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Abstract: With the rapid advances of modern technology, tensor data (i.e., multi-

way array) have been collected in various scientific research and engineering ap-

plications. The classification of tensor data is of great interest, where predictive

models and algorithms are proposed for predicting a categorical class label for

each tensor-valued sample. Aiming to improve interpretability of tensor clas-

sification methods, we consider an intuitive and efficient discriminant analysis

approach, referred to as the Tucker Low-rank Classification (TLC) model. The

TLC model assumes that the between-class mean differences have a low-rank

Tucker decomposition, while the covariance matrix is separable. As such, the

TLC model greatly reduces the number of parameters by exploiting the tensor

structure. We construct a penalized estimator for the TLC model to achieve a

sparse Tucker decomposition on the key discriminant analysis parameters and

to further improve the parsimony in the final classifier. We establish estima-

tion, variable selection, and prediction consistency for the penalized estimator to

confirm that the proposed estimator achieves efficiency gain compared to stan-

dard methods. We demonstrate the superior performance of TLC in extensive
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simulation studies and real data examples.

Key words and phrases: Classification; Dimension reduction; Discriminant anal-

ysis; Tucker tensor decomposition.

1. Introduction

Tensor data, also known as multi-way arrays, are often collected in modern

scientific studies and engineering applications. For example, in gene ex-

pression analysis, observations are sometimes in the form of matrices (i.e.,

two-way tensors) with rows characterizing genes and columns representing

experimental conditions, tissues, or time points. Neuroimaging studies work

on analyzing electroencephalography (EEG, i.e., two-way tensors), anatom-

ical magnetic resonance imaging (MRI, i.e., three-way tensors), functional

magnetic resonance imaging (fMRI, i.e., four-way tensors), and so on.

The increasing popularity of tensor data has posed many challenges to

statistical analysis. One such challenge is that tensor data are usually high-

dimensional, which results in a large number of parameters and expensive

computation. A more distinctive challenge is that multi-way data usually

have information embedded in the tensor structure, which is not easy to ex-

ploit using classical vector methods. For example, if we vectorize our tensor

data, we could apply vector methods afterwards. To tackle the high dimen-
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sionality, we can apply penalized vector methods to enforce sparsity (e.g.,

Tibshirani 1996). However, such brute-force solutions are susceptible to

loss of information and may make interpretation difficult, because directly

vectorizing tensor data ignores their intrinsic structure. For instance, in

Section 7 we study the Gene Time Course Data, where predictors are ma-

trices, with gene expression levels arranged along columns and time points

along rows. It is difficult to recover such information on the vectorized data.

Therefore, it is highly desirable to model tensors in their original form. To

this end, efficient algorithms and theoretical results have been established

on tensor decomposition (e.g., De Lathauwer et al. 2000; Zhang and Xia

2018). Meanwhile, statistical models and methods for tensor data are also

a fast developing area of research. See Bi et al. (2021) for a recent overview.

For tensor classification problems, we propose an interpretable model

that accounts for the tensor structures and the high dimensionality of the

data. Thanks to the simplicity and convenience of normal distributions,

the linear discriminant analysis (LDA) model has been extended to matrix

and tensor data in recent years (Molstad and Rothman, 2019; Pan et al.,

2019). Assuming tensor normal distribution within class, the tensor dis-

criminant analysis (TDA) model offers a probabilistic framework for tensor

classification and has direct interpretation and analogy to the LDA model.
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Moreover, the tensor normal distribution implies a separable covariance

that drastically reduces the number of parameters. The resulting classi-

fiers are shown to work well in extensive numerical studies. However, the

tensor structure is not exploited when existing methods primarily model

the within-class means. Hence, they are likely to suffer loss of efficiency,

especially if the means have some parsimony structure.

To improve the parsimony of the TDA model, we propose a Tucker

low-rank classification (TLC) model. The TLC model is a refinement of

the TDA model, but in addition leverages the Tucker tensor decomposition

on the mean differences. As a result, the tensor coefficient in the optimal

classifier enjoys a reduce-and-predict interpretation. To further improve the

interpretability, we impose the sparsity assumption on the tensor coefficient

and construct a penalized estimator accordingly. Our estimator is shown

to achieve estimation, variable selection, and prediction consistency and

demonstrates competitive performance in numerical studies.

It is worth mentioning that the proposed method is related to, but

different from, three threads of existing classification methods. First, on

vector data there exist a large number of high-dimensional linear discrimi-

nant analysis methods (e.g., Cai and Liu 2011; Fan et al. 2012) But these

methods are not designed for tensor data. The second family of methods
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extend Fisher’s discriminant analysis (Fisher, 1936) to tensor data (e.g.,

Li and Schonfeld 2014; Zhong and Suslick 2015). These methods attempt

to maximize the between-class variation. In contrast, our method is based

on a probabilistic model and is guaranteed to obtain the optimal classifier.

Thirdly, researchers have developed logistic regression on tensor-variate pre-

dictors (e.g., Wimalawarne et al. 2016; Zhou et al. 2013; Li et al. 2018). But

the covariance structure of tensor predictors is practically ignored in these

regression models. By explicitly and jointly modeling the mean and covari-

ance of tensors, our discriminant analysis approach is easy to interpret and

efficient in computation. Moreover, many existing methods are designed to

work on binary classification problems, while our method provides a unified

solution to binary and multi-class problems.

2. Notation and Preliminaries

The following notations will be used repeatedly throughout this article. A

multi-dimensional array A ∈ Rp1×···×pM is referred to as an M -way tensor.

The vectorization of A, denoted as vec(A), is a vector of length (
∏M

m=1 pm)

with element Ai1,...,iM mapped to the j-th element of vec(A) where j =

1+
∑M

m=1

(
(im − 1)

∏m−1
m′=1 pm′

)
. The mode-k matricization ofA, denoted as

A(k), reshapes A as a (pk×
∏

m̸=k pm) matrix with Ai1,...,iM being the (ik, 1+
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∑
k′ ̸=k(ik′ − 1)

∏
l<k′,l ̸=k pl)-th element of A(k). The mode-k product of A

with a matrixD ∈ Rr×pk , denoted byA×kD, is of dimension p1×· · ·×pk−1×

r× pk+1 × · · · × pM with (A×k D)i1···ik−1jik+1···iM =
∑pk

ik=1 ai1i2···iMdjik . The

Tucker decomposition of tensor A is defined as A = C×1D1×2 · · ·×M DM ,

or equivalently written asA = JC;D1, ...,DMK, where C ∈ Rr1×···×rM , rm ≤

pm, is called the core tensor and Dm ∈ Rpm×rm ,m = 1, ...,M , are called

factor matrices. Usually factor matrices are assumed to be orthogonal, i.e.

Dm ∈ Opm×rm where Opm×rm is the set containing all pm×rm matrices with

orthonormal columns. If A can be decomposed in this way, it is said to have

a Tucker low-rank structure with the rank being r = (r1, ..., rM). A useful

fact is that vec(JC;D1, ...,DMK) = (⊗1
m=MDm)vec(C) where ⊗ represents

the Kronecker product. The inner product of two tensors, A,B ∈ Rp1×···pM ,

is defined to be ⟨A,B⟩ =
∑

i1···iM Ai1···iMBi1···iM . For more details on tensor

algebra, we refer to Kolda and Bader (2009).

The tensor normal distribution is an extension of the matrix normal

distribution (Gupta and Nagar 1999, Hoff 2011). For a random tensor vari-

able X ∈ Rp1×···×pM , it follows a tensor normal distribution with mean µ ∈

Rp1×···×pM and separable covariance matrices Σm ∈ Rpm×pm ,m = 1, ...,M ,

along each mode if X = µ + JZ;Σ1/2
1 , ...,Σ

1/2
M K where Z ∈ Rp1×···×pM has

(univariate) standard normal entries. We denote the tensor normal dis-
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tribution using X ∼ TN(µ,Σ1, ...,ΣM). Note that Σ1, ...,ΣM are iden-

tifiable up to (M − 1) rescaling constants. For example, given any pos-

itive constant c, the distribution TN(µ, cΣ1, c
−1Σ2, ...,ΣM) is the same

as TN(µ,Σ1,Σ2, ...,ΣM). Since vec(X) = vec(µ) + Σ1/2vec(Z) where

Σ = ⊗1
m=MΣm, the vectorization of a tensor normal variable is multivariate

normal: vec(X) ∼ N(vec(µ),Σ), but Σ has a Kronecker product structure.

3. The Model

3.1 The Tucker Low-rank Classification Model

For a random pair (Y,X) where Y ∈ {1, ..., K}, K ≥ 2, is a categorical

response and X ∈ Rp1×···×pM ,M ≥ 2, is an M -way tensor predictor, we

assume that (Y,X) follows the tensor discriminant analysis (TDA) model

Pr(Y = k) = πk, X | (Y = k) ∼ TN(µk,Σ1, ...,ΣM), (3.1)

where 0 < πk < 1,
∑K

k=1 πk = 1, µk ∈ Rp1×···×pM is the mean of X in

class k, k = 1, ..., K, and Σm ∈ Rpm×pm ,m = 1, ...,M , are positive definite

matrices that determine the dependence structure of X along each mode.

For identifiability issues, we assume σm,11 = 1 for m < M . Moreover, we
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3.1 The Tucker Low-rank Classification Model

assume that the adjusted mean of each class admits a Tucker decomposition,

µk − µ = JGk;A1, ...,AMK, k = 1, ..., K, (3.2)

where µ =
∑K

k=1 πkµk, Gk ∈ Rr1×···×rM is the core tensor for class k with∑K
k=1 πkGk = 0, and Am ∈ Opm×rm is the factor matrix along mode m.

We refer to the model in (3.1) & (3.2) as the Tucker low-rank classifica-

tion (TLC) model. The TLC model leverages the tensor structure to achieve

parsimony and facilitate estimation. Recall that a brute-force approach to

analyze tensor data is to first vectorize X and then use existing models

for vectors. The TLC model is drastically different from this vectorization

approach. Note that the TLC model is a discriminant analysis model. If

we vectorize X, we need to consider the linear discriminant analysis model

Pr(Y = k) = πk, vec(X) | (Y = k) ∼ N(ϕk,Σ), (3.3)

where ϕk ∈ R
∏M

m=1 pm and Σ ∈ R(
∏M

m=1 pm)×(
∏M

m=1 pm). Hence, even when

pm’s are only moderately large, both ϕk and Σ could be high-dimensional,

which brings challenges to the estimation. In contrast, by taking advantage

of the tensor structure, TLC reduces the number of parameters in means

and covariances. In what follows, we discuss these reductions respectively.

We refer to the reduction in the mean parameter as the first-order reduction,
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3.1 The Tucker Low-rank Classification Model

and the reduction in the covariance as the second-order reduction.

The first-order reduction is achieved by assuming the Tucker low-rank

decomposition for mean differences in (3.2). It reduces the number of free

parameters in means from O(
∏M

m=1 pm) to O(
∏M

m=1 rm +
∑M

m=1 rm(pm −

rm)). This reduction is significant, especially when rm is small compared to

pm. The low-rank assumption is sufficiently flexible for many applications,

as tensors can often be approximated by low-rank decompositions. For

example, we demonstrate how the low-rankness helps recover a 2D signal

in coefficients in Section S2.3 of Supplementary Materials.

Although the first-order reduction is considerable, in discriminant anal-

ysis model we have the potentially more intimidating parameter, the covari-

ance matrix. The second-order reduction aims to solve this issue. Instead

of allowing all the correlations to vary freely as in the vectorized model

(3.3), we model X with the tensor normal distribution, in which the depen-

dence structure is determined by the relatively small covariance matrices

Σm. Each covariance matrix Σm can be viewed as the dependence structure

of X along the m-th mode. By doing so, we reduce the number of parame-

ters in the covariance from O(
∏M

m=1 p
2
m) to O(

∑M
m=1 p

2
m). We also note that

the separable covariance structure in (3.1) has been applied in many other

tensor data analysis problems, such as regression (Li and Zhang, 2017),
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3.1 The Tucker Low-rank Classification Model

graphical models (e.g., Leng and Tang 2012; Yin and Li 2012; Zhou 2014;

Zhu and Li 2018; Lyu et al. 2019; Min et al. 2022) and clustering (Tait

et al., 2019; Mai et al., 2022). As suggested by the AE, we examine this

assumption in our real data analysis using the nonparametric bootstrap test

proposed by Aston et al. (2017).

As pointed out by a referee, there are some popular assumptions in the

literature that could further decrease the number of parameters. For ex-

ample, we could assume that Σm can be well approximated by a low-rank

decomposition, as in the spiked covariance model (Johnstone, 2001). The

low-rank structure allows us to specify Σm with fewer parameters. It is

interesting to explore whether such an assumption can further improve the

estimation accuracy. We note though that there will be some practical con-

siderations for us to assume the spiked covariance model. For one thing, we

will further need to know how many eigenvectors are sufficient to approxi-

mate the full covariance. For the other, as will be seen in Section 3.2, the

covariance matrices are nuisance parameters for classification, while the key

parameters are the discriminant coefficients. Hence, in discriminant analy-

sis we usually refrain from making too many assumptions on the covariance

matrix to maintain the flexibility of the classifier.

On their own, both the first-order and the second-order reductions are
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3.1 The Tucker Low-rank Classification Model

reasonably popular in tensor data analysis, but our TLC model has major

differences from the existing methods. For the first-order reduction, many

existing methods (Zhou et al. 2013; Li et al. 2018; Wimalawarne et al. 2016;

Chen et al. 2019) in tensor regression and classification exploit a low-rank

structure in the tensor coefficient. The second-order reduction has been

utilized in classification, graphical models, and clustering (Pan et al. 2019;

Lyu et al. 2019; Min et al. 2022; Mai et al. 2022). However, the TLC model

is the first that couples the two reductions in the discriminant analysis

model. Compared to the tensor generalized models in the literature, our

disciminant analysis model is more interpretable, with each parameter hav-

ing clear meanings. Moreover, as will be seen in Section 3.2, both the mean

difference and the covariance matrices are nuisance parameters for classifi-

cation. But with the two reductions, we are able to achieve a parsimonious

classifier that it is otherwise difficult.

Finally, we note that there are other efforts on tensor discriminant

analysis. For example, the model in (3.1) has been considered by Pan et al.

(2019) and Mai et al. (2022) for tensor classification and clustering. How-

ever, these works only consider the second-order reduction but not the first-

order reduction. Consequently, they still require estimating the excessively

large mean tensors and could be inefficient in estimation and computation.
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3.2 The Bayes Rule and Sparsity

Very recently, Wang et al. (2024) and Deng and Zhang (2022) consider the

envelope approach to (3.1), where the separable covariances are further de-

composed by reducing subspaces known as tensor envelopes. On the other

hand, Li and Schonfeld (2014) and Zhong and Suslick (2015) consider the

Fisher’s discriminant analysis approach that seeks multiway projection of

X to maximize the between-class variability. However, these works do not

have a probabilistic model. As a result, it is difficult to verify whether the

resulting classifier gives us the best accuracy possible. In contrast, our TLC

model yields an optimal classifier on the population level, which serves as

the target in our estimation. We discuss this optimal classifier in the next

section. Also, as pointed out by a referee, our TLC model has a similar

form to the tensor factor analysis model that has attracted considerable

attention in the literature. We discuss this connection in Section S4 in the

Supplementary Materials.

3.2 The Bayes Rule and Sparsity

The optimal classifier is commonly known as the Bayes rule. Given X, the

Bayes rule can be derived as (e.g., Hastie et al. 2009),

Ŷ = argmax
k=1,...,K

Pr(Y = k | X) = argmax
k=1,...,K

πkfk(X) (3.4)
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3.2 The Bayes Rule and Sparsity

where fk(X) is the probability density function of X conditional on Y = k.

Under the TLC model, we have the following result.

Lemma 1. The Bayes rule of the TLC model (3.1)&(3.2) is

Ŷ = argmax
k=1,...,K

{log(πk/π1)− ⟨Bk, (µ1 + µk)/2⟩+ ⟨Bk,X⟩} , (3.5)

where

Bk = JΦk;D1, ...,DMK, k = 2, ..., K, (3.6)

with Φk = Gk−G1 ∈ Rr1×···×rM , k = 2, ..., K, and Dm = Σ−1
m Am ∈ Rpm×rm.

Sometimes researchers assume that the factor matrices are orthogonal

in the Tucker decomposition. But in Lemma 1 we do not require Dm to be

orthogonal. The explicit expression of Dm will help us construct estimates

in Section 4. Note that, although Bk is of dimension p1 × · · · × pM , it is

determined by a much smaller number of parameters. In total, Φk and DM

have O((K − 1)
∏M

m=1 rm +
∑M

m=1 rm(pm − rm)) parameters. Again, this is

a result of the simultaneous first- and second-order reduction in the TLC

model. Suppose that we only consider the model in (3.1) but not (3.2), then

the discriminant direction Bk would be Jµk − µ1;Σ
−1
1 , . . . ,Σ−1

M K. Because

µk−µ1 has
∏M

m=1 pm free parameters without the low-rank assumption, Bk

has the same number of parameters. In this sense, it is indeed essential to

consider both (3.1) and (3.2) to maximize the parsimony in classification.
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3.2 The Bayes Rule and Sparsity

The Bayes rule can also be interpreted as a reduce-and-predict ap-

proach. Straightforward calculation shows that ⟨X,Bk⟩ = ⟨X̃,Φk⟩, where

X̃ = JX;DT
1 , . . . ,D

T
MK. Hence, the Bayes rule first projects X to be a

smaller tensor with the assistance of the low-dimensional matrices Dm, and

then calculates the discriminant score based on this small tensor. This

is partly made possible by (3.2), where the core tensor is different across

classes, but the loading matrices Am are constant across k. The constant

loading matrices ensure the existence of a common multi-way reduction

subspace that preserves all the information relevant to classification.

Aside from low-rankness, sparsity is another popular approach to tackle

the challenge of high-dimensionality. On one hand, estimating all parame-

ters accurately can be challenging. Even for models with low-rank structure,

the total number of free parameters may still exceed the sample size. On the

other hand, usually we are not only interested in prediction results, but also

in which features have an effect on classification. To this end, we introduce

sparsity in Bk’s based on the Tucker low-rank structure as follows,

sm := ∥Dm∥0 =
pm∑
i=1

1{Dm[i,:]̸=0}, m = 1, ...,M. (3.7)

When sm ≪ pm, we have strong sparsity. In the extreme case where sm =

pm, there is no sparsity constraint along mode-m. We denote the level of
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sparsity of the tensor discriminant coefficients by s = (s1, ..., sM).

Different from element-wise sparsity (Pan et al., 2019), we assume row-

wise sparse factor matrices to induce the sparsity in Bk’s. Such a structure

enables us to select variables contributing to classification along each mode

and hence provide more interpretability for the model. Due to the common

factor matrix assumption in (3.2), Bk(m)[im, :] = 0, ∀k ∈ {2, ..., K}, when

Dm[im, :] = 0, which implies that the im-th variable along mode-m does not

contribute to separate any pair of classes. This introduces group sparsity

among classes when K > 2.

Overall, TLC contains low-rank structures for both adjusted means and

discriminant coefficients, and the two sets of low-rankness are connected

with each other via the separable covariance structure. Corresponding ex-

pressions are summarized in Table S1 in Supplementary Materials.

4. Estimation Procedure

Assume that observations {(Yi,Xi)}ni=1 are i.i.d., we discuss the estimation

of the Bayes rule (3.5) in this section. As suggested by Lemma 1, compo-

nents to construct the Bayes rule include {πk,µk}Kk=1 and {Bk}Kk=2 where

the discriminant coefficients admit Tucker low-rank structures as in (3.6).

The estimation of {Σm}Mm=1 is considered as well, since covariances reflect
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4.1 Estimation of {πk,µk}Kk=1 and {Σm}Mm=1

the dependence structure in data and also work as intermediate parameters

when estimating {Bk}Kk=2. We introduce both the penalized estimator and

the maximum likelihood estimator (MLE) for {Bk}Kk=2 and demonstrate the

estimation procedure as follows.

4.1 Estimation of {πk,µk}Kk=1 and {Σm}Mm=1

To estimate µ and {πk,µk}Kk=1, we use the following method of moment

(MOM) estimators under the TLC model (3.1) & (3.2),

π̂k =
nk

n
, µ̂ =

1

n

n∑
i=1

Xi, µ̂k =
1

nk

n∑
i=1

1(Yi = k)Xi, (4.1)

where nk =
∑n

i=1 1(Yi = k), k = 1, ..., K. Accordingly, µ̂k − µ̂ is the MOM

estimator of µk − µ.

Next, we proceed to the estimation of {Σm}Mm=1. Denote p−m =
∏

l ̸=m pl.

The sample covariance along mode-m is defined as Sm = ((n−K)p−m)
−1
∑n

i=1(Xi−

µ̂Yi
)(m)(Xi − µ̂Yi

)T(m). We rely on the following result to obtain estimators

for {Σm}Mm=1. Similar results have been presented in recent studies (Pan

et al. 2019; Mai et al. 2022).

Proposition 1. Under the TDA model in (3.1),

E(Sm) =
1

p−m

(∏
l ̸=m

tr(Σl)

)
Σm, m = 1, ...,M. (4.2)
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4.1 Estimation of {πk,µk}Kk=1 and {Σm}Mm=1

Proposition 1 implies that the estimator of Σm can be obtained by

using the method of moment (MOM). As mentioned in Section 3.1, covari-

ances {Σm}Mm=1 are identifiable up to (M − 1) scaling constants. To avoid

the identifiability issue, we require σm,11 = 1 for m < M and hence have

σM,11 = Var(X1,...,1|Y = k). Combining the identifiability constraint with

Proposition 1, we propose to use the following estimators,

Σ̂m =
1

sm,11

Sm, m = 1, ...,M − 1, Σ̂M =
V̂ar(X1...1|Y = k)∏M

l=1 sl,11
SM , (4.3)

where V̂ar(X1...1|Y = k) = 1
(n−K)

∑K
k=1

∑
Yi=k(Xi,1···1−µ̂k,1···1)

2 is the pooled

sample estimate.

It is worth mentioning that {Σm}Mm=1 can be estimated by the max-

imum likelihood estimator (e.g., Manceur and Dutilleul 2013). However,

the MLE is more computationally expensive. Nevertheless, we derive the

MLE for {Σm}Mm=1 under the TDA model. Details about the estimation

algorithm and computational cost of such methods are included in Section

S2.2 in Supplementary Materials. The MLE does not have significant im-

provements over our estimates in (4.3), but is considerably slower. Hence,

we use the explicit form estimate in (4.3) to facilitate the estimation and

improve computation efficiency.
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4.2 The Penalized Estimator of {Bk}Kk=2

4.2 The Penalized Estimator of {Bk}Kk=2

Harnessed by the low-rank structure in (3.6), to obtain estimators for

discriminant coefficients {Bk}Kk=2, we only need to estimate core tensors

{Φk}Kk=2 and factor matrices {Dm}Mm=1. We present the estimation proce-

dure assuming that the rank of Bk is known. In practice, the rank is usually

unknown and need to be selected via cross validation or other criteria. We

propose to use the BIC defined in Section S1.4 of Supplementary Materials.

We start from the estimate of {Φk}Kk=2. Recall that Φk = Gk − G1

with Gk being the core tensor of µk −µ. Furthermore, the factor matrices,

{Am}Mm=1, are shared across classes. As such, the tensor µ ∈ Rp1×···×pM×K−1

which stacks (µk −µ1), k = 2, ..., K, along mode-(M +1) allows for a rank-

(r1, ..., rM , K − 1) Tucker decomposistion,

µ = JΦ;A1, ...,AM , IK−1K, (4.4)

where Φ ∈ Rr1×···×rM×K−1 with Φ[:, · · · , :, k − 1] = Φk, k = 2, ..., K. Thus,

we obtain {Φ̂k}Kk=2 by decomposing µ̂, which can be formulated as the

optimization problem as follows,

(Φ̂, Â1, ..., ÂM) = argmin
Φ∈Rr1×···×rM×(K−1)

Am∈Opm×rm ,m=1,...,M

∥µ̂− JΦ;A1, ...,AM , IK−1K∥2F, (4.5)

and solved by the Higher-Order Orthogonal Iteration (HOOI) algorithm
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4.2 The Penalized Estimator of {Bk}Kk=2

(De Lathauwer et al., 2000). HOOI is an iterative alternating least squares

(ALS) method which cyclically updates the estimate of each factor matrix

with a refined SVD and iterates until convergence. A detailed review of the

algorithm is given in Section S6 of Supplementary Materials.

Next, we estimate factor matrices {Dm}Mm=1. Recall thatDm = Σ−1
m Am,

m = 1, ...,M . This enables us to reformulate Dm as the solution to

min
D∈Rpm×rm

tr

(
1

2
DTΣmD−AT

mD

)
. (4.6)

Naturally, we can obatain the estimate forDm by solving (4.6) with Σ̂m and

Âm being plugged in. To enforce the row-wise sparsity in D̂m, we further

add a group Lasso penalty (Yuan and Lin, 2006) term to (4.6) and obtain

convex objective functions as follows,

min
D∈Rpm×rm

tr

(
1

2
DTΣ̂mD− ÂT

mD

)
+ λ

pm∑
l=1

√√√√ rm∑
j=1

D2
lj

 , (4.7)

where λ > 0 is a tuning parameter. Although we could use different tuning

parameters λm along each mode, the tuning is faster if we use the same λ

for all modes. The objective functions in (4.7) can be solved by using a

blockwise coordinate descent algorithm similar to that in Mai et al. (2019).

See Algorithm S2 in Supplementary Materials for details.

As suggested by (4.7), the objective functions along different modes
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4.3 The Maximum Likelihood Estimator of {Bk}Kk=2

have no interplay with each other and hence allow us to estimate factor

matrices independently by solving multiple matrix optimization problems.

Compared with methods (e.g., Li et al. 2018; Pan et al. 2019) which directly

optimize over tensor coefficients, TLC requires less memory and computes

faster. Consequently, the proposed method could resolve data of extremely

high dimensions without extra downsizing, which prevents potential infor-

mation loss in preprocessing. Together, TLC is able to work on a wide

range of data and achieve excellent performance even when the sample size

is limited. The algorithm is summarized in Algorithm S1 in Supplementary

Materials.

4.3 The Maximum Likelihood Estimator of {Bk}Kk=2

As suggested by a referee, we further consider the maximum likelihood

estimator (MLE) for {Bk}Kk=2. To obtain the MLE of {Bk}Kk=2, we rely on

the following result. Without loss of generality, we assume µ = 0.

Lemma 2. Under the TLC model (3.1)&(3.2), MLEs for {Am,Σm}Mm=1,

and {Gk}Kk=1 are given by Σ̃m = 1
np−m

∑n
i=1 (Xi − µ̃Yi

)(m)

(
⊗m′ ̸=mΣ̃m′

)−1

(Xi − µ̃Yi
)T(m) ,

Ãm = argmax
AT

mAm=Irm

tr
(
H̃1mAm

)
−1

2
tr
(
H̃2mA

T
mΣ̃

−1
m Am

)
, G̃k =

1
nk

∑
Yi=kJXi; J̃1, ..., J̃MK,

where J̃m =
(
ÃT

mΣ̃
−1
m Ãm

)−1

ÃT
mΣ̃

−1
m , H̃1m =

∑n
i=1 G̃Yi(m)

(
⊗m′ ̸=mÃ

T
m′Σ̃−1

m′

)
XT

i(m)Σ̃
−1
m ,

H̃2m =
∑n

i=1 G̃Yi(m)

(
⊗m′ ̸=mÃ

T
m′Σ̃−1

m′ Ãm′

)
G̃

T

Yi(m), nk =
∑n

i=1 1Yi=k.
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Lemma 2 indicates that we can estimate the model parameters by an

iterative algorithm, where we only update one parameter and fix others in

each step. Details about this iterative algorithm are summarized in Section

S1.3 in Supplementary Materials. Due to the invariance property of MLE,

we can further construct the MLE of Bk by plugging µ̃k, G̃k, Ãm, and Σ̃m

into (3.6). Note that there is no sparsity imposed on B̃k.

5. Theory

In this section, we discuss the statistical properties of the TLC model and

the TLC estimators. Theorem 1 gives the asymptotic property for the max-

imum likelihood estimator (MLE) of TLC and compares the asymptotic

covariance with that of MLEs under LDA and TDA models. Although our

TLC estimator is not the MLE, Theorem 1 demonstrates the benefits of

our assumptions in terms of estimation efficiency gains. For the penalized

estimator, Theorem 2 establishes the estimation error bound and variable

selection consistency for B̂k, and Theorem 3 establishes the prediction con-

sistency in binary classification.

Denote βk = vec(Bk), k = 2, ..., K. The three discriminant coefficient

MLEs are represented by β̂LDA
k , β̂TDA

k , and β̂TLC
k . To present all parameters
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in these models, we define parameter vectors as follows,

h =

{βk}Kk=2

vech(Σ)

 ,ψ1 =

 {βk}Kk=2

{vech(Σm)}Mm=1

 ,ψ2 =


{vec(Φk)}Kk=2

{vec(Dm)}Mm=1

{vech(Σm)}Mm=1

 ,

(5.1)

where Σ ∈ R
∏M

m=1 pm×
∏M

m=1 pm is the covariance matrix of vec(X) and the

operator vech(·) : Rq×q → Rq(q+1)/2 stacks unique entries of a symmetric

matrix to form a column vector.

The vector h contains all the parameters in the vectorized LDA model.

According to (3.1) and (3.6), we can see that h is an estimable function of

ψ1 and ψ2, i.e., there exists functions h1 and h2 such that h = h1(ψ1) =

h2(ψ2). Plugging in ψ̂1, and ψ̂2, we use ĥLDA, ĥTDA = h1(ψ̂1) and ĥTLC =

h2(ψ̂2) to denote the estimators obtained under the vectorized LDA, TDA,

and TLC models, respectively. The three estimators have reductions of

different orders. The estimate ĥLDA is obtained by using the brute-force

approach and hence has no reduction. The estimate ĥTDA uses only the

second-order reduction that comes from the separable covariance structure,

while ĥTLC leverages the first-order reduction as well due to the additional

low-rank structure. The asymptotic property of the three estimators is

stated in the following theorem.
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Theorem 1. Assume that {(Yi,Xi)}ni=1 are i.i.d. observations under the

TLC model (3.1) and (3.2). Denote the true parameters as h∗ = ((β∗
2)

T, ..., (β∗
M)T, vech(Σ∗)T)T.

Then,
√
n(ĥLDA − h∗) → N(0,Wβ),

√
n(ĥTDA − h∗) → N(0,Uβ), and

√
n(ĥTLC−h∗) → N(0,Vβ), with Vβ ≤ Uβ ≤ Wβ. Explicit forms of Wβ,

Uβ, and Vβ are given in Section S5 in Supplementary Materials.

Theorem 1 reveals the
√
n-consistency of the maximum likelihood es-

timators when the tensor-variate predictor is normally distributed. In par-

ticular, ĥTLC obtains the smallest asymptotic covariance among the three

estimators. Meanwhile, the relationship among the three asymptotic covari-

ances suggests that the asymptotic efficiency comes from the information

in structures related to reduction. When assumptions (3.1) & (3.2) hold,

the more reduction an estimator employs, the more information it can use

and hence the more asymptotically efficient it will be. Naturally, the TLC

model achieves the most asymptotic efficiency among the three models.

To develop theoretical properties of the penalized estimator, we con-

sider the diverging pm scenario. For simplicity, we consider the special

case of M = 3, but our results easily extend to other M . We also as-

sume that p1 ≍ p2 ≍ p3, s1 ≍ s2 ≍ s3, r1 ≍ r2 ≍ r3 throughout the

rest of this section. We further introduce the following notations. Denote

ηm = σrm(µ(m)) as the rm-th singular value of µ(m). Let η = min{η1, η2, η3},
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p = min{p1, p2, p3}, r = min{r1, r2, r3}, and s = min{s1, s2, s3}. Define

Sm = {j : the j-th row of Dm is not all zero} and its estimate Ŝm = {j :

the j-th row of D̂m is not all zero}. Further define tm,[Sm,:] ∈ Rsm×rm as

the subgradient of the group lasso penalty at true Dm,[Sm,:] and

ϕm = max{∥Σm,SC
mSm

∥∞, ∥Σ−1
m,SmSm

∥∞},∆ = max{∥Am∥1, ∥Dm∥1}

Dm,min = min
(k,j):Dm,kj ̸=0

|Dm,kj|, Dm,max = max
(k,j)

|Dm,kj|,

∥Σm,SC
mSm

Σ−1
m,SmSm

∥∞ = η∗m.

We consider the following conditions:

(C1) maxj∈SC
m

{∑rm
l=1(Σm,jSmΣ

−1
m,SmSm

tm,Sml)
2
}1/2

= κm < 1;

(C2) There exist constants c1, C1 such that c1
K

≤ πk ≤ C1

K
for k = 1, . . . , K,

Dm,max/Dm,min < C1 and Dm,min ≳ ϕ2
mrmpm log pm

nη2
;

(C3) Σm’s are positive definite, and C−1
Σ ≤ λmin(Σm) ≤ λmax(Σm) ≤ CΣ,

m = 1, ...,M , where CΣ > 1 is a fixed constant;

(C4) nη2 ≥ Cgapp
5/2, rm ≤ C0p

1/2
m where Cgap, C0 > 0 are fixed constants;

(C5) ∥µ∥F ≤ C ′ where C ′ > 0 is some constant.

Condition (C1) is a technical condition to guarantee the selection con-

sistency. A similar one has been used to study the group lasso penalized
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regression model (Bach, 2008). Condition (C2) ensures that the classes

are reasonably balanced. Condition (C3) requires the eigenvalues of the

covariance matrices to be bounded, which implies that Σm remains well-

conditioned as pm grows. Such a condition is commonly adopted to facil-

itate the analysis of high-dimensional tensor data (Pan et al., 2019; Lyu

et al., 2019; Min et al., 2022). Condition (C4) is a signal strength condition

to ensure an effective low-rank decomposition. Condition (C5) is a mild

assumption that comes from the low-dimensional structure of Gk − G1.

Theorem 2. Under the TLC model (3.1)&(3.2), denote the combined dis-

criminant coefficient as B where B[:,:,:,k−1] = Bk, k = 2, ..., K. Under

conditions (C1) - (C5), we have

(a) If λ ≍
√

rp log p
nη2

, the penalized estimator of B satisfies

∥B̂−B∥F ≲

√
srp log p

nη2
(5.2)

with probability at least 1−O (p−1).

(b) If there exist constants ψ1, ψ2 such that ψ1

√
pm log pm

nη2
< λ < min{Dm,min

8ϕm
, ψ2(1−

κm)}, we have that Ŝm = Sm with probability at least 1−O(p−1
m ).

Theorem 2(a) gives an upper bound for the discriminant coefficient

estimate given a properly chosen λ. If srp log p
nη2

→ 0, B̂ is consistent as
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n, p→ ∞. Theorem 2(b) suggests that we could identify important features

accurately using the penalized estimator if λ is chosen properly. If we

further assume that ψ1

√
pm log pm

nη2
≲
√

rp log p
nη2

≲ min{Dm,min

8ϕm
, ψ2(1 − κm)},

then when we choose λ ≍
√

rp log p
nη2

, the two parts of Theorem 2 gives the

estimation and variable selection consistency for the discriminant coefficient

estimator and supports the application of our model.

Next, we consider the prediction consistency of the penalized estimator

in binary classification, i.e, K = 2. Multiclass problems can be worked out

similarly. Define the oracle and empirical misclassification risk as follows,

Ropt(θ) = Pθ(label(X) ̸= Copt(X)), Rθ(Ĉ) = Pθ(label(X) ̸= Ĉ(X)),

where Copt(X) is the prediction of the Bayes rule and Ĉ(X) is that of TLC.

Theorem 3. Under the TLC model (3.1) & (3.2), if Conditions (C1) -

(C5) are satisfied, with λ ≍
√

rp log p
nη2

, we have

inf
θ
P

(
Rθ(Ĉ)−Ropt(θ) ≲

(s3 ∨ srp) log p
nη2

)
≥ 1−O(p−1). (5.3)

Theorem 3 suggests that the penalized estimator further achieves pre-

diction consistency when n, p → ∞ as long as (s3∨srp) log p
nη2

→ 0. Therefore,

the penalized estimator is asymptotically equivalent to the Bayes rule in

terms of classification accuracy.
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In our Theorems 2 & 3, the TLCmodel has a stronger assumption on the

dimensionality than TDA. It has been shown in the literature that the TDA

model can be consistently estimated when
(
∏M

m=1 sm)(
∑M

m=1 log pm)

n
→ 0

(Min et al., 2023). But we need srp log p
nη2

→ 0 for the penalized estimator

to be consistent, which is a stronger assumption on the dimensionality.

However, our dimensionality assumption still allows the tensor to have a

high dimension. Recall that p = min{p1, p2, p3}. When srp log p
nη2

→ 0, it is

still possible to have
∏3

m=1 pm to be much larger than n.

6. Simulation Studies

In this section, we examine the empirical performance of TLC when the

model assumptions are all satisfied. Performance comparison when the

model is mis-specified is included in Section S2.5 in Supplementary Materi-

als. We consider three versions of TLC: TLC-Oracle (sparse), TLC-Oracle

(MLE) and TLC-BIC (sparse). The oracle methods use the true ranks to fit

the models, either with the penalized procedure or MLE. TLC-BIC (sparse)

uses the proposed BIC to select ranks, and then fit the sparse estimates.

Apparently, only TLC-BIC (sparse) is applicable in practice where we do

not have information on true ranks, while the oracle methods are bench-

marks. We compare TLC with popular competitors including diagonal LDA
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(DLDA; Dudoit et al. 2002), l1-penalized general linear regression (l1-GLM;

Friedman et al. 2010), l1-penalized Fisher’s discriminant analysis (l1-FDA;

Witten and Tibshirani 2011), Tucker tensor regression (TuckerReg; Li et al.

2018), elementwise sparse tensor discriminant analysis (CATCH; Pan et al.

2019), constrained multi-linear discriminant analysis (CMDA) and directly

generalized tensor discriminant analysis (DGTDA; Li and Schonfeld 2014).

For all simulation models, we have 100 independent data replicates.

Within each replicate, the training set and the validation set both have 600

observations. Parameters of TLC and competing methods are tuned on the

validation set. The reported classification error rates are evaluated on the

test set which is of size 3000. When constructing simulation models, we

consider covariance structures including the autoregressive structure (Σ =

AR(σ), where σij = σ|i−j|) and the compound symmetry structure (Σ =

CS(σ), where σij = σ when i ̸= j and σii = 1 for all i).

First, we consider the case where predictors are matrices. In particular,

We set B2 as an image with a cross in the center and responses being

binary labels, i.e., K = 2 in Model M1. (Due to the space limit, results of

models where Bk’s are randomly generated are provided in Section S2.3 of

Supplementary Material.) The image of B2 is downloaded from the website

of TensorReg (https://hua-zhou.github.io/TensorReg/) and rescaled

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0007

https://hua-zhou.github.io/TensorReg/


so that the Bayes error rate is controlled to be around 5-10%. The coefficient

B2 with such an image signal has the sparse low-rank structure. Set n1 =

n2 = 300. We generate X according to (3.1) with µ2 =
1
2
JB2;Σ1,Σ2K,µ1 =

−µ2. Specifications of Model M1 are summarized in Table 1.

Next, we consider cases where predictors are 3-way tensors in Models

M2 - M4. Specifically, we consider binary classification with equal rank

along each mode in M2, multiclass classification with unequal mode ranks

in M3, and the case where predictors are higher-dimensional with higher

rank in M4. Moreover, for each model, we consider three different scenarios:

(a) all entries are independent; (b) all entries are correlated; (c) data are

imbalanced. According to (3.6), we construct {Bk}Kk=2 with randomly gen-

erated core tensors Gk and factor matrices Dm. Entries of Gk, k = 2, ..., K,

are normally distributed and G1 = −(
∑K

k=2 πkGk)/π1. To obtain row-wise

sparse Dm, we generate a random matrix D̃m ∈ Osm×rm and an index set

Ωm which is randomly sampled from {1, ..., pm} with the cardinality being

sm. The matrix Dm is set to be Dm[i, :] = D̃m[j, :] if i ∈ Ωm where i is the

j-th element of Ωm and Dm[i, :] = 0 if i /∈ Ωm.

Then, we construct Bk and µk with Bk = JGk−G1;D1,D2,D3K, k =

2, ..., K,µk = JGk;Σ1D1,Σ2D2,Σ3D3K, k = 1, ..., K, and generate pre-

dictors based on (3.1). Other specifications are summarized in Table 1.
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M1 M2 M3 M4

(a) (b) (a) (b) (c) (a) (b) (c) (a) (b) (c)

K 2 2 3 3

p (64, 64) (30, 30, 30) (30, 30, 30) (50, 50, 50)

r (2, 2) (3, 3, 3) (2, 3, 4) (5, 5, 5)

s (23, 22) (8, 8, 8) (8, 8, 8) (12, 12, 12)

Σ1 I64 I64 I30 AR(0.7) AR(0.7) I30 AR(0.7) AR(0.7) I50 AR(0.7) AR(0.7)

Σ2 I64 AR(0.7) I30 AR(0.7) AR(0.7) I30 AR(0.7) AR(0.7) I50 AR(0.7) AR(0.7)

Σ3 - - I30 CS(0.3) CS(0.3) I30 CS(0.3) CS(0.3) I50 CS(0.3) CS(0.3)

π1 1/2 1/2 1/2 1/2 1/4 1/3 1/3 1/5 1/3 1/3 1/5

π2 1/2 1/2 1/2 1/2 3/4 1/3 1/3 3/10 1/3 1/3 3/10

π3 - - - - - 1/3 1/3 1/2 1/3 1/3 1/2

Table 1: Simulation settings for M1-M4. In particular, entries of B2 are either 0 or 0.2
in M1(a) and are either 0 or 0.1 in M1(b).

Classification results of various methods are reported in Table 2. (Due

to the space limit, we report variable selection results in Section S2.1 in

Supplementary Materials.) The optimal Bayes error (i.e, the error of the

Bayes rule) is reported as a baseline of the classification error rate. We

can see that TLC significantly outperforms competing methods under all

settings. This supports the application of TLC across various numbers

of classes, prior probabilities, dimensions, ranks, sparsity, and covariance

structures. In particular, the margin of error rates between TLC and alter-

native methods increases from M1 to M4, which implies the importance of

honoring the tensor structure, especially the combination of the low-rank

structure and the separable covariance structure. Besides, the performance

of TLC-BIC (sparse) is close to that of TLC-Oracle (sparse) on matrix data,
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and there are no significant differences between error rates of the two meth-

ods when data are three-way tensors. This supports the application of the

proposed BIC. Rank selection results are reported in Section S2.4 of Supple-

mentary Materials. Compared with the penalized estimator, TLC-Oracle

(MLE) may have less satisfying performance under most settings, which

implies the necessity of honoring the sparsity structure in high-dimensional

context.

Error(%)
M1 M2 M3 M4

S.E.≤
(a) (b) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Bayes 7.11 6.65 6.34 5.90 6.41 6.54 6.72 7.14 7.79 5.23 5.15 (0.05)

TLC-Oracle (sparse) 8.47 7.93 7.41 9.67 13.07 7.31 9.14 9.06 11.21 13.59 10.08 (0.23)

TLC-Orale (MLE) 9.99 9.28 9.64 10.40 20.37 7.76 8.13 8.16 20.27 16.36 7.30 (1.58)

TLC-BIC (sparse) 8.86 9.00 7.41 9.54 12.39 7.32 9.17 9.32 11.24 13.25 9.95 (0.17)

CATCH 17.78 9.06 16.58 13.49 15.20 17.18 13.59 14.70 43.97 20.85 19.82 (0.17)

CMDA 14.15 13.33 18.21 19.06 23.75 22.27 18.95 17.19 36.13 24.97 18.96 (0.23)

DGTDA 50.16 50.04 50.09 48.31 35.78 66.53 64.16 57.56 66.53 65.55 59.44 (0.18)

TuckerReg 24.40 22.17 27.97 25.43 23.42 - - - - - - (0.49)

DLDA 23.60 10.29 36.68 30.36 27.25 48.56 32.74 27.61 57.52 36.78 26.97 (0.12)

l1-GLM 23.59 11.12 19.15 16.58 17.34 20.55 16.29 14.94 47.26 23.31 18.84 (0.15)

l1-FDA 18.59 8.12 25.09 25.68 24.56 31.21 29.43 25.61 56.52 36.78 26.97 (0.15)

Table 2: Prediction comparison. Mean and standard error of classification error rates
in M1-M4.

7. Real Data Analysis

In this section, we apply the TLC model on the Gene Time Course (GTC)

data. Analysis on another three datasets where TLC demonstrates promis-

ing performance is reported in Section S3 of Supplementary Materials.
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Recombinant Human Interferon beta (rIFNβ) is a regular treatment

used to control exacerbations in multiple sclerosis (MS) patients, but is

only reported to be successful on some patients. To explore the relationship

between gene expressions and responses to rIFNβ, Baranzini et al. (2004)

collected the GTC data which contains 76 gene expressions at 7 time points

(0, 3, 6, 9, 12, 18, 24 months after the treatment) from 53 patients. In total,

we have 53 observations with each observation being a 7 × 76 matrix. At

the end of the 24 month period, the patients were categorized into 2 classes:

33 good responders and 20 poor responders.

Our model assumptions (3.1) & (3.2) can be interpreted on this dataset

as follows. Under (3.1), the covariance matrix among the 76 genes at the

j-th time point is σ1,jjΣ2. Hence, we are assuming that, at any given

time point, the genes interact in a similar way. Some pairs have stronger

assumptions than others at any time points. Meanwhile, for any given

gene, the temporal dependence is also assumed to have a similar pattern.

This assumption can be verified by the visualization of correlation estimates

presented in Figure 2b and the hypothesis testing (Aston et al., 2017) result

presented in Section S3.1 of Supplementary Materials. We can see that there

exist similar strong positive correlations among genes NFkB-50 to IFNaR1

at different time points. And for genes like Caspase 6 and NFkB-60, their
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negative relationship with others remain stable across time. And these

patterns are all captured by the mode-2 correlation estimate under (3.1).

On the other hand, the low-rank assumption indicates that the variation

in the full data can be captured by a few linear combinations. As shown in

Figure 1, the first singular value of µ̂2 − µ̂1 is significantly larger than the

remaining ones. Moreover, Figure 2a suggests that the rank-1 truncated

SVD recovery of µ̂2 − µ̂1 preserves most of the information in the sample

mean contrast. Hence, it is reasonable to believe that there exists low-

rank structure on the population level. Also, the low-rank assumption

is sometimes used to characterize the smoothness structure in the data

(Zhou et al., 2013). In the GTC data, it makes sense to believe that the

gene expression levels change smoothly over time, which is another possible

reason for the low-rank assumption. Therefore, we consider applying TLC

to this dataset and gain more insight into the relationship between gene

expression profiles and patients’ responses to rIFNβ.

We randomly split the data into a training set of size 47 and a test set

of size 5 and compare the classification performance of TLC with CATCH,

CMDA, DGTDA, DLDA, l1-GLM, l1-FDA, and random forest. TuckerReg

is not applicable due to the small sample size (n = 53). For TLC, we use

r̂ = (1, 1) suggested by Figure 1. Tuning parameters of the methods are
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selected based on 10-fold cross-validation on the training set. Average test

errors over 100 replicates are reported in Table 3. It is clear that TLC has

outperformed other methods with the smallest error rate. Meanwhile, the

classification accuracy suggests that there may exist an association between

gene expressions and responses to rIFNβ.

Models TLC CATCH CMDA DGTDA DLDA l1-GLM l1-FDA Random Forest

Error (%) 12.40 (1.39) 16.00 (1.58) 13.20 (1.51) 51.00 (2.19) 28.40 (2.13) 23.60 (1.87) 28.60 (2.13) 28.80 (1.96)

Table 3: Means and standard errors of mis-classification error rates on GTC data.
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Figure 1: Singular values of µ̂2 − µ̂1 where µ̂k is the sample estimate.

8. Discussion

In this paper, we develop the TLC model that aggressively takes the tensor

structure to reduce the number of parameters in both the mean and the

covariance. This model naturally leads to a sparse and low-rank classifier
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Figure 2: Low-rank structure of the mean difference and the separable covariance
structure.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0007



for tensor data, which conducts dimension reduction and prediction simul-

taneously. The theoretical study and numerical results demonstrate the

superior performance of the proposed TLC method. We acknowledge that,

although we provide a working solution, the rank selection consistency is a

challenging problem that remains to be rigorously studied under the TLC

model. Some related works may benefit future search along this direction

(Yang et al., 2016; Zhang and Han, 2019).

The TLC model assumes a certain level of homogeneity in the dataset.

For one thing, the mean differences are assumed to have common factor

matrices in the Tucker decomposition. For the other, the covariance matri-

ces are constant across classes. These assumptions add to the parsimony of

the TLC model that promotes estimation efficiency. However, when data

are apparently heterogeneous, one may wish to generalize the TLC model

by removing either or both of the above assumptions.

For example, if Σm are different across classes, we may want to gener-

alize TLC to quadratic discriminant analysis (QDA). Although there have

been works on sparse QDA for vector data (Fan et al., 2015; Li and Shao,

2015; Jiang et al., 2018; Pan and Mai, 2020), QDA on tensor data is ex-

pected to be much more challenging, as it involves modeling precision ma-

trices across classes. There are some related works (Zhu and Li, 2018;
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Wang et al., 2022), but the full extension of TLC to heterogeneous data

still requires considerable work, and is beyond the scope of this paper.

Similarly, as future work, we can assume heterogeneous loadings in the

low-rank structure. Such an assumption is more flexible than the TLC

model, but it will also decrease the interpretability. Recall that the Bayes

rule for the TLC model can be interpreted as a reduce-and-predict approach

(c.f Section 3.2). This interpretation is a consequence of common loadings.

If the loadings are heterogeneous, we do not have such a natural common

dimension reduction space. Nevertheless, it is worth investigating how the

heterogeneous loading assumption would affect classification accuracy.

Supplementary Material

Detailed proofs of the theoretical results are provided in the Supplementary

Material. Additional numerical study results are also included.
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