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Abstract: A cross projection test (CPT) technique for a one-sample vector in a

high-dimensional setting is introduced. To overcome the problems caused by the

curse of dimensionality, we construct test statistics by employing a projection test to

project high-dimensional samples into one-or multi-dimensional directions. First, we

randomly split the sample into two groups. We then find the p projection directions

from a sample covariance matrix of the first group of samples. The second group is

used to construct a projection statistic and perform the test. Second, we find the

projection directions by exchanging the order of the two groups of samples, and we

perform the test again to obtain another test statistic. Finally, we construct the CPT

statistic by adding the two asymptotically uncorrelated test statistics together using

the cross projection technique, such that the information from the two independent

split samples can be fully utilized. The simulation results show that our proposed

cross projection test controls the type I error well, and it is more powerful than

the existing mean tests for some covariance matrix structures. Meanwhile, after

applying the power enhancement technique, the CPT method performs non-trivially
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in general cases, especially for testing against sparse alternatives. A real gene-data

analysis illustrates that the performance of our CPT is quite well.

Key words and phrases: Asymptotic distribution, cross projection test, mean test,

high dimension, projection direction.

1. The First Section

It is well known that the hypothesis test of the mean vector is fundamental to

multivariate statistical analysis (see Anderson (2003) and Muirhead (1982)),

which in turn is instrumental in diverse fields of research and application

domains. The rapid development of technology has introduced new types of

data, such as internet portals, hyperspectral imagery, microarray analysis, and

DNA, to many fields. Generally speaking, these are often high-dimensional

data in which the dimensionality of variables p is much larger than the sample

size (n). This brings about the “curse of dimensionality” in statistical data

analysis, which renders classical test statistics invalid or no longer applicable.

The past two decades have witnessed increasing interest in mean signals differ-

ence identification for high-dimensional settings, and the existing methods are

generally classified into two categories. The first is the modified Hotelling’s T 2

test statistic, and the second involves constructing projection test statistics

in a lower dimensional space through the projection technique. The specific
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details of these methods are described as follows.

Let x1,x2 . . . ,xn be an independent and identically distribution random

sample drawn from p-variate distribution F (x), with mean vector µ and covari-

ance matrix Σ. In a one-sample mean vector test, we are primarily concerned

with the following hypothesis testing:

H0 : µ = 0 versus H1 : µ 6= 0. (1.1)

The classic Hotelling’s T 2 test (Hotelling (1931)) works well for the above

hypothesis with fixed dimension p, and it is still applicable when p < n − 1.

However, when p/n → 1 − ε for ε > 0, the Hotelling’s T 2 test suffers power

loss, as demonstrated by Bai and Saranadasa (1996). It is a well-known fact

that based on the theory of a large-dimensional random matrix, the sample

covariance matrix has only n−1 non-zero eigenvalues for the case of p > n (see

Bai and Silverstein (2010) and Pan and Zhou (2011)). As a result, the sample

covariance matrix becomes singular, and the Hotelling’s T 2 test statistic is

no longer applicable. To overcome this curse of dimensionality, modifications

to Hotelling’s T 2 test statistic have been proposed to allow the method work

well in higher dimension settings. The common idea of these modifications

is simply to replace the inverse of the sample covariance with the identity

matrix in the Hotelling formula, namely, by removing the sample covariance

matrix (see Bai and Saranadasa (1996), Chen and Qin (2010) and Aoshima
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and Yata (2011)). However, removing the sample covariance matrix does not

guarantee the scale invariance of many statistics in the literature for high-

dimensional mean tests, see, for example, Bai and Saranadasa (1996), Chen

and Qin (2010), Zhang et al. (2021), and the references therein. Therefore,

many studies replace the sample covariance matrix with a diagonal matrix to

construct a scalar-transformation-invariant test, see, for example, Srivastava

and Du (2008), Srivastava (2009), Srivastava et al. (2013), Park and Ayyala

(2013) and Srivastava and Kubokawa (2013). However, many studies seek to

preserve more information from the covariance matrix by using a regularized

method to estimate the inverse of the covariance matrix or by normalizing

the diagonal matrix formed by the diagonal elements of the sample covariance

matrix, see, Dong et al. (2016) and Feng et al. (2015), respectively. It is worth

noting that the method of modifying Hotelling formula mentioned above do

not make full use of the correlation information within the variables. To

illustrate, if the pairwise variables are strongly correlated or the covariance

matrix is not a diagonal matrix or a banded structure, the modified Hotelling’s

method will suffer substantial power loss. Regularization methods may also

suffer from selection tuning parameter confusion and sparsity assumptions.

Meanwhile, Wang et al. (2015) proposed a high-dimensional nonparametric

multivariate test for mean vector based on spatial-signs. Subsequently, a mean
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test for high-dimensional data based on a covariance matrix with a spiked

structure or strongly spiked eigenvalue model was proposed to improve the

power of the test statistic, see Wang et al. (2015), Wang and Xu (2018),

Aoshima and Yata (2018) and Ishii et al. (2019) for more discussion. At the

same time, other scholars proposed the use of a projection test to map a high-

dimensional sample onto a low-dimensional space, which can, to some extent,

solve the mean test problem caused by the curse of dimensionality, see Lauter

(1996), Lauter et al. (1998), Lopes et al. (2011), and Huang (2015). Finally,

the optimal choice of projection direction Σ−1µ for one- or two-sample mean

tests was proved by Huang (2015).

In practical application, the optimal projection direction must be estimat-

ed using samples. Thus, estimating the inverse of the population covariance

matrix or precision matrix (Σ−1) still confronts the same issues as the classi-

cal Hotelling’s T 2 with a high-dimensional setting. The ridge-like estimator,

(Sn + λD)−1, is regarded as an estimator of Σ−1 in the optimal projection

direction, as shown in Huang (2015) and Liu et al. (2021), where Sn is sample

covariance matrix, λ is a tuning parameter that controls the degree of penalty,

and D is a diagonal matrix of Sn. Using this method of adding a penalty term

to the sample covariance matrix will uniformly increase the sample eigenval-

ues to a positive value such that the smallest eigenvalue is a positive number.
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This will make it inconsistent with the inverse of the population covariance

matrix. Consequently, the estimation of optimal direction is not really the

theoretical optimal projection direction. If parameter λ is poorly chosen or an

estimator of the projection direction is far from the original optimal direction,

it is no longer effective to perform the test using the single optimal projection

direction approach. In this study, we project the test samples in p directions,

and we propose a cross projection test (CPT) approach to the mean hypoth-

esis test when dimensions p are comparable to, or even larger than, sample

size n. This ensures that the information from the two groups of splitting

samples is as fully utilized as possible. In addition, the CPT test statistic not

only overcomes the problem of searching for the optimal direction, but it also

has asymptotic normality, which allows it to carry out our test regardless of

whether the random samples come from a normal or non-normal distribution.

Moreover, the proposed CPT approach performs very well in various situa-

tions, including the iso-correlation covariance matrix, the factor model, and

other compound structures, in which the modified Hotelling’s method would

not be efficient.

The remainder of this paper is organized as follows. In Section 2, the

background of the projection test and the application of Hotelling statistic-

s after projection mapping are introduced, and the specific implementation
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process for our proposed CPT statistic is described in detail. Theoretically,

with some mild conditions, the standard CPT statistic follows asymptotically

standard normal distribution under the null hypothesis, and the asymptotic

power function under the local alternative is shown in Section 3. In Section

4, we use the power enhancement technique proposed by Fan et al. (2015)

to improve the performance of the CPT when the mean vector has sparse

settings. The results of numerical studies in Section 5 further show that the

advantages of the CPT statistic coincide with our theoretical conclusion. This

article concludes with a brief discussion outlining possible extensions of this

work in Section 6. All technicalities and additional details are relegated to

the Supplementary Material.

2. Cross projection test for a one-sample mean vector

In this section, we begin by explaining how to implement the projection test

method for a few directions, such that high-dimensional samples are mapped

onto low-dimensional space. This ensure that the classic Hotelling’s T 2 test

statistic is still feasible. Second, we present the detailed process of constructing

the new test statistic (CPT) by combining two cross-projection statistics.
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2.1 Background of projection tests for multiple directions

2.1 Background of projection tests for multiple directions

Assume that {x1,x2, . . . ,xn} are n independent and identically distributed

random samples from a p-variate normal distribution N(µ,Σ). To the best

of our knowledge, the projection test essentially projects the p-dimensional

vector, x ∈ Rp, onto low-dimensional space so that certain traditional test

statistics remain applicable for the projected samples. The classic Hotelling

T 2 test statistic is then implemented to test one- or two-sample mean vectors

when the dimension of variable p is smaller than sample size n in multivariate

statistical analysis (see Anderson (2003) and Muirhead (1982)). Let P be

a p × k full column-rank projection matrix that satisfies PTP = Ik for an

integer k ∈ {1, . . . ,min(n, p)}, and it is drawn independently of the data

to be projected. After transformation using the projection technology, the

hypothesis testing for a one-sample mean vector can be written as follows:

H0,proj : PTµ = 0k verus H1,proj : PTµ 6= 0k, (2.1)

where 0k represents a zero-element vector of k dimension. In the case of pro-

jection testing (2.1), the Hotelling T 2 test statistic for k-dimensional projected

sample {PTx1,P
Tx2, . . . ,P

Txn} takes the following form:

T 2
k,proj = n(PT x̄)T (PTSnP)−1PT x̄,
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2.1 Background of projection tests for multiple directions

where x̄ = (x̄1, . . . , x̄p)
T and Sn = (sij)p×p denote the sample mean and sample

covariance matrix, respectively. It is well known that when p < n, the test

statistic ( n−p
p(n−1)T

2
k,proj) follows Fp,n−p(δ), with p and n− p degrees of freedom

with non-central parameter δ, where δ = nµTΣ−1µ, regardless of whether

the hypothesis is H0,proj or H1,proj. Meanwhile, under H0,proj, statistic T 2
k,proj

asymptotically converges in distribution to χ2
k as n → ∞. Notably, when

k = 1, the t(n − 1) distribution with n − 1 degree of freedom can be applied

to the aforementioned mean hypothesis testing under normal distribution.

It is worth noting that the above tests employ a projection matrix or

vector P to operate the sample. Lopes et al. (2011) adopted a single ran-

dom matrix P ∈ Rp×k with i.i.d. N(0, 1) entries to implement the projec-

tion test approach. Although all the information from the sample is used for

the projection operation, the selection of the projection direction may not

be optimal. Subsequently, a projection test for high-dimensional mean vec-

tors with optimal direction using the random splitting sample was proposed

by Huang (2015). However, the theoretically optimal projection direction in

practical applications needs to be obtained through the ridge-like estimator of

(Sn+λD)−1, which is not a consistent estimator in high-dimensional settings.

Thus, this strategy will result in power loss when a set of samples are used to

perform the test. Therefore, motivated by a projection test from a single ran-
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2.2 Implementation of CPT

dom (non-random) projection matrix or vector direction, we propose a more

powerful cross projection test, which is displayed in the next subsection.

2.2 Implementation of CPT

In this subsection, we further elaborate on the specific implementation algo-

rithm of the CPT. An easy-to-compute sample-splitting approach proposed

by Wasserman and Roeder (2009) is adopted in our algorithm. To exe-

cute our algorithm, the sample is randomly partitioned into two indepen-

dent sets with one splitting; that is, the index set ({1, 2, . . . , n}) of a ran-

dom sample is split into two disjointed subsets. These are defined as Hi

with size ni = |Hi| for i = 1 and 2, in which the two-sample size satisfies

n1+n2 = n. Correspondingly, n independent and identically distribution sam-

ples {xi, i = 1, . . . , n} are randomly split into 2 disjointed batches: D1 and D2,

with Di = {xj, j ∈ Hi} for i=1 and 2. Without loss of generality, the datasets

are denoted by D1 = {x1,x2, . . . ,xn1} and D2 = {xn1+1,xn1+2, . . . ,xn} for the

two group samples. Data D2 is employed to find p projection directions, and

data D1 is used to construct test statistic T 2
1 . Subsequently, switching data

D1 and D2, i.e., D1 is used to find projection directions and the another test

statistic T 2
2 is constructed by using data D2. The detailed CPT algorithm is

described below:
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2.2 Implementation of CPT

Step 1 The sample covariance matrices S1 and S2 are respectively used as esti-

mators of the covariance matrix Σ = (σij) for datasets D1 and D2, and

the spectral decomposition of sample covariance estimator S1 is writ-

ten as S1 = U1Λ1U
T
1 , where U1 = (u11,u12, . . . ,u1p) is the eigenvector

matrix and Λ1 is a diagonal matrix consisting of the eigenvalues of S1.

Similarly, the estimator S2 = U2Λ2U
T
2 , where U2 = (u21,u22, . . . ,u2p),

is the eigenvector matrix of S2.

Step 2 Project data D1 onto p directions (u21, u22,. . . , u2p) that are from

data D2. That is, n1 samples are respectively directed to projection

direction u2i to obtain the following projection vector, which can be

written as y
(1)
i = (yi1, yi2, . . . , yin1), where yij = uT2ixj for i = 1, 2, . . . , p

and j = 1, 2, . . . , n1. The test statistic for data D1 is constructed as

T 2
1 =

∑p
i=1 T

2
1i, where

T 2
1i =

n1ȳ
2
1i

uT2iS1u2i

, (2.2)

and ȳ1i is the sample mean of vector y
(1)
i . That is, ȳ1i = uT2ix̄1 repre-

sents the projection on the mean level of the first group.

Step 3 Project D2 onto p directions (u11, u12,. . . , u1p) and obtain the pro-

jection vector on i-th projection direction u1i. The projection vector

is defined as y
(2)
i = (yi(n1+1), yi(n1+2), . . . , yin), where yij = uT1ixj for
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i = 1, 2, . . . , p and j = n1 + 1, n1 + 2, . . . , n. The test statistic for data

D2 is constructed as T 2
2 =

∑p
i=1 T

2
2i, where

T 2
2i =

n2ȳ
2
2i

uT1iS2u1i

, (2.3)

and ȳ2i is the sample mean of vector y
(2)
i .

Step 4 The CPT statistic is obtained by the summation of two asymptotically

uncorrelated statistics, T 2
1 and T 2

2 , which is defined as follows:

T 2
CP =: T 2

1 + T 2
2 =

p∑
i=1

T 2
1i +

p∑
i=1

T 2
2i. (2.4)

To obtain the rejection region of the test statistic of the CPT, we further derive

the asymptotic distribution of statistic T 2
CP through our theoretical analysis

under the null hypothesis (H0).

3. Theoretical analysis

In this section, we derive the asymptotic distribution of test statistics T 2
CP in

equation (2.4) under the null hypothesis, H0 : µ = 0 for the general covariance

matrix forms when the suitable conditions hold. Before providing the content

of the theorems, we present some mild assumptions, as used in Srivastava

(2009), to obtain our theoretical results for the implementation of the CPT

algorithm.
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Let x1,x2, . . . ,xn be n independent and identically distributed p-variate

random variables with mean vector µ and covariance matrix Σ. They obey

the independent component structure as follows:

xi = µ+ Γzi, (3.1)

where Γ is a p × p non-singular matrix satisfying Σ = ΓΓT > 0, zi =

(zi1, zi2, . . . , zip)
T , i = 1, 2, . . . , n, and zij are i.i.d. with a finite fourth mo-

ment, which is given by E(zij) = 0,E(z2ij) = 1, and E(z4ij) = κ < ∞, for

i = 1, . . . , n, j = 1, . . . , p. We further list some assumptions as follows:

Assumption 1. Sample size n and dimension p of random vector x satisfy

n = O(pτ ), where 0 < τ ≤ 1.

Assumption 2. Two groups of samples are formed by splitting one, and their

sizes satisfy this relationship, as n→∞,

n1/(n1 + n2)→ k ∈ (0, 1).

Assumption 3. Assume that the correlation matrix R of the random vector

x and its dimensions satisfy the following limiting relation:

lim
p→∞

%i = lim
p→∞

(
tr
(
(R)i

)
p

)
= %i0 <∞, i = 1, . . . , 4.

Assumption 4. Suppose that the smallest eigenvalue of the covariance matrix

satisfies λmin(Σ) > c0 for some positive constant c0.
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Remark 1. Assumption 1 indicates that the sample size maintains a certain

order relationship with the dimension. This requirement also appears in Chen

and Qin (2010), Srivastava and Du (2008), and Srivastava (2009). The process

of finding the projection directions and executing the test statistics through

two split samples allows more efficiency to be exerted under the condition of

Assumption 2. This is commonly used in the two-sample test; it requires that

the sizes of two samples are comparable and not extremely imbalanced, see,

for example, Chen and Qin (2010), Srivastava and Kubokawa (2013), and the

references therein. It can be seen from the expression of Assumption 3 that

the degree of correlation in the correlation matrix cannot be extremely heavy,

or it can be overcome by dimension p and converge to a positive constant, %i0.

Assumption 4 is a weak constraint on the covariance matrix, which requires

the minimum eigenvalue of Σ to be far from zero. Readers can refer to Bickel

and Levina (2008) for more details.

Notably, the covariance matrix satisfying the above assumptions has a

very wide range of forms, such as the identity matrices, banded matrices,

AR structures, and spiked eigenvalue models. Let λi’s be the eigenvalues of

the covariance matrix Σ. We then discuss our Assumption 3 on the spiked

eigenvalue model, such as

λi = aip
αi (i = 1, . . . , k) and λi = ci (i = k + 1, . . . , p) (3.2)
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with positive and fixed constants, ais, cis and αis, and a positive and fixed

integer k. The requirement of lim
p→∞

%i = lim
p→∞

(
tr
(
(R)i
)

p

)
= %i0 < ∞, i =

1, . . . , 4 in Assumption 3 holds under the necessary condition of λ1(Σ) = O(pα)

with 0 < α ≤ 1/4 where λ1 is the largest eigenvalue, that is α1 ≤ 1/4 in (3.2).

However, for the non-strongly spiked eigenvalue model in Aoshima and Yata

(2018), λ21/tr(Σ
2) → 0 as p → ∞, it is required that the largest eigenvalue

satisfies α1 < 1/2 in the spiked model (3.2). For strongly spiked eigenvalue

model lim inf
p→∞

(
λ21/tr(Σ

2)
)
> 0, it is required that λ1 = O(pα1) with α1 ≥ 1/2 in

spiked model (3.2). In general, our Assumption 3 is slightly stronger than the

non-strongly spiked eigenvalues mentioned in Aoshima and Yata (Aoshima and

Yata (2018)). However, for some special cases, the spiked covariance matrix

is Σ =

 D 0k×(p−k)

0(p−k)×k Ip−k

 or Σ =

Ak×k + D 0k×(p−k)

0(p−k)×k Ip−k

, where D =

diag(a1p
α1 , . . . , akp

αk) and the elements of the non-negative definite matrix A

are constants independent of the dimension, then the correlation matrix is an

identity matrix or an approximation of the identity matrix. Therefore, our

Assumption 3 is satisfied for the special cases mentioned above, regardless of

the values of α1.

The test statistic, T 2
CP, is constructed as in equation (2.4). It can be
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expressed in matrix form as

T 2
CP = n1x̄

T
1U2Ŵ

−1
1 UT

2 x̄1 + n2x̄
T
2U1Ŵ

−1
2 UT

1 x̄2,

where Ŵ1 = diag(uT21S1u21, . . . ,u
T
2pS1u2p) and Ŵ2 = diag(uT11S2u11, . . . ,u

T
1pS2u1p).

To obtain the theoretical properties of T 2
CP, we need to define

t2o = n1x̄
T
1U2W

−1
1 UT

2 x̄1 + n2x̄
T
2U1W

−1
2 UT

1 x̄2,

where x̄1 and x̄2 represent the mean vectors ofD1 andD2 with one splitting, re-

spectively, and W1 = diag(uT21Σu21, . . . ,u
T
2pΣu2p) and W2 = diag(uT11Σu11, . . . ,

uT1pΣu1p), and have to discuss its properties. The asymptotic normality of t2o

is given in Theorem 1.

Theorem 1. Suppose that Assumptions 2–3 hold. Then, under the null hy-

pothesis (H0), as n, p→∞, we have

t2o − 2p{
2
(
tr(R2

1) + tr(R2
2)
)}1/2

d.−→ N(0, 1),

where R1 = D
−1/2
2 (UT

2 ΣU2)D
−1/2
2 , with D2 = diag(uT21Σu21, . . . ,u

T
2pΣu2p)

for given projection matrix U2, and R2 = D
−1/2
1 (UT

1 ΣU1)D
−1/2
1 , with D1 =

diag(uT11Σu11, . . . ,u
T
1pΣu1p) for given projection matrix U1. “

d.−→” stands for

the convergence in distribution.

Notably, Lemma 2 explains that the denominator of T 2
CP in expression

(2.4) enjoys a consistent property, and its proof is shown in Appendix A. This
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means that the quadratic form uT2iS1u2i converges to uT2iΣu2i and uT1iS2u1i

converges to uT1iΣu1i, with probability 1 for given the projection directions

u1i and u2i (1 ≤ i ≤ p). To obtain the rejection region for working our

CPT statistic, we shall use 1
p
tr(R̂1 − p2/(n1 − 1)) and 1

p
tr(R̂2 − p2/(n2 − 1))

separately as estimators of 1
p
tr(R1) and 1

p
(R2), where R̂1 and R̂2 are the

sample correlation matrix of projection samples UT
2 X1 and UT

1 X2 with X1 =

(x1, . . . ,xn1), X2 = (xn1+1, . . . ,xn), respectively.

The asymptotic normality property of test statistic T 2
CP under the null

hypothesis (H0) can be found in Theorem 2.

Theorem 2. Suppose that Assumptions 1–4 hold, and given two independent

projection directions U1 and U2 for their respective projection samples, then

we have under the null hypothesis (H0) that

T 2
CP − p(n1−1

n1−3)− p(n2−1
n2−3){

2
(
tr(R̂2

1) + tr(R̂2
2)−

p2

n1−1 −
p2

n2−1

)}1/2 d.−→ N(0, 1)

as n, p→∞.

It follows from the property of Theorem 2 that for a sufficiently large

n, p, the rejection region of the new test, T 2
CP, at significance level α is {x :

(T 2
CP − p(n1−1

n1−3)− p(n2−1
n2−3))/{2(tr(R̂2

1)+tr(R̂2
2)−

p2

n1−1−
p2

n2−1)}1/2 ≥ zα}, where

zα denotes the upper α quantile of N(0, 1). Furthermore, we can get the power
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function of T 2
CP under the alternative hypothesis (H1 : µ 6= 0). Define

T 2 =:
(
T 2
CP−p

(n1 − 1

n1 − 3

)
−p
(n2 − 1

n2 − 3

))/(
2
(
tr(R̂2

1)+tr(R̂2
2)−

p2

n1 − 1
− p2

n2 − 1

))1/2
,

and it is convenient to derive the asymptotic normality of standardized CPT

statistic T 2. We shall consider a local alternative under which

µ = {1/(n(n− 1))}1/2δ, (3.3)

where δ is a vector of constants. For every p, given two independent projection

directions, U1 and U2, we shall assume that

1

p
(δTU2W

−1
1 UT

2 δ + δTU1W
−1
2 UT

1 δ) ≤ C, (3.4)

where constant C is independent of p. The local alternative (3.3) and restricted

condition (3.4) mentioned above are used in studies such as Srivastava and

Du (2008) and Srivastava (2009).

Theorem 3. Consider local alternative µ = 1/{n(n − 1)} 1
2δ, assuming that

1
p
(δTU2W

−1
1 UT

2 δ + δTU1W
−1
2 UT

1 δ) ≤ C holds for the given projection direc-

tions, U1 and U2, then under the conditions of Theorem 2, we have

lim
(n,p)→∞

[
P (T 2 > zα|U1, U2)− Φ

(
− zα +

∆(δ;n, p)√
2(tr(R2

1) + tr(R2
2))

)]
= 0,

where ∆(δ;n, p) = 1
n−1(kδTU2W

−1
1 UT

2 δ + (1− k)δTU1W
−1
2 UT

1 δ).
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It is easily seen that under the conditions of Theorem 3, the asymptotic

power of standardized CPT statistic T 2 as (n, p)→∞ is given by

β(T 2|δ) ' EU1,U2

(
Φ
(
− zα +

∆(δ;n, p)√
2(tr(R2

1) + tr(R2
2))

))
.

Remark 2. Our proposed CPT procedure may be affected by the result of

the single random splitting technique. To overcome this puzzle and improve

the power of our test, a multi-splitting technique can be employed for mean

testing in a high-dimensional setting, see Meinshausen et al. (2009). The

CPT procedure, in which test statistic T 2
CP is obtained through the single

splitting procedure, is repeated m times. Then, the multi-splitting technique

yields m p-values. These p-values could be aggregated using equation (2.3)

in Meinshausen et al. (2009) and the Cauchy combination test in Liu and

Xie (2020). It is important to note that the multi-splitting approach not

only eliminates the effect of random splitting, but it can also control the false

discovery rate (FDR) well.

4. Power enhancement technique for sparse mean vector testing

Our proposed CPT statistic, T 2
CP, is more powerful for the dense mean vector

(H1 : µ 6= 0) described above in Section 2. However, for the sparse alternative

hypothesis (H1s : µ = µs), where µs indicates there are many zero elements

in µ, it is obvious that the cross projection test statistic (T 2
CP; sum-type test)
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may not capture significant signals in the margins very well, as discussed in Cai

et al. (2014). Therefore, following Fan et al. (2015) and Guo and Cui (2019),

a power enhancement technique is proposed to improve the test performance

under the alternative hypothesis in our CPT statistic procedure. Similar to

Assumption 3.1 in Fan et al. (2015), a power enhancement technique is pro-

posed if the sample mean and sample covariance matrix satisfy the following

assumption:

Assumption 5. As n, p → ∞, the estimators of the sample mean and vari-

ance {x̄j, sjj}1≤j≤p are satisfied for sequence δn,p = C1 log(log(n))
√

log(p) that

(a) infµ∈U P ( max
1≤j≤p

|x̄j − µj|/s1/2jj < δn,p/
√
n)|µ)→ 1,

(b) infµ∈U P (4/9 < sjj/σjj < 9/4, ∀j = 1, . . . , p|µ)→ 1,

where U is a collection of mean vectors of r.v. x.

It is worth noting that the constants 4/9 and 9/4 in condition (b) are not

optimally chosen, as this condition only requires {sjj}1≤j≤p be not-too-bad

estimators of their population counterparts. Let J1 be a test statistic that

has a correct asymptotic size (for example, the cross projected test statistic

T 2
CP introduced in Section 2), which can become a composite test statistic by

adding a non-negative power enhancement term, J0 ≥ 0. To satisfy the power

enhancement property, define the sets S(µ) and Ŝ as below

S(µ) =
{
j ∈ {1, . . . , p} : |µj| > 3σ

1/2
jj δn,p/

√
n
}
,
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and

Ŝ =
{
j ∈ {1, . . . , p} : |x̄j| > s

1/2
jj δn,p/

√
n
}
.

Then, a power enhancement test statistic is constructed as

J0 = n · I{max
j

(|x̄j|/s1/2jj ) > δn,p/
√
n}, (4.1)

where n is a strengthened coefficient, I{·} stands for the indication function,

and formula (4.1) is simply J0, as in Fan et al. (2015). The following the-

orem states the asymptotic behavior of statistic J0 under both the null and

alternative hypotheses.

Theorem 4. Suppose Assumption 5 holds. As n, p → ∞, P (Ŝ = ∅|H0) → 1

under null hypothesis (H0). Hence

P (J0 = 0|H0)→ 1 and inf
{µ∈U :S(µ)6=∅}

P (J0 > n|µ)→ 1.

Theorem 4 not only gives the asymptotic behavior of J0, but it also de-

scribes the “sure screening property” of Ŝ, which means that it selects all

significant components whose indices are in set S(µ). Obviously, this result is

performed uniformly in µ under both the null and alternative hypotheses, and

the term J0 can identify more significant signals from alternative µ 6= 0, sig-

nificantly improving the corresponding power. From the asymptotic normality

of Theorem 2, it can be easily to know that

JCPT =:
(
T 2
CP−p

(n1 − 1

n1 − 3

)
−p
(n2 − 1

n2 − 3

))/(
2
(
tr(R̂2

1)+tr(R̂2
2)−

p2

n1 − 1
− p2

n2 − 1

))1/2

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0388



follows a standard normal distribution under the null hypothesis. Similar to

the statistic constructed by Fan et al. (2015) to enhance the power, test

statistic JCPT has an asymptotic null distribution, N(0, 1). Hence, the critical

region also takes the form {x : JCPT + J0 > zα} at significance level α ∈ (0, 1)

via Theorem 5.

Theorem 5. Suppose Assumption 4 holds. The test statistics JCPT and

JCPT + J0 enjoy the same asymptotic null distribution, N(0, 1). Furthermore,

as n, p→∞, the power enhancement test on the set Us = {µ : µ ∈ U ,S(µ) 6=

∅} has high power,

inf
µ∈Us

P (JCPT + J0 ≥ zα|µ)→ 1.

It can be found that the test statistic can obtain high power for mean

vector µ ∈ Us in Theorem 5. Moreover, it is worth noting that some projection

tests can be used in combination with the power enhancement technique. Our

CPT method henceforth can also achieve a more powerful performance.

5. Numerical studies

5.1 Simulation results

In this section, we conduct some simulation studies to compare our proposed

test statistic, T 2
CP, with existing tests for high-dimensional one-sample data by

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0388



5.1 Simulation results

repeating each experiment 10000 times. We mainly evaluate the advantages of

the CPT method over Huang (2015), which used a single optimal projection

method to test the mean vector of the same data in terms of empirical size and

power. Therefore, the performance level and empirical power of test statistic

T 2
CP will be compared with the test statistics proposed by Bai and Saranadasa

(1996)(abbreviated as T 2
BS), Chen and Qin (2010) (abbreviated as T 2

CQ), S-

rivastava (2009) (abbreviated as T 2
S ), and Huang (2015) (optimal projection

direction, abbreviated as T 2
OP). To find the optimal projection in T 2

OP, we set

the splitting percentage to 50% and the tuning parameter to λ = (n/2)−0.5.

These settings are reasonable ranges, and they are the parameter choices used

in the simulations in Huang (2015). When the null hypothesis holds, the

optimal test statistic, T 2
OP, converges to the student t-distribution for nor-

mal data, while the asymptotic chi-square property of (T 2
OP)2 is required for

non-normal data. Random samples x = (x1,x2, . . . ,xn)T ∈ Rn×p are still gen-

erated by considering the structure of (3.1). They follow multivariate model

xi = µ+ Σ1/2zi, where zi’s are independent and identically distribution ran-

dom variables. In the multivariate model, zi = (zi1, zi2, . . . , zip) is generated

through three distributions: the multivariate normal distribution, student t

distribution, and chi-square distribution. For specific parameter settings, see

Examples (a)–(c) below.
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5.1 Simulation results

Example (a): The random variables, zij’s, follow a standard normal dis-

tribution; that is, zij ∼ N(0, 1).

Example (b): Random variable zij has a distribution t(6)/
√

3/2, where

t(6)/
√

3/2 is a standardized t distribution with 6 degrees of freedom.

Example (c): Random variable zij has a distribution (χ2
4 − 4)/(2

√
2),

where (χ2
4− 4)/(2

√
2) is a standardized chi-square distribution with 4 degrees

of freedom, which is a non-symmetric distribution.

To setup the covariance matrix model, we consider the following three

structure types:

(I). Factor model structure Σ1, for which Σ1 = Ip + (σ2/p3/4)Ap×5A
T
p×5,

where Ip is a p-dimensional identity matrix and σ2 = 18, and a deter-

ministic matrix A is factor loading with elements from standard normal

N(0, 1) distribution.

(II). Factor model structure Σ2, for which Σ2 = Ip + σ2Ap×5A
T
p×5, where

σ2 = 1.5 and a deterministic matrix A is generated similarly as Σ1.

(Σ2 does not satisfy the necessary condition of Assumption 3)

(III). Diagonal covariance matrix Σ3, where Σ3 = Ip.

(IV). Autoregressive structure Σ4, in which Σij = ρ|i−j|, where ρ = 0.5.
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5.1 Simulation results

Considering the projection direction and the estimation of the sample mean

vector in the implementation of CPT, the segmentation percentage can be

set to 50% for the best power and stable performance, which is shown in the

Supplementary Material. In the following simulation studies, the splitting

percentage is set to 50% to show all the simulation results.

Dense mean case: The p-dimension mean vector µ = (µ1, µ2, . . . , µp)
T

is set to µi = (w− 1)/20 with w = 1, 2, 3, 4, for i = 1, . . . , p. It is worth noting

that when w = 1, the mean vector is exactly the null vector, and w is not

equal to one, which is the alternative hypothesis.

Table 1: Empirical size and power (%) of test statistics (Example(a), nominal size

α = 0.05)

Size Densemeanw = 2 Densemeanw = 3

Type T 2
CP T

2
OP T

2
BS T 2

S T
2
CQ T 2

CP T 2
OP T 2

BS T 2
S T 2

CQ T 2
CP T 2

OP T 2
BS T 2

S T 2
CQ

Σ1 6.5 4.4 6.9 7.2 4.6 92.6 79.8 13.0 15.8 9.5 100.0 100.0 58.5 83.9 48.4

n = 200Σ2 6.1 4.8 6.6 6.9 4.8 92.4 79.7 7.8 8.6 4.9 100.0 100.0 11.0 11.8 8.6

p = 250 Σ3 5.9 5.0 5.2 5.6 5.0 97.3 86.0 99.8 99.8 99.4 100.0 100.0 100.0 100.0 100.0

Σ4 6.4 5.2 6.1 6.2 5.2 78.1 45.7 95.3 93.3 74.3 100.0 99.6 100.0 100.0 100.0

Σ1 5.8 5.7 6.3 6.7 4.5 98.2 92.0 15.2 18.4 9.7 100.0 100.0 88.0 98.6 79.1

n = 250Σ2 5.8 5.2 6.5 6.5 4.4 98.0 89.6 8.2 9.0 4.8 100.0 100.0 11.9 15.6 9.5

p = 350 Σ3 6.1 5.4 5.7 6.0 5.7 99.4 96.1 100.0 99.9 99.9 100.0 100.0 100.0 100.0 100.0

Σ4 6.0 5.3 5.3 5.7 5.3 89.6 64.6 98.8 98.9 98.1 100.0 100.0 100.0 100.0 100.0

Table 1 shows a comparison of our cross projection test statistic (T 2
CP),

the optimal projection method (T 2
OP), and the modified Hotelling method for
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testing the dense mean vector in terms of empirical size and power. Ran-

dom samples were drawn from multivariate the normal distribution, student-t

distribution, and chi-square distribution, respectively. The dense mean set-

tings show that the mean signal gradually increases as w increases. Once the

eigenvalues of the covariance matrix have one or more spikes (such as the fac-

tor model in types (I)∼(II), where the correlations are distributed across all

elements of the covariance matrix), the modified Hotelling method performs

badly. However, our CPT method is still better than the optimal projection

method. The reason for this is that in the spiked models, the sample eigen-

subspace of sample covariance matrix Sn, the one which is corresponded to

the eigenspace of significant eigenvalues of Σ, converges to the eigen-subspace

of Σ with a high probability. Therefore, the alternative µ is that as long

as the high probability falls towards the spanning space of the eigenvector(s)

corresponding to the mostly non-significant eigenvalue(s), we propose that the

CPT test statistic is significantly better than the Hotelling type statistic.

As we all know, for example, test statistics T 2
BS, T 2

S , and T 2
CQ perform well

by improving Hotelling’s formula when the non-zero elements of the covariance

matrix fall uniformly near the diagonal region. However, when the covariance

matrix is diagonal, our proposed CPT method is very close to this in terms of

power, but the optimal projection method (T 2
OP) proposed by Huang (2015)
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performs very badly in when w = 2. When the sample size is fixed and the

dimension increases, our CPT method is still able to overcome the dimensional

problem, and the empirical power improves. It is worth noting that our CPT

approach works well for both the heavy-tailed student-t distribution and chi-

square distribution (skewed distribution) in the Supplementary Material.

Sparse mean case: For this part of the simulation studies, we employ

by Fan et al. (2015) power enhancement technique introduced in Section 4

to improve the empirical power when the empirical size is controlled. The

sparse mean vector is set to µs = (0.35 ∗ 1T4 ,0
T
p−4)

T . Under the settings of co-

variance model Σ1, the empirical size of the three distributions (Example(a)–

Example(c)) can be well controlled around the nominal level of 0.05, as shown

in Table 2. Table 3 shows that the enhancement power technique has improved

the performance of T 2
CP in terms of the empirical power for the multi-normal

distribution, under three covariance matrix structures. More simulation re-

sults for the student t and chi-square distributions are reported in Tables S5

and S6 in the Supplementary Material.

Table 2 shows the empirical size of some tests, when C1 is set to 1.3 in

the expression of δn,p in formula (4.1). It follows straightforwardly that when

n, p→∞, probability P (Ŝ = ∅)→ 1, so the empirical size of T 2
CP is equal to

JCPT + J0 with probability 1. This coincides with the screening mechanism in
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Table 2: Empirical size (%) of tests with α = 0.05 for Σ1

n p T 2
BS T 2

S T 2
CQ T 2

OP T 2
CP JOP + J0 JCPT + J0 P (Ŝ = ∅)

Example(a): Multivariate Gaussian

150

150 6.77 6.89 5.30 5.15 6.34 5.18 6.35 99.96
200 7.50 7.35 5.45 4.67 6.22 4.81 6.23 99.92
300 6.60 6.68 4.87 4.87 5.76 4.88 5.76 99.98

200

150 5.90 6.40 3.90 4.68 5.86 4.70 5.89 99.96
200 6.85 7.25 4.75 5.06 6.10 5.09 6.11 99.94
300 7.10 7.15 4.90 5.02 5.97 5.03 5.97 100.00

Example(b): Multivariate Student t

150

150 7.53 7.60 4.97 5.10 6.63 5.13 6.65 99.93
200 6.30 6.47 4.10 5.67 6.43 5.70 6.47 99.97
300 7.23 7.60 4.83 5.23 6.07 5.25 6.08 99.98

200

150 7.22 7.48 5.53 5.32 6.10 5.35 6.11 99.97
200 7.12 7.45 4.80 5.28 5.63 5.28 5.63 100.00
300 6.84 7.12 5.03 5.28 5.51 5.28 5.51 100.00

Example(c): Multivariate Chi-square

150

150 7.03 7.29 4.83 5.83 6.22 5.97 6.29 99.83
200 6.65 6.99 5.43 5.15 6.20 5.28 6.30 99.85
300 7.27 7.85 4.87 5.24 6.31 5.38 6.43 99.84

200

150 6.42 6.62 4.83 5.55 5.70 5.60 5.73 99.94
200 7.03 7.24 5.43 5.51 5.40 5.53 5.43 99.95
300 7.16 7.30 4.87 5.32 5.84 5.33 5.85 99.99

Theorem 4, which does not affect the control of Type I errors. Therefore, as

long as the value of C1 is set slightly larger, or n, p tends to infinity, T 2
CP and

T 2
OP will be equal to JCPT +J0 and JOP +J0, respectively, with probability 1.

We can see from the empirical power of the test statistics in Table 3 that

the CPT approach performs better than the optimal projection method pro-

posed by Huang (2015) in various situations. Essentially, in terms of empirical

power, the performance advantage of the CPT in the sparse mean vector test

is similar to that in the dense case. Regarding the covariance matrices Σ1

and Σ2 with more dominant eigenvalues, our cross projection method still

works very well, whereas the traditional method is almost infeasible. Further-
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Table 3: Empirical power (%) of tests with α = 0.05 for Example(a)

Type n p T 2
BS T 2

S T 2
CQ T 2

OP T 2
CP JOP + J0 JCPT + J0 P (Ŝ = ∅)

Σ1

150

150 10.83 13.43 7.43 63.96 75.56 69.37 78.15 79.22
200 10.87 11.02 7.33 41.30 63.80 43.89 64.19 93.04
300 10.22 11.25 7.47 42.70 49.79 48.23 54.25 86.40

200

150 12.21 13.51 8.97 71.89 91.06 73.79 91.31 88.77
200 11.34 12.47 9.03 67.96 86.72 71.25 87.57 82.76
300 11.31 12.73 7.23 56.54 73.96 63.21 77.37 77.62

Σ2

150

150 7.53 7.82 5.70 43.60 74.74 43.67 74.76 99.64
200 7.43 7.50 5.50 31.74 61.02 31.80 61.02 99.76
300 7.47 8.21 4.63 45.22 48.94 45.53 49.10 98.87

200

150 8.30 8.64 5.80 72.13 93.34 72.19 93.34 99.30
200 7.37 7.95 5.77 74.07 86.25 74.20 86.27 98.63
300 7.80 8.13 5.73 48.95 71.29 48.97 71.29 99.89

Σ3

150

150 97.79 97.11 95.83 63.95 86.21 90.34 94.20 17.21
200 94.39 94.19 91.33 60.98 79.46 86.78 90.68 22.97
300 86.60 86.65 79.23 52.80 65.32 80.20 84.24 32.00

200

150 99.75 99.76 99.77 76.64 97.18 97.65 99.23 4.70
200 99.38 99.36 98.80 74.13 93.64 96.58 98.28 6.87
300 97.20 97.19 95.00 68.29 84.72 94.16 96.03 11.58

Σ4

150

150 86.85 87.21 81.07 43.96 67.18 79.16 83.61 28.31
200 80.54 81.02 72.17 40.78 59.69 74.66 78.77 34.70
300 69.27 69.90 59.13 36.63 47.16 67.55 71.02 43.59

200

150 96.41 96.37 94.27 52.93 83.52 90.88 94.00 13.11
200 93.34 93.43 89.60 50.59 76.71 88.64 91.79 16.22
300 86.64 86.74 79.30 47.18 64.74 83.79 86.99 25.22

more, when the elements of the covariance matrix are uniformly located near

the diagonal in the cases of Σ3 and Σ4, our CPT approach is much better

than the optimal projection method. However, the CPT approach is still the

most effective after the power enhancement technique, the projection method

(see tests T 2
CP and T 2

OP) is only slightly better than the method of modifying

Hotelling’s tests (e.g., the T 2
BS, T 2

S , and T 2
CQ methods) for random samples

from a multivariate normal distribution when P (Ŝ = ∅) becomes larger, such

as the case of p = 300 for Σ4. Now that the sample size is set to n = 200 and

the covariance matrices are Σ3 and Σ4, it is obviously found that the proba-
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bility P (Ŝ = ∅) becomes very small, and the empirical power of JOP + J0 and

JCPT + J0 are both close to 1, which is exactly consistent with Theorem 5.

5.2 Real data analysis

In this section, we employ a pig gene dataset from the Department of Ani-

mal Science at Iowa State University. The dataset is significant at differen-

t levels with respect to certain treatments and was previously analyzed by

Lkhagvadorj et al. (2009), Chen et al. (2010), and Guo and Cui (2019). To

implement our cross projection test, we equally divided a dataset from an

experiment with 24 six-month-old Yorkshire gilts into four groups. The gilts

are genotyped by the MC4R (melanocortin-4 receptor) gene. Half with D298,

and the other half with N298. However, two diet treatments were assigned

randomly for each genotyped gilt, in which six of them were fed without re-

striction, and the others fasted. A more detailed description of the experiment

can be found in Lkhagvadorj et al. (2009). There are 24,123 genes in the liv-

er tissues and 6176 gene sets, which fluctuate in dimension from 1 to 5158.

The original goal of this research analysis was to identify treatment effects on

the gene expression structure levels, and our interest is testing the difference

within each gene set for different treatments.

To meet our theoretical analysis requirements, we only focus on 302 gene
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sets, with a dimension greater than 50 and smaller than 800 to meet the

requirement that p be greater than sample size n. Assume that S1, . . . ,S307

are used to quantify 302 sets of genes, where gene-set Sg consists of pg genes.

As the number of gilts in the different treatment groups was the same, 12 gilts

without food restriction and 12 gilts with the fasting treatment, we used them

as pairwise matching data. Let x
(g)
1,i and x

(g)
2,i be the i-th gilt for the fasting

and unrestricted groups, respectively, both with the pg dimensional vector

for the g-th gene set. Let y
(g)
i be the difference between x

(g)
1,i and x

(g)
2,i . If

no significant difference exists between the treatment and control groups, the

mean of
{
y
(g)
i

}
is equal to 0pg. Therefore, the null and alternative hypotheses

within each gene set are described as follows

H0g : µ(g) = 0pg verus H1g : µ(g) 6= 0pg ,

where the µ(g) is the pg-dimensional mean vector of the g-th gene set {y(g)}.

Under significance level α = 0.05, Figure 1 shows a histogram of the p-values

for the mean test for the 302 gene sets using the CPT method.

From Figure 1, we can see that most gene sets show significant differences

between the treatment group with fasting and the control group without re-

striction. From our specific analysis, about 74.2% of the gene sets have sig-

nificant differences in the mean level, which is basically consistent with the

biological conclusion of Lkhagvadorj et al. (2009).
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Figure 1: Histogram of p-values for cross projection tests.

6. Conclusion and discussion

In this study, we proposed a new cross projection test approach to the widely

studied high-dimensional mean vector hypothesis tests. The main goal was

to improve the performance of the optimal projection direction with only one

splitting proposed by Huang (2015). In our approach, test statistic T 2
CP inte-

grates p projection directions and makes full use of the information from the

two segmented samples obtained through the splitting technique to construct

our cross projection test. Simultaneously, the selection of tuning parameter λ

in the estimation of the inverse covariance matrix and the splitting of a per-

centage of samples, as performed in the test in Huang (2015), are also avoided

in our application. Instead, the CPT only uses the first half of the samples

to select the projection direction. The other half of the samples are used to

perform the test. Regarding the sample splitting technique, the test statistic
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loses information at the intersection of the two split samples, so the simu-

lation showed some disadvantages compared to the modified Hotelling’s test

statistic. However, when the correlation between two variables is strong or

the eigenvalues of the matrix have spikes, our CPT still works well, while the

modified Hotelling’s method fails. For the sparse mean test, the T 2
CP statistic

becomes JCPT +J0 after the power enhancement technique added. Regardless

of what type of structure the covariance matrix has, our new CPT approach

performs the best, to a certain extent.

In our extended research on the high-dimensional two-sample mean vector

test when the population covariance matrices Σ1 = Σ2, the specific hypothesis

testing was H0 : µ1 = µ2 versus H1 : µ1 6= µ2. We then outlined the

steps of this requirement. For instance, for two samples, X1 ∈ Rn1×p and

X2 ∈ Rn2×p, we first divide X1 and X2 into X11 ∈ Rn11×p and X12 ∈ Rn12×p,

and X21 ∈ Rn21×p and X22 ∈ Rn22×p, respectively. We then combine samples

X11 and X21 to find p projection directions with size n11 + n21. The total

size of the two split samples, X12 and X22, is equal to n12 + n22, and these

are merged to perform the test statistic in the projection directions. The

remaining steps of the two-sample test are shown in the CPT implementation

process proposed for the one-sample case in Section 2.
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The proofs of the theorems 1–5 are given in the Supplementary Material.
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