Supplementary Materials

Appendix A Influence functions of $\widehat{\Delta}, \widehat{\Delta}_{g}, \widehat{\sigma}$ and $\widehat{\sigma}_{g}^{2}$

We derive asymptotic distributions for $\widehat{\Delta}$ and $\widehat{\Delta}_{g}$. To this end, we first write

$$
\widehat{\mu}_{a}-\mu_{a}=\frac{\sum_{i=1}^{n} I\left(A_{i}=a\right) Y_{i}}{\sum_{i=1}^{n} I\left(A_{i}=a\right)}-\mu_{a}=\frac{\sum_{i=1}^{n} I\left(A_{i}=a\right)\left(Y_{i}-\mu_{a}\right)}{\sum_{i=1}^{n} I\left(A_{i}=a\right)}:=n^{-1} \sum_{i=1}^{n} \psi_{a, i}+o_{p}\left(n^{-1 / 2}\right)
$$

where $\psi_{a, i}=2 I\left(A_{i}=a\right)\left(Y_{i}-\mu_{a}\right)$. It follows that

$$
\sqrt{n}(\widehat{\Delta}-\Delta)=n^{-1 / 2} \sum_{i=1}^{n}\left(\psi_{1, i}-\psi_{0, i}\right)+o_{p}(1):=n^{-1 / 2} \sum_{i=1}^{n} \psi_{i}+o_{p}(1)
$$

By the central limit theorem we have that $\sqrt{n}(\widehat{\Delta}-\Delta)$ converges in distribution to a normal distribution $N\left(0, \sigma^{2}\right)$ with $\sigma^{2}=E\left[\psi_{i}^{2}\right]$.

Similarly, we have

$$
\widehat{\mu}_{g, a}-\mu_{g, a}=\frac{\sum_{A_{i}=a} g\left(S_{i}\right)}{\sum_{A_{i}=a} 1}-\mu_{g, a}=\frac{\sum_{A_{i}=a}\left\{g\left(S_{i}\right)-\mu_{g, a}\right\}}{\sum_{A_{i}=a} 1}:=n^{-1} \sum_{i=1}^{n} \psi_{g, a, i}+o_{p}\left(n^{-1 / 2}\right)
$$

It follows that

$$
\sqrt{n}\left(\widehat{\Delta}_{g}-\Delta_{g}\right)=n^{-1 / 2} \sum_{i=1}^{n}\left(\psi_{g, 1, i}-\psi_{g, 0, i}\right)+o_{p}(1):=n^{-1 / 2} \sum_{i=1}^{n} \psi_{g, i}+o_{p}(1)
$$

By the central limit theorem we have that $\sqrt{n}\left(\widehat{\Delta}_{g}-\Delta_{g}\right)$ converges in distribution to a normal distribution $N\left(0, \sigma_{g}^{2}\right)$ with $\sigma_{g}^{2}=E\left[\psi_{g, i}^{2}\right]$.

We next derive estimators for the asymptotic variances σ^{2} and σ_{g}^{2}. To this end, we first note that the variance of $\psi_{a, i}$ is

$$
E \psi_{a, i}^{2}=E\left[4 I\left(A_{i}=a\right)\left(Y_{i}-\mu_{a}\right)^{2}\right]
$$

which can be estimated by

$$
\hat{\Sigma}_{a}=n^{-1} \sum_{i=1}^{n} 4 I\left(A_{i}=a\right)\left(Y_{i}-\hat{\mu}_{a}\right)^{2}
$$

Therefore, the asymptotic variance of $\sqrt{n}(\widehat{\Delta}-\Delta), \sigma^{2}$, can be estimated by $\widehat{\sigma}^{2}:=\hat{\Sigma}:=\hat{\Sigma}_{1}+\hat{\Sigma}_{0}$.

It follows from the above formulas that $n^{1 / 2}\left(\hat{\sigma}^{2}-\sigma^{2}\right)$ can be written as the form

$$
n^{1 / 2}\left(\widehat{\sigma}^{2}-\sigma^{2}\right)=n^{-1 / 2} \sum_{i=1}^{n} \psi_{\sigma^{2}, i}+o_{p}(1)
$$

Similarly, we can get the estimate for the asymptotic variance of $\sqrt{n}\left(\widehat{\Delta}_{g}-\Delta_{g}\right), \widehat{\sigma}_{g}^{2}$, with a given g, and

$$
n^{1 / 2}\left(\widehat{\sigma}_{g}^{2}-\sigma_{g}^{2}\right)=n^{-1} \sum_{i=1}^{n} \psi_{\sigma_{g}^{2}, i}+o_{p}(1)
$$

With the above influence functions for $\widehat{\sigma}^{2}$ and $\widehat{\sigma}_{g}^{2}$, the variance estimates for $\widehat{\sigma}^{2}$ and $\widehat{\sigma}_{g}^{2}$ can be obtained by perturbation resampling method.

Appendix B Derivations of the optimal g

In this section, we derive the specific form for the optimal transformation function of the surrogate information, $g_{\text {opt }}(\cdot)$. We aim to solve the following problem for g :

$$
\min _{g} L(g)=E\left\{Y^{(1)}-g\left(S^{(1)}\right)\right\}^{2}, \quad \text { given } \quad E\left\{Y^{(0)}-g\left(S^{(0)}\right)\right\}=0
$$

with $g(s)=m_{0}(s)+c, s \in D_{0}$ and $g(s)$ is continuous.
Without loss of generality, we assume that S is continuous with conditional densities given $A=a, \dot{F}_{a}(s):=f_{a}(s)$, with respect to the Lebesgue measure. Similar arguments as given below can be used to derive $g_{\text {opt }}$ when S is discrete. It can be shown that

$$
E\left\{Y^{(1)}-g\left(S^{(1)}\right)\right\}^{2} \propto E\left[g^{2}\left(S^{(1)}\right)\right]-2 E\left[Y^{(1)} g\left(S^{(1)}\right)\right]=E\left[g^{2}\left(S^{(1)}\right)\right]-2 E\left[m_{1}\left(S^{(1)}\right) g\left(S^{(1)}\right)\right]
$$

And thus the problem is equivalent to finding a function $g_{\text {opt }}(\cdot)$ such that

$$
\min _{g} \frac{1}{2} E\left[g^{2}\left(S^{(1)}\right)\right]-E\left[m_{1}\left(S^{(1)}\right) g\left(S^{(1)}\right)\right] \quad \text { given } \quad E[g(S) \mid A=0]=\mu_{0}
$$

Our optimization problem is thus,

$$
\min _{g} \int \frac{1}{2} g^{2}(s) f_{1}(s) d s-\int m_{1}(s) g(s) f_{1}(s) d s \quad \text { given that } \int g(s) f_{0}(s) d s=\mu_{0}
$$

which is equivalent to

$$
\min _{g} \mathcal{L}(g), \quad \text { given that } \quad \mathbb{G}(g)=\mu_{0}
$$

where we used the functional notation

$$
\mathcal{L}(g)=\int \frac{1}{2} g^{2}(s) f_{1}(s) d s-\int m_{1}(s) g(s) f_{1}(s) d s, \quad \text { and } \quad \mathbb{G}(g)=\int g(s) f_{0}(s) d s
$$

Taking the Frechet derivatives of the functionals, we have that for all measurable h such that $\int h^{2}(s) f_{1}(s) d s<\infty$,

$$
\frac{d}{d g}[\mathcal{L}(g)-\lambda \mathbb{G}(g)](h)=\int g_{\mathrm{opt}}(s) h(s) f_{1}(s) d s-\int g_{\mathrm{opt}}(s) h(s) m_{1}(s) f_{1}(s) d s-\lambda \int h(s) f_{0}(s) d s=0
$$

Setting $h=\delta(s)$, this implies that

$$
g_{\mathrm{opt}}(s)=m_{1}(s)+\lambda f_{0}(s) / f_{1}(s)=m_{1}(s)+\lambda r(s), s \in D_{c} \cup D_{1} .
$$

By the constraint $\int_{D_{c}}\left\{m_{1}(s)+\lambda r(s)\right\} f_{0}(s) d s+\int_{D_{0}}\left\{m_{0}(s)+c\right\} f_{0}(s) d s=\mu_{0}=\int m_{0}(s) f_{0}(s) d s$ and $g_{\text {opt }}(s)$ is continuous at s^{*}, or $m_{1}\left(s^{*}\right)+\lambda r\left(s^{*}\right)=m_{0}\left(s^{*}\right)+c$, we have

$$
\begin{aligned}
& \lambda=\left\{K_{2}+K_{1} r\left(s^{*}\right)\right\}^{-1} \int_{D_{c}} \Delta_{01}(s) f_{0}(s) d s+K_{1}\left\{K_{2}+K_{1} r\left(s^{*}\right)\right\}^{-1} \Delta_{01}\left(s^{*}\right), \\
& c=\left\{K_{2}+r\left(s^{*}\right) K_{1}\right\}^{-1}\left[-K_{2} \Delta_{01}\left(s^{*}\right)+r\left(s^{*}\right) \int_{D_{c}} \Delta_{01}(s) f_{0}(s) d s\right]
\end{aligned}
$$

with $\Delta_{01}(s)=m_{0}(s)-m_{1}(s), K_{1}=\int_{D_{0}} f_{0}(s) d s, K_{2}=\int_{D_{c}} f_{0}^{2}(s) / f_{1}(s) d s=\int_{D_{c}} r(s) f_{0}(s) d s$.
Finally, the optimal function $g_{\text {opt }}(\cdot)$ can be expressed as

$$
g_{\mathrm{opt}}(s)=\left\{\begin{array}{l}
m_{1}(s)+\lambda r(s), s \in D_{c} \cup D_{1} \\
m_{0}(s)+c, s \in D_{0}
\end{array}\right.
$$

Appendix C Relationship between PTE and PTE $_{L}$

In this section, we show the relationship between our proposed PTE and the PTE of Parast et al. (2016). To this end, let $\Delta_{\text {rte }}$ denote the "residual treatment effect" defined in Parast et al. (2016) as:

$$
\Delta_{\mathrm{rte}}=\int E\left(Y^{(1)}-Y^{(0)} \mid S^{(1)}=S^{(0)}=s\right) d \mathscr{F}(s)=\int\left\{m_{1}(s)-m_{0}(s)\right\} d \mathscr{F}(s),
$$

where $\mathscr{F}(\cdot)$ is a reference distribution function. It follows that

$$
\begin{equation*}
\Delta_{L}=\Delta-\Delta_{\mathrm{rte}}=\int m_{1}(s)\left\{d F_{1}(s)-d \mathscr{F}(s)\right\}-\int m_{0}(s)\left\{d F_{0}(s)-d \mathscr{F}(s)\right\} . \tag{1}
\end{equation*}
$$

and $\mathrm{PTE}_{L}=\Delta_{L} / \Delta$.

To relate Δ_{L} to $\Delta_{g_{\mathrm{opt}}(S)}$, recall that

$$
\begin{aligned}
g_{\mathrm{opt}}(s) & =m_{1}(s)+\lambda f_{0}(s) / f_{1}(s), s \in D_{c} \cup D_{1}, \\
g_{\mathrm{opt}}(s) & =m_{0}(s)+c, s \in D_{0}, \\
\lambda & =\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}^{-1} \int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} f_{0}(s) d s+K_{1}\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}^{-1}\left\{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)\right\}, \\
c & =\left\{1+\frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)} \frac{K_{1}}{K_{2}}\right\}^{-1}\left[m_{1}\left(s^{*}\right)-m_{0}\left(s^{*}\right)+\frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)} \frac{1}{K_{2}} \int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} f_{0}(s) d s\right] \text { and } \\
\Delta_{g_{\text {opt }}(S)} & =E\left\{g_{\text {opt }}\left(S^{(1)}\right)-g_{\text {opt }}\left(S^{(0)}\right)\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Delta_{g_{\text {opt }}(S)} & =\int_{D_{1}} m_{1}(s) f_{1}(s) d s+\int_{D_{c}}\left\{m_{1}(s)+\lambda f_{0}(s) / f_{1}(s)\right\} f_{1}(s) d s-\mu_{0} \\
& =\int_{D_{1} \cup D_{c}} m_{1}(s) f_{1}(s) d s-\int_{D_{0} \cup D_{c}} m_{0}(s) f_{0}(s) d s+\int_{D_{c}} f_{0}(s) d s \\
& \times\left[\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}^{-1} \int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} f_{0}(s) d s+K_{1}\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}^{-1}\left\{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)\right\}\right] \\
& =\int_{D_{1}} m_{1}(s) f_{1}(s) d s+\int_{D_{c}} m_{1}(s)\left[f_{1}(s)-f_{0}(s) \frac{\int_{D_{c}} f_{0}(s) d(s)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)}\right] d s \\
& -\int_{D_{0}} m_{0}(s) f_{0}(s) d s-\int_{D_{c}} m_{0}(s)\left[f_{0}(s)-f_{0}(s) \frac{\int_{D_{c}} f_{0}(s) d(s)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)}\right] d s \\
& +\int_{D_{c}} f_{0}(s) d s K_{1}\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}\left\{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)\right\} \\
& :=\int_{1} m_{1}(s)\left\{d F_{1}(s)-d \mathscr{F}_{\text {new }}(s)\right\}-\int m_{0}(s)\left\{d F_{0}(s)-d \mathscr{F}_{\text {new }}(s)\right\} \\
& +\int_{D_{c}} f_{0}(s) d s K_{1}\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}\left\{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\mathscr{F}_{\text {new }}(s)=\int_{D_{c}} I(v \leq s) f_{0}(v) d v \frac{\int_{D_{c}} f_{0}(s) d s}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)} \tag{2}
\end{equation*}
$$

If $\mathscr{F}(s)$ in (1) is replaced by $\mathscr{F}_{\text {new }}(s)$, then $\Delta_{g_{\text {opt }}(S)}=\Delta_{L}+\int_{D_{c}} f_{0}(s) d s K_{1}\left\{K_{2}+K_{1} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}\right\}^{-1}\left\{m_{0}\left(s^{*}\right)-\right.$ $\left.m_{1}\left(s^{*}\right)\right\}$; and thus, when D_{0} is empty $\left(K_{1}=0\right)$, or $m_{0}\left(s^{*}\right)=m_{1}\left(s^{*}\right)$ we have PTE $\equiv \mathrm{PTE}_{L}$.

We next show that only assumptions (C1) and (C2) are required to ensure that the
proposed PTE is between 0 and 1 .
(C1) $\quad \mathbb{S}_{1}(u) \geq \mathbb{S}_{0}(u)$ for all u,
(C2) $\quad \mathbb{M}_{1}(u) \geq \mathbb{M}_{0}(u)$ for all u in the common support of $g_{\text {opt }}\left(S^{(1)}\right)$ and $g_{\text {opt }}\left(S^{(0)}\right)$,
where $\mathbb{S}_{a}(u)=P\left\{g_{\text {opt }}\left(S^{(a)}\right)>u \mid A=a\right\}, \mathbb{M}_{a}(u)=E\left\{Y^{(a)} \mid g_{\text {opt }}\left(S^{(a)}\right)=u\right\}, a=0,1$, which are assumed to be continuous functions. Following arguments given in Appendices A and B, we have

$$
\begin{align*}
\Delta & =E\left\{Y^{(1)}\right\}-E\left\{Y^{(0)}\right\}=\int \mathbb{M}_{1}(u) d \mathbb{F}_{1}(u)-\int \mathbb{M}_{0}(u) d \mathbb{F}_{0}(u) \\
\Delta_{g_{\text {opt }}} & =\int \mathbb{M}_{1}(u)\left\{d \mathbb{F}_{1}(u)-d \mathbb{F}_{\text {new }}(u)\right\}-\int \mathbb{M}_{0}(u)\left\{d \mathbb{F}_{0}(u)-d \mathbb{F}_{\text {new }}(u)\right\}+H\left(u^{*}\right)\left\{\mathbb{M}_{0}\left(u^{*}\right)-\mathbb{M}_{1}\left(u^{*}\right)\right\}, \\
\Delta-\Delta_{g_{\text {opt }}} & =\int_{\mathbb{D}_{c}}\left\{\mathbb{M}_{1}(u)-\mathbb{M}_{0}(u)\right\} \dot{\mathbb{F}}_{\text {new }}(u) d u+H\left(u^{*}\right)\left\{\mathbb{M}_{1}\left(u^{*}\right)-\mathbb{M}_{0}\left(u^{*}\right)\right\}, \tag{3}
\end{align*}
$$

where $H\left(u^{*}\right)$ is a non-negative function of $u^{*}, \mathbb{F}_{a}(u)=1-\mathbb{S}_{a}(u), \dot{\mathbb{F}}_{a}(u)=d \mathbb{F}_{a}(u) / d u$, and $\dot{\mathbb{F}}_{\text {new }}(u)$ is similarly defined as (2) but for $g_{\text {opt }}(S)$ instead of S and \mathbb{D}_{c} is the common support of $g_{\text {opt }}\left(S^{(1)}\right)$ and $g_{\text {opt }}\left(S^{(0)}\right)$. It is also straightforward to see from an integration by parts that

$$
\Delta_{g_{\mathrm{opt}}(S)}=\int u d \mathbb{F}_{1}(u)-\int u d \mathbb{F}_{0}(u)=\int\left\{\mathbb{S}_{1}(u)-\mathbb{S}_{0}(u)\right\} d u
$$

Thus, from condition (C1), we have $\Delta_{g_{\text {opt }}(S)} \geq 0$. On the other hand, since $\dot{\mathbb{F}}_{\text {new }}(u) \geq 0$, we see from (3) that $\Delta-\Delta_{g_{\text {opt }}(S)} \geq 0$ under condition (C2). It follows that PTE $\in[0,1]$ under conditions (C1) and (C2). Furthermore, $\Delta_{g_{\text {opt }}(S)}=0$ when $\Delta=0$.

Appendix D Asymptotic properties for $\widehat{g}(\cdot)$

Throughout, we assume that $m_{a}(s), a=0,1$ is continuously differentiable. In addition, we assume that $f_{a}(s), a=0,1$ is continuously differentiable with finite support. For inference, we require under-smoothing with $h=o_{p}\left(n^{-1 / 5}\right)$ for interval estimation of $g_{\text {opt }}$ and $h=$ $o_{p}\left(n^{-1 / 4}\right)$ for the interval estimation of RE and PTE. Since $\widehat{m}_{a}(s)$ and $\widehat{f}_{a}(s), a=0,1$ are standard kernel estimators, we have that they are consistent w.r.t their true values with rate $(\log n)^{\frac{1}{2}}(n h)^{-\frac{1}{2}}+h^{2}$. It follows immediately that $\left|\widehat{g}(s)-g_{\text {opt }}(s)\right|=O_{p}\left\{(\log n)^{\frac{1}{2}}(n h)^{-\frac{1}{2}}+h^{2}\right\}$.

We firstly derive the influence functions for each estimator in Section 2.3. The influence functions can be derived following exactly the derivations of $\widehat{\mu}_{a}-\mu_{a}$ and $\widehat{\mu}_{g, a}-\widehat{\mu}_{g, a}$. Direct
calculations show that

$$
\begin{aligned}
\widehat{f}_{a}(s)-f_{a}(s)= & \frac{n^{-1} \sum_{A_{i}=a}\left\{K_{h}\left(S_{i}-s\right)-f_{a}(s)\right\}}{n^{-1} \sum_{A_{i}=a} 1} \\
:= & (n h)^{-1} \sum_{i=1}^{n} \phi_{a, i}(s)+o_{p}\left\{(n h)^{-1 / 2}\right\}, \\
\widehat{m}_{a}(s)-m_{a}(s)= & \frac{\sum_{i=1}^{n} I\left(A_{i}=a\right) K_{h}\left(S_{i}-s\right)\left\{Y_{i}-m_{a}(s)\right\}}{\sum_{i=1}^{n} I\left(A_{i}=a\right) K_{h}\left(S_{i}-s\right)} \\
:= & (n h)^{-1} \sum_{i=1}^{n} \phi_{m, i}(s)+o_{p}\left\{(n h)^{-1 / 2}\right\}, \\
\hat{K}_{1}-K_{1}= & \int_{D_{0}}\left\{\widehat{f}_{0}(s)-f_{0}(s)\right\} d s=n^{-1} \sum_{i=1}^{n} 2 I\left(A_{i}=0\right) I\left(S_{i} \in D_{0}\right)-\int_{D_{0}} f_{0}(s) d s \\
:= & n^{-1} \sum_{i=1}^{n} \phi_{K_{1}, i}+o_{p}\left\{n^{-1 / 2}\right\}, \\
\hat{K}_{2}-K_{2}= & \int_{D_{c}} 2 \frac{f_{0}(s)}{f_{1}(s)}\left\{\widehat{f}_{0}(s)-f_{0}(s)\right\} d s-\int_{D_{c}} \frac{f_{0}^{2}(s)}{f_{1}^{2}(s)}\left\{\widehat{f}_{1}(s)-f_{1}(s)\right\} d s \\
= & n^{-1} \sum_{i=1}^{n} 2 I\left(A_{i}=0\right) I\left(S_{i} \in D_{c}\right) 2 \frac{f_{0}\left(S_{i}\right)}{f_{1}\left(S_{i}\right)}-\int_{D_{c}} 2 \frac{f_{0}^{2}(s)}{f_{1}(s)} d s \\
& -\left\{n^{-1} \sum_{i=1}^{n} 2 I\left(A_{i}=1\right) I\left(S_{i} \in D_{c}\right) \frac{f_{0}^{2}\left(S_{i}\right)}{f_{1}^{2}\left(S_{i}\right)}-\int_{D_{c}} \frac{f_{0}^{2}(s)}{f_{1}(s)} d s\right\} \\
:= & n^{-1} \sum_{i=1}^{n} \phi_{K_{2}, i}+o_{p}\left\{n^{-1 / 2}\right\} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \widehat{\lambda}-\lambda=\frac{\int_{D_{c}}\left\{\widehat{m}_{0}(s)-\widehat{m}_{1}(s)\right\} d \widehat{F}_{0}(s)}{\hat{K}_{2}+\hat{K}_{1} \widehat{f}_{0}\left(s^{*}\right) / \widehat{f}_{1}\left(s^{*}\right)}+\hat{K}_{1} \frac{\widehat{m}_{0}\left(s^{*}\right)-\widehat{m}_{1}\left(s^{*}\right)}{\hat{K}_{2}+\hat{K}_{1} \widehat{f}_{0}\left(s^{*}\right) / \widehat{f}_{1}\left(s^{*}\right)} \\
& -\frac{\int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} d F_{0}(s)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)}-K_{1} \frac{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)} \\
& =\frac{\left[\int_{D_{c}}\left\{\widehat{m}_{0}(s)-m_{0}(s)-\widehat{m}_{1}(s)+m_{1}(s)\right\} f_{0}(s) d s+\int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\}\left\{\widehat{f}_{0}(s)-f_{0}(s)\right\} d s\right]}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)} \\
& +K_{1} \frac{\widehat{m}_{0}\left(s^{*}\right)-m_{0}\left(s^{*}\right)-\widehat{m}_{1}\left(s^{*}\right)+m_{1}\left(s^{*}\right)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)}+\frac{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)} n^{-1} \sum_{i=1}^{n} \phi_{K_{1}, i} \\
& -\frac{\int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} d F_{0}(s)+K_{1}\left\{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)\right\}}{\left\{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)\right\}^{2}} \\
& \times\left[\frac{1}{n} \sum_{i=1}^{n} \phi_{K_{2}, i}+\frac{1}{n} \sum_{i=1}^{n} \phi_{K_{1}, i} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}+(n h)^{-1}\left\{\frac{\sum_{i=1}^{n} \phi_{0, i}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}-\frac{f_{0}\left(s^{*}\right) \sum_{i=1}^{n} \phi_{1, i}\left(s^{*}\right)}{f_{1}^{2}\left(s^{*}\right)}\right\}\right] \\
& +o_{p}\left\{(n h)^{-1 / 2}\right\} \\
& =\frac{1}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)}\left[n^{-1} \sum_{i=1}^{n} 2 I\left(A_{i}=0\right) Y_{i} I\left(S_{i} \in D_{c}\right)-\int_{D_{c}} m_{0}(s) f_{0}(s) d s\right. \\
& -n^{-1} \sum_{i=1}^{n} 2 I\left(A_{i}=1\right) Y_{i} I\left(S_{i} \in D_{c}\right) f_{0}\left(S_{i}\right) / f_{1}\left(S_{i}\right)+\int_{D_{c}} m_{1}(s) f_{0}(s) d s \\
& \left.+n^{-1} \sum_{i=1}^{n} 2 I\left(A_{i}=0\right) I\left(S_{i} \in D_{c}\right)\left\{m_{0}\left(S_{i}\right)-m_{1}\left(S_{i}\right)\right\}-\int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} f_{0}(s) d s\right] \\
& +\frac{K_{1}}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)}(n h)^{-1} \sum_{i=1}^{n}\left\{\phi_{m, 0, i}\left(s^{*}\right)-\phi_{m, 1, i}\left(s^{*}\right)\right\} \\
& +\frac{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)}{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)} n^{-1} \sum_{i=1}^{n} \phi_{K_{1}, i}+o_{p}\left\{(n h)^{-1 / 2}\right\} \\
& -\frac{\int_{D_{c}}\left\{m_{0}(s)-m_{1}(s)\right\} d F_{0}(s)+K_{1}\left\{m_{0}\left(s^{*}\right)-m_{1}\left(s^{*}\right)\right\}}{\left\{K_{2}+K_{1} f_{0}\left(s^{*}\right) / f_{1}\left(s^{*}\right)\right\}^{2}} \\
& \times\left[\frac{1}{n} \sum_{i=1}^{n} \phi_{K_{2}, i}+\frac{1}{n} \sum_{i=1}^{n} \phi_{K_{1}, i} \frac{f_{0}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}+(n h)^{-1}\left\{\frac{\sum_{i=1}^{n} \phi_{0, i}\left(s^{*}\right)}{f_{1}\left(s^{*}\right)}-\frac{f_{0}\left(s^{*}\right) \sum_{i=1}^{n} \phi_{1, i}\left(s^{*}\right)}{f_{1}^{2}\left(s^{*}\right)}\right\}\right] \\
& :=(n h)^{-1} \sum_{i=1}^{n} \phi_{\lambda, i}+o_{p}\left\{(n h)^{-1 / 2}\right\} \text {. }
\end{aligned}
$$

Similarly, we can get $\hat{c}-c=(n h)^{-1} \sum_{i=1}^{n} \phi_{c, i}+o_{p}\left\{(n h)^{-1 / 2}\right\}$.
Using above results we can obtain the influence functions for the optimal transformation
function estimators by coupling delta method with the fact that

$$
\begin{aligned}
g_{\text {opt }}(s) & =\widetilde{G}\left(m_{0}(s), m_{1}(s), f_{0}(s), f_{1}(s), \lambda, c\right) \\
\text { and } \hat{g}(s) & =\widetilde{G}\left(\widehat{m}_{0}(s), \widehat{m}_{1}(s), \widehat{f}_{0}(s), \widehat{f_{1}}(s), \widehat{\lambda}, \hat{c}\right) .
\end{aligned}
$$

Specifically, we can show that

$$
\hat{g}(s)-g_{\mathrm{opt}}(s)=(n h)^{-1} \sum_{i=1}^{n} \phi_{g, i}(s)+o_{p}\left\{(n h)^{-1 / 2}\right\}
$$

where $E\left(\phi_{g, i}^{2}(s)\right)<\infty$.

Appendix E Perturbation resampling

For resampling, we may generate $\mathbf{V}=\left(V_{1}, \ldots, V_{n}\right)$ from independent and identically distributed non-negative random variables with mean 1 and variance 1 such as the unit exponential distribution. For each set of \mathbf{V}, we let $\widehat{\mu}_{a}^{*}=\left\{\sum_{i: A_{i}=a} Y_{i} V_{i}\right\} /\left\{\sum_{i: A_{i}=a} V_{i}\right\}, \widehat{\mu}_{a, g(S)}^{*}=$ $\left\{\sum_{i: A_{i}=a} g\left(S_{i}\right) V_{i}\right\} /\left\{\sum_{i: A_{i}=a} V_{i}\right\}$,

$$
\begin{aligned}
& \widehat{f}_{a}^{*}(s)=\frac{\sum_{i: A_{i}=a} K_{h}\left(S_{i}-s\right) V_{i}}{\sum_{i: A_{i}=a} V_{i}}, \widehat{m}_{a}^{*}(s)=\frac{\sum_{i: A_{i}=a} K_{h}\left(S_{i}-s\right) Y_{i} V_{i}}{\sum_{i: A_{i}=a} K_{h}\left(S_{i}-s\right) V_{i}}, \widehat{\Delta}_{01}^{*}(s)=\widehat{m}_{0}^{*}(s)-\widehat{m}_{1}^{*}(s) \\
& \widehat{\lambda}^{*}=\left\{\hat{K}_{2}^{*}+\hat{K}_{1}^{*} \hat{r}\left(s^{*}\right)\right\}^{-1}\left\{\int_{D_{c}} \widehat{\Delta}_{01}^{*}(s) \widehat{f}_{0}^{*}(s) d s+\hat{K}_{1}^{*} \widehat{\Delta}_{01}^{*}\left(s^{*}\right)\right\}, \\
& \hat{c}^{*}=\left\{\hat{K}_{2}^{*}+\hat{K}_{1}^{*} \hat{r}^{*}\left(s^{*}\right)\right\}^{-1}\left\{\hat{r}^{*}\left(s^{*}\right) \int_{D_{c}} \widehat{\Delta}_{01}^{*}(s) f_{0}^{*}(s) d s-\hat{K}_{2}^{*} \widehat{\Delta}_{01}^{*}\left(s^{*}\right)\right\},
\end{aligned}
$$

where $\widehat{r}^{*}(s)=\widehat{f}_{0}^{*}(s) / \widehat{f}_{1}^{*}(s), \hat{K}_{1}^{*}=\int_{D_{0}} \widehat{f}_{0}^{*}(s) d s, \hat{K}_{2}^{*}=\int_{D_{c}} \widehat{r}^{*}(s) \widehat{f}_{0}^{*}(s) d s$. Then we may obtain the perturbed counterparts of $\widehat{g}(s), \widehat{\mathrm{PTE}}_{\widehat{g}}$, and $\widehat{\mathrm{RP}}_{\widehat{g}}$ as

$$
\begin{gathered}
\widehat{g}^{*}(s)=\left\{\begin{array}{l}
\widehat{m}_{1}^{*}(s)+\widehat{\lambda}^{*} \widehat{r}_{0}^{*}(s), s \in D_{c} \cup D_{1} \\
\widehat{m}_{0}^{*}(s)+\hat{c}^{*}, s \in D_{0} \\
\widehat{\operatorname{PTE}}_{\widehat{g}^{*}}^{*}=\widehat{\Delta}_{\widehat{g}^{*}}^{*} / \widehat{\Delta}^{*},
\end{array}\right. \\
{\widehat{\operatorname{RP}} \widehat{g}^{*}(\bar{n}):=\widehat{\operatorname{RP}}_{\widehat{g}^{*}}^{*}(\bar{n}, \bar{n}) \text { where } \widehat{\operatorname{RP}}_{g}^{*}\left(n_{1}, n_{2}\right)=\frac{\mathcal{P}\left(\widehat{\Delta}_{g}^{*} / \widehat{\sigma}_{g}^{*}, n_{1}\right)}{\mathcal{P}\left(\widehat{\Delta}^{*} / \widehat{\sigma}^{*}, n_{2}\right)} .}^{\text {. }} .
\end{gathered}
$$

where $\widehat{\Delta}^{*}=\widehat{\mu}_{1}^{*}-\widehat{\mu}_{0}^{*}, \widehat{\Delta}_{\widehat{g}^{*}}^{*}=\widehat{\mu}_{1, \widehat{g}^{*}(S)}^{*}-\widehat{\mu}_{0, \widehat{g}^{*}(S)}^{*}, \widehat{\sigma}^{* 2}=n^{-1} \sum_{i=1}^{n} V_{i} \widehat{\psi}_{i}^{2}$ and $\widehat{\sigma}_{g}^{* 2}=n^{-1} \sum_{i=1}^{n} V_{i} \widehat{\psi}_{g, i}^{2}$. In practice, we may generate a large number, say B, realizations for \mathbf{V}, and then obtain B realizations of $\widehat{g}^{*}(s), \widehat{\mathrm{PTE}}_{\widehat{g}^{*}}^{*}$ and $\widehat{\operatorname{RP}}_{\widehat{g}^{*}}^{*}(\bar{n})$. The variance estimation and the confidence interval (CI) can be constructed based on the empirical variances and quantiles of these
realizations.

Appendix F More simulation results

	Proposed			CP	$\mathrm{PTE}_{W 2020}$		PTE_{L}		PTE_{W}		PTE_{F}	
	True	Est	$\mathrm{ESE}_{\text {ASE }}$		Est	ESE	Est	ESE	Est	ESE	Est	ESE
$(1)_{\text {new }}$. 587	. 567	. 069.086	. 972	. 520	. 055	. 264	. 068	. 106	. 043	. 103	. 041
(2) new	. 096	. 099	.050.056	. 972	. 063	. 049	-. 266	. 061	. 036	. 016	. 027	. 012
(3) new	. 198	. 192	.028.030	. 952	. 157	. 020	-. 014	. 014	-. 024	. 009	-. 019	. 007
(4) $)_{\text {new }}$. 588	. 598	.061.073	. 982	. 575	. 048	. 319	. 087	. 341	. 081	. 315	. 069

Estimates (Est) of PTE (using our proposed $g_{\text {opt }}$), $\mathrm{PTE}_{W 2020}, \mathrm{PTE}_{L}, \mathrm{PTE}_{W}$, and PTE_{F} along with their empirical standard errors (ESE) under settings (1) new ${ }^{-}(4)_{\text {new }}$; for PTE estimates using our proposed $g_{\text {opt }}$, we also present the averages of the estimate standard errors (ASE, shown in subscript) along with the empirical coverage probabilities (CP) of the 95% confidence intervals.

References

Parast, L., McDermott, M. M., and Tian, L. (2016). Robust estimation of the proportion of treatment effect explained by surrogate marker information. Statistics in medicine, $35(10): 1637-1653$.

