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Abstract: We consider the problem of constructing confidence intervals for the locations of

change points in a high-dimensional mean shift model. We develop a locally refitted least

squares estimator and obtain component-wise and simultaneous rates of estimation of change

points. The simultaneous rate is the sharpest available by at least a factor of log p, while the

component-wise one is optimal. These results enable existence of limiting distributions for the

locations of the change points. Subsequently, component-wise distributions are characterized

under both vanishing and non-vanishing jump size regimes, while joint distributions of change

point estimates are characterized under the latter regime, which also yields asymptotic indepen-

dence of these estimates. We provide the relationship between these distributions, which allows

construction of regime adaptive confidence intervals. All results are established under a high

dimensional scaling, in the presence of diverging number of change points. They are illustrated

on synthetic data and on sensor measurements from smartphones for activity recognition.

Key words and phrases: High dimensional, Inference, Limiting distributions, Multiple change

points, Optimal estimation, Regime adaptation
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1. Introduction

Statistical models with multiple change points are of significant interest due to their nu-

merous applications in diverse areas, including economics and finance (Frisén (2008)),

functional genomics and neuroscience (Koepcke et al. (2016)) amongst others. These

have been studied extensively for a variety of statistical models, including mean shifts,

regression, graphical models, factor and specific time series models and various algo-

rithms have been developed to accomplish this task -dynamic programming, regularized

cost functions, multiscale methods, etc., see, e.g. the review by Niu et al. (2016).

The main statistical tasks in change point analysis aim to address the following

questions: (i) whether change point(s) exist in the data, (ii) assuming their existence,

estimation of their location and (iii) post-estimation inference. The literature on the

first two aspects is extensive and a multitude of methods for a variety of models is

available, including under a fixed dimension p setting (e.g., Fryzlewicz (2014); Frick

et al. (2014)) or a growing dimension with the sample size setting (e.g., Wang and

Samworth (2018)). We refer to (Yu, 2020) for a recent review of available methods

and results in both univariate and multivariate frameworks. On the other hand, the

literature on the third objective of post-estimation inference is rather sparse, with

selected results even in the univariate case only appearing recently.

This paper quantifies uncertainty through the construction of appropriately cali-

brated confidence intervals, when estimating multiple change points in a high dimen-

2

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0323



sional mean shift model given by

yt =
N+1∑
j=1

θ∗(j)1[τ
0
j−1 < t ≤ τ 0j ] + εt, for t = 1, ..., T, (1.1)

wherein yt = (yt1, yt2, ..., ytp)
T ∈ Rp denotes the response, and the noise vector εt ∈ Rp

comprising of subexponential random variables. The parameters to be estimated are

the number of change pointsN ∈ N+ = {1, 2, ...}, their locations τ 0 = (τ 01 , τ
0
2 , ..., τ

0
N)

T ⊆

{1, ..., T}N , and finally the mean vectors θ∗(j) ∈ Rp, j = 1, ..., (N + 1). The location pa-

rameters τ 0j , j = 1, .., N are of prime interest, while τ 00 = 0 and τ 0N+1 = T are defined

for notational convenience. Finally, p (number of data streams), and N (number of

changes) can diverge with sample size T , with the former potentially exponentially.

Further, for j = 1, ..., N, define jump sizes of model (1.1) as,

η∗(j) = (θ∗(j) − θ∗(j+1)), ξj = ∥η∗j∥2, ξ = min
1≤j≤N

ξj and ξ = max
1≤j≤N

ξj (1.2)

To our knowledge the problem of post-estimation inference in this setting has not

been addressed in the literature to date and the available inferential results under mul-

tiple change points are under univariate p = 1 designs, see, e.g., (Bai and Perron, 1998;

Eichinger and Kirch, 2018a; Cho and Kirch, 2022). Further, results are available in

single change point N = 1 settings; see Bai (1994) for a univariate (p = 1) model. The

case of diverging p is considered in Bhattacharjee et al. (2017, 2020); Kaul et al. (2023)

for mean shift, stochastic block models and graphical models, respectively. Recently,

a similar problem has also been considered in Xu et al. (2022) for linear regression.

The closest comparable article is that of Kaul et al. (2021) which considers the high
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dimensional case, but is again limited to a single change point setting (N = 1). It

is worth noting that the both methodological and technical differences between single

and multiple change point settings are well established in the literature; further, it

is known that the single change case yields considerable simplifications of the larger

problem. To that end, several completely new results are established in this paper

vis-a-vis those in Kaul et al. (2021), as shall be detailed throughout the article.

Main contributions and related literature.

1. (Optimality in the estimation rate): There are two distinct notions of minimax

optimality in change point analysis. The available methods in any mutivariate (fixed,

diverging or high dimensional p) and multiple change point framework have pursued

optimality in the jump size, i.e., estimators of change points which can consistently

estimate a jump size which is at the detection limit ξ ≥
√
s log p/T . In doing so, they

sacrifice the rate of estimation which is slower than the optimal rate Op(ξ
−2) by at

least logarithmic factors of p and T . Examples include (Wang and Samworth, 2018;

Wang et al., 2021) under high dimensionality, Cho et al. (2016) under fixed p, and also

several univariate settings, including Fryzlewicz (2014).

In contrast, we show that if one moves marginally away from the detection limit of

the jump size, then an optimal Op(ξ
−2) rate can be attained. The required deviation

is from ξ ≥
√
s log p/T to ξ ≥ s log3/2 p/

√
T. Note that the rate Op(ξ

−2) is free of

any dimensional terms, despite potential high dimensionality. This result provides

optimality in estimation in the considered high-dimensional setting in the presence of

4

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0323



multiple change points. The available analogs are limited to univariate settings, which

include recent articles by Verzelen et al. (2023); Eichinger and Kirch (2018b); Cho

and Kirch (2022), as well as classical results obtained in Bai and Perron (1998). This

optimal rate ensures existence of limiting distributions for the locations of the change

points, which existing near-optimal methods can not provide.

2. (Limiting distributions and confidence intervals): These are obtained and

characterized under the following regimes: (i) vanishing (ξ → 0), and (ii) non-vanishing

(ξ → ξ∞, 0 < ξ∞ < ∞) jump sizes. Further, we obtain both component-wise and

joint limiting distributions that in turn enable construction of asymptotically valid

confidence intervals, for any finite subset of the potentially diverging number of change

points. To the best of our knowledge, the ability to perform inference on locations

of multiple change point parameters is unavailable in the current literature under any

multivariate framework. The only results available in the literature are under univariate

settings, namely those of Bai and Perron (1998); Eichinger and Kirch (2018b); Cho and

Kirch (2022).

3. (Regime adaptation): Finally, we address the question of which of the two distri-

butions (vanishing vs non-vanishing) the practitioner should use to construct confidence

intervals. The traditional answer for this problem is to implement a regime adaptive

bootstrap procedure, proposed in Antoch et al. (1995) in a p = 1 setting and also

considered in Cho and Kirch (2022); Ng et al. (2022). We establish a novel result

that illustrates the inherent asymptotic adaptivity of the limiting distribution under
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the non-vanishing jump size regime to that under the vanishing jump regime. This

result shows that if one always employs the former distribution to obtain confidence

intervals, then they remain asymptotically valid even if the regime was mis-specified.

Hence, it eliminates the need for implementing a computationally expensive bootstrap

procedure which is especially useful in high-dimensional settings.

As shall be made precise in the following section, methodologically we consider a

refitting process between random end points, where the refitting is undertaken on over-

lapping segments of data. This approach was conceptually utilized in the application

section of Bai (1997) to heuristically extend a single change point method to multiple

change points, but to our knowledge it has not since been theoretically supported.

This is also in contrast to Kaul et al. (2021), where refitting is undertaken on a single

segment between fixed end points. To further describe the contributions of this article

in comparison to Kaul et al. (2021) we note the following. The issue of a joint distri-

bution of multiple change points, as well as their asymptotic independence does not

arise in the framework of Kaul et al. (2021), since the latter considers a single change

point. Further, we note that the asymptotic independence of change point estimates

established in the sequel, is somewhat counter-intuitive, yet valid. Note that change

point estimates are by construction obtained on overlapping segments of the data and

may seem at first sight correlated, which as shown is not the case. Finally, we note

that the third contribution (on regime adaptation) provides a novel solution to the

classical dichotomy problem of selecting in practice the limiting distribution to use for
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constructing confidence intervals and there is no analogous result in Kaul et al. (2021).

Notation: ∥δ∥1, ∥δ∥2, ∥δ∥∞ represent the usual 1-, Euclidean, and sup-norms, respec-

tively. For a set of indices U ⊆ {1, 2, ..., p}, let δU = (δj)j∈U represent a subvector of

components corresponding to indices in U. |U | and U c represent the cardinality and

complement of U. Denote by a∧b = min{a, b}, and a∨b = max{a, b}.We use a generic

cu > 0 to represent universal constants. All limits are with respect to the sampling

periods T. The notation ⇒ denotes convergence in distribution.

2. Preliminaries

Given the high dimensional nature of the posited model (1.1) (diverging dimension p as

a function of the sample size T ), we assume a sparsity condition on the jump vectors,

∥η0(j)∥0 ≤ s, 1 ≤ j ≤ N, where 1 ≤ s << T, see, e.g., Wang and Samworth (2018) and

Harchaoui and Lévy-Leduc (2010). Next, we consider the following reparameterized

version of the model through global centering (xt = yt − ȳ)

xt =
N+1∑
j=1

θ0(j)1[τ
0
j−1 < t ≤ τ 0j ] + ε∗t , for t = 1, ..., T, where,

θ0(j) = θ∗(j) − w(θ∗), w(θ∗) =
1

T

N+1∑
j=1

(τ 0j − τ 0j−1)θ
∗
(j) and

ε∗t = εt − ε̄, ε̄ =
1

T

T∑
t=1

εt, t = 1, ..., T. (2.1)

that transfers the s-sparsity of the jump vectors to Ns-sparsity of individual mean

vectors. Doing so allows us to exploit the assumption of sparsity quite differently
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than Wang and Samworth (2018) and Harchaoui and Lévy-Leduc (2010), without our

assumptions being any more stringent. A further algebraic manipulation of θ0(j) yields

a more insightful expression for these reparameterized means:

θ0(j) =
1

T

[
−

j−1∑
k=1

τ 0kη
∗
(k) +

N∑
k=j

(T − τ 0k )η
∗
(k)

]
, j = 1, ..., N + 1. (2.2)

Here
∑k−1

j=1 , and
∑N

j=k are defined to be zero at k = 1 and k = N + 1, respectively.

Note that in (2.2) the θ0(j), j = 1, ..., N + 1, are expressed as a linear combination of s-

sparse jump vectors η∗(j), j = 1, ..., N . The only consequence is a diminishing temporal

dependence induced in the re-defined noise term ε∗t of (2.1), which we shall show has

no statistical impact on our results.

Remark 1. (On the jump sizes of the reparameterized model (2.1)) Note that the

mean parameters θ∗(j) and θ
0
(j), j = 1, ..., N + 1 of models (1.1) and (2.1) are distinct.

However, the jump vectors and jump sizes that control properties of the change points

remain identical, since

(
θ∗(j) − θ∗(j+1)

)
= η∗(j) =

(
θ0(j) − θ0(j+1)

)
= η0(j), j = 1, ..., N.

Consequently, the jump size parameters ξj, j = 1, ..., N, ξ, and ξ defined in (1.2) remain

identical for the two models. Thus, in the remainder we do not distinguish between

jump vector and jump size parameters of models (1.1) and (2.1) that are denoted by

η0(j), ξj, j = 1, ..., N, and ξ, and ξ, irrespective of the underlying model.

Next, we consider a locally refitted estimator that yields the optimality and inferen-

tial properties discussed earlier. Let τ−j = (τ1, ..., τj−1, τj+1, ..., τN)
T ∈ {1, ..., T −1}N−1

8

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0323



be any vector with the jth component removed, additionally satisfying τj−1 < τj+1.

Consider any θ(j) ∈ Rp, j = 1, ...N +1 and let θ represent the concatenation of all θ′(j)s.

Define the following squared loss function evaluated at any point τj ∈ {τj−1, ..., τj+1}

w.r.t. realizations xt, t = 1, ..., T of model (2.1),

Qj

(
τj, τ−j, θ

)
=

τj∑
t=τj−1+1

∥xt − θ(j)∥22 +
τj+1∑

t=τj+1

∥xt − θ(j+1)∥22. (2.3)

For ease of presentation, assume for the time being the availability of preliminary

estimates τ̂ = (τ̂1, ..., τ̂N̂)
T ∈ RN̂ of the locations of the change points, and θ̂j ∈ Rp,

j = 1, ..., N̂ + 1 of mean parameters of model (2.1). In Section 4, we present how

to obtain such preliminary estimates that are not optimal, but straightforward to

construct. Then, for each j = 1, ..., N̂ , define a locally refitted plug-in least squares

estimator,

τ̃j := τ̃j
(
τ̂−j, θ̂

)
= argmin

τ̂j−1<τj<τ̂j+1

Qj

(
τj, τ̂−j, θ̂

)
, j = 1, ..., N̂ (2.4)

This local refitting based on slower than optimal preliminary nuisance estimates

leads to an improved estimate of the jth change point parameter that is optimal. This in

turn provides sufficient regularity for limiting distributions of these updated estimates

to exist, in the presence of potentially diverging number of change points and high

dimensionality of means.

Let Tℓ be the least spacing between change points satisfying min1≤j≤N+1

(
τ 0j −

τ 0j−1

)
≥ Tℓ ≥ 1, then the preliminary estimates to initialize (2.4) are required to
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satisfy,

max
1≤j≤N+1

∥θ̂(j) − θ0(j)∥2 ≤ cuσ
{Ns log(p ∨ T )

Tℓ

} 1
2
, and

N̂ = N, max
j=1,...,N

|τ̂j − τ 0j | ≤ cu1Tℓ, (2.5)

with probability at least 1− o(1). In Section 3, we establish the main results on infer-

ence, under these general conditions. As previously mentioned, Section 4 comprehen-

sively establishes how to construct such preliminary estimates under the intuitive rate

condition, (σ
ξ

){Ns log3/2(p ∨ T )√
(Tℓ)

}
≤ cu1,

wherein cu1 > 0 is a small enough constant, σ2 is a variance proxy parameter of the

data generating process (Condition 1) and the remained have all been defined earlier,

including ξ as the least jump size and N, s, p and the number of changes, sparsity and

overall dimension, respectively.

3. Main Results

We first state sufficient conditions for the results pertaining to the estimator τ̃ of (2.4)

All assumptions are on the first level model (1.1), even though the estimator τ̃ is based

on the centered data obtained from the reparametrized model (2.1). All additional

technical issues due to this transformation are addressed in the proofs.

Condition 1. (on distributions): The vectors εt = (εt1, ..., εtp)
T , t = 1, .., T, are

independent and identically distributed subexponential random vectors with variance
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proxy σ2 <∞ (Def. ?? & ?? in Supplement ??)

The posited class contains distributions that may exhibit heavier tails than the

Gaussian, and also includes discrete ones. More generally the class of subexponential

distributions subsumes the subgaussian class. Members of the class include the Laplace,

mean centered Exponential, mean centered Chi-square, amongst several others.

Condition 2. (on parameters):

(i) (covariance) The matrix Σ := Eεtε
T
t has bounded eigenvalues, i.e., 0 < κ2 ≤

mineigen(Σ) < maxeigen(Σ) ≤ ϕ2 <∞, for constants κ2, ϕ2.

(ii) (separation of jumps) Assume there exists at least one change point (N ≥ 1);

further, all N change points are distinct and sufficiently separated, i.e., for (τ 0j −τ 0j−1) =

Tℓj, j = 1, ..., N+1, we have min1≤j≤N+1} Tℓj ≥ Tℓ ≥ 1, for a positive sequence ℓ→ 0,

such that log T = o
(√

(Tℓ)
)
.

(iii) (sparsity) Let η0(j), j = 1, ..., N be jump vectors as in (1.2), so that max1≤j≤N ∥η0(j)∥0 ≤

s, wherein s ≥ 1 is a positive sequence of integers.

(iv) (relative order of jumps) For ξ, ξ in (1.2), let ξ ≤ cuξ, for cu ≥ 1.

All parts of Condition 2 are fairly standard in the literature. The bounds of

Condition 2(i) ensures finiteness of the asymptotic variances of the limiting processes.

Condition 2(ii) assumes existence of at least one change point and separation of all N

change points. In practice, existence of at least one change is established via boundary

tests, such as (Jirak (2015); Chen et al. (2022)); however, focusing on our objective of
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post-estimation inference, we assume this existence a priori. Condition 2(iii) assumes

sparsity of the jump vectors and as discussed in Section 2, we exploit this via the

reparametrized model (2.1) which transfers the assumed s-sparsity of Condition 2(iii)

to an Ns-sparsity on the individual θ0(j).

Condition 2(iv) assumes all jump sizes of model (1.1) are of the same order. This

assumption ensures that neighboring change points do not interfere in the estimation

of τ 0j . Stronger versions of 2(iv) are also common such as by assuming bounded jump

sizes, cu1 ≤ ξ ≤ ξ ≤ cu2, e.g. Cho and Fryzlewicz (2015) amongst several others. Note

that the boundedness of jump sizes implies 2(iv), but not conversely; hence 2(iv) is a

weaker assumption, it allows vanishing jump sizes, whereas boundedness does not.

Next, define sets of non-zero components of the means θ0(j) of (2.1),

Sj =
{
k ∈ {1, ..., p}; θ0(j)k ̸= 0

}
, j = 1, ..., N + 1. (3.1)

and let Sc
j , j = 1, ...N+1 denote the complement sets. The earlier discussion in context

of model (2.1), yields, maxj |Sj| ≤ Ns. Our analysis is agnostic on the choice of the

estimators used to obtain the preliminary estimates τ̂ and θ̂. Instead, we shall rely on

the following assumption.

Condition 3. (preliminary estimates τ̂ , and θ̂): Let πT → 0 be a positive sequence

and assume (i) and (ii) below hold with probability 1− πT .

(i) (Preliminary change point estimate τ̂ = (τ̂1, ..., τ̂N̂) of τ 0): For an appropri-
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ately chosen small enough constant cu1 > 0, we assume that,

N̂ = N, max
1≤j≤N

|τ̂j − τ 0j | ≤ cu1Tℓ,

wherein ℓ is the separation sequence defined in Condition 2(ii).

(ii) (Preliminary mean estimates of θ0 of (2.2)): Assume that the following two

properties hold. (a) Estimates θ̂(j), j = 1, ..., N + 1, satisfy ∥(θ̂(j))Sc
j
∥1 ≤ 3∥(θ̂(j) −

θ0(j))Sj
∥1, with Sj, j = 1, ..., N + 1 being sets of non-zero components defined in (3.1).

(b) Assume there exists a sequence rT ≥ 0, such that,

max
1≤j≤N+1

∥θ̂(j) − θ0(j)∥2 ≤ rT =
cu1ξ

(Ns)1/2 log(p ∨ T )
,

for a suitably small constant cu1 > 0, wherein ξ is the least jump size (1.2).

Condition 3 is constructed carefully with the following considerations. First, it is

stated in the weakest form that is sufficient for optimality of τ̃ , and second that it

is feasible. This condition serves as a temporary placeholder in the structure of our

argument. Feasibility of this condition is illustrated in detail in Section 4, where we

show that it can be eliminated and replaced by the intuitive rate restriction(σ
ξ

){Ns log3/2(p ∨ T )√
(Tℓ)

}
≤ cu1, (3.2)

wherein cu1 > 0 is a small enough constant. We further show that any sub-optimal

change point estimator from the literature -e.g., Wang and Samworth (2018); Cho et al.

(2016); Harchaoui and Lévy-Leduc (2010)- can serve as a preliminary change point one,

even though it does not possess the properties needed for inference; see, Corollary 1

and Algorithm 1 of Section 4.
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3.1 Rates of Convergence

3.1 Rates of Convergence

Theorem 1. (component-wise rate of estimation) Assume that Conditions 1, 2 and

3 hold. Then, for any given j = 1, ..., N, and any 0 < a < 1 with ca ≥
√
(1/a), the

following holds

|τ̃j − τ 0j | ≤ cuc
2
aσ

2ξ−2
j

with probability at least 1 − 2a − o(1) − πT . Equivalently, σ
−2ξ2j (τ̃j − τ 0j ) = Op(1), for

any given j = 1, ..., N.

Theorem 1 provides componentwise rates for τ̃j, j = 1, ..., N, that are minimax

optimal (see, e.g., Wang and Samworth (2018) (Proposition 3 of Supplement), Verzelen

et al. (2023) (Proposition 6)). It is the same rate that would be obtained if the nuisance

parameters θ0 and τ 0−j were known. This is an instance of the adaptation property, as

described in Bickel (1982), in the presence of a diverging number of change points and

underlying high dimensionality. The next result establishes an ℓ∞ rate of convergence

for the proposed refitted estimates.

Theorem 2. (ℓ∞ rate of estimation) Assume that Conditions 1, 2 and 3 hold. Then,

the following holds

max
1≤j≤N

|τ̃j − τ 0j | ≤ cuσ
2ξ−2 log2 T,

with probability at least 1− o(1)− πT .
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3.2 Limiting Distributions and Regime Adaptation

The rates in Theorems 1 and 2 are the sharpest available in the literature under

high dimensionality. For example, they are at least log p/ log T faster than those in

Wang and Samworth (2018) for their corresponding estimator. We also note that the

local refitting undertaken in (2.4) does not alter the number of change points N̂ of the

preliminary estimate τ̂ , thus, Condition 3(i) ensures Ñ = N̂ = N, w.p. → 1.

3.2 Limiting Distributions and Regime Adaptation

Next, we obtain component-wise and joint limiting distributions for the refitted change

point estimators. We start with some additional assumptions.

Condition 4. (stability of asymptotic variances): For jump sizes ξj, j = 1, ..., N

defined in (1.2) and covariance Σ as in Condition 2, assume the following limits exists,

ξ−2
j

(
η0T(j)Ση

0
(j)

)
→ σ2

(∞,j), 0 < σ2
(∞,j) <∞, for each given j = 1, ..., N. (3.3)

All limits in this work are with respect to the observation period T. The limits in

Condition 4 are acting in T via the dimension p and the jump sizes ξj, j = 1, ..., N.

The quantities σ2
(∞,j) j = 1, ..., N, serve as variance parameters of the limiting pro-

cesses, thus the need for their stability. Note that finiteness of these limits is already

guaranteed by Condition 2(i), while the current condition only assumes their stability.

To see this, observe that the assumed convergence is on a sequence that is guaranteed

to be bounded below and above, i.e.,

0 < κ2 ≤ min
1≤j≤N

ξ−2
j

(
η0T(j)Ση

0
(j)

)
< max

1≤j≤N
ξ−2
j

(
η0T(j)Ση

0
(j)

)
≤ ϕ2 <∞. (3.4)
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3.2 Limiting Distributions and Regime Adaptation

The above inequalities follow from the bounded eigenvalues assumption on Σ
(
Condition

2(i)
)
. An easier to interpret, but stronger sufficient condition for the finiteness of these

limits is by assuming absolute summability of each row or column of Σ. This condition

is satisfied by large classes of covariances, including banded and Toeplitz type matrices.

Condition 5. (rate of convergence of jump size): Let ξ and ℓ be as defined in

(1.2) and Condition 2(ii), respectively. Then, we assume that ξ−1 log T = o
(√

(Tℓ)
)
.

Recall our results allow potentially diminishing jump sizes. Condition 5 is the first

requirement imposed on the rate at which the least jump size (ξ) can converge to zero.

Theorem 3. (component-wise distributions for the vanishing jump size regime) As-

sume that Conditions 1, 2, 4 and 5 hold. Consider any given change point j = 1, ..., N,

and assume that the jump size ξj → 0 is vanishing, and that τ 0−j, θ
0 are known. Denote

τ̃ ∗j = τ̃j(τ
0
−j, θ

0). Then,

ξ2j (τ̃
∗
j − τ 0j ) ⇒ argmax

ζ∈R

{
2σ(∞,j)Wj(ζ)− |ζ|}, (3.5)

where Wj(ζ) is a two sided standard Brownian motion. Alternatively, when τ 0−j and

θ0 are unknown, let τ̃j be as defined in (2.4) and assume τ̂−j and θ̂ satisfy Con-

dition 3. Further, assume that the sequence rT in Condition 3(ii) satisfies rT =

{o(1)ξ}
/
{(Ns)1/2 log(p ∨ T )}. Then, the convergence (3.5) also holds when τ̃ ∗j is re-

placed with τ̃j.

Observe that a change of variable to ζ = σ2
(∞,j)ζ

′, yields that argmaxζ∈R
{
2σ(∞,j)Wj(ζ)−

|ζ|} =d σ2
(∞,j) argmaxζ′∈R

{
2Wj(ζ

′) − |ζ ′|}. Its cumulative distribution functions and
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3.2 Limiting Distributions and Regime Adaptation

thus its quantiles are readily available (Yao, 1987). These can be utilized to construct

asymptotic component-wise confidence intervals for change points under the assumed

vanishing jump regime. Next, we consider the non-vanishing regime for ξj → ξ(∞,j),

0 < ξ(∞,j) <∞. For this purpose, we require the following additional assumption.

Condition 1′ (additional distributional assumption): Suppose Condition 1, 2(i)

and 4 hold and assume for given j = 1, ..., N and constants c1, c2 ∈ R, the r.v.’s

c1 + c2ε
T
t η

0
(j) ⇒ P

(
c1, c

2
2ξ

2
(∞,j)σ

2
(∞,j)

)
, for t = 1, ..., T, for some distribution P , which is

continuous and supported in R.

As before, limits here are acting in T via p and ξj. The only additional requirement

in Condition 1′ is that the random variables under consideration are continuously

distributed. If one assumes a Gaussian error process, then Condition 1′ is redundant,

i.e., εt ∼ N (0,Σ), then P
(
c1, c

2
2ξ

2
(∞,j)σ

2
(∞,j)

)
∼ N

(
c1, c

2
2ξ

2
(∞,j)σ

2
(∞,j)

)
. More generally,

the variance expression in P
(
c1, c

2
2ξ

2
(∞,j)σ

2
(∞,j)

)
follows from Condition 4 together with

the jump size regime assumption of ξj → ξ(∞,j). The expression for its mean is trivial.

Consequently, the limiting distribution of c1 + c2ε
T
t η

0
(j) is well defined, i.e. supported

in R. Thus, Condition 1′ simply reflects notation for the underlying distribution P and

the notation P(µ, σ2), with EP(µ, σ2) = µ, and var
(
P(µ, σ2)

)
= σ2, is only for ease of

presentation, it does not imply P is characterized only by mean and variance.
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3.2 Limiting Distributions and Regime Adaptation

Next, define the following two-sided random walk initialized at the origin,

C∞(ζ, ξ, σ2) =



∑ζ
t=1 zt, ζ ∈ N+ = {1, 2, 3, ...}

0, ζ = 0

∑−ζ
t=1 z

∗
t , ζ ∈ N− = {−1,−2,−3, ...},

(3.6)

wherein zt, z
∗
t are independent copies of P

(
− ξ2, 4ξ2σ2

)
, which are also independent

over all t, for the distribution P of Condition 1′. Finally, let

C(∞,j)(ζ) = C∞
(
ζ, ξ(∞,j), σ

2
(∞,j)

)
j = 1, ..., N, (3.7)

wherein σ2
(∞,j), j = 1, ..., N, are asymptotic variance parameters as defined in Condition

4. These random walks C(∞,j)(ζ) of (3.7) can now be used to characterize the limiting

distributions of τ̃j for j = 1, ..., N, in the current non-vanishing regime. The only

additional requirement in Condition 1′, is that of continuity of the distribution P

needed for the regularity of the argmax of these two sided negative drift random walks.

Theorem 4. (componentwise distributions for the non-vanishing regime) Suppose Con-

ditions 1′, 2, 4 and 5 hold. Consider any given j = 1, ..., N, and assume that the jump

size is non-vanishing, ξj → ξ(∞,j), 0 < ξ(∞,j) < ∞, and that τ 0−j, θ
0 are known. Let

τ̃ ∗j = τ̃j(τ
0
−j, θ

0), then, we have,

(τ̃ ∗j − τ 0j ) ⇒ argmax
ζ∈Z

C(∞,j)(ζ), (3.8)

where C(∞,j)(ζ) is defined in (3.7). Alternatively, when τ 0−j and θ0 are unknown, let

τ̃j be as defined in (2.4) assume τ̂−j and θ̂ satisfy Condition 3. Additionally assume
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3.2 Limiting Distributions and Regime Adaptation

sequence rT of Condition 3(ii) satisfies rT = {o(1)ξ}
/
{(Ns)1/2 log(p ∨ T )}. Then, the

convergence (3.8) also holds when τ̃ ∗j is replaced with τ̃j.

The main distinction in the assumptions of Theorems 3 and 4 is the switch from a

vanishing to a non-vanishing jump size. Since the analytical form of argmaxζ∈Z C(∞,j)(ζ)

is unavailable, one can obtain the quantiles of these distributions by simulating sample

paths of the random walks under consideration. The above results allow construction

of asymptotic confidence intervals with any desired coverage (1− α) as

[
(τ̃j −MEα

j ), (τ̃j +MEα
j )
]
, where, (3.9)

MEα
j = qvασ

2
(∞,j)/ξ

2
j or MEα

j = qnv(α,j), in the vanishing and non-vanishing regimes,

respectively. The values qvα and qnv(α,j) represent quantiles at (1 − α) coverage of the

distributions of Theorem 3 and Theorem 4, respectively. These intervals shall guarantee

a componentwise nominal coverage asymptotically at (1−α) for any given j = 1, ..., N.

Remark 2. Computation of quantiles and in turn simulation from the limiting distri-

bution of Theorem 4 requires one to supply the incremental distribution P . This P

corresponds to the distribution of the projection δT εt (Condition 1′). Clearly, if one as-

sumes the model errors εt to be Gaussian, then P is also Gaussian. The reason for this

requirement is there is no underlying central limit theorem acting in the result for the

non-vanishing case. More generally, one may supply a dsitribution P based on domain

knowledge of the specific application, or appeal to the goodness of fit literature, e.g.,

Kolmogorov Smirnov test in order to empirically identify an incremental distribution
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3.2 Limiting Distributions and Regime Adaptation

based on the residuals.

The following result provides the joint limiting distribution of any finite subset of

change point estimates, under the non-vanishing jump size regime. In the following,

τ̃H and τ 0H are subvectors of τ̃ , τ 0, with entries corresponding to indices in H, i.e.,

τ̃H = (τ̃j, j ∈ H) and analogously define τ 0H .

Theorem 5. (Joint distributions for the non-vanishing regime) Suppose Condition 1′,

2, 3, 4 and 5 hold and assume rT of Condition 3(ii) satisfies rT = {o(1)ξ}
/
{(Ns)1/2 log(p ∨ T )}.

Let H ⊆ {1, ..., N} be any finite subset of change point indices and τ̃H = τ̃H(τ̂−H , θ̂)

be a subvector of change point estimates as defined in (2.4). Additionally assume the

jump size regime is non-vanishing, i.e., ξj → ξ(∞,j), 0 < ξ(∞,j) < ∞, ∀j ∈ H, then, we

have,

(τ̃H − τ 0H) ⇒ argmax
ζ∈Z|H|

∑
j∈H

C(∞,j)(ζj), (3.10)

where increments ztj and z
∗
tj of C(∞,j)(ζj), are independent for all combinations of each

other, over t as well as over j ∈ H. Moreover, the convergence (3.10) is equivalent to,

(τ̃H − τ 0H) ⇒ Πj∈H argmax
ζj∈Z

C(∞,j)(ζj), (3.11)

Consequently, τ̃j are also asymptotically independent over j ∈ H.

The product Πj∈H represents a joint distribution of dimension |H|, wherein the

marginal distributions of the components j ∈ H are those of the multiplicands, and

further the components j ∈ H are pairwise independent.
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3.2 Limiting Distributions and Regime Adaptation

This result extends component-wise coverage of (3.9) to simultaneous coverage

over any finite subset H of indices of change points, under the non-vanishing regime.

From a practical perspective, the most important consequence of this result is that

the increments ztj and z∗tj of C(∞,j)(ζj), are independent over j ∈ H. This allows the

equivalent representation of (3.11), which in turn yields asymptotic independence of τ̃j

over j ∈ H. The latter justifies computing component-wise intervals with an adjusted

component-wise coverage that maintains the simultaneous coverage as,

pr
(
τ̃j − qnv(α,j) ≤ τ 0j ≤ τ̃j + qnv(α,j), ∀j ∈ H

)
→ (1− α)|H|, (3.12)

where qnv(α,j), j ∈ H is defined in (3.9). One may adjust componentwise significance

level to α′ =
(
1− (1−α)1/|H|), in order to obtain simultaneous coverage at any desired

level (1 − α). An analogous simultaneous version of this result in the vanishing case

can also be developed similarly.

The above results allow construction of componentwise and simultaneous confi-

dence intervals for any finite subset of τ 0. However, the inherent split distributional

behavior leads to the natural question of which of the two distributions is to be em-

ployed in a real data setting, since the distinction of a vanishing versus a non-vanishing

jump size is unverifiable in practice. The following result addresses this problem and

illustrates that if the underlying regime is a vanishing one, then the distribution of the

non-vanishing regime undergoes an asymptotic adaptation to it. The result is inde-

pendent of the above considered model framework. However, it is stated in coherent

notations in order to allow its direct applicability. For explicit clarity on the acting
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3.2 Limiting Distributions and Regime Adaptation

limits in this result, we introduce subscripts on all sequences involved. In the following

a distribution P(µ, σ2) is said to be invariant under scalar addition and multiplication

if aP(µ, σ2) + b ∼ P(aµ+ b, a2σ2), for any constants a, b <∞.

Theorem 6. Suppose P(µ, σ2) is any distribution, with EP(µ, σ2) = µ and varP(µ, σ2) =

σ2 <∞. Let P be continuously distributed and invariant under scalar addition and mul-

tiplication. Furthermore, let ξT , σ
2
T and be any positive sequences in T, such that, as

T → ∞, the following limits hold. (i) ξT → 0, (ii) σ2
T → σ2

∞, where 0 < σ2
∞ < ∞.

Then, we have,

σ−2
∞ ξ2T argmax

ζ∈Z
C∞(ζ, ξT , σ

2
T ) ⇒ argmax

ζ∈R

(
2W (ζ)− |ζ|

)
, as T → ∞, (3.13)

where C∞(ζ, ξT , σ
2
T ) and W (ζ) are as defined in (3.6) and (3.5), respectively.

To view Theorem 6 in context of Theorems 3 and 4, set distribution P as in

Condition 1′ and underlying sequences as follows. (1) ξT as jump size ξj as in (1.2)

for any given j = 1, ..., N. (2) σ2
T = ξ−2

j η0T(j)Ση
0
(j), i.e., the variance defined in Condition

4. Then, all assumptions made in Theorem 6 hold. Specifically, ξT → 0 by regime

mis-specification and σ2
T → σ2

(∞,j), from Condition 4. Theorem 6 now provides a direct

connection between intervals for τ 0j in the vanishing and non-vanishing regimes. More

precisely, for any given j = 1, ..., N, one can construct intervals as,

CI(τ̃j) :=
[
(τ̃j − qnv(α,j)), (τ̃j + qnv(α,j))

]
, (3.14)

where qnv(α,j) is the (1− α/2)th quantile of the distribution in the non-vanishing regime.

The interval CI(τ̃j) is clearly valid with respect to the non-vanishing regime of Theorem
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4. On the other hand, an interval constructed using Theorem 3 for the vanishing case

is of the form
[
τ̃j ± σ2

(∞,j)ξ
−2
j qvα

]
, where qvα is the corresponding quantile. Instead of

using this direct formulation, obtaining the required quantile using its finite sample

approximation of Theorem 6, one obtains the asymptotically equivalent, σ2
(∞,j)ξ

−2
j qvα ≍

qnv(α,j). Substituting in the interval yields exactly the construction of CI(τ̃j). Thus, the

results of Theorem 3, Theorem 4 and their relationship in Theorem 6 together imply

that doing so yields the desired (1 − α) asymptotic coverage, pr
(
(τ̃j − qnv(α,j)) ≤ τ 0j ≤

(τ̃j + qnv(α,j))
)
→ (1− α), irrespective of whether the underlying regime is vanishing or

non-vanishing. In other words, the interval CI(τ̃j) is regime adaptive.

The next Section resolves the two remaining issues: (i) the availability of prelimi-

nary estimates τ̂ and θ̂ satisfying Condition 3, and (ii) positing explicit restrictions on

the rate of divergence of the model dimensions (s, p).

4. Construction of Feasible Change Point Estimators

We start by constructing estimates for the mean parameters. For any τ = (τ1, ..., τN)
T ∈

{1, ..., (T − 1)}N satisfying τj−1 < τj, j = 1, ..., N + 1, consider piece-wise means eval-

uated on the partitioning of {1, ..., T},

x̄(j)(τ) =
1

(τj − τj−1)

τj∑
t=τj−1+1

xt, j = 1, ...., N + 1, (4.1)

Next, define its ℓ1 regularized version for each j=1,...,N+1,

θ̂(j)(τ) = argmin
θ∈Rp

∥∥x̄(j)(τ)− θ
∥∥2

2
+ λj∥θ∥1, λj > 0. (4.2)

23

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0323



The ℓ1 regularization is equivalent to soft-thresholding (Donoho, 1995),

θ̂(j)(τ) = kλj

(
x(j)(τ)

)
, j = 1, ..., N + 1. (4.3)

with kλ(x) = sign(x)(|x| − λ)+, λ > 0, x ∈ Rp, wherein sign(· ), |· |, and (· )+. Recall

the soft-thersholding operator is defined as follows, for x ∈ R, (x)+ = x, if x ≥ 0, and

x = 0 if x < 0. are applied component-wise.

Next, we establish that θ̂(τ) evaluated with a plug-in change point estimate whose

rate is sub-optimal, still satisfies all requirements in Condition 3(ii), assuming that some

rate conditions on model parameters hold. Methodologically, it is the construction

of these regularized means that provides sufficient regularity despite potential high

dimensionality.

Condition 5′ (rates of model parameters): Assume one of the following conditions

written sequentially in order of strength.

(i)
(σ
ξ

){Ns log2(p ∨ T )
Tℓ

} 1
2 ≤ cu1, (ii)

(σ
ξ

){Ns log3/2(p ∨ T )√
(Tℓ)

}
≤ cu1,

(iii)
(σ
ξ

){Ns log3/2(p ∨ T )√
(Tℓ)

}
= o(1), (4.4)

wherein cu1 > 0 is a suitably chosen small constant.

The rate restrictions in Condition 5′ are progressively stronger and viewed together

with the following theorem provide important insights on the rate requirements needed

for both estimation and inference. This discussion is provided immediately following

the next result.
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Theorem 7. Suppose Condition 1, 2 and 5′(i) hold and let τ̂ be a preliminary change

point estimate satisfying,

N̂ = N and max
1≤j≤N

|τ̂j − τ 0j | ≤ cuσ
2ξ−2Ns log2(p ∨ T ), (4.5)

for some cu > 0, with probability at least 1−πT . Then, the estimate τ̂ satisfies Condition

3(i). Let ψ = maxj ∥η0(j)∥∞ and assume ψ/ξ = O(1). Further, assume Condition 5′(ii)

and that Tℓ ≥ log(p∨T ). Then, choosing λj = cuσ
{
log(p∨T )

/
T
}1/2

, j = 1, ..., N +1,

the mean estimates θ̂(j)(τ̂) satisfy Condition 3(iia) and the bound,

max
1≤j≤N+1

∥θ̂(j) − θ0(j)∥2 ≤ cuσ
{Ns log(p ∨ T )

Tℓ

} 1
2
, (4.6)

with probability at least 1− o(1)− πT . Consequently, θ̂(j)(τ̂), j = 1, ..., N +1 satisfy all

requirements of Condition 3(ii).

Theorem 7 shows that the only requirement for the main results of Section 3 to hold

is solely the availability of preliminary estimates τ̂ satisfying (4.5), which in turn yield

estimates τ̂ and θ̂ that satisfy all requirements of Condition 3. A couple of examples

from the literature that can be used to obtain τ̂ are provided in Remark 3.

Existing literature typically assumes restrictions similar to Condition 5′(i), which

leads to only sub-optimal rates of esitmation. Upon viewing 5(i) with respect to the

jump size, one may observe this requires ξ ≥ c{Ns log2 p/Tℓ}1/2, which is almost the

detection limit as provided in Liu et al. (2021). In the same context, the tighter Con-

dition 5′(ii) moves slightly away from this detection limit to ξ ≥ cNs log3/2 p/
√
(Tℓ).
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Algorithm 1: Locally refitted estimation of τ 0 = (τ 01 , ..., τ
0
N)

T .

Step 1: Implement any estimator τ̂ =
(
τ̂1, ...., τ̂N̂

)T
from the literature that satisfies

the near optimal bounds (4.5), with probability 1− o(1).

Step 2: Compute mean estimates θ̂(j)(τ̂), j = 1, ..., N̂ + 1, and obtain locally refitted

change point estimates,

τ̃j = argmin
τ̂j−1<τj<τ̂j+1

Qj

(
τj, τ̂−j, θ̂

)
, j = 1, ..., N̂ ,

(Output): τ̃ =
(
τ̃1, ...., τ̃N̂

)T
.

Upon doing so, one is able to improve estimation precision, and obtain an optimal

estimation rate for the change points, despite high dimensionality.

Algorithm 1 now presents the feasible implementation of the methodology, while

Corollary 1 summarizes its estimation and inferential properties.

Corollary 1. Assume that Conditions 1, 2 and 5′(ii) hold, together with Tℓ ≥ log(p∨T )

and that ψ/ξ = O(1). Then, τ̃ of Algorithm 1 satisfies the component-wise and ℓ∞

bounds of Theorems 1 and 2, respectively. If in addition Conditions 4 and 5′(iii) hold, τ̃

satisfies the component-wise limiting distribution in Theorem 3, under a vanishing jump

size, while if Condition 1′ holds, τ̃ satisfies the component-wise limiting distribution in

Theorem 4, under a non-vanishing jump size. Finally, it satisfies the joint limiting

distributions of Theorem 5 under the same non-vanishing regime and for any finite

subset H of the change point indices.
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The following remark provides an example of a method from the literature that

yields the preliminary estimate τ̂ .

Remark 3. For the high dimensional mean shift model, the projected CUSUM esti-

mator of Wang and Samworth (2018) provides thus far the sharpest ℓ∞ rate of esti-

mation available in the literature. Theorem 2 in that paper establishes N̂ = N and

max1≤j≤N |τ̂j − τ 0j | ≤ cuσ
2ξ−2ℓ−4 log(p∨T ), with probability at least 1− o(1), for their

proposed estimator. Under a fixed number of change points, N ≤ cu and ℓ ≥ cu, this

estimator satisfies the requirement (4.5) of the preliminary estimate for our method-

ology. When N is diverging, (4.5) holds under the relation ℓ−4 ≤ Ns. Consequently,

this estimator can serve as a theoretically valid preliminary estimate for Algorithm 1.

An example of a method that allows subexponential distributions is that of Cho et al.

(2016) in a dense framework.

To complete the last piece of this puzzle we consider the problem of implementing

the proposed confidence intervals with estimated variance and drift parameters. Recall

that the results so far (Theorems 3, 4 and 6) rely on unknown drift −ξ2j and variance

ξ−2
j η0TΣη0 parameters, in order to obtain margin of errors and thereby confidence

intervals. We leverage the standard practice of employing plug-in estimates to obtain

the desired parameter estimates.

Let τ̃ , Ñ and θ̂(j), j = 1, ..., N be estimates from Algorithm 1. Define η̂(j) =
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θ̂(j) − θ̂(j+1), j = 1, ..., Ñ , and jump size and variance estimates as,

ξ̃j = ∥η̂(j)∥2, and σ̃2
j = ξ̃−2

j η̂(j)Σ̃η̂(j), j = 1, ..., Ñ (4.7)

Let Σ̃ represent the sample covariance of the data {xt}Tt=1 centered with the esti-

mated mean parameters partitioned over changes induced by τ̃ , i.e.,

Σ̃ =
1

T

Ñ+1∑
j=1

τ̃j∑
t=τ̃j−1+1

(xt − θ̂(j))(xt − θ̂(j))
T (4.8)

Then under the non-vanishing regime, confidence interval (3.14) can be implemented

by obtaining quantiles q̃nvα,j of the underlying limiting distribution under the above

estimated parameters. Confidence intervals under the vanishing regime can be obtained

by a direct substitution of the drift and variance estimates. The following discussion

and result establishes the validity of this approach.

Consider an event A on which the following bounds hold,

A =

{
(i) max

1≤j≤N
|τ̃j − τ 0j | ≤ Cξ−2 log2 T, (ii) Ñ = N

(iii) max
1≤j≤N+1

∥θ̂(j) − θ0(j)∥2 ≤ C
{Ns log(p ∨ T )

Tℓ

}1/2
}

(4.9)

where C is a finite constant. Note that we have already shown that P (A) → 1 as part

different results of this article, specifically, this holds by an aggregation of Theorem 2

and Theorem ?? and (??) in Proof of Theorem 7 of the Supplement. The structure

of the following proofs illustrates that the plug-in estimates (4.7) are consistent by

proving the property holds on the set A whose probability converges to one.
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Lemma 1. Assume the conditions in Corollary 1. Then, the estimates (4.7) are con-

sistent, i.e., we have,

(i)
ξ̃−2
j

ξ−2
j

→p 1, and, (ii)
σ̃2
j

σ2
(∞,j)

→p 1, as T → ∞, (4.10)

for all j = 1, ..., N,1

The next result establishes that employing these estimates towards construction

of the proposed confidence intervals is asymptotically equivalent to those obtained by

the unknown parameters.

Corollary 2. Suppose conditions of Corollary 1 hold and let the regime be that of a

non-vanishing jump size. Further, for any given 0 < α < 1, let q̃nvα be (1 − α/2)th

quantile of the distribution argmaxζ C
(
ζ, ξ̃, σ̃2

j

)
of (3.6) in the corresponding regime

obtained under estimated drift and variance parameters. Then, the confidence interval[
τ̃j ± q̃nvα

]
provides asymptotically nominal coverage at any given j = 1, ..., N , i.e.,

pr
(
τ̃j − q̃nvα ≤ τ 0j ≤ τ̃j + q̃nvα

)
→ (1− α) for any given j = 1, ..., N

Analogous results also hold under the vanishing regime, as well as for the simultaneous

intervals obtained in (3.12).

Remark 4. It can be seen from the proof of Lemma 1 that one does not necessarily

require employing the mean estimates β̂ from Algorithm 1 in order to obtain consistent

estimates of the drift and variance parameters. Instead, one only requires them to

1Here →p represents convergence in probability
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satisfy the condition max1≤j≤N+1 ∥θ̂(j) − θ0(j)∥2 ≤ C
{
Ns log(p ∨ T )

/
Tℓ

}1/2

assumed

in event A. In our numerical results, we employ refitted mean estimates computed as

θ̃(j) =
[
x̄(j)(τ̃)

]
Ŝj
j = 1, ..., N , wherein Ŝj = {k θ̂(j)k ̸= 0}, j = 1, ..., N correspond to

the estimated sparsity sets, with all remaining indices of these mean estimates set to

zero. We adopt these estimates to alleviate finite sample regularization biases in the

high dimensional means. It is known that refitted mean estimates preserve the rate of

convergence of the regularized version, while reducing finite sample biases, e.g. Belloni

et al. (2011) and thus the corresponding validity of the procedure.

5. Numerical Experiments

Based on synthetic data, we illustrate next Algorithm 1 and the inference results devel-

oped in Section 3 and summarized in Corollary 1. For the numerical experiments, data

are generated as per model (1.1). The mean vectors are set as θ∗(1) =
(
1Ts×1, 0..., 0

)T
p×1

,

θ∗(2) =
(
0Ts×1, 1

T
s×1, 0..., 0

)T
p×1

, and θ∗(3) =
(
0T2s×1, 1

T
s×1, 0..., 0

)T
p×1

. These are repeated iter-

atively depending on N. The matrix Σ is chosen to be Σij = ρ|i−j|, i, j = 1, ..., p with

ρ = 0.5. We consider all combinations of T ∈ {450, 600, 750}, p ∈ {50, 200, 350, 500},

and N ∈ {2, 4}. The locations of changes τ 0j , j = 1, ..., N, are set to N evenly spaced

values. We consider both subgaussian and subexponential noise. Specifically, for Sce-

narios A and B below εt ∈ Rp, are generated as εt ∼i.i.d N (0,Σ), whereas for Scenarios

A′ and B′ we generate εt = Σ
1
2wt, where each component w∗

tj ∼i.i.d Laplace(0, 1),

j = 1, ..., p, with zero mean and unit variance.
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Scenarios A and A′ reflect an idealized setting. Algorithm 1 is implemented with the

true τ 0 = (τ 01 , ..., τ
0
N)

T supplied in Step 1. This provides evidence towards a numerical

proof of principle of inference results supporting Algorithm 1 and also serves as a

benchmark for Scenario B.

In Scenarios B and B′, all parameters need to be estimated. Step 1 of Algorithm 1 is

carried out by one of two methods. First, the projected CUSUM estimator of Wang and

Samworth (2018) (WS) is used, as implemented in R-package InspectChangepoint.

Tuning parameters are set to the default values in the package. We denote this method

as WS+LR, wherein LR refers to local refitting.

We also implement Step 1 with a second method. The ℓ0 regularized near optimal

estimator of Kaul et al. (2021) (Remark 4.2 in that paper, henceforth KFJS) designed

for a single change point is extended via binary segmentation, i.e., recursive application

of the method. This is described as Algorithm 3 in Supplement ??. Tuning parame-

ters are selected as recommended in the article. The overall procedure is denoted as

KFJS+BS+LR, wherein BS refers to binary segmentation.

We construct component-wise confidence intervals according to (3.9), with τ̃ being

the output of Algorithm 1. In all cases, we set α = 0.05. The critical value qvα =

11.03 under the vanishing regime is evaluated by using its distribution function in Yao

(1987). The quantile qnv(α,j) of the argmax of the two sided random walk is computed

by simulating 3000 sample paths from it, whose computational details are provided

in Supplement ??. We assess the validity of the joint distribution in Theorem 5 by
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computing the simultaneous coverage yielded by these component-wise constructed

intervals. Since by construction we have a finite number of change points, Theorem

5 dictates that simultaneous coverage should satisfy pr
(
τ 0j ∈ CIj; ∀1 ≤ j ≤ N

)
→

(1− α)N . We set (1− α)N = 0.902, 0.814, for N = 2, 4.

Tuning parameters for mean estimates in Step 2 : The regularizers λj, j = 1, ..., N+

1 used to obtain soft thresholded mean estimates are tuned via a BIC type criterion.

Specifically, we set λj = λ, j = 1, ..., N, and evaluate θ̂λ(j)(τ̂) for λ in a uniform grid of

twenty five values. Upon letting Ŝ =
{
k ∈ {1, ..., p}; ∪N+1

j=1 θ̂(j)k(τ̂) ̸= 0
}
we set λ as the

minimizer of BIC(λ) defined as, BIC(λ) =
∑N+1

j=1

∑τ̂j
t=τ̂j−1+1

∥∥xt− θ̂λ(j)(τ̂)∥∥2

2
+ |Ŝ| log T.

The following metrics are employed to summarize the results: (1) Hausdorff dis-

tance (haus. d.): average over replications of dH(τ̂ , τ
0), where

dH(τ̂ , τ
0) = max

{
min

1≤j≤N̂
d(τ̃j, τ

0), min
1≤j≤N

d(τ̃ , τ 0j )
}
,

and d(· , · ) denoting the absolute difference. (2) Standard deviation over replications

of the Hausdorff distance (sd). (3) N -match: relative frequency of number of times

N̂ = N. To measure inference performance, for Scenarios A and A′ we report, (4)

Component-wise coverage for the first change point τ 01 (Comp. coverage): relative

frequency of the number of times τ 01 lies in its confidence interval, obtained for both

the vanishing and non-vanishing regime results. (5) Average margin of error (av. ME)

for τ 01 : average over replications of the margin of errors of each confidence interval of

the first change point τ 01 . (6) Simultaneous coverage over all change point parameters

(Simul. coverage): relative frequency of the number of times τ 0j lies in the corresponding
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N = 2,

s = 4
haus.d(sd)

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

N = 2,

s = 4
haus.d(sd)

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

T p Vanishing Non-vanishing (1− α)N = 0.902 T p Vanishing Non-vanishing (1− α)N = 0.902

450 50 0.77(1.09) 0.924(2.15) 0.948(2.04) 0.884 600 350 0.77(1.06) 0.962(2.12) 0.968(2.04) 0.898

450 200 0.80(1.14) 0.942(2.14) 0.962(2.04) 0.87 600 500 0.72(0.92) 0.962(2.14) 0.974(2.02) 0.898

450 350 0.71(0.93) 0.958(2.13) 0.982(2.03) 0.902 750 50 0.82(1.18) 0.958(2.19) 0.970(2.03) 0.876

450 500 0.74(1.02) 0.954(2.11) 0.964(2.03) 0.886 750 200 0.86(1.14) 0.952(2.17) 0.968(2.04) 0.872

600 50 0.70(0.95) 0.966(2.17) 0.976(2.05) 0.898 750 350 0.82(1.15) 0.962(2.18) 0.970(2.03) 0.85

600 200 0.72(1.11) 0.962(2.17) 0.968(2.05) 0.892 750 500 0.81(1.07) 0.954(2.17) 0.972(2.04) 0.872

Table 1: Results of Scenario A with N = 2 based on 500 Monte-Carlo replicates. Coverage metrics

rounded to three decimals, all other metrics rounded to two decimals.

confidence interval for all j = 1, ..., N, obtained under the non-vanishing jump size

result. In Scenarios B and B′, the metrics pertaining to simultaneous coverage are

instead conditional versions, i.e., (4)’ Component-wise coverage for the first change

point τ 01 conditioned on N̂ = N (Comp. coverage
∣∣N̂ = N): relative frequency over

those intervals where N̂ = N of the number of times τ 01 lies in its confidence interval.

Analogous conditional versions are also reported for (5) and (6).

All results are based on 500 replicates. Partial results are reported in Tables 1 and

2 below (Scenarios A and B with N = 2). The remaining results are reported in Tables

?? and ?? (Scenarios A and B with N = 4), Tables ?? and ?? (Scenarios A′ and B′

with N = 2) and Tables ?? and ?? (Scenarios A′ and B′ with N = 4) in Supplement

??.

The numerical results are in strong agreement with the theoretical ones. The
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Method: KFJS+BS+LR Method: WS+LR

N = 2,

s = 4

haus.d(sd) N-match
Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

N = 2,

s = 4

haus.d(sd) N-match
Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

T p Vanishing Non-vanishing (1− α)N = 0.902 T p Vanishing Non-vanishing (1− α)N = 0.902

450 50 15.81(23.74) 0.68 0.947(2.16) 0.956(2.04) 0.856 450 50 17.52(30.92) 0.68 0.92(2.16) 0.938(2.07) 0.834

450 200 17.59(26.64) 0.69 0.945(2.14) 0.965(2.05) 0.908 450 200 15.62(29.65) 0.72 0.967(2.12) 0.989(2.03) 0.953

450 350 16.93(26.19) 0.7 0.948(2.18) 0.963(2.08) 0.862 450 350 16.82(31.40) 0.73 0.937(2.12) 0.959(2.02) 0.837

450 500 17.57(26.74) 0.69 0.948(2.24) 0.965(2.13) 0.851 450 500 16.98(32.13) 0.73 0.946(2.14) 0.956(2.05) 0.861

600 50 23.76(33.48) 0.64 0.944(2.15) 0.953(2.04) 0.85 600 50 19.68(38.88) 0.69 0.948(2.15) 0.956(2.06) 0.854

600 200 25.37(35.22) 0.65 0.933(2.17) 0.951(2.05) 0.831 600 200 21.78(41.97) 0.71 0.941(2.14) 0.958(2.03) 0.843

600 350 27.44(36.50) 0.63 0.956(2.18) 0.975(2.05) 0.892 600 350 22.19(43.37) 0.71 0.955(2.16) 0.966(2.03) 0.890

600 500 23.21(34.14) 0.67 0.931(2.18) 0.955(2.07) 0.871 600 500 23.29(44.33) 0.72 0.925(2.16) 0.944(2.04) 0.891

750 50 28.09(41.55) 0.65 0.951(2.18) 0.963(2.05) 0.884 750 50 28.59(55.66) 0.67 0.958(2.19) 0.964(2.04) 0.898

750 200 34.06(44.16) 0.61 0.970(2.18) 0.977(2.05) 0.882 750 200 21.88(46.98) 0.73 0.964(2.17) 0.973(2.03) 0.887

750 350 34.11(44.26) 0.61 0.957(2.19) 0.964(2.06) 0.868 750 350 22.16(46.92) 0.74 0.954(2.18) 0.959(2.04) 0.861

750 500 29.51(42.71) 0.66 0.933(2.19) 0.945(2.04) 0.861 750 500 20.78(48.78) 0.79 0.952(2.17) 0.960(2.04) 0.866

Table 2: Results of Scenario B with N = 2 based on 500 Monte-Carlo replicates. Coverage metrics

rounded to three decimals, all other metrics rounded to two decimals.

component-wise coverage in nearly all examined cases and under both regimes is at the

nominal level. Simultaneous coverage in Scenarios A and A′ for both N = 2, 4 provides

precise control at nominal coverage levels ((1 − α)2 = 0.902 and (1 − α)4 = 0.814).

Slightly larger deviations of simultaneous coverage from nominal levels are observed in

Scenarios B and B′, especially for N = 4. Based on a close examination of the results

for individual replicates, the main reason for these deviations is that the selection

consistency of the preliminary estimator, i.e., Pr(N̂ = N) → 1, can be quite slow.

We consider an additional Scenario C with larger values of T, where as expected,

simultaneous coverage moves closer to the nominal level (Supplement ??. As pointed

out by a referee, there are also a couple of cases in Tables 1 and 5 in the Supplement,

wherein the Haudorff distance seems marginally out of trend (case: T = 600, p = 50).
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This is however attributable to stochastic fluctuations in the synthetic data, which can

be seen by noting that the corresponding standard deviation of the Hausdorff distance

is larger; the latter is indicative of additional uncertainty in this observation. The

remaining cases provide a discernible trend wherein both the Hausdorff distance, as

well as its standard deviation are decreasing (when p decreases or T increases)

6. Application: Smartphone Based Human Activity Recognition

Modern cellphones integrate a host of sensors, including accelerometers, gyroscopes

and magnetometers. These sensors obtain measurements of their users daily activi-

ties. Human Activity Recognition (HAR) is a field that aims to identify activities of

persons based on such sensor information. We consider a data set obtained from smart-

phone embedded accelerometer and gyroscope measurements available at the reposi-

tory https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+

Using+Smartphones. Controlled experiments were carried out with a group of 30

volunteers within an age bracket of 19-48 years. Each person performed six activities

(walking, walking upstairs, walking downstairs, sitting, standing, laying) wearing a

smartphone on the waist. Using the embedded sensors, measurements were obtained

on the 3-axial linear acceleration and 3-axial angular velocity.

The data comprises of T = 7352 vectors, of dimension p = 561. A detailed de-

scription of each collected feature can be found in the repository provided above.

Each observed vector is labelled with the activity that the subject performed at the
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Estimated

Number of

Change Points

Estimated

Locations

(τ̃)

Confidence Intervals

(1− α) = 0.95

Vanishing Non-Vanishing

Ñ = 5

τ̃1 = 1228 [1225.91, 1230.83] [1226, 1230]

τ̃2 = 2299 [2297.46, 2300.53] [2298, 2300]

τ̃3 = 3285 [3284.74, 3285.25] [3285, 3285]

τ̃4 = 4570 [4567.79, 4572.21] [4568, 4572]

τ̃5 = 5945 [5944.78, 5945.21] [5945, 5945]

Table 3: Estimated change points and

confidence intervals

Change Point

Index (j)
1 2 3 4 5

Estimated

Jump Sizes

(ξ̃j)

10.63 15.66 38.23 4.07 10.22

Estimated

Asymptotic

Variances

σ̃2
(∞,j)

21.36 34.20 34.34 3.31 2.02

Table 4: Estimated jump sizes and

asymptotic variances

time. Our objective is to perform an unsupervised partitioning of observed vec-

tors over the sampling period, via the change point model (1.1), in order to gauge

the predictive power of such measurements in predicting the associated activity.For

this purpose, we sort the data set by the associated activity labels, so that model

(1.1) becomes applicable, with the true change points (activity transitions) located

at τ 0 = (1226, 2299, 3285, 4571, 5945)T . All observations are then randomized within

each activity label in order to eliminate any local temporal artifacts. The method

KFJS+BS+LR is used for estimation and inference on the locations of change points.

The component-wise coverage set to (1− α) = 0.95. Results are summarized in Table

3 and Table 4.

We identified all Ñ = 5 change points with high precision, thus, distinguishing all

six tasks undertaken in the experiment. The second, third and the fifth change points
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REFERENCES

are estimated at exactly the true values. Confidence intervals for the third and fifth ones

are very narrow under the vanishing regime and degenerate under the non-vanishing

one. The results highlight the predictive power of data collected from smartphones in

distinguishing ordinary tasks which may seem physically similar (e.g. sitting, standing

and laying). These observations have clear potential beneficial applications in fields

such as health care and assisted living, but also raise issues of privacy, since they may

aid in indirect monitoring of daily activities of the phone users.

Supplementary Materials

All proofs and additional simulation results are provided in the Supplement.
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