−1), we have that

n−1
∑n

i=1 |shi(z)| = Op(1). Then,

|Ŝn(y1;x, z)−Ŝn(y2;x, z)| ≤ 2diam(Y)d(y1, y2)n
−1
∑n

i=1 |shi(z)| = Op(d(y1, y2)).

Similarly, |S̃n(y1;x, z) − S̃n(y2;x, z)| = O(d(y1, y2)). Thus, (S3.6) is veri-

fied.

Theorem 2. If assumptions P1, K1, L1, and L4 hold, and if h → 0 and

nh2 → ∞, then

d(s̃⊕(x, z), ŝ⊕(x, z)) = Op((nh)
− 1

2(β2−1) ).

Proof of Theorem 2. We will follow similar arguments as Theorem 2 and

Theorem 4 in Petersen and Müller (2019). Set Tn,h(y;x, z) = Ŝn(y;x, z)−

S̃n(y;x, z). Further, let

Di = d2(Yi, y)− d2(Yi, s̃⊕(x, z)). (S3.7)
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Then we have |Tn,h(y;x, z)− Tn,h(s̃⊕(x, z);x, z)| is less than or equal to

∣∣∣∣∣ 1n
n∑

i=1

[shi(z)− ζhi(z)]Di

∣∣∣∣∣ (S3.8)

+

∣∣∣∣∣ 1n
n∑

i=1

[ζhi(z)Di − E(ζhi(z)Di)]

∣∣∣∣∣
+

∣∣∣∣∣ŵ1(x, z)ŵ
−1
2

1

n

n∑
i=1

[
Xi −

1

n

n∑
j=1

shj(Zi)Xj

][
Di −

1

n

n∑
j=1

shj(Zi)Dj

]
− w̃1(x, z)w

−1
2 E [(Xi − E(Xi|Zi))(Di − E(Di|Zi))]

∣∣
Because |Di| ≤ 2diam(Y)d(y, s̃⊕(x, z)), it is shown in Petersen and

Müller (2019) that the first term of (S3.8) is Op(d(y, s̃⊕(x, z))), which is

independent of y and s̃⊕(x, z). To handle the second term of (S3.8), they

further show that for small δ,

E

(
sup

d(y,s̃⊕(x,z))<δ

∣∣∣∣ 1nζhi(z)Di − E[ζhi(z)Di]

∣∣∣∣
)

= O(δ(nh)−1/2).

Thus, we must work with the last absolute value term of (S3.8). Al-

though this term is very messy, it is actually simpler than the first two

terms, as it does not involve an expectation with ζhi(z). Therefore, we can

directly again use the fact that |Di| ≤ 2diam(Y)d(y, s̃⊕(x, z)) and combine

this with our result from Lemma 3, we get that final term of (S3.8) is in

fact also Op((nh)
−1/2). This simplifies the rest of the proof to match that
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of Theorem 4 in Petersen and Müller (2019). That is, we can define

BR =

{
sup

d(y,s̃⊕(x,z))<δ

∣∣∣∣∣ 1n
n∑

i=1

[shi(z)− ζhi(z)]Di

∣∣∣∣∣
+

∣∣∣∣∣ŵ1(x, z)ŵ
−1
2

1

n

n∑
i=1

[
Xi −

1

n

n∑
j=1

shj(Zi)Xj

][
Di −

1

n

n∑
j=1

shj(Zi)Dj

]
− w̃1(x, z)w

−1
2 E [(Xi − E(Xi|Zi))(Di − E(Di|Zi))]

∣∣ ≤ Rδ(nh)−1/2
}
,

where δ > 0, R > 0 and so that P (BC
R) → 0. Therefore, as in Petersen and

Müller (2019), we have

E

(
IBR

sup
d(y,s̃⊕(x,z))<δ

|Tn,h(y;x, z)− Tn,h(s̃⊕(x, z);x, z)|

)
≤ aδ

(nh)1/2
,

where a depends on R and Assumption L4. The rest of this proof aligns

with Petersen and Müller (2019). Thus, we have that d(ŝ⊕(x, z), s̃⊕(x, z)) =

Op((nh)
− 1

2(β2−1) ).

Corollary 1. Under the assumptions of Theorem 1 and Theorem 2,

d(s⊕(x, z), ŝ⊕(x, z)) = O(h2/(β1−1)) +Op((nh)
− 1

2(β2−1) ).

Proof of Corollary 1. This follows from applying the triangle inequality to

the results of Theorem 1 and Theorem 2.



DANIELLE C. TUCKER AND YICHAO WU

S3.2 Case of Local Constant Smoothing and Non-Euclidean Z

Theorem 3. Suppose assumptions P1, K2, L1, L3, and N2 - N4 hold. If

h → 0, then

d(s⊕(z), s̃⊕(z)) = O(hβ0Y /(β1−1)).

Proof of Theorem 3. First, notice that the distance d is just a map from

Y × Y to R. Thus, utilizing Lemma 6.12 in Ferraty and Vieu (2006), we

have that under assumptions K2, N3, and N4,

S̃n(y; z) = E(d2(Y, y)|Z = z) +O(hβ0Y )

for any y ∈ Y because K ∈ [0, 1] and E(ζh(Z, z)) = 1. By Assumption L1,

this means that d(s⊕(z), s̃⊕(z)) = o(1) as h → 0, since β0Y > 0.

Next, define rh = h
− β0Y β1

2(β1−1) and setDj,n = {y : 2j−1 < rhd(y, s⊕(z))
β1/2 ≤

2j}. Then following the same arguments as Theorem 3 in Petersen and

Müller (2019) and using Assumption L3, we have that for some M > 0,

d(s̃⊕(z), s⊕(z)) ≤ 22M/β1hβ0Y /(β1−1)

for large n. Thus, d(s̃⊕(z), s⊕(z)) = O(hβ0Y /(β1−1)).

Lemma 4. If assumptions K2, L1, and N1-N3 hold, and Y is bounded,

then

d(s̃⊕(z), ŝ⊕(z)) = op(1).
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Proof of Lemma 4. Let Ŝn(y; z) = 1
n

∑n
i=1 shi(z)d

2(Yi, y). We first look at

the difference Ŝn(y; z)− S̃n(y; z)

= n−1

n∑
i=1

Kh(δ(Zi, z))d
2(Yi, y)

n−1
∑n

i=1Kh(δ(Zi, z))
− E(Kh(δ(Zi, z))d

2(Yi, y))

E(Kh(δ(Zi, z)))
. (S3.9)

Then, we can use the proof and results of Lemma 6.3 in Ferraty and Vieu

(2006). By noting that (S3.9) can be written as

n−1
∑n

i=1Kh(δ(Zi, z))d
2(Yi, y)× E(Kh(δ(Zi, z)))

E(Kh(δ(Zi, z)))× n−1
∑n

i=1 Kh(δ(Zi, z))
−E(Kh(δ(Zi, z))d

2(Yi, y))

E(Kh(δ(Zi, z)))
,

we find that (S3.9) is Oa.co

(√
logn

nφZ,z(h)

)
. Because convergence almost com-

pletely implies convergence in probability, we have then shown that Ŝn(y; z)−

S̃n(y; z) = op(1) for any y ∈ Y , since we have assumed that lim
n→∞

logn
nφZ,z(h)

= 0.

Then, according to Van der Vaart andWellner (1996), the last thing we need

to show is that for any η > 0,

lim sup
n

P

(
sup

d(y1,y2)<h′
|(S̃n − Ŝn)(y1; z)− (S̃n − Ŝn)(y2; z)| > η

)
→ 0 as h′ → 0.

Since the kernel function is assumed to be non-negative, we have that

n−1
∑n

i=1 |shi(z)| = 1. Then,

|Ŝn(y1; z)− Ŝn(y2; z)| ≤ 2diam(Y)d(y1, y2)n
−1
∑n

i=1 |shi(z)| = Op(d(y1, y2)).

Similarly, |S̃n(y1; z)−S̃n(y2; z)| = O(d(y1, y2)), which verifies the above.

Theorem 4. If assumptions P1, K2 , L1, L4, and N1-N3 hold, then

d(s̃⊕(z), ŝ⊕(z)) = Op((nφZ,z(h))
−1

2(β2−1) ).
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Proof of Theorem 4. We utilize similar arguments as the proof of Theorem

4 in Petersen and Müller (2019). Define Tn,h(y; z) = Ŝn(y; z) − S̃n(y; z).

Letting

Di(y, z) = d2(Yi, y)− d2(Yi, s̃⊕(z)),

we have

|Tn,h(y; z)− Tn,h(s̃⊕(z); z)| ≤

∣∣∣∣∣n−1

n∑
i=1

[shi(z)− ζhi(z)]Di(y, z)

∣∣∣∣∣ (S3.10)
+

∣∣∣∣∣n−1

n∑
i=1

(ζhi(z)Di − E[ζhi(z)Di(y)])

∣∣∣∣∣ ,
where we notate ζhi = Kh(δ(Zi, z))/E[Kh(δ(Zi, z))].

Note that |Di(y, z)| ≤ 2diam(Y)d(y, s̃⊕(z)). We have

E[n−1
∑n

i=1 Kh(δ(Zi, z))] = E[Kh(δ(Z, z))] and

E(K2(h−1δ(Z, z))) ≤ C2φZ,z(h) by applying Lemma 4.3 and 4.4 from Fer-

raty and Vieu (2006). Thus, n−1
∑n

i=1Kh(δ(Zi, z)) = E[Kh(δ(Z, z))] +

Op((n
−1φZ,z(h))

1/2). These results imply that the first term on the right

hand side of (S3.10) is

Op(d(y, s̃⊕(z))(nφZ,z(h))
−1/2), where the Op term is independent of y and

s̃⊕(z). Then, we can define

BR

{
sup

d(y,s̃⊕(z))<h′

∣∣∣∣∣n−1

n∑
i=1

[shi(z)− ζhi(z)]Di(y, z)

∣∣∣∣∣ ≤ Rh′(nφZ,z(h))
−1/2

}
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for R > 0, so that P (BC
R) → 0. Next, to control the second term on the

right hand side of (S3.10), define functions mY : Z × Y → R by

mY (z, y) =
Kh(δ(Z, z))d

2(Y, y)

E(Kh(δ(Z, z)))

and the corresponding function class Mn,h′ = {my −ms̃⊕(z) : d(y, s̃⊕(z)) <

h′}. An envelope function for Mnh′ is

Mnh′(z) =
2diam(Y)h′Kh(δ(Z, z))

E(Kh(δ(Z, z)))
,

And E(M2
nh′(z)) = O(h′2φ−1

Z,z(h)). Using this fact together with Theorems

2.7.11 and 2.14.2 of Van der Vaart and Wellner (1996) and Assumption P1,

for small h′,

E

(
sup

d(y,s̃⊕(z))<h′

∣∣n−1ζhi(z)Di(y, z)− E[ζhi(z)Di(y, z)]
∣∣) = O(h′(nφZ,z(h))

−1/2).

Combining this with (S3.10) and the definition of BR,

E

(
IBR

sup
d(y,s̃⊕(z))<h′

|Tn,h(y; z)− Tn,h(s̃⊕(z); z)|

)
≤ ah′

(nφZ,z(h))1/2
,

where IBR
is the indicator function for the set BR and a is a constant

depending on R and the entropy integral in Assumption P1. To complete

the proof, set Tn,h = (nφZ,z(h))
β2

4(β2−1) and define

Qj,n = {y : 2j−1 < Tn,hd(y, s̃⊕(z))
β2/2 ≤ 2j}.
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Choose η2 satisfying Assumption L4 and such that Assumption N1 is sat-

isfied for any h′ < η2. Set η̃ := (η2/2)
β2/2. For any integer M ,

P (Tn,hd(s̃⊕(z), ŝ⊕(z))
β2/2 > 2M)

≤ P (BC
R) + P (2d(s̃⊕(z), ŝ⊕(z)) > η) (S3.11)

+
∑

j≥M,2j≤Tn,hη̃

P

({
sup

y∈Qj,n

|Tn,h(y; z)− Tn,h(s̃⊕(z); z)| ≥ C
22(j−1)

t2n

}
∩BR

)
,

where the last term goes to 0 by Lemma 4. Since d(y, s̃⊕(z)) < (2j/Tn,h)
2/β2

on Qj,n(z), it is implied that the sum on the right hand side of (S3.11) is

bounded by

4aC−1
∑

j≥M,2j≤Tn,hη̃

22j(1−β2)/β2

T
2(1−β2)/β2

n,h (nφZ,z(h))1/2
≤ 4aC−1

∑
j≥M

(
1

4(β2−1)/β2

)j

,

which converges since β2 > 1. Thus,

d(s̃⊕(z), ŝ⊕(z)) = Op(T
2/β2

n,h ) = Op((nφZ,z(h))
−1

2(β2−1) ).

Corollary 2. Under the assumptions of Theorem 3 and Theorem 4, we

have

d(s⊕(z), ŝ⊕(z)) = O(h
β0Y

(β1−1) ) +Op((nφZ,z(h))
−1

2(β2−1) ).

Proof of Corollary 2. This follows from applying the triangle inequality to

the results of Theorem 3 and Theorem 4.
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S3.3 Case of Local Constant Smoothing, Non-Euclidean Z, and

Euclidean X

Theorem 5. Suppose assumptions P1, K2, L1, L3, N2 - N4 hold. Then

d(s⊕(x, z), s̃⊕(x, z)) = O(hβ0/(β1−1)),

where β0 = min{β0X, β0Y }.

Proof of Theorem 5. Let β0 = min{β0X, β0Y } > 0. Our first goal will be to

show that S̃n(y;x, z) = S⊕(y;x, z)+O(hβ0). That is, we need to show that

w̃0(y; z) + w̃1(x, z)w
−1
2 w3(y) = w0(y; z) + w1(x, z)w

−1
2 w3(y) +O(hβ0).

Recall from Theorem 3, we have that w̃0(y; z) = w0(y; z) + O(hβ0Y ).

Now, let us write w̃1(x, z) = (w̃1,1(x1, z), ..., w̃1,p(xp, z))
T and w1(x, z) =

(w1,1(x1, z), ..., w1,p(xp, z))
T , as each element of w̃1(x, z) and w1(x, z) corre-

sponds to an element in the random vector X ∈ Rp. Then, using Lemma

6.12 from Ferraty and Vieu (2006) and Assumptions K2, N3, and N4, we

have that w̃1,j(xj, z) = w1,j(xj, z) +O(hβ0X) for each j = 1, ..., p.

Therefore, S̃n(y;x, z) − S⊕(y;x, z) = O(hβ0Y ) + O(hβ0X) = O(hβ0).

Then, by L1, we have d(s⊕(x, z), s̃⊕(x, z)) = o(1) as h = hn → 0, since

β0 > 0.

Next, define rh = h
− β0β1

2(β1−1) and setDj,n = {y : 2j−1 < rhd(y, s⊕(z))
β1/2 ≤

2j}. Then following the same arguments as Theorem 3 in Petersen and
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Müller (2019) and using Assumption L3, we have that for some M > 0,

d(s̃⊕(z), s⊕(z)) ≤ 22M/β1hβ0/(β1−1)

for large n. Thus, d(s̃⊕(z), s⊕(z)) = O(hβ0/(β1−1)).

Lemma 5. If assumptions K2, L1, and N1-N3 hold, and Y is bounded,

then

d(s̃⊕(x, z), ŝ⊕(x, z)) = op(1).

Proof of Lemma 5. Recall equations (15) - (21) in the main manuscript.We

can write

Ŝn(y;x, z)− S̃n(y;x, z) = ŵ0(x, z)− w̃0(x, z) (S3.12)

+ ŵ1(x, z)ŵ
−1
2 ŵ3(y)− w̃1(x, z)w

−1
2 w3(y)(S3.13)

In Lemma 4, we showed that ŵ0(y; z) = w̃0(y; z) + Oa.co.

(√
logn

nφZ,z(h)

)
.

Now, let us write ŵ1(x, z) = (ŵ1,1(x1, z), ..., ŵ1,p(xp, z))
T and w̃1(x, z) =

(w̃1,1(x1, z), ..., w̃1,p(xp, z))
T . It can similarly be shown that ŵ1,j(xj, z) =

w̃1,j(xj, z) +Oa.co.

(√
logn

nφZ,z(h)

)
for j = 1, .., p.

Then, using Theorem 1 from Speckman (1988) and keeping our as-

sumptions, we have that each element in the vector ŵ−1
2 ŵ3(y) converges in

probability to the corresponding element in w−1
2 w3(y) at a rate of O(n−1/2)+

Op(n
−1/2).
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Thus, the rate of convergence is dominated by (S3.12), and since con-

vergence almost completely implies convergence in probability, we have that

Ŝn(y;x, z)− S̃n(y;x, z) = Op

(√
log n

nφZ,z(h)

)
,

which does not differ from the result of Lemma 4. Therefore, we have that

Ŝn(y;x, z)− S̃n(y;x, z) = op(1) for any y ∈ Y . Then, according to Van der

Vaart and Wellner (1996), the last thing we need to show is that for any

η > 0,

lim sup
n→∞

P

(
sup

d(y1,y2)<h′
|(S̃n − Ŝn)(y1;x, z)− (S̃n − Ŝn)(y2;x, z)| > η

)
→ 0 as h′ → 0.

We can write

|Ŝn(y1;x, z)− Ŝn(y2;x, z)| = |ŵ0(y1, z)− ŵ0(y2, z) + ŵ1(x, z)ŵ
−1
2 [ŵ3(y1)− ŵ3(y2)]|

≤ |ŵ0(y1, z)− ŵ0(y2, z)|

+
∣∣ŵ1(x, z)ŵ

−1
2

∣∣ |[ŵ3(y1)− ŵ3(y2)]|. (S3.14)

From Lemma 4, we have that the first term of (S3.14) is Op(d(y1, y2)), be-

cause the kernel function is assumed to be non-negative and so n−1
∑n

i=1 |shi(z)| =

1. Further, then,
∣∣ŵ1(x, z)ŵ

−1
2

∣∣ |[ŵ3(y1) − ŵ3(y2)]| = Op(d(y1, y2)). Thus,

|Ŝn(y1;x, z)−Ŝn(y2;x, z)| ≤ 2diam(Y)d(y1, y2)n
−1
∑n

i=1 |shi(z)| = Op(d(y1, y2)).

Similarly, |S̃n(y1;x, z)−S̃n(y2;x, z)| = O(d(y1, y2)), which verifies the lemma.
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Theorem 6. If assumptions P1, K2, L1, L4, and N1-N3 hold, then

d(s̃⊕(x, z), ŝ⊕(x, z), ) = Op((nφZ,z(h))
−1

2(β2−1) ).

Proof of Theorem 6. We will follow similar arguments as Theorem 2 and

Theorem 4 in Petersen and Müller (2019). Set Tn,h(y;x, z) = Ŝn(y;x, z)−

S̃n(y;x, z). Further, let

Di = d2(Yi, y)− d2(Yi, s̃⊕(x, z)) (S3.15)

Denote ζhi(z) ≡ ζh(Zi, z). Then we have |Tn,h(y;x, z)− Tn,h(s̃⊕(x, z);x, z)|

is less than or equal to

∣∣∣∣∣ 1n
n∑

i=1

[shi(z)− ζhi(z)]Di

∣∣∣∣∣ (S3.16)

+

∣∣∣∣∣ 1n
n∑

i=1

[ζhi(z)Di − E(ζhi(z)Di)]

∣∣∣∣∣
+

∣∣∣∣∣ŵ1(x, z)ŵ
−1
2

1

n

n∑
i=1

[
Xi −

1

n

n∑
j=1

shj(Zi)Xj

][
Di −

1

n

n∑
j=1

shj(Zi)Dj

]
− w̃1(x, z)w

−1
2 E [(Xi − E(Xi|Zi))(Di − E(Di|Zi))]

∣∣
From Theorem 4, we have that the first term isOp(d(y, s̃⊕(z))(nφZ,z(h))

−1/2)

and is independent of y and s̃⊕(x, z). Further, we can define

BR

{
sup

d(y,s̃⊕(z))<h′

∣∣∣∣∣n−1

n∑
i=1

[shi(z)− ζhi(z)]Di(y, z)

∣∣∣∣∣ ≤ Rh′(nφZ,z(h))
−1/2

}
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for R > 0, so that P (BC
R) → 0. Next, to control the second term on the

right hand side of (S3.16), define functions mY : Z × Y → R by

mY (z, y) =
Kh(δ(Z, z))d

2(Y, y)

E(Kh(δ(Z, z)))

and the corresponding function class Mn,h′ = {my −ms̃⊕(z) : d(y, s̃⊕(z)) <

h′}. An envelope function for Mnh′ is

Mnh′(z) =
2diam(Y)h′Kh(δ(Z, z))

E(Kh(δ(Z, z)))
,

and E(M2
nh′(z)) = O(h′2φ−1

Z,z(h)). Using this fact together with Theorems

2.7.11 and 2.14.2 of Van der Vaart and Wellner (1996) and Assumption P1,

for small h′,

E

(
sup

d(y,s̃⊕(z))<h′

∣∣n−1ζhi(z)Di − E[ζhi(z)Di]
∣∣) = O(h′(nφZ,z(h))

−1/2).

Combining this with (S3.10) and the definition of BR,

E

(
IBR

sup
d(y,s̃⊕(z))<h′

|Tn,h(y;x, z)− Tn,h(s̃⊕(z);x, z)|

)
≤ ah′

(nφZ,z(h))1/2
,

where IBR
is the indicator function for the set BR and a is a constant

depending on R and the entropy integral in Assumption P1. To complete

the proof, set Tn,h = (nφZ,z(h))
β2

4(β2−1) and define

Qj,n = {y : 2j−1 < Tn,hd(y, s̃⊕(z))
β2/2 ≤ 2j}.
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Choose η2 satisfying Assumption L4 and such that Assumption N1 is sat-

isfied for any h′ < η2. Set η̃ := (η2/2)
β2/2. For any integer M ,

P (Tn,hd(s̃⊕(z), ŝ⊕(z))
β2/2 > 2M) ≤ P (BC

R) + P (2d(s̃⊕(z), ŝ⊕(z)) > η) (S3.17)

+
∑

j≥M,2j≤Tn,hη̃

P

({
sup

y∈Qj,n

|Tn,h(y;x, z)− Tn,h(s̃⊕(z);x, z)| ≥ C
22(j−1)

t2n

}
∩BR

)
,

where the last term goes to 0 by Lemma 4. Since d(y, s̃⊕(z)) < (2j/Tn,h)
2/β2

on Qj,n(z), it is implied that the sum on the right hand side of (S3.17) is

bounded by

4aC−1
∑

j≥M,2j≤Tn,hη̃

22j(1−β2)/β2

T
2(1−β2)/β2

n,h (nφZ,z(h))1/2
≤ 4aC−1

∑
j≥M

(
1

4(β2−1)/β2

)j

,

which converges since β2 > 1 The rest of this proof aligns with Petersen and

Müller (2019). Thus, we have that d(ŝ⊕(x, z), s̃⊕(x, z)) = Op((nφZ,z(h))
− 1

2(β2−1) ).

Corollary 3. If the assumptions of Theorems 5 and 6 hold, then

d(s⊕(x, z), ŝ⊕(x, z), ) = O(h
β0

(β1−1) ) +Op((nφZ,z(h))
−1

2(β2−1) ),

where β0 = min{β0X, β0Y }.

Proof of Corollary 3. This follows from applying the triangle inequality to

the results of Theorem 5 and Theorem 6.
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