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S1. Proofs of main results

Let Sp−1 denote the p-dimensional unit sphere, P and Pn denote the ex-

pectation under the population measure and the empirical counterpart,

respectively. Let Pf = Ef(x) and Pnf = (1/n)
∑n

i=1 f(xi).

S1.1 Derivation of Algorithm 1

Update for r: Let h = y − X̄θk − uk/ρ. According to the Huber loss

function, we split into two cases.
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Case 1: |ri| ≤ τ . The original optimization transforms to

min
ri

r2
i

2n
+
ρ

2
(ri − hi)2.

Therefore, we obtain r̂i = nρhi/(1 + nρ). Substituting this into |ri| ≤ τ

yields |hi| ≤ τ(1 + nρ)/(nρ).

Case 2: |ri| > τ . The original optimization transforms to

min
ri

1

2
(ri − hi)2 +

τ

nρ
|ri|.

Therefore, we have r̂i = Soft[hi, τ/(nρ)] with Soft[a, κ] = (a− κ)+ − (−a−

κ)+ representing the soft thresholding operator. That is, r̂i = hi − τ/(nρ)

if hi > τ(1 + nρ)/(nρ) and r̂i = hi + τ/(nρ) if hi < −τ(1 + nρ)/(nρ).

Update for B/b: Let
∑min{p,q}

j=1 ωjajc
T
j be the singular value decomposi-

tion (SVD) of Θk − Vk/ρ. Then this problem can be solved by singular

value thresholding given by

Bk+1 =

min{p,q}∑
j=1

max (ωj − λ/ρ, 0) ajc
T
j .

Update for θ: Setting the derivative equals to zero implies

θk+1 = (X̄>X̄ + Ipq)
−1[X̄>(−rk+1 + y − uk/ρ)].
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S1.2 Proof of Theorem 1

By the first order optimality condition of (2.1), there exists Θ̄ ∈ ∂‖Θ̂‖∗

such that ∇L(Θ̂) + λΘ̄ = 0. Then we have

〈∇L(Θ̂)−∇L(Θ0), Θ̂−Θ0〉 = 〈λΘ̄ +∇L(Θ0),Θ0 − Θ̂〉.

Using Hölder’s inequality, we have

〈λΘ̄,Θ0 − Θ̂〉 ≤ λ‖Θ̄‖op‖Θ0 − Θ̂‖∗ ≤ 8λ‖(Θ0 − Θ̂)r‖∗,

where the last inequality uses the fact that ‖Θ̄‖op ≤ 2 and Lemma 1 which

states that ‖Θ0− Θ̂‖∗ ≤ ‖(Θ0− Θ̂)rc‖∗+ ‖(Θ0− Θ̂)r‖∗ ≤ 4‖(Θ0− Θ̂)r‖∗.

Similarly, we have

〈∇L(Θ0),Θ0 − Θ̂〉 ≤ ‖∇L(Θ0)‖op‖Θ0 − Θ̂‖∗ ≤ 2λ‖(Θ0 − Θ̂)r‖∗,

where the last inequality uses 2‖∇L(Θ0)‖op ≤ λ by Lemma 6. It follows

from Lemma 1 of Negahban and Wainwright (2011a) which states that

rank((Θ0 − Θ̂)r) ≤ 2r and Cauchy-Schwarz inequality that

‖(Θ0 − Θ̂)r‖∗ ≤
√

2r‖Θ0 − Θ̂‖F .

Therefore, combining the above inequalities yields

〈∇L(Θ̂)−∇L(Θ0), Θ̂−Θ0〉 ≤ Cλ
√
r‖Θ0 − Θ̂‖F . (S1.1)

Let γ = Cτ
√
r(p+ q) log n/n. Next we will construct Θ̂η = Θ0+η(Θ̂−

Θ0) for some η ∈ (0, 1] to satisfy ‖Θ̂η − Θ0‖F ≤ γ. If ‖Θ̂ − Θ0‖F < γ,
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we set η = 1 and thus Θ̂η = Θ̂; otherwise, we pick η = γ/‖Θ̂ −Θ0‖F ∈

(0, 1) such that ‖Θ̂η − Θ0‖F = γ. Since Θ̂η − Θ0 = η(Θ̂ − Θ0) and

Θ̂ − Θ0 ∈ C, it is easy to see Θ̂η − Θ0 ∈ C. Therefore, we have Θ̂η −

Θ0 ∈ C ∩ {‖Θ̂η −Θ0‖F ≤ γ}. Since τ = C(σδn/((p + q) log n))1/(1+δ) and

n ≥ Cr(p+ q) log n for sufficiently large C, we have τ ≥ Cγ, τ ≥ Cσ
1/(1+δ)
δ

and γ2 ≥ Cτ 2r(p + q) log n/n. Therefore, the conditions of Lemma 5 have

been verified. A direct application of Lemma 5 yields

〈∇L(Θ̂η)−∇L(Θ0), Θ̂η −Θ0〉 ≥ C‖Θ̂η −Θ0‖2
F , (S1.2)

with probability at least 1 − n−C . Moreover, by invoking Lemma C.1 of

Sun et al. (2020), we have

〈∇L(Θ̂η)−∇L(Θ0), Θ̂η −Θ0〉 ≤ η〈∇L(Θ̂)−∇L(Θ0), Θ̂−Θ0〉

≤ Cηλ
√
r‖Θ̂−Θ0‖F . (S1.3)

Therefore, it follows from (S1.2) and (S1.3) that

C‖Θ̂η −Θ0‖2
F ≤ Cηλ

√
r‖Θ̂−Θ0‖F ≤ Cλ

√
r‖Θ̂η −Θ0‖F ,

where the last inequality uses Θ̂ −Θ0 = η−1(Θ̂η −Θ0). Rearranging the

above inequality yields

‖Θ̂η −Θ0‖F ≤ Cλ
√
r < γ,

where we use ((p+ q) log n/n)δ/(1+δ) < ((p+ q) log n/n)1/2−1/(1+δ) for any δ.
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By the construction of Θ̂η and ‖Θ̂η −Θ0‖F < γ, we get Θ̂η = Θ̂, implying

‖Θ̂−Θ0‖F ≤ Cλ
√
r.

This completes the proof for the first part.

Let ∆̂ = Θ̂ −Θ0. By Lemma 1 which states that ‖∆̂rc‖∗ ≤ 3‖∆̂r‖∗,

we have ‖∆̂‖∗ ≤ ‖∆̂rc‖∗ + ‖∆̂r‖∗ ≤ 4‖∆̂r‖∗ ≤ C
√
r‖∆̂r‖F ≤ C

√
r‖∆̂‖F .

Therefore, we have

‖Θ̂−Θ0‖∗ ≤ C
√
r‖Θ̂−Θ0‖F ≤ Cλr,

which completes the proof of Theorem 1. �

S1.3 Proof of Theorem 2

By the first order optimality condition of (2.1), there exists Θ̄ ∈ ∂‖Θ̂‖∗

such that

− 1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)Xi + λΘ̄ = 0. (S1.4)

Let r̂ = rank(Θ̂). By (2.1) of Koltchinskii et al. (2011), if Θ̂ has singular

value decomposition Θ̂ = UDV> with U ∈ Rp×r̂ and V ∈ Rq×r̂, we have

∂‖Θ̂‖∗ = {UV> + U⊥W(V⊥)> : ‖W‖op ≤ 1},

where U⊥ ∈ Rp×(p−r̂) and V⊥ ∈ Rq×(q−r̂) are orthogonal matrices with

columns orthogonal to those of U and V, respectively. Let Uj and Vj
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denote the column of U and V, respectively. Premultiplying Uj and post-

multiplying Vj to (S1.4) yield

1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)U>j XiVj = λ, j = 1, . . . , r̂. (S1.5)

On the other hand, by the first order condition of Θ0,τ := arg minΘ∈Rp×q EL(Θ),

we have E[`
′
τ (Yi − 〈Xi,Θ0,τ 〉)U>j XiVj] = 0. Then we have

1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)U>j XiVj

= (Pn − P )[(`
′

τ (Yi − 〈Xi, Θ̂〉)− `
′

τ (Yi − 〈Xi,Θ0〉))U>j XiVj]

+E[(`
′

τ (Yi − 〈Xi, Θ̂〉)− `
′

τ (Yi − 〈Xi,Θ0〉))U>j XiVj]

+(Pn − P )(`
′

τ (Yi − 〈Xi,Θ0〉)U>j XiVj)

+E[`
′

τ (Yi − 〈Xi,Θ0〉)U>j XiVj]− E[`
′

τ (Yi − 〈Xi,Θ0,τ 〉)U>j XiVj]

:= T1j + T2j + T3j + T4j.

Let Tk = (Tk1, . . . , Tkr̂)
> for k = 1, 2, 3, 4. Then (S1.5) implies

λ
√
r̂ ≤ ‖T1‖2 + ‖T2‖2 + ‖T3‖2 + ‖T4‖2.

We proceed to bound ‖Tk‖2. Let α = (α1, . . . , αr̂)
> and β = (V1 ⊗

U1, . . . ,Vr̂⊗Ur̂)α. Then for any α ∈ Sr̂−1, we have ‖β‖2
2 =

∑r̂
j=1 α

2
j‖Vj⊗

Uj‖2
2 = 1. Define Ω̄ = {Θ ∈ Rp×q : ‖Θ−Θ0‖F ≤ an}. Since `

′
τ is Lipschitz
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continuous, we have

‖T2‖2 = sup
α∈Sr̂−1

α>T2 ≤ sup
β∈Spq−1,Θ∈Ω̄

CE
[
|〈Xi,Θ−Θ0〉||β>vec(Xi)|

]
≤ sup

β∈Spq−1,Θ∈Ω̄

C
√

E|〈Xi,Θ−Θ0〉|2
√
E|β>vec(Xi)|2

≤ sup
Θ∈Ω̄

C‖Θ−Θ0‖F ≤ Can,

where we use the sub-Gaussian property of vec(Xi) in the last line. Sim-

ilarly, by Lemma 9 which states that ‖Θ0,τ − Θ0‖F ≤ Cσδτ
−δ ≤ an, we

have

‖T4‖2 = sup
α∈Sr̂−1

α>T4 ≤ sup
β∈Spq−1,Θ∈Ω̄

CE
[
|〈Xi,Θ−Θ0〉||β>vec(Xi)|

]
≤ Can.

By similar arguments as that in Lemma 7, with high probability, we have

‖T1‖2 ≤ Can

√
r̂(p+ q) log n

n
+ Can

r̂3/2(p+ q)2(log n)2

n
.

By similar arguments as Lemma 6 and τ = Cvδ{n/((p + q) log n)}1/(1+δ),

we have

‖T3‖2 ≤ Cvδ

(
(p+ q) log n

n

)δ/(1+δ)

,

with high probability. Therefore, we have

λ
√
r̂ ≤ ‖T1‖2 + ‖T2‖2 + ‖T3‖2 + ‖T4‖2

≤ Can

√
r̂(p+ q) log n

n
+ Can

r̂3/2(p+ q)2(log n)2

n
+ Can + Cvδ

(
(p+ q) log n

n

)δ/(1+δ)

.
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By assumption λ = Cvδ ((p+ q) log n/n)δ/(1+δ), the above inequality im-

plies that r̂ ≤ Cr. This completes the proof. �

S1.4 Proof of Theorem 3

This follows similar arguments as that in the proof of Theorem 1. By the

first order condition of (3.5), there exists Θ̄ ∈ ∂‖Θ̃‖∗ such that ∇L̃(Θ̃) +

λΘ̄ = 0. Then we have

〈∇L̃(Θ̃)−∇L̃(Θ0), Θ̃−Θ0〉 = 〈λΘ̄ +∇L̃(Θ0),Θ0 − Θ̃〉.

Using Hölder’s inequality yields

〈λΘ̄,Θ0 − Θ̃〉 ≤ λ‖Θ̄‖op‖Θ0 − Θ̃‖∗ ≤ 8λ‖(Θ0 − Θ̃)r‖∗,

where the last inequality uses ‖Θ̄‖op ≤ 2 and Θ̃−Θ0 ∈ C (proved similarly

as Lemma 1). Similarly, we get

〈∇L̃(Θ0),Θ0 − Θ̃〉 ≤ ‖∇L̃(Θ0)‖op‖Θ0 − Θ̃‖∗ ≤ 2λ‖(Θ0 − Θ̃)r‖∗,

where the last inequality uses Lemma 8. Therefore, we have

〈∇L̃(Θ̃)−∇L̃(Θ0), Θ̃−Θ0〉 ≤ Cλ
√
r‖Θ0 − Θ̃‖F . (S1.6)

On the other hand, by the definition of L̃, it is easy to see

〈∇L̃(Θ̃)−∇L̃(Θ0), Θ̃−Θ0〉 = 〈∇L1(Θ̃)−∇L1(Θ0), Θ̃−Θ0〉. (S1.7)
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Let γ = Cτ
√
r(p+ q) log n/n. Next we will construct Θ̃η = Θ0+η(Θ̃−

Θ0) for some η ∈ (0, 1] to satisfy ‖Θ̃η −Θ0‖F ≤ γ. If ‖Θ̃−Θ0‖F < γ, we

set η = 1 and thus Θ̃η = Θ̃; otherwise, we pick η = γ/‖Θ̃−Θ0‖F such that

‖Θ̃η−Θ0‖F = γ. Since Θ̃−Θ0 ∈ C, we have Θ̃η−Θ0 ∈ C∩{‖Θ̃η−Θ0‖F ≤

γ}. By assumptions τ = C(σδN/((p+ q) logN))1/(1+δ) and n ≥ Cr4/3((p+

q) log n)5/3, we have τ ≥ Cγ, τ ≥ Cσ
1/(1+δ)
δ and γ2 ≥ Cτ 2r(p + q) log n/n.

Therefore, the conditions of Lemma 5 have been verified. Combining (S1.7)

along with Lemma 5 yields

〈∇L̃(Θ̃η)−∇L̃(Θ0), Θ̃η −Θ0〉 ≥ C‖Θ̃η −Θ0‖2
F . (S1.8)

Moreover, by invoking Lemma C.1 of Sun et al. (2020), we have

〈∇L̃(Θ̃η)−∇L̃(Θ0), Θ̃η −Θ0〉 ≤ Cηλ
√
r‖Θ̃−Θ0‖F . (S1.9)

Therefore, it follows from (S1.8) and (S1.9) that

C‖Θ̃η −Θ0‖2
F ≤ Cηλ

√
r‖Θ̃−Θ0‖F ≤ Cλ

√
r‖Θ̃η −Θ0‖F .

If γ > Cλ
√
r, rearranging the above inequality yields ‖Θ̃η − Θ0‖F ≤

Cλ
√
r < γ. By the construction of Θ̃η, we have Θ̃η = Θ̃, which implies

‖Θ̃−Θ0‖F ≤ Cλ
√
r.
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Therefore, it remains to prove γ > Cλ
√
r. By our assumptions, we have

λ = Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n
+ Cvδ

(
(p+ q) logN

N

) δ
1+δ

= Cvδr

(
(p+ q) log n

n

) δ
1+δ

+ 1
2

+ Cvδr
2

(
(p+ q) log n

n

) δ
1+δ ((p+ q) log n)2

n

+Cvδ

(
(p+ q) logN

N

) δ
1+δ

.

Since n ≥ Cr4/3((p + q) log n)5/3, δ/(1 + δ) > 1/2 − 1/(1 + δ) and τ =

C(σδN/((p+ q) logN))1/(1+δ), a direct calculation yields

C
√
rλ ≤ Cvδ

√
r

(
(p+ q) log n

n

) 1
2
− 1

1+δ

< Cτ
√
r(p+ q) log n/n = γ,

and thus we complete the proof of the first part.

Since ∆̃ = Θ̃−Θ0 ∈ C, we have ‖∆̃‖∗ ≤ C
√
r‖∆̃‖F , implying

‖Θ̃−Θ0‖∗ ≤ C
√
r‖Θ̃−Θ0‖F ≤ Cλr,

which completes the proof of Theorem 3. �

S1.5 Proof of Corollary 2

Let Θ̃
t+1

denote the distributed estimator obtained at (t+1)-th round, bn =

Cr
√

(p+q) logn
n

+C r2(p+q)2(logn)2

n
and SN = Cvδ

√
r
(

(p+q) logN
N

) δ
1+δ

. Applying
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Theorem 3 recursively yields

‖Θ̃
t+1
−Θ0‖F ≤ bn‖Θ̃

t
−Θ0‖F + SN ≤ bn(bn‖Θ̃

t−1
−Θ0‖F + SN) + SN

≤ · · ·

≤ (bn)t+1‖Θ̃
0
−Θ0‖F + SN

t∑
l=0

(bn)l

= an(bn)t+1 +
SN(1− (bn)t+1)

1− bn
.

It is easy to see that when the number of iterations T ≥ log(SN/an)
log bn

, we have

anb
T
n ≤ CSN , therefore implying

‖Θ̃
T
−Θ0‖F ≤ CSN = Cvδ

√
r

(
(p+ q) logN

N

) δ
1+δ

.

Essentially the same arguments also apply to upper bound ‖Θ̃
T
− Θ0‖∗,

which completes the proof. �

S1.6 Proof of Theorem 4

For notational simplicity, we let {(Yi,Xi)}Ni=1 denote the full sample and

{(Yi,Xi)}ni=1 denote the subsample that is stored inM1. By the first order

optimality condition of (3.5), there exists Θ̄ ∈ ∂‖Θ̃‖∗ such that

λΘ̄ =
1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̃〉)Xi −
1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)Xi

+
1

N

N∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)Xi. (S1.10)
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Let r̃ = rank(Θ̃). By (2.1) of Koltchinskii et al. (2011), if Θ̃ has singular

value decomposition Θ̃ = UDV> with U ∈ Rp×r̃ and V ∈ Rq×r̃, we have

∂‖Θ̃‖∗ = {UV> + U⊥W(V⊥)> : ‖W‖op ≤ 1},

where U⊥ ∈ Rp×(p−r̃) and V⊥ ∈ Rq×(q−r̃) are orthogonal matrices with

columns orthogonal to those of U and V, respectively. Let Uj and Vj

denote the column of U and V, respectively. Premultiplying Uj and post-

multiplying Vj to (S1.10) yield

λ =
1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̃〉)U>j XiVj −
1

n

n∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)U>j XiVj

+
1

N

N∑
i=1

`
′

τ (Yi − 〈Xi, Θ̂〉)U>j XiVj

:= Mj, j = 1, . . . , r̃.

Let M = (M1, . . . ,Mr̃)
>, then the above implies

λ
√
r̃ ≤ ‖M‖2. (S1.11)

We continue to bound ‖M‖2. Define Θ0,τ := arg minΘ∈Rp×q EL(Θ), then

we have E[`
′
τ (Yi−〈Xi,Θ0,τ 〉)U>j XiVj] = 0. We note that Mj can be further
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decomposed as

Mj = (Pn − P )[(`
′

τ (Yi − 〈Xi, Θ̃〉)− `
′

τ (Yi − 〈Xi,Θ0〉))U>j XiVj]

+E[(`
′

τ (Yi − 〈Xi, Θ̃〉)− `
′

τ (Yi − 〈Xi,Θ0〉))U>j XiVj]

−(Pn − P )[(`
′

τ (Yi − 〈Xi, Θ̂〉)− `
′

τ (Yi − 〈Xi,Θ0〉))U>j XiVj]

+(PN − P )[(`
′

τ (Yi − 〈Xi, Θ̂〉)− `
′

τ (Yi − 〈Xi,Θ0〉))U>j XiVj]

+(PN − P )(`
′

τ (Yi − 〈Xi,Θ0〉)U>j XiVj)

+E[`
′

τ (Yi − 〈Xi,Θ0〉)U>j XiVj]− E[`
′

τ (Yi − 〈Xi,Θ0,τ 〉)U>j XiVj].

Since τ = Cvδ{N/((p+ q) logN)}1/(1+δ), following the similar arguments as

that in Theorem 2, we have

‖M‖2 ≤ CaN

√
r̃(p+ q) log n

n
+ CaN

r̃3/2(p+ q)2(log n)2

n
+ CaN

+Can

√
r̂(p+ q) log n

n
+ Can

r̂3/2(p+ q)2(log n)2

n

+Can

√
r̂(p+ q) logN

N
+ Can

r̂3/2(p+ q)2(logN)2

N
+ Cvδ

(
(p+ q) logN

N

)δ/(1+δ)

.

By assumption λ = Cvδ ((p+ q) logN/N)δ/(1+δ), n ≥ C(min{p, q}(p +

q) log n)2, N ≥ C(min{p, q}(p+q) logN)4 and Theorem 2 that r̂ ≤ Cr, sub-

stituting the above into (S1.11) yields r̃ ≤ Cr. This completes the proof. �
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S2. Lemmas and their proofs

The following lemmas will be used in the proof of the main theorem.

Lemma 1. Let C = {∆ ∈ Rp×q : ‖∆rc‖∗ ≤ 3‖∆r‖∗}. Assume λ ≥

2‖∇L(Θ0)‖op, then we have ∆̂ = Θ̂−Θ0 belongs to the set C.

Proof of Lemma 1. According to the definition of Θ̂, we have

1

n

n∑
i=1

`τ (Yi − 〈Xi, Θ̂〉) + λ‖Θ̂‖∗ ≤
1

n

n∑
i=1

`τ (Yi − 〈Xi,Θ0〉) + λ‖Θ0‖∗.

Due to the convexity of `τ , we have

1

n

n∑
i=1

`τ (Yi − 〈Xi, Θ̂〉)−
1

n

n∑
i=1

`τ (Yi − 〈Xi,Θ0〉)

≥ − 1

n

n∑
i=1

`
′

τ (Yi − 〈Xi,Θ0〉)〈Xi, ∆̂〉,

which, combined with Hölder’s inequality and assumption λ ≥ 2‖∇L(Θ0)‖op,

implies that

1

n

n∑
i=1

`τ (Yi − 〈Xi, Θ̂〉)−
1

n

n∑
i=1

`τ (Yi − 〈Xi,Θ0〉)

≥ −
∥∥∥ 1

n

n∑
i=1

`
′

τ (Yi − 〈Xi,Θ0〉)Xi

∥∥∥
op
‖∆̂‖∗ ≥ −

λ

2
‖∆̂‖∗.

Therefore, we have

λ‖Θ0‖∗ − λ‖Θ̂‖∗ ≥ −
λ

2
‖∆̂‖∗.

Recall that ∆̂ = Θ̂−Θ0, ∆̂rc = PN ∆̂ and ∆̂r = ∆̂− ∆̂rc . Combining

triangle inequalities ‖∆̂‖∗ ≤ ‖∆̂r‖∗+‖∆̂rc‖∗, ‖Θ̂‖∗ ≥ ‖Θ0+∆̂rc‖∗−‖∆̂r‖∗
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along with the fact that ‖Θ0 + ∆̂rc‖∗ = ‖Θ0‖∗ + ‖∆̂rc‖∗, we have

−λ
2
‖∆̂r‖∗ −

λ

2
‖∆̂rc‖∗ ≤ λ‖Θ0‖∗ − λ‖Θ̂‖∗ ≤ −λ‖∆̂rc‖∗ + λ‖∆̂r‖∗.

Rearranging the above terms generates

‖∆̂rc‖∗ ≤ 3‖∆̂r‖∗,

which completes the proof. �

Lemma 2. Let A be a p× q matrix, U be a 1/4-covering of Sp−1 and V be

a 1/4-covering of Sq−1, then

‖A‖op ≤ 2 max
uj∈U ,vk∈V

u>j Avk,

with |U| ≤ 9p and |V| ≤ 9q.

Proof of Lemma 2. By the definition of the covering, for any u ∈ Sp−1

and v ∈ Sq−1, there exist uj ∈ U such that ‖uj − u‖2 ≤ 1/4 and vk ∈ V

such that ‖vk − v‖2 ≤ 1/4, where j = 1, . . . , |U| and k = 1, . . . , |V|. Then

we have

u>Av = u>A(v − vk) + (u− uj)
>Avk + u>j Avk

≤ 1

4
‖A‖op +

1

4
‖A‖op + u>j Avk.

Taking the maximum over all uj ∈ U and vk ∈ V , we have

‖A‖op = sup
u∈Sp−1,v∈Sq−1

u>Av ≤ 1

2
‖A‖op + max

uj∈U ,vk∈V
u>j Avk.
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Rearranging the above term yields

‖A‖op ≤ 2 max
uj∈U ,vk∈V

u>j Avk.

Furthermore, applying Lemma 5.2 of Vershynin (2010), the covering num-

ber satisfies |U| ≤ 9p and |V| ≤ 9q. This completes the proof. �

Lemma 3. Assume condition (A2) holds. Then with probability at least

1− n−C for some C > 0, we have

max
1≤i≤n

‖Xi‖op ≤ C
√

(p+ q) log n.

Proof of Lemma 3. Let U be a 1/4-covering of Rp−1 and V be a 1/4-

covering of Rq−1. For any uj ∈ U , vk ∈ V , by assumption (A2) that vec(Xi)

is sub-Gaussian and the fact that u>j Xivk = (vk ⊗ uj)
>vec(Xi), we have

E
[
exp{t(vk ⊗ uj)

>vec(Xi)}
]
≤ exp{Ct2}, (S2.12)

for any t > 0. Moreover, applying Lemma 2 generates

P(‖Xi‖op > 2s) ≤ P
(

max
uj∈U ,vk∈V

u>j Xivk > s

)
≤
|U|∑
j=1

|V|∑
k=1

P(u>j Xivk > s)

with |U| ≤ 9p and |V| ≤ 9q. By Markov’s inequality, we have

|U|∑
j=1

|V|∑
k=1

P(u>j Xivk > s) ≤
|U|∑
j=1

|V|∑
k=1

e−tsE
[
exp{t(vk ⊗ uj)

>vec(Xi)}
]

≤ 9p+qe−ts+Ct
2

,
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where the second inequality uses (S2.12). Setting t = Cs, s = C
√

(p+ q) log n

and taking the union bound over i = 1, . . . , n yield

P
(

max
1≤i≤n

‖Xi‖op > C
√

(p+ q) log n

)
≤ n−C ,

which completes the proof. �

Lemma 4. Let wi be i.i.d. Rademacher variables, that is, P(wi = ±1) =

1/2. Under condition (A2), we have

E

∥∥∥∥∥ 1

n

n∑
i=1

wiXi

∥∥∥∥∥
op

≤ C

√
p+ q

n
,

for some constant C > 0.

Proof of Lemma 4. Let U be a 1/4-covering of Rp−1 and V be a 1/4-

covering of Rq−1. By covering arguments stated in Lemma 2, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

wiXi

∥∥∥∥∥
op

≤ 2E

[
max

uj∈U ,vk∈V

1

n

n∑
i=1

wiu
>
j Xivk

]
.

Since u>j Xivk = (vk ⊗ uj)
>vec(Xi) is sub-Gaussian and wi is bounded,

wiu
>
j Xivk is also sub-Gaussian. By standard bound on maxima of sub-

Gaussian variables, we have

E

[
max

uj∈U ,vk∈V

1

n

n∑
i=1

wiu
>
j Xivk

]
≤ C

√
log(|U||V|)

n
≤ C

√
log(9p+q)

n
,

which completes the proof. �



18 Yue Wang, Wenqi Lu, Lei Wang, Zhongyi Zhu, Hongmei Lin and Heng Lian

Lemma 5. (Restricted strong convexity) Assume conditions (A1)-(A4),

E|〈X,B〉|4 ≤ C‖B‖4
F for any B ∈ Rp×q and some constant C > 0, τ ≥

C max{σ1/(1+δ)
δ , γ} and n ≥ C(τ/γ)2r(p+q) log n for some sufficiently large

C and some γ > 0. Then with probability at least 1− n−C for some C > 0,

we have

〈∇L(Θ)−∇L(Θ0),Θ−Θ0〉 ≥ C‖Θ−Θ0‖2
F

uniformly over ∆ = Θ−Θ0 ∈ {‖∆‖F ≤ γ} ∩ C.

Proof of Lemma 5. This follows similar arguments as Lemma C.4 in Sun

et al. (2020). For readability, we will split the proof into three steps.

Step 1. First, let ∆ = Θ − Θ0 and f(Xi) = φτ‖∆‖F /(2γ)(〈Xi,∆〉I(|Yi −

〈Xi,Θ0〉| ≤ τ/2)), where φR(u) = u2I(|u| ≤ R/2) + (|u| − R)2I(R/2 <

|u| ≤ R) for any R > 0. Note that φR is R-Lipschitz continuous and

satisfies u2I(|u| ≤ R/2) ≤ φR(u) ≤ u2I(|u| ≤ R). We will show that

〈∇L(Θ)−∇L(Θ0),Θ−Θ0〉 ≥
1

n

n∑
i=1

f(Xi). (S2.13)

Now we consider two cases.

Case 1: |〈Xi,∆〉| > τ‖∆‖F/(2γ) or |Yi−〈Xi,Θ0〉| > τ/2, we have f(Xi) =

0. By the convexity of `τ , it is easy to see the left hand side of (S2.13) is

greater than zero.
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Case 2: |〈Xi,∆〉| ≤ τ‖∆‖F/(2γ) and |Yi − 〈Xi,Θ0〉| ≤ τ/2, we have

|Yi−〈Xi,Θ0 + ∆〉| ≤ |Yi−〈Xi,Θ0〉|+ |〈Xi,∆〉| ≤ τ/2 + τ‖∆‖F/(2γ) ≤ τ,

for ∆ ∈ {‖∆‖F ≤ γ}∩C. Combined with the fact that `
′
τ (u) = u if |u| ≤ τ ,

we have

{
−`′τ (Yi − 〈Xi,Θ〉) + `

′

τ (Yi − 〈Xi,Θ0〉)
}
〈Xi,∆〉 = |〈Xi,∆〉|2 ≥ f(Xi),

where the last inequality holds since φR(u) ≤ u2. Combining the above two

cases completes the proof of the first step.

Step 2. We now proceed to establish the lower bound for Ef(X). Note

that E|〈X,∆〉|2 ≥ C‖∆‖2
F due to assumption (A3), and when |〈X,∆〉| ≤

τ‖∆‖F/(4γ) ≤ τ/4 and |Y −〈X,Θ0〉| ≤ τ/2, f(X) = |〈X,∆〉|2. Therefore,

Ef(X) ≥ E[|〈X,∆〉|2I(|〈X,∆〉| ≤ τ/4)I(|Y − 〈X,Θ0〉| ≤ τ/2)]

≥ C‖∆‖2
F −

√
E|〈X,∆〉|4

√
P(|〈X,∆〉| > τ/4)

−
√

E|〈X,∆〉|4
√

P(|Y − 〈X,Θ0〉| > τ/2).

Using Markov’s inequality yields

P(|〈X,∆〉| > τ/4) ≤ (4/τ)2
√

E|〈X,∆〉|4 ≤ C(4/τ)2‖∆‖2
F

and

P(|Y − 〈X,Θ0〉| > τ/2) ≤ (2/τ)1+δE|e|1+δ ≤ (2/τ)1+δσδ.
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Therefore, combining the above inequalities with assumption (A4), τ ≥

C max{σ1/(1+δ)
δ , γ} and ‖∆‖F ≤ γ, we have

Ef(X) ≥ C‖∆‖2
F − C(4/τ)‖∆‖3

F − C‖∆‖2
F

√
(2/τ)1+δσδ ≥ C‖∆‖2

F ,

which completes the proof of the second step.

Step 3. Finally, we consider the upper bound for sup∆∈C∩{‖∆‖F≤γ} |(Pn −

P )f |. It is easy to see that

〈∇L(Θ)−∇L(Θ0),Θ−Θ0〉
‖Θ−Θ0‖2

F

≥ Ef(X)

‖Θ−Θ0‖2
F

− sup
∆∈C∩{‖∆‖F≤γ}

|(Pn − P )f |
‖Θ−Θ0‖2

F

.

Since φbR(bu) = b2φR(u) for any b > 0, we have

f(Xi) = φτ/(2γ)(〈Xi,∆〉I(|Yi − 〈Xi,Θ0〉| ≤ τ/2)/‖∆‖F )‖∆‖2
F .

Define g(Xi) = f(Xi)/‖∆‖2
F . Then it suffices to prove sup∆∈C∩{‖∆‖F≤γ} |(Pn−

P )g| ≤ C for some constant C. Let wi be i.i.d. Rademacher variables. By

the symmetrization argument as that in Pollard (1984), we have

E

[
sup

∆∈C∩{‖∆‖F≤γ}
|(Pn − P )g|

]

≤ 2E

[
sup

∆∈C∩{‖∆‖F≤γ}

∣∣∣∣∣ 1n
n∑
i=1

wig(Xi)

∣∣∣∣∣
]

≤ C
τ

2γ
E

[
sup

∆∈C∩{‖∆‖F≤γ}

∣∣∣∣∣ 1n
n∑
i=1

wi〈Xi,∆〉I(|Yi − 〈Xi,Θ0〉| ≤ τ/2)/‖∆‖F

∣∣∣∣∣
]
,

where the last line uses the contraction inequality for the Rademacher com-

plexity (see, for example, Theorem 2.2 of Koltchinskii (2011)) since φτ/2γ is
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τ/2γ-Lipschitz continuous and φτ/2γ(0) = 0. Since |〈Xi,∆〉| ≤ ‖Xi‖op‖∆‖∗

and I(·) is bounded, we have

E

[
sup

∆∈C∩{‖∆‖F≤γ}

∣∣∣∣∣ 1n
n∑
i=1

wi〈Xi,∆〉I(|Yi − 〈Xi,Θ0〉| ≤ τ/2)/‖∆‖F

∣∣∣∣∣
]

≤ E

∥∥∥∥∥ 1

n

n∑
i=1

wiXi

∥∥∥∥∥
op

sup
∆∈C∩{‖∆‖F≤γ}

‖∆‖∗
‖∆‖F

≤ C
√
r

√
p+ q

n
,

where the last inequality uses Lemma 4 and ‖∆‖∗ ≤ 4‖∆r‖∗ ≤ C
√
r‖∆‖F .

Therefore, we have

E

[
sup

∆∈C∩{‖∆‖F≤γ}
|(Pn − P )g|

]
≤ C

τ
√
r

γ

√
p+ q

n
.

Recall that 0 ≤ φR(u) ≤ min{R2/4, u2}, we have g ≤ τ 2/(16γ2) and

Eg2 ≤ E(〈X,∆〉/‖∆‖F )4 ≤ C. Applying Talagrand’s concentration in-

equality yields

sup
∆∈C∩{‖∆‖F≤γ}

|(Pn − P )g| ≤ CE

[
sup

∆∈C∩{‖∆‖F≤γ}
|(Pn − P )g|

]
+ C

√
t

n
+ C

τ 2t

γ2n

≤ C
τ
√
r

γ

√
p+ q

n
+ C

√
t

n
+ C

τ 2t

γ2n
,

with probability at least 1− exp(−t) for any t > 0. Let t = C(p + q) log n

and assume n ≥ C(τ/γ)2r(p + q) log n as well as τ ≥ C max{σ1/(1+δ)
δ , γ},

then we have

sup
∆∈C∩{‖∆‖F≤γ}

|(Pn − P )g| ≤ C

(
1√

log n
+

1√
r

+
1

r

)
≤ C,

with probability at least 1− n−C .
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Combining Steps 1-3, we have

〈∇L(Θ)−∇L(Θ0),Θ−Θ0〉 ≥
1

n

n∑
i=1

f(Xi) ≥ C‖∆‖2
F ,

with probability at least 1− n−C . This completes the proof. �

Lemma 6. Assume conditions (A1)-(A4) hold, then with probability at least

1− n−C for some C > 0, we have

‖∇L(Θ0)‖op ≤ C

√
σδτ 1−δ(p+ q) log n

n
+ C

τ(p+ q) log n

n
+ Cσδτ

−δ.

In particular, assume τ = Cvδ{n/((p+ q) log n)}1/(1+δ), then we have

‖∇L(Θ0)‖op ≤ Cvδ

(
(p+ q) log n

n

)δ/(1+δ)

.

Proof of Lemma 6. By triangular inequality, we have

‖∇L(Θ0)‖op ≤ ‖∇L(Θ0)− E∇L(Θ0)‖op + ‖E∇L(Θ0)‖op.

Therefore, it remains to bound ‖∇L(Θ0)−E∇L(Θ0)‖op and ‖E∇L(Θ0)‖op,

respectively. Let ξi = `
′
τ (Yi − 〈Xi,Θ0〉) = `

′
τ (ei), then we have

∇L(Θ0)− E∇L(Θ0) = − 1

n

n∑
i=1

{ξiXi − E(ξiXi)} .

Let U be a 1/4-covering of Rp−1 and V be a 1/4-covering of Rq−1. By

standard covering arguments as stated in Lemma 2, we have

‖∇L(Θ0)− E∇L(Θ0)‖op ≤ 2 max
uj∈U ,vk∈V

∣∣∣∣∣ 1n
n∑
i=1

{
ξiu
>
j Xivk − E[ξiu

>
j Xivk]

}∣∣∣∣∣ ,
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with |U| ≤ 9p and |V| ≤ 9q. It follows from assumption (A2) that u>j Xivk =

(vk ⊗ uj)
>vec(Xi) is sub-Gaussian and satisfies

E|u>j Xivk|l ≤ 2l

∫ ∞
0

tl−1e−t
2/c20dt ≤ cl0lΓ(l/2), l ≥ 1 (S2.14)

where Γ(·) denotes the Gamma function. By assumption (A4) and the fact

that ξi = sign(ei) min(|ei|, τ), we have

E(ξiu
>
j Xivk)

2 ≤ τ 1−δE
[
(u>j Xivk)

2E(ξ1+δ
i |Xi)

]
≤ 2c2

0τ
1−δσδ,

E|ξiu>j Xivk|l ≤ τ l−1−δE
[
|u>j Xivk|lE(ξ1+δ

i |Xi)
]
≤ (l!/2)(c0τ/2)l−22c2

0τ
1−δσδ,

for l ≥ 3. Then applying Bernstein’s inequality yields∣∣∣∣∣ 1n
n∑
i=1

{
ξiu
>
j Xivk − E[ξiu

>
j Xivk]

}∣∣∣∣∣ ≤ C

√
σδτ 1−δz

n
+ C

τz

n
,

with probability at least 1 − 2e−z for any z > 0. Taking the union bound

over uj ∈ U and vk ∈ V , we have

‖∇L(Θ0)− E∇L(Θ0)‖op ≤ 2 max
uj∈U ,vk∈V

∣∣∣∣∣ 1n
n∑
i=1

{
ξiu
>
j Xivk − E[ξiu

>
j Xivk]

}∣∣∣∣∣
≤ C

√
σδτ 1−δz

n
+ C

τz

n
, (S2.15)

with probability at least 1− 9p+q · 2e−z. Setting z = C(p+ q) log n, we have

‖∇L(Θ0)− E∇L(Θ0)‖op ≤ C

√
σδτ 1−δ(p+ q) log n

n
+ C

τ(p+ q) log n

n
,

with probability at least 1− n−C . Moreover, it is easy to see

‖E∇L(Θ0)‖op = sup
u∈Sp−1,v∈Sq−1

1

n

n∑
i=1

E|ξiu>Xiv| ≤ Cσδτ
−δ.
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Combining the above two inequalities completes the proof. �

Lemma 7. Assume conditions (A1)-(A4) hold and E|〈X,B〉|4 ≤ C‖B‖4
F

for any B ∈ Rp×q and some positive constant C. Then with probability at

least 1− n−C for some C > 0, we have

‖∇L(Θ)−∇L(Θ0)− E∇L(Θ) + E∇L(Θ0)‖op

≤ Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n

uniformly over Ω = {Θ ∈ Rp×q : ‖Θ−Θ0‖F ≤ an, rank(Θ) ≤ Cr}.

Proof of Lemma 7. Let `
′
τ (Θ) = `

′
τ (Yi − 〈Xi,Θ〉) and g(Xi,Θ) =

`
′
τ (Θ)Xi − `

′
τ (Θ0)Xi − E[`

′
τ (Θ)Xi] + E[`

′
τ (Θ0)Xi]. We consider Ω = {Θ ∈

Rp×q : ‖Θ −Θ0‖F ≤ an, rank(Θ) ≤ Cr}. Let NΩ be the ann
−M -covering

of Ω with sufficiently large M , then we have

sup
Θ∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

g(Xi,Θ)

∥∥∥∥∥
op

≤ max
Θ̄∈NΩ

∥∥∥∥∥ 1

n

n∑
i=1

g(Xi, Θ̄)

∥∥∥∥∥
op

+ max
Θ̄∈NΩ

sup
‖Θ̄−Θ‖F≤ann−M

∥∥∥∥∥ 1

n

n∑
i=1

(g(Xi,Θ)− g(Xi, Θ̄))

∥∥∥∥∥
op

:= T1 + T2.

In the following, we will separately bound T1 and T2. Let U be a 1/4-

covering of Rp−1 and V be a 1/4-covering of Rq−1. Since `
′
τ is Lipschitz
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continuous, for any uj ∈ U and vk ∈ V , we have

E
(
`
′

τ (Θ̄)u>j Xivk − `
′

τ (Θ0)u>j Xivk

)2

≤ C
√
E(〈Xi, Θ̄−Θ0〉)4

√
E(u>j Xivk)4

≤ C‖Θ̄−Θ0‖2
F ≤ Ca2

n,

where the first line uses Cauchy-Schwartz inequality and the second in-

equality uses E(〈Xi, Θ̄−Θ0〉)4 ≤ C‖Θ̄−Θ0‖4
F and (S2.14). Moreover,∣∣∣`′τ (Θ̄)u>j Xivk − `

′

τ (Θ0)u>j Xivk

∣∣∣ ≤ C( max
1≤i≤n

‖Xi‖op)2‖Θ̄−Θ0‖∗

≤ C
√
ran(p+ q) log n,

where the last inequality uses ‖Θ̄ −Θ0‖∗ ≤ C
√
ran and Lemma 3 which

states that max1≤i≤n ‖Xi‖op ≤ C
√

(p+ q) log n with high probability. There-

fore, applying Bernstein’s inequality yields∣∣∣∣∣ 1n
n∑
i=1

(`
′

τ (Θ̄)− `′τ (Θ0))u>j Xivk − E
[
(`
′

τ (Θ̄)− `′τ (Θ0))u>j Xivk

]∣∣∣∣∣
≤ C

√
za2

n

n
+ C

z
√
ran(p+ q) log n

n
:= φ(z), (S2.16)

with probability at least 1 − 2e−z for any z > 0. By applying Lemma 5.2

of Vershynin (2010), the covering number satisfies |NΩ| ≤ (1 + 2nM)Cr(p+q).

Combining with the union bound generates

P{T1 ≥ φ(z)} = P

max
Θ̄∈NΩ

∥∥∥∥∥ 1

n

n∑
i=1

g(Xi, Θ̄)

∥∥∥∥∥
op

≥ φ(z)


≤ CnCMr(p+q) max

Θ̄∈NΩ

P

(
max

uj∈U ,vk∈V

1

n

n∑
i=1

u>j g(Xi, Θ̄)vk ≥ φ(z)

)
≤ CnCMr(p+q)9p+qe−z,
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where the second inequality uses Lemma 2 and the last line uses (S2.16).

Setting z = Cr(p+ q) log n, we have

T1 ≤ Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n
, (S2.17)

with probability at least 1− n−C .

Next we continue to bound T2. Define h(Xi) = sup‖Θ̄−Θ‖F≤ann−M [g(Xi,Θ)−

g(Xi, Θ̄)]. Similarly, we have

|u>j h(Xi)vk| ≤

∣∣∣∣∣ sup
‖Θ̄−Θ‖F≤ann−M

〈Θ− Θ̄,Xi〉u>j Xivk

∣∣∣∣∣ ≤ C
√
rann

−M(p+ q) log n,

which, together with the union bound implies that

T2 ≤ C

√
ran(p+ q) log n

nM
, (S2.18)

with high probability. Therefore, combining (S2.17)-(S2.18) and M suffi-

ciently large yield

sup
Θ∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

g(Xi,Θ)

∥∥∥∥∥
op

≤ Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n
,

with probability at least 1− n−C . This completes the proof. �

Lemma 8. Assume conditions (A1)-(A5) hold and τ = Cvδ{N/((p +

q) logN)}1/(1+δ) for sufficiently large constant C. Then with probability at
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least 1− n−C for some C > 0, we have

‖∇L̃(Θ0)‖op ≤ Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n

+Cvδ

(
(p+ q) logN

N

)δ/(1+δ)

.

Proof of Lemma 8. Recall that L̃(Θ) = L1(Θ)−〈Θ,∇L1(Θ̂)−∇L(Θ̂)〉,

then direct calculation generates

∇L̃(Θ0) = (∇L(Θ̂)−∇L(Θ0))− (∇L1(Θ̂)−∇L1(Θ0)) +∇L(Θ0).

By triangle inequality, it holds that

‖∇L̃(Θ0)‖op ≤ ‖∇L(Θ̂)−∇L(Θ0)− E∇L(Θ̂) + E∇L(Θ0)‖op

+‖∇L1(Θ̂)−∇L1(Θ0)− E∇L1(Θ̂) + E∇L1(Θ0)‖op

+‖∇L(Θ0)‖op

:= I1 + I2 + I3.

Next we will bound I1-I3 separately. By invoking Lemma 7, we have

I1 + I2 ≤ Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n
,

with probability at least 1 − n−C . By Lemma 6 and assumption τ =

Cvδ(N/((p+ q) logN))1/(1+δ), we have

I3 ≤ Cvδ

(
(p+ q) logN

N

)δ/(1+δ)

,
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with probability at least 1− n−C . Therefore, combining the above inequal-

ities yields

‖∇L̃(Θ0)‖op ≤ Can

√
r(p+ q) log n

n
+ Can

r3/2(p+ q)2(log n)2

n

+Cvδ

(
(p+ q) logN

N

)δ/(1+δ)

,

with probability at least 1− n−C . This completes the proof. �

Lemma 9. Assume conditions (A1)-(A4) hold, E|〈u,x〉|4 ≤ C‖u‖4
2 for any

u ∈ Rpq and some constant C, and τ ≥ Cσ
1/(1+δ)
δ for sufficiently large C.

Define Θ0,τ = arg minΘ∈Rp×q EL(Θ). Then we have

‖Θ0 −Θ0,τ‖F ≤ Cσδτ
−δ.

Proof of Lemma 9. Let ∆0 = Θ0 − Θ0,τ , δ0 = vec(∆0) and h(Θ) =

E[`τ (Y − 〈X,Θ〉)]. By the first order condition, we have ∇h(Θ0,τ ) = 0.

Then it follows the mean value theorem that

〈δ0,∇2h(Θt)δ0〉 = 〈δ0,∇h(Θ0)−∇h(Θ0,τ )〉 = 〈δ0,∇h(Θ0)〉 = −E[`
′

τ (e)δ
>
0 x],

where Θt = tΘ0 + (1− t)Θ0,τ for some t ∈ [0, 1]. Since E(e|x) = 0, we have

E[`
′

τ (e)|x] = E[{eI(|e| ≤ τ) + τsign(e)I(|e| > τ)}|x]− E(e|x)

= −E[{eI(|e| > τ)− τsign(e)I(|e| > τ)}|x]
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and thus

|E[`
′

τ (e)|x]| ≤ E[(|e| − τ)I(|e| > τ)|x] ≤ E[(|e|1+δ − τ 1+δ)I(|e| > τ)|x]

τ δ
≤ σδτ

−δ.

Since x is sub-Gaussian, we have

|E[`
′

τ (e)δ
>
0 x]| ≤ |E[δ>0 xE(`

′

τ (e)|x)]| ≤ Cσδτ
−δ‖δ0‖2. (S2.19)

Next, we continue to derive the lower bound for 〈δ0,∇2h(Θt)δ0〉. Let

ẽ = Y − 〈X,Θt〉 and Σ = E(xx>), then we have

∇2h(Θt) = E[I(|ẽ| ≤ τ)xx>] = Σ− E[I(|ẽ| > τ)xx>].

By the definition of `τ , we have

E[`τ (e)|x] ≤ E
[{

τ 1−δ

2
|e|1+δI(|e| ≤ τ) + (τ 1−δ|e|1+δ − τ 2−δ

2
|e|δ)I(|e| > τ)

}
|x
]

≤ Cσδτ
1−δ.

Combining the above inequality with the convexity of h, we have

h(Θt) ≤ th(Θ0) + (1− t)h(Θ0,τ ) ≤ h(Θ0) ≤ Cσδτ
1−δ.

Furthermore, for all Θ ∈ Rp×q, we have

h(Θ) ≥ E[(τ |Y − 〈X,Θ〉| − τ 2/2)I(|Y − 〈X,Θ〉| > τ)].

Combining the above two inequalities, we have

τE[|ẽ|I(|ẽ| > τ)]− (τ 2/2)P(|ẽ| > τ) ≤ Cσδτ
1−δ. (S2.20)
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Since τE[|ẽ|I(|ẽ| > τ)] ≥ τE[|ẽ|I(|ẽ| > τ)τ/|ẽ|] = τ 2P(|ẽ| > τ), (S2.20)

deduces that P(|ẽ| > τ) ≤ Cσδτ
−1−δ. Therefore, we have

〈δ0,∇2h(Θt)δ0〉 ≥ ‖Σ1/2δ0‖2
2 − E[I(|ẽ| > τ)〈x, δ0〉2]

≥ ‖Σ1/2δ0‖2
2 −

√
E|〈δ0,x〉|4

√
P(|ẽ| > τ)

≥ C‖δ0‖2
2 − C‖δ0‖2

2σδτ
−1−δ, (S2.21)

where the third inequality uses assumption (A3) and E|〈δ0,x〉|4 ≤ C‖δ0‖4
2.

Finally, combining (S2.19), (S2.21) and assumption τ ≥ Cσ
1/(1+δ)
δ complete

the proof. �

Remark 1. It is worth noting that Θ0,τ is different from Θ0 generally and

τ plays a critical role in the approximation bias ‖Θ0,τ −Θ0‖F . However, as

stated in Remark 2.2 of Pan et al. (2021), there are several scenarios that

this approximation bias can vanish. In particular, when the conditional

distribution e|x is symmetric around zero, Θ0,τ = Θ0 for any τ .

S3. Simulation studies

In this section, we investigate the finite sample performances of the pro-

posed method through two simulation examples. The initial estimator is

obtained by Algorithm 1 on M1 and Algorithm 2 is used to obtain the
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distributed estimator. We compare five estimators:

(a) LHuber: the local Huber estimator using the only data on M1;

(b) NHuber: the naive average of all local Huber estimators calculated on

{Mj}mj=1;

(c) DHuber: the proposed distributed Huber estimator;

(d) DLS: the distributed least squares estimator using surrogate loss, that

is, replacing Huber loss `τ in (3.5) with least squares loss `(·) = (·)2 and

still applying the CSL framework for the purpose of fair comparison;

(e) DMed: the distributed median estimator using surrogate loss, that

is, replacing Huber loss `τ in (3.5) with median/absolute value loss

`(·) = | · | and still applying the CSL framework.

Particularly, in the case where only one machine (m = 1) is available,

DLS will reduce to the central estimator in Negahban and Wainwright

(2011b)/Zhou and Li (2014), DMed will degenerate to the central estimator

in Elsener and van de Geer (2018), and LHuber, DHuber and NHuber all

naturally correspond to the central Huber estimator. The regularization

parameter λ and robustification parameter τ are selected by 5-fold cross-

validation.
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S3.1 Simulation example 1

We consider the heterogeneous model Yij = 〈Xij,Θ0〉+ (1 + |zij|)eij, where

zij is the first component of vec(Xij), i = 1, . . . , n, j = 1, . . . ,m. Similar

to Zhou and Li (2014), we generate a rank r matrix Θ0 = B1B
>
2 , with

B1 ∈ Rp×r and B2 ∈ Rq×r. Specifically, we first generate each entry of

Bk, k = 1, 2 from N(0, 1), then control the percentage of non-zero entries

using a Bernoulli distribution with probability
√

1− 0.51/r of being 1. Each

entry of Xi is generated from N(0, 1) and the noises follow three different

distributions: the standard normal distribution, the t-distribution with 3

degrees of freedom, and the Pareto distribution with scale parameter 3

and shape parameter 2. Throughout the simulations, we consider rank

r = 2, 5 and run different methods on a desktop computer with 32 GB

RAM and Intel(R) Core(TM) i7-9700 CPU (3.00 GHz). The performances

are evaluated by the estimation error ‖Θ̂ − Θ0‖F and running time (in

minutes), based on 100 replications.

In the first scenario, we fix the sample size N = 10000, dimension

p = 20, q = 20 and vary the number of machines m in {1, 5, 10, 20, 25}.

Note that m = 1 corresponds to the central estimator using the full data.

The errors are summarized in Figure 1 and the logarithm of running time

is reported in Figure 2. For the second scenario, we fix N = 10000, m = 10,
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q = 20 and vary p in {10, 30, 50, 80, 100}. We represent the estimation

errors in Figure 3.

Figure 1 shows that the errors generally increase with the number of

machines (or, decrease with the local sample size since N is fixed). The

distributed estimators DHuber and NHuber always outperform the local

estimator LHuber since the latter only uses local data on the first ma-

chine. Besides, DHuber can further improve the estimation performances

over NHuber. In terms of noise distribution, (i) for normal errors (light-

tailed and symmetric), all distributed estimators are comparable with each

other; (ii) when the noises follow the t distribution (heavy-tailed and sym-

metric), DHuber, NHuber and DMed perform better than DLS since in this

case conditional mean and conditional median are the same and both Huber

loss and median loss are robust to heavy-tailed errors, compared to DLS;

(iii) when noises follow the Pareto distribution (heavy-tailed and asymmet-

ric), the proposed method significantly outperforms the alternatives. DMed

has large errors in mean estimation since it estimates the conditional me-

dian which is different from conditional mean. DLS does not perform well

due to the sensitivity to heavy-tailed noises.

Regarding the running time presented in Figure 2, it is seen that the dis-

tributed methods can significantly reduce the computation cost compared
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to the central estimator (m = 1). Specifically, the running time decreases as

the number of machinesm increases. Compared with NHuber, our approach

takes slightly longer time. This is because our procedure requires solving

at least two l1 penalized optimization problems while NHuber takes almost

the same time as LHuber. Combined with the error results in Figure 1, we

indeed sacrifice a little bit time to achieve better estimation performances

than NHuber, from the accuracy-efficiency trade-off perspective.

From Figure 3, we observe that the errors increase with dimension as

expected and show similar phenomena in Figure 1 with regard to various

noises. In summary, the proposed DHuber method enjoys appreciable im-

provement over NHuber and exhibits more stable estimation performances

over various types of noises in contrast with DLS and DMed.

S3.2 Simulation example 2

In the second simulation example, we use some geometric shapes to visualize

the competitiveness of the proposed method. We consider the same hetero-

geneous model in simulation example 1. The coefficient matrix Θ0 ∈ R64×64

is binary: entries of Θ0 in the true signal region, including square (r = 2),

cross (r = 3), circle (r = 9) and butterfly (r = 30) equals one and the en-

tries in the remaining region equals zero (see the first column in Figure 4).
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Figure 1: Averaged estimation errors of different methods over 100 replications with

fixed N = 10000, p = 20, q = 20 and m ∈ {1, 5, 10, 20, 25} (m = 1 corresponds to the

central estimator) in the first scenario.

Each entry of Xi is generated from N(0, 1). We generate noises from the

standard normal distribution and Pareto distribution Par(3, 2). Through-

out the simulation, we use N = 20000,m = 10. The estimation errors are

summarized in Table 1 and the estimated coefficient matrices for different

noises are presented in Figures 4-5.

In Table 1, when noises are normal, the performances of different dis-

tributed methods are similar; when noises follow the Pareto distribution, the
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Figure 2: The logarithm of running time (in minutes) for different methods over 100

replications with fixed N = 10000, p = 20, q = 20 and m ∈ {1, 5, 10, 20, 25} (m = 1

corresponds to the central estimator) in the first scenario.

proposed DHuber achieves the smallest errors compared to other methods.

Besides, DHuber shows a significant advantage over LHuber and NHuber.

Visually, in view of Figure 4 (normal noises), all five methods can recover

the signal regions. However, from Figure 5 (Pareto noises), it is obvious

that the DHuber outperforms the competitors. For example, when esti-

mating the butterfly, the DLS generates a blurred image estimate and the

DMed may yield some fuzzy shapes, both failing to identify the important
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Figure 3: Averaged estimation errors of different methods over 100 replications with

fixed N = 10000, m = 10, q = 20 and p ∈ {10, 30, 50, 80, 100} in the second scenario.

signals clearly.
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proposed distributed Huber estimates, distributed least squares estimates and distributed
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Figure 5: True signals, local Huber estimates, naive average of local Huber estimates, the

proposed distributed Huber estimates, distributed least squares estimates and distributed

median estimates (from left to right) under Pareto noises.
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