Supplementary Materials

Appendix A Influence functions of A, ﬁg,ff and 33

We derive asymptotic distributions for A and ﬁg. To this end, we first write
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where 1, ; = 21(A; = a)(Y; — pq). It follows that
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By the central limit theorem we have that \/ﬁ(ﬁ — A) converges in distribution to a normal
distribution N(0,0?) with ¢ = E[?].
Similarly, we have
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It follows that
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By the central limit theorem we have that \/ﬁ(ﬁg —A,) converges in distribution to a normal
distribution N(0,07) with o7 = E[{] ].
We next derive estimators for the asymptotic variances o2 and 03. To this end, we first
note that the variance of 9, ; is
Ena; = EMI(A; = a)(V; — pa)’],
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which can be estimated by
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Therefore, the asymptotic variance of \/ﬁ(ﬁ—A), 02, can be estimated by 52 := 3 := 31 +3.



It follows from the above formulas that n'/?(G2 — ¢2) can be written as the form
n1/2(32 _ 02) — 2 Z¢U2’i +0,(1).
i=1

Similarly, we can get the estimate for the asymptotic variance of \/ﬁ(ﬁg —Ay), 32, with
a given g, and

n1/2(8§ —oy)=n" Z Yozi + 0p(1).
i=1

With the above influence functions for 62 and Er\g, the variance estimates for o2 and /0'\3
can be obtained by perturbation resampling method.

Appendix B Derivations of the optimal ¢

In this section, we derive the specific form for the optimal transformation function of the
surrogate information, g.,.(-). We aim to solve the following problem for g:

min L(g) = E{Y® = g(SM)}2, given E{Y©® — g(s0)} =0
g

with g(s) = mo(s) 4+ ¢, s € Dy and g(s) is continuous.

Without loss of generality, we assume that S is continuous with conditional densities
given A = a, Fa(s) := fa(s), with respect to the Lebesgue measure. Similar arguments as
given below can be used to derive g,,, when S'is discrete. It can be shown that

E{Y® — g(SM)}* < Blg*(SD)] - 2By Wg(sW)] = E[g*(SW)] - 2E[mi (SM)g(S™)].

And thus the problem is equivalent to finding a function g, (-) such that

min %E[gQ(S(l))] — Emi(SM)g(SM)]  given E[g(S)|A = 0] = po.

g

Our optimization problem is thus,

win [ 6 ds = [ mn(s)a()ls)ds - siven that [ o) fo(s)ds = po.

which is equivalent to
min £(g), given that G(g) = po,

g

where we used the functional notation

£lg) = [ 76— [mi(s()fids, and Glo) = [ g(s)fals)ds



Taking the Frechet derivatives of the functionals, we have that for all measurable A such

that [ h2(s)f1(s)ds < oo,

d
- [ag)—AG(g)} 1) = [ 9 AE)E— [ gl hlhm (A ()s—x [ 1s)als)ds = .

Setting h = J(s), this implies that

Gopt (8) = m(8) + Afo(s)/ f1(s) = mi(s) + A r(s),s € D.U D;.

By the constraint [, {mi(s)+A7(s)}fo(s)ds+ [, {mo(s)+c}fo(s)ds = po = [mo(s) ds
and g,,.(s) is continuous at s*, or my(s*) + A r(s*) = mo(s*) + ¢, we have

A= {FKo+ Kir(s)} [ Ao(s)fo(s)ds + Ky { Kz + Kir(s*)} Mgy (s7),

D.
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with Agi(s) = mo(s) — fD fo(s)ds, Ky = [}, f3(s)/fi(s)ds = [}, 7(s)fo(s)ds.

Finally, the optimal functlon gopt( ) can be expressed as

(s) = my(s) + A r(s), s€ D.U D,
Jorl5) = mo(s) + ¢, s € Dy.

Appendix C Relationship between PTE and PTE,

In this section, we show the relationship between our proposed PTE and the PTE of Parast
et al. (2016). To this end, let A,,, denote the “residual treatment effect” defined in Parast
et al. (2016) as

A, = /E(Y(l) — Y0180 = 5O = §)d.7(s) = /{ml(s) — mo(s)}dF(s),
where .7 (+) is a reference distribution function. It follows that

Ap=A—-A, = /ml(s){dFl(s) —dF(s)} — /mo(s){dFo(s) —dF(s)}. (1)

and PTEL = AL/A



To relate Ap to Ay, (s), recall that
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If 7 (s) in (1) is replaced by #,.,,(s), then Ay (s AL+fD fo(s)ds Ky {Kg—f—Klfog } {mo(s* )
m1(s*)}; and thus, when Dy is empty (K;=0), or mo( *) = my(s*) we have PTE = PTE, .

ﬁ@@zﬁﬂwmm> 2)

We next show that only assumptions (C1) and (C2) are required to ensure that the



proposed PTE is between 0 and 1.

> Sp(u) for all u,

> M (u) for all u in the common support of g, (SM) and g.,.(S?),
where S, (1) = P{go(S@) > u | A = a}, My(u) = E{Y @ | g,,.(S@) = u}, a = 0,1, which
are assumed to be continuous functions. Following arguments given in Appendices A and B,
we have

A=FE{YW} - E{Y®} = / M (u)dFy (u / M (u)dFo(u
B = [ M (0} (0)= 0B ()}~ [ Mo ({01 — o ()}+ H (0" M)~ M)}
A-A,, = / (M, 1) — M)} (1)t + H () (ML (") — My(us")}, 3)

where H(u*) is a non-negative function of u*, Fo(u) = 1 — S,(u), F.(u) = dF,(u)/du, and
F...(u) is similarly defined as (2) but for g,,,(S) instead of S and D, is the common support
of gope (SW) and g, (S@). It is also straightforward to see from an integration by parts that

Ayis) = / w dFy (u) — / u dFo(u / (S (1) — So(u) }u.

Thus, from condition (C1), we have A, (s) > 0. On the other hand, since F,,, (u) > 0, we
see from (3) that A — Ay sy > 0 under condition (C2). It follows that PTE € [0, 1] under
conditions (C1) and (C2). Furthermore, Agope(s) = 0 when A = 0.

Appendix D Asymptotic properties for g(-)

Throughout, we assume that m,(s),a = 0,1 is continuously differentiable. In addition, we
assume that f,(s),a = 0,1 is continuously differentiable with finite support. For inference,
we require under-smoothing with A = o0,(n~'/%) for interval estimation of g,, and h =
0,(n~Y/4) for the interval estimation of RE and PTE. Since fia(s) and f,(s),a = 0,1 are
standard kernel estimators, we have that they are consistent w.r.t their true values with rate
(logn)z(nh)~z + h2. It follows immediately that [§(s) — g, (s)| = O,{(log n)z(nh)"z 4 h2}.

We firstly derive the influence functions for each estimator in Section 2.3. The influence
functions can be derived following exactly the derivations of fi, — 1, and jig, — figq. Direct



calculations show that
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Furthermore,
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= (0D ai+ op{(nh) ).

Similarly, we can get ¢ — c = (nh) "t 3.1 | ¢.; + 0,{(nh) "1/}
Using above results we can obtain the influence functions for the optimal transformation
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function estimators by coupling delta method with the fact that

gOpt(s) = é<m0(8)’m1(3)’fO(S)afl(*S)?)‘?C)
and §(s) = é(mo(s),ml(s),ﬁ@),ﬁ(s),x,e).

Specifically, we can show that

9(8) = Gom(s) = Z%z ) + 0p{(nh) "1/},

where E(¢?2(s)) < oo.

Appendix E Perturbation resampling

For resampling, we may generate V. = (Vi,...,V},) from independent and identically dis-
tributed non-negative random variables with mean 1 and variance 1 such as the unit expo-
nential distribution. For each set of V, we let 1z = {>_, 4. _, YiVi} /{2 14— Vi}s 125 os)

{ZiiAz‘:a g(Si)V;}/{Zi;Ai:a Vz},
D ini—a Kn(Si = 8)YiV;

fals) = Liaca (5~ 9V ma(s) = Ar (s) = m(s) — mi(s)
’ z:i:AFa Vi o Zi:A¢=a Ku(S; —s)Vi ' o1 0 1

{ | B+ fq&sl(s*)} 7
o= i+ Kff*(S*)}_l {f*e*) [ Bty - Kidie ).

A= {f(; + Kff(s*)}

where 7*(s) = ( )/f1 fD fo )ds, K} = fD ng )ds. Then we may obtain
the perturbed counterparts of g( ), PTEg, and RPg as

5(s) = § M10s) +NFE(s), s € DU Dy
fng(S) + é*, S € Do.

. . P(A* okn
RP;.(n) := RPg.(72,n) where RP. s(n1,ng) = M'
P(A /5" m2)
where A% = i i, Af. = i g~y ge(s), 07 = ! 0 Vi and 732 = n S0 Vidg

In practice, we may generate a large number, say B, realizations for V, and then obtain

B realizations of g*(s), PTTT?@* and ﬁf’; (n). The variance estimation and the confidence
interval (CI) can be constructed based on the empirical variances and quantiles of these



realizations.

Appendix F More simulation results

PI‘OpOSGd PTEW2020 PTEL PTEW PTEF
True Est ESE,sz; CP | Est ESE | Est ESE| Est ESE | Est ESE
(Dpew D87 567  .0690s6 972 | .520 .055 | .264 .068 | .106 .043 | .103 .041
(2)new 096 .099 .050056 .972 | .063 .049 | -.266 .061 | .036 .016 | .027 .012
(Bnew 198 192 02843 .952 | .157 020 |-.014 .014 | -.024 .009 | -.019 .007
(4)pew 588 598 .061 473 .982 | 575 .048 | .319 .087 | .341 .081| .315 .069

Estimates (Est) of PTE (using our proposed ¢,..), PTEw2020, PTEL, PTEy, and PTEp
along with their empirical standard errors (ESE) under settings (1),ew-(4)new; for PTE esti-
mates using our proposed ¢.,., we also present the averages of the estimate standard errors
(ASE, shown in subscript) along with the empirical coverage probabilities (CP) of the 95%

confidence intervals.
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