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S1 Technical Lemmas

Lemma 1. Let {P (n)
i }ni=1 be a sequence of probability distributions, each

P
(n)
i has density whose support is contained in [0,∞). Fix q > 0. If,

lim
n→∞

max
i=1,...,n

∣∣∣∣log( dP
(n)
i

dExp(2)
(2q log(n))

)∣∣∣∣
log(n)

= 0, (S1.1)

then

lim
n→∞

max
i=1,...,n

∣∣∣∣∣∣
− log Pr

[
P

(n)
i ≥ 2q log(n)

]
log(n)

− q

∣∣∣∣∣∣ . (S1.2)

Proof. The assumption on the density of P
(n)
i ensures that it is absolutely

continuous with respect to Exp(2). Fix q > 0. We can write (S1.1) as

dP
(n)
i

dExp(2)
(2q log(n)) = no(1),

where o(1) → 0 uniformly in i for every fixed q. From

dExp(2)

dx
(x) =

e−x/2

2
,
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we get

Pr
[
P

(n)
i ≥ 2q log(n)

]
=

∫ ∞

2q log(n)

dP
(n)
i

dx
dx

=

∫ ∞

2q log(n)

dP
(n)
i

dExp(2)

dExp(2)

dx
dx

=

∫ ∞

2q log(n)

no(1)e−x/2/2dx

= no(1)e−q log(n)/2 = n−q+o(1)

This implies (S1.2).

We require the following lemma from (Cai and Wu, 2014), providing a

particular version of Laplace’s principle.

Lemma 2. (Cai and Wu, 2014, Lemma 3) Let (X,F , ν) be a measure

space. Let F : X × R+ → R+ be measurable. Assume that

lim
M→∞

logF (x,M)

M
= f(x) (S1.3)

holds uniformly in x ∈ X for some measureable f : X → R. If

∫
X

exp(M0f(x))dν(x) <∞

for some M0 > 0, then

lim
M→∞

1

M
log

∫
X

F (x,M)dν(x) = ess sup
x∈X

f(x). (S1.4)
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Lemma 3. Suppose that {Q(n)
i }ni=1 satisfy (2.8), {E(n)

i }ni=1 satisfy (2.11),

Q
(n)
i is absolutely continuous with respect to E

(n)
i , and E

(n)
i is absolutely

continuous with respect to the Lebesgue measure on [0,∞). Set

L
(n)
i (x) :=

dQ
(n)
i

dE
(n)
i

(x). (S1.5)

and

α∗(q; r, σ) := max
y∈[r,q]

{−2α(y; r, σ) + y} .

Assume that

lim
n→∞

max
i=1...,n

∣∣∣∣log( dQ
(n)
i

dχ2(r,σ)
(2q log(n))

)∣∣∣∣
log(n)

= 0, ∀q ∈ (r, r + a), (S1.6)

for some a > 0 and r > 0. Then, for any fixed q ∈ (r, r + a),

lim
n→∞

max
i=1...,n

∣∣∣∣∣∣
− log

(
E
X∼Q(n)

i

[
L
(n)
i (X)1{X≤2q log(n)}

])
log(n)

− α∗(q; r, σ)

∣∣∣∣∣∣ = 0.

(S1.7)
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Proof. Fix q ∈ (r, r + a). We have

E
X∼Q(n)

i

[
L
(n)
i (X)1{X≤2q log(n)}

]
= E

X∼E(n)
i

[
(L

(n)
i )2(X)1{X≤2q log(n)}

]
=

∫ 2q log(n)

0

(
dQ

(n)
i

dE
(n)
i

(x)

)2

E
(n)
i (dx)

= 2 log(n)

∫ q

0

(
dQ

(n)
i

dE
(n)
i

(2 log(n)y)

)2

E
(n)
i (2 log(n)dy) (S1.8)

= log(n)

∫ q

0

(
dQ

(n)
i

dE
(n)
i

(2 log(n)y)

)2

e−y log(n)(1+o(1))dy (S1.9)

= log(n)

∫ q

0

n−2α(y;r,σ)+2y+o(1) · no(1) · n−ydy =

∫ q

0

n−2α(y;r,σ)+y+o(1)dy,

(S1.10)

where (S1.8) follows from the change of variables x = 2y log(n), (S1.9)

follows from Lemma 1, and (S1.10) follows from (S1.6) and (??). Furthere-

more, o(1) in (S1.9)-(S1.10) represents a sequence tending to zero uniformly

in i and y ∈ [0, q]. We now apply Lemma 2 to (S1.10) with X = [r, q],

M = log(n), F (x,M) = n−2α(x;r,σ)+x+o(1), f(x) = −2α(x; r, σ) + x, and ν

the Lebesgue measure. We obtain:

lim
n→∞

log
(
E
X∼Q(n)

i

[
L
(n)
i (X)1{X>2q log(n)}

])
log(n)

= max
y∈[r,q]

{−2α(y; r, σ) + y}

= −α∗(q; r, σ)

uniformly in i. Equation (S1.7) follows.

The following lemma summarizes the truncated likelihood ratio method
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of (Ingster et al., 2010; Ingster and Suslina, 2012).

Lemma 4. Consider testing

H
(n)
0 : (X1, . . . , Xn) ∼ P

(n)
0 (S1.11)

versus

H
(n)
1 : (X1, . . . , Xn) ∼ P

(n)
1 (S1.12)

for P
(n)
1 that is absolutely continuous with respect to P

(n)
0 . Denote by Ln =

dP
(n)
1

dP
(n)
0

the likelihood ratio between P
(n)
1 and P

(n)
0 . Suppose that there exists a

sequence of sets A(n) ⊂ Rn such that

1− E
H

(n)
0

[
Ln(X1, . . . , Xn)1(X1,...,Xn)∈A(n)

]
≤ o(1) (S1.13)

while

E
H

(n)
0

[
L2
n(X1, . . . , Xn)1(X1,...,Xn)∈A(n)

]
≤ 1 + o(1). (S1.14)

For any sequence of tests ψ(n) : Rn → {0, 1},

lim inf
n→∞

{
E
H

(n)
0

[
ψ(n)(X1, . . . , Xn)

]
+ E

H
(n)
1

[
1− ψ(n)(X1, . . . , Xn)

]}
≥ 1.

Proof. Set

L̃n := L̃n(X1, . . . , Xn) := Ln(X1, . . . , Xn)1A(n)(X1, . . . , Xn).

Conditions (S1.13) and (S1.14) imply

E
H

(n)
0

[
L̃n

]
=
(
E
H

(n)
0

[
L̃2
n

]
− 1
)
− 2

(
E
H

(n)
0

[
L̃n

]
− 1
)
≤ o(1),
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hence L̃n(X) → 1 in probability under H
(n)
0 . Next, for some ψ(n) : Rn →

{0, 1} and ϵ > 0,

E
H

(n)
0

[
ψ(n)

]
+ E

H
(n)
1

[
1− ψ(n)

]
= E

H
(n)
0

[
ψ(n) + Ln(1− ψ(n))

]
≥ E

H
(n)
0

[
ψ(n) + L̃n(1− ψ(n))

]
≥ E

H
(n)
0

[
ψ(n) + L̃n(1− ψ(n)) | |L̃n − 1| < ϵ

]
Pr
[
|L̃n − 1| < ϵ

]
≥ E

H
(n)
0

[
ψ(n) + (1− ϵ)(1− ψ(n))

]
Pr
[
|L̃n − 1| < ϵ

]
≥ (1− ϵ) Pr

[
|L̃n − 1| < ϵ

]
= (1− ϵ)(1 + o(1)).

As ϵ > 0 is arbitrary, we have that

lim inf
ψ(n)

{
E
H

(n)
0

[
ψ(n)

]
+ E

H
(n)
1

[
1− ψ(n)

]}
≥ 1.

Lemma 5. Let q ∈ (0, 1] be fixed. Let U1, . . . , Un be n independent RVs

satisfying Pr [Ui ≤ n−q] = n−q(1 + an,i(q)), and denote by

Fn(t) :=
1

n

n∑
i=1

1{Ui≤t}

their empirical CDF. If ān(q) := n−1
∑n

i=1 an,i(q) ≤ n
q−1
2 , then

Pr

[
√
n
Fn(n

−q)− n−q√
n−q(1− n−q)

≥ log(n)

]
→ 0 (S1.15)

Proof. Denote tn = n−q. We have that E [Fn(tn)] = tn(1 + ān(q)). If

ān(q) ≤ 0 for all n ≥ n0 for some n0, then (S1.15) holds. Otherwise, we
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assume without loss of generality that rn := E [Fn(tn)− tn] = n−qān(q) > 0

for all n, since the complementary case can be handled by considering only

a sub-sequence with that property. Write

Pr

[
√
n
Fn(tn)− tn√
tn(1− tn)

≥ log(n)

]
= Pr [Fn(tn)− tn ≥ (1 + δ)rn] ,

where

δ := −1 +

√
tn(1− tn) log(n)

rn
√
n

≥ −1 + log(n)n
q−1
2 (ān(q))

−1
√

1− 1/n

≥ −1 + log(n)(1 + o(1)).

We have that δ → ∞. For X the sum of n independent Bernoulli RVs with

µ = E [X], the Chernoff inequality (Mitzenmacher and Upfal, 2017, Ch 4.)

says

Pr (X ≥ (1 + δ)µ) ≤
(

e−δ

(1 + δ)1+δ

)µ
≤ e−µ

δ2

2+δ , µ = rn, δ ∈ (0,∞).

We use this inequality with X = nFn(t) =
∑n

i=1 1{Ui≤t}. For n large enough

such that δ > 2, we obtain

− log Pr

[
√
n
Fn(tn)− tn√
tn(1− tn)

≥ log(n)

]
≥ δ2n

2 + δ
rn ≥ δ · n

2
rn

≥ n

2

(
n−1/2 log(n)− rn

)
=
n0.5

2

(
log(n)− n−q+1/2ān(q)

)
→ ∞.

Lemma 6. (Donoho and Kipnis, 2022, Lem. 5.7 ) Let α(·) and γ(·) be two

real-valued functions α, γ : [0,∞) → [0,∞). Let q ∈ (0, 1) and β > 0 be
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fixed. Let Fn(t) be the normalized sum of n independent RVs. Suppose that

E
[
Fn(n

−q)
]
= n−q+o(1)(1− n−β) + n−βn−α(q)+o(1).

Let {an}∞n=1 be a positive sequence obeying ann
−η → 0 for any η > 0. If

δ(q) + β < γ(q),

then

Pr
[
nγ(q)(Fn(n

−q)− n−q) ≤ an
]
→ 0, n→ ∞.

Lemma 7. Assume that r < ρBonf(β, σ). Consider p1, . . . , pn as in (2.10).

For an interval I ⊂ [0, 1] define

TI := min
i : p(i)∈I

p(i)
i/n

. (S1.16)

For any 0 < a < 1 and q < 1,

Pr
H

(n)
1

[
T(n−q ,1] ≤ a

]
→ 0. (S1.17)

Proof. Let Fn(t) := n−1
∑n

i=1 1pi≤t be the empirical CDF of p1, . . . , pn. Note

that i/n = Fn(p(i)), hence

p(i)
i/n

≤ a⇐⇒ Fn(p(i)) ≥ p(i)/a. (S1.18)
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Consequently,

Pr
H

(n)
1

[
T(n−q ,1] ≤ a

]
≤ sup

t>n−q

Pr
H

(n)
1

[Fn(t) ≥ t/a]

= sup
t>n−q

Pr
H

(n)
1

[nFn(t) ≥ nt/a]

= sup
t>n−q

Pr
H

(n)
1

[
nFn(t) ≥ E

H
(n)
1

[nFn(t)] (1 + κ)
]
, (S1.19)

where

κ := κ(n, a, t) :=
t

aE [Fn(t)]
− 1. (S1.20)

Let Ui ∼ Unif(0, 1) and −2 log(Xi) ∼ Q
(n)
i , for i = 1, . . . , n. Using the

parameterization tn = n−q′ , q′ ≤ q < 1,

E
H

(n)
1

[Fn(tn)] =
1

n

n∑
i=1

Pr
H

(n)
1

[
pi ≤ n−q′

]
(S1.21)

= (1− ϵn)
[
Ui ≤ n−q′

]
+ ϵn Pr

[
Xi ≤ n−q′

]
(S1.22)

= 1− ϵn + n−α(q′;r,σ)(1+o(1))−β, (S1.23)

where the last transition follows from (2.8). Since β + α(q′; r, σ) ≤ β +

α(1; r, σ) < 1, the last display implies in particular E
H

(n)
1

[Fn(tn)] /tn → 1.

It follows that

sup
t>n−q

E
H

(n)
1

[Fn(tn)]

tn
= 1 + o(1). (S1.24)

Since a < 1, there exists η > 0 such that κ ≥ 1/a − 1 + η > 0 for all

n ≥ n0(q) large enough. Using Chernoff’s inequality (Mitzenmacher and
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Upfal, 2017, Ch. 4) in (S1.19), we obtain

Pr
H

(n)
1

[
T(n−q ,1] ≤ a

]
≤ sup

t>n−q

exp

{
−n
a

κ2

1 + κ
E
H

(n)
1

[Fn(t)]

}
≤ exp

{
− n

2a
inf
t>n−q

E
H

(n)
1

[Fn(t)]

}
= exp

{
− 1

2a
n1−α(q;r,σ)+o(1)−β

}
→ 0,

where the last transition follows because r < ρBonf(β, σ) implies β+α(q; r, σ) ≤

β + α(1; r, σ) < 1.

Lemma 8. Let {an},{bn}, and {λn} be non-negative sequences such that,

as n→ ∞, an → ∞, λn → ∞, an/λn → 0, and an/bn → c for some c > 1.

For λ′ = λn +
√
λnbn and Υλ′ ∼ Pois(λ′),

lim
n→∞

Pr
[
−2 log P̄(Υλ′ ;λn) ≥ an

]
(
√
an −

√
bn)2

= −1

2
. (S1.25)

Proof. We first develop a moderate deviation estimate for the Poisson sur-

vival function. From

P̄(x;λ) = e−λ
∞∑
k=x

λk

k!

= e−λ
λx

x!

(
1 +

λx+1

(x+ 1)
+

λx+2

(x+ 1)(x+ 2) + . . .

)
,

we get

− log P̄(x;λ) = λ− x log(λ) + log Γ(x) +R(x;λ),
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where Γ(x) is the Gamma function and

R(λ;x) := log

(
1 +

λx+1

(x+ 1)
+

λx+2

(x+ 1)(x+ 2) + . . .

)
≤ − log

(
1− λ

1 + x

)
= O(λ/x).

Furthermore,

log Γ(x) = (x− 1

2
) log(x)− x+O(1/x)

Therefore, for x > λ > 1, we have that t ≤ − log P̄(x;λ) iff

t ≤ −(x− λ) + x log(x/λ) +O(λ/x) = −(x− λ)x+ x

(
x− λ

λ

)
+O(λ/x),

iff

0 = x2 − 2xλ+ λ2 − tλ+ o(λ/x).

Solving the last display for x > 0, we obtain t ≤ − log P̄(x;λ) if

x ≥ λ+
√
tλ+O(

√
λ/x) (S1.26)

Next, consider the event A = {Υλ′ ≥ λn}. We have

Pr
[
− log P̄(Υλ′ ;λn) ≥ an|A

] a
= Pr

[
Υλ′ ≥ λn +

√
λnan +O(

√
λn/Υλ′)|A

]
=Pr

[
Υλ′ ≥ λn +

√
anλn +O(1)|A

]
=Pr

[
Υλ′ ≥ (λn +

√
anλn)(1 + o(1))|A

]
b
=Pr

[
Υλ′ ≥ (λ′ +

√
λ′
(√

an −
√
bn

)
(1 + o(1))|A

]
= Pr

[
Υλ′ ≥ λ′ +

√
λ′
√
cn|A

]
, (S1.27)
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where {cn} is a sequence satisfying

√
cn√

an −
√
bn

→ 1 as n→ ∞. (S1.28)

In the arguments leading to (S1.27), (a) is due to (S1.26) and (b) is due to

λn +
√
λnan = λ′ +

√
λ′
(√

an −
√
bn

)√
λn/λ′

= λ′ +
√
λ′
(√

an −
√
bn

)
(1 + o(1)),

the last transition because bn/λn → 0.

Since
√
λnbn/λ′ → ∞, the normal approximation Υλ′ ∼ N (λ′, λ′) im-

plies

Pr [A] ∼ Pr
[√

λ′Z + λ′ ≥ λn

]
= Pr

[
Z ≥ −

√
λnbn/λ′

]
→ 1.

We obtain

lim
n→∞

log Pr
[
− log P̄(Υλ′ ;λn) ≥ an

]
(
√
an −

√
bn)2

= lim
λn→∞

log Pr
[
− log P̄(Υλ′ ;λn) ≥ an|A

]
(
√
an −

√
bn)2

= lim
λn→∞

log Pr
[
Υλ′ ≥ λn +

√
anλn|A

]
(
√
an −

√
bn)2

= lim
n→∞

log Pr
[
Υλ′ ≥ λn +

√
anλn

]
(
√
an −

√
bn)2

c
= lim

n→∞

log Pr
[
Υλ′ ≥ λ′ +

√
λ′cn

]
(
√
an −

√
bn)2

d
= lim

n→∞

log Pr
[
Υλ′ ≥ λ′ +

√
λ′cn

]
cn

e
= −1

2
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where (c) is due to (S1.27), (d) follows from (S1.28), and in (e) we used the

following moderate deviation estimate for a Poisson RV from (Arias-Castro

and Wang, 2015).

Lemma 9. (Arias-Castro and Wang, 2015, Lemma) Let c : (0,∞) →

(0,∞) be such that c(λ) → ∞ and c(λ)/λ→ 0 as λ→ ∞. Then

lim
λ→∞

log
(
Υλ ≥ λ+

√
λc(λ)

)
c(λ)

=
−1

2

This completes the proof of Lemma 8.

S2 Proofs of Results in Section 2

S2.1 Proof of Theorem 1

For r < ρ(β, σ), there exists δ > 0 such that

max
q∈[0,1]

(
1 + q

2
− α(q; r, σ)

)
+ δ − β < 0. (S2.29)

In particular,

1− β − α(1; r, σ) ≤ −δ, (S2.30)

and, by continuity of q → α(q; r, σ), there exists η ∈ (0, γ) such that

1− 2β − α∗(1 + η; r, σ) < −δ. (S2.31)
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Fix δ > 0 satisfying (S2.29), and let η > 0 satisfy (S2.31). We now use

Lemma 4 with

P
(n)
0 =

n∏
i=1

E
(n)
i , P

(n)
1 =

n∏
i=1

[
(1− ϵ)E

(n)
i + ϵQ

(n)
i

]
,

where {E(n)
i } satisfy (2.11), and

A(n) =
n∏
i=1

{Xi ≤ 2(1 + η) log(n)}.

We have

L̃n =
n∏
i=1

L̄
(n)
i (Xi)1{Xi≤2(1+η) log(n)}, (S2.32)

where

L̄
(n)
i (x) := (1− ϵn) + ϵnL

(n)
i = 1 + ϵn(L

(n)
i (x)− 1), (S2.33)

and

L
(n)
i (x) :=

dQ
(n)
i

dE
(n)
i

(x).

Henceforth, all expectations are with respect to Xi ∼ E
(n)
i unless oth-

erwise specified. For the first moment, since E
[
L
(n)
i (Xi)

]
= 1, we have

E
[
L̃n

]
=

n∏
i=1

(1− an,i) , (S2.34)

where,

an,i := E
[
L̄
(n)
i (Xi)1{Xi>2(1+η) log(n)}

]
.
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Consider

an,i = Pr
Xi∼E

(n)
i

[Xi ≥ 2(1 + η) log(n)] + ϵnE
[(
L
(n)
i (Xi)− 1

)
1{Xi>2(1+η) log(n)}

]
≤ Pr

Xi∼E
(n)
i

[Xi ≥ 2(1 + η) log(n)] + ϵnE
[
L
(n)
i (Xi)1{Xi>2(1+η) log(n)}

]
= n−(1+η)+o(1) + n−βn−α(1+η;r,σ)+o(1), (S2.35)

where the last transition follows from (2.11) and from (2.8). It follows

from (S2.30) that an,i = o(1/n), hence (S2.34) converges to 1 and the first

moment condition of Lemma 4 holds.

As for the second moment, we have

E
[
L̃2
n

]
=

n∏
i=1

E
[(

(1− ϵn)
2 + 2ϵn(1− ϵn)L

(n)
i (Xi) + ϵ2n(L

(n)
i (Xi))

2
)
1{Xi≤2(1+η) log(n)}

]
=

n∏
i=1

(
(1− ϵn)

2 + 2ϵn(1− ϵn)E
[
L
(n)
i (Xi)

]
+ ϵ2nE

[
(L

(n)
i (Xi))

21{Xi≤2(1+η) log(n)}

])
≤

n∏
i=1

(
1− ϵ2n + ϵ2nE

[
(L

(n)
i (Xi))

21{Xi≤2(1+η) log(n)}

])
≤

n∏
i=1

(1 + bn,i) ,

(S2.36)

where

bn,i := ϵ2n + ϵ2nE
[
(L

(n)
i (Xi))

21{Xi≤2(1+η) log(n)}

]
.

By (2.16b),

E
[
(L

(n)
i (Xi))

21{Xi≤2(1+η) log(n)}

]
= E

Xi∼Q
(n)
i

[
L
(n)
i (Xi)1{Xi≤2(1+η) log(n)}

]
= n−α∗(1+η ; r,σ)+o(1).
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It follows from (S2.31) that

n · bn,i = n1−2β + n1−2β−α∗(1+η ; r,σ)}+o(1) < n1−2β + n−δ,

which implies bn,i = o(1/n) becasue β > 1/2. We conclude that (S2.36)

converges to 1 hence the second moment condition of Lemma 4 holds and

the proof of Theorem 1 is completed.

S2.2 Proof of Corollary 1

Condition (2.16a) follows from (2.8). Condition (2.16a) follows Lemma 3.

S2.3 Proof of Theorem 2

Under (2.11) and (2.17), Lemma 5 implies that

Pr
H

(n)
0

[HC∗
n ≥ log(n)] → 0. (S2.37)

Therefore, it is enough to show that Pr
H

(n)
1

[HC∗
n ≥ log(n)] → 0. Set

Fn(t) :=
1

n

n∑
i=1

1pi≤t.

note that (2.11) and (2.8) imply

E
H

(n)
1

[
Fn(n

−q)
]
= n−q+o(1)(1− n−β) + n−βn−α(q;r,σ)+o(1),

and that

HC∗
n = max

1≤i≤nγ0

√
n

i
n
− p(i)√

p(i)(1− p(i))
= sup

1/n≤u≤γ0n

√
n
Fn(u)− u√
u(1− u)

. (S2.38)
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Hence, provided γ0 < 1/2, we have

HC∗
n ≥

√
n
Fn(t)− t√
t(1− t)

≥
√
n

t
(Fn(t)− t) , ∀t ∈ [1/n, 1) (S2.39)

almost surely. Setting tn = n−q for q ≤ 1, we obtain:

Pr
H

(n)
1

[HC∗
n ≤ log(n)] ≤ Pr

H
(n)
1

(
√
n
Fn(tn)− tn√
tn(1− tn)

≤ log(n)

)

≤ Pr
H

(n)
1

[
n

q+1
2 (Fn(tn)− tn) ≤ log(n)

]
. (S2.40)

Apply Lemma 6 with δ(q) = α(q; r, σ), γ(q) = (q + 1)/2, and an = log(n)

to conclude that (S2.40) goes to zero as n→ ∞. Theorem 2 follows.

S2.4 Proof of Theorem 3

The proof is similar to the proof of (Moscovich et al., 2016, Thm. 4.4). In

particular, we use:

Lemma 10. (Moscovich et al., 2016, Cor. A1) Let {αn}∞n=1 be a sequence

converging to infinity. Let µn, σ
2
n, and fn denote the mean, variance and

density of Beta(αn, n − αn + 1), respectively. Let g(n) be any positive

function satisfying g(n) = o(min{αn, n− αn}) as n→ ∞. Then,

fn(µn + σn · t) ≥
e−t

2/2

√
2π · σn

(
1− t3√

g(n)
− 1

g(n)

)
(S2.41)

Recall that M−
n = mini=1,...,n πi, where

πi = Pr
[
Beta(i, n− i+ 1) ≤ p(i)

]
, i = 1, . . . , n.
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We use the sequence tn = 1/n to separate H
(n)
0 from H

(n)
1 . The limiting

distribution of Mn under H0 satisfies (see (Gontscharuk et al., 2015) and

(Moscovich et al., 2016, Thm 4.1)),

Pr
H0

[
M−

n ≤ x

2 log(n) log log(n)

]
→ 1− e−x,

from which it follows that

Pr
H0

[
M−

n ≤ tn
]
→ 0. (S2.42)

For X ∼ Beta(i, n− i+ 1), set

µi := E [X] =
i

n+ 1
, σ2

i := Var [X] =
i(n− 1 + 1)

(n+ 1)2(n+ 2)
,

hence, for x ∈ R,

µi − x

σi
=

√
n

i/n− x√
i
n

(
1− i

n

)(1 + o(1)). (S2.43)

The proof of Theorem 2 in Section S2.3 implies in particular

Pr
H

(n)
1

 max
i=1,...,n

√
n
i/n− p(i)√
i
n

(
1− i

n

) ≥ log(n)

→ 1. (S2.44)

Together with (S2.43), the last display implies that for any δ > 0 there

exists n0(δ) and i
∗ ∈ {1, . . . , n} such that

τ ∗ :=
µi∗ − p(i∗)

σi∗
≥
√

2 log(n), (S2.45)

with probability at least 1− δ. Denote by fi the density fi : [0, 1] → R+ of
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Beta(i, n− i+ 1). We have

πi∗ =

∫ p(i∗)

0

fi∗(x)dx

= σi∗

∫ τ∗

−µi∗/σi∗
fi∗(µi∗ + σi∗t)dt

≤ σi∗

∫ τ∗

−∞
fi∗(µi∗ + σi∗t)dt

≤
∫ ∞

τ∗

1 + o(1)√
2π

e−x
2/2dx (S2.46)

= (1− Φ(τ ∗))(1 + o(1)) ∼ 1

τ ∗
e−τ

∗2/2, (S2.47)

where (S2.46) follows from Lemma 10 and (S2.47) is due to Mills’ ratio.

Consequently,

πi∗ ≤ n−1, for n ≥ n0(δ), (S2.48)

with probability at least 1− δ. Hence, for n ≥ n0(δ),

Pr
H

(n)
1

[Mn ≤ tn] ≥ Pr
H

(n)
1

[
M−

n ≤ n−1
]
≥ Pr

H
(n)
1

[
πi∗ ≤ n−1

]
≥ 1− δ. (S2.49)

Together with (S2.42), the last display implies that the sequence of thresh-

olds tn = 1/n perfectly separates H
(n)
0 from H

(n)
1 .

S2.5 Proof of Theorem 4

Let

η := 1− α(1; r, σ)− β. (S2.50)
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The condition r > ρBonf(β, σ) implies η > 0. By continuity of q → α(q; r, σ),

there exits δ > 0 such that

1− α(1 + δ; r, σ)− β > η/2. (S2.51)

For the statistic p(1) := mini=1...,n pi, we show that, along the sequence of

thresholds an = n−(1+η/2), we have Pr
H

(n)
0

(p(1) > an) → 1 while Pr
H

(n)
1

(p(1) >

an) → 0. Indeed,

Pr
H

(n)
0

[
p(1) ≤ an

]
= 1−

n∏
i=1

Pr
H0

[pi > an]

= 1−
(
1− an · no(1)

)n
(S2.52)

= 1−
(
1− n−(1+η/2)+o(1)

)n → 0,

where (S2.52) follows from (2.11). On the other hand,

Pr
H

(n)
1

[
p(1) ≤ an

]
= 1−

n∏
i=1

Pr
H

(n)
1

[pi > an]

= 1−
n∏
i=1

(
1− Pr

H
(n)
1

[pi ≤ an]

)
, (S2.53)
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hence it is enough to show that Pr
H

(n)
1

[pi ≤ an] > n−1+η/2+o(1) uniformly in

i. For i = 1, . . . , n let Xi be a RV with law −2 log(Xi)
D
= Q

(n)
i . We have:

Pr
H

(n)
1

[pi ≤ an] = (1− ϵn)an · no(1) + ϵn Pr [Xi ≤ an]

≥ ϵn Pr [Xi ≤ an]

= n−β−α(1+δ;r,σ)+o(1) (S2.54)

≥ n−1+η/2+o(1), (S2.55)

where (S2.54) follows from (2.8), and (S2.55) follows from (S2.51).

S2.6 Proof of Theorem 5

The proof is similar to the proof of Theorem 1.4 in (Donoho and Jin, 2004).

The main idea is to establish the following claims:

(i) Inference based on FDR thresholding ignores P-values in the range

(n−q, 1], for q < 1.

(ii) When r < ρBonf(β, σ), P-values smaller than n−q under H
(n)
1 are as

frequent as under H
(n)
0 .

In order to establish (i) and (ii), define, for an interval I ⊂ [0, 1],

TI := min
i : p(i)∈I

p(i)
i/n

. (S2.56)
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For some q > 0 and a sequence {an}∞n=1 of threshold values with lim infn→∞ an =

0,∣∣∣∣∣ PrH
(n)
0

[FDR rejects]− Pr
H

(n)
1

[FDR rejects]

∣∣∣∣∣ =
∣∣∣∣∣ PrH

(n)
0

[
T[0,1] < an

]
− Pr

H
(n)
1

[
T[0,1] < an

]∣∣∣∣∣
≤ Pr

H
(n)
1

[
T(n−q ,1] < an

]
+ Pr

H
(n)
0

[
T(n−q ,1] < an

]
(S2.57)

+

∣∣∣∣∣ PrH
(n)
1

[
T(0,n−q ] < an

]
− Pr

H
(n)
0

[
T(0,n−q ] < an

]∣∣∣∣∣ . (S2.58)

Note that the terms in (S2.57) are associated with (i) while (S2.58) is as-

sociated with (ii).

Lemma 7 implies that the terms in (S2.57) vanish as n → ∞. We

now focus on the term (S2.58). Let I ⊂ {1, . . . , n} be a random set such

that i ∈ I with probability ϵn = n−β. Considering this randomness, an

equivalent way of specifying H
(n)
1 is

−2 log(pi) ∼


Q

(n)
i i ∈ I

Exp(2) i ̸= I,

i = 1, . . . , n. (S2.59)

For i = 1, . . . , n, let Xi be a RV satisfying −2 log(Xi)
D
= Q

(n)
i . Choose

r < q < 1 such that

1− α(q; r, σ)− β + δ < 0 (S2.60)

for some δ > 0, which is possible since r < ρBonf(β, σ) < 1. Consider the
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event:

Eq
n := {pi ≤ n−q for some i ∈ I}.

Conditioned on the event |I| = M , we have, e.g. by the normal approxi-

mation to the Binomial distribution,

Pr [Eq
n | |I| =M ] = Pr

[
min

i=1,...,n
Xi ≤ n−q | |I| =M

]
≤ 1−

(
1− n−α(q;r,σ)+o(1))M (S2.61)

≤M · n−α(q;r,σ)+o(1) (S2.62)

where (S2.61) follows from (2.8) and (S2.62) follows from the inequality

M · log(1 + x) > log(1 + Mx), x ≥ −1. As M ∼ Bin(n, ϵn), we have

Pr
[
M < n1+δ/2ϵn

]
= Pr

[
M < n1+δ/2−β]→ 1. Consequently, for any ϵ,

Pr
[
M · n−α(q;r,σ)+o(1) > ϵ

]
≤ o(1) + 1{n1+δ/2−β−α(q;r,σ)+o(1)>ϵ} → 0

where the last transition is due to (S2.60). It follows that Pr [Eq
n] → 0.

From here, since

Pr
H

(n)
1

[
T[0,n−q) < an | (Eq

n)
c
]
= Pr

H
(n)
0

[
T[0,n−q) < an

]
,
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we get

Pr
H

(n)
1

[
T(0,n−q ] < an

]
= Pr [(Eq

n)
c] Pr
H

(n)
1

[
T[0,n−q) < an | (Eq

n)
c
]

+ Pr [Eq
n] Pr
H

(n)
1

[
T[0,n−q) < an | Eq

n

]
= Pr

H
(n)
1

[
T[0,n−q) < an | (Eq

n)
c
]
(1 + o(1)) + o(1)

= Pr
H

(n)
0

[
T[0,n−q) < an

]
+ o(1),

so that (S2.58) vanishes as well and the proof is completed.

S2.7 Proof of Theorem 6

We consider first the case where {−2 log(pi)} follow (2.3) and later extend

our arguments to the general case of (2.10). Since Fn ∼ χ2
2n, under the null

in (2.3) we have

E
[
Fn|H(n)

0

]
= 2n, Var

[
Fn|H(n)

0

]
= 4n. (S2.63)

As Fn is asymptotically normal, it is enough to show that

E
[
Fn|H(n)

1

]
∼ 2n(1 + o(1/

√
n)), and Var

[
Fn|H(n)

1

]
∼ 4n(1 + o(1)).

(S2.64)

For X ∼ χ2(r, σ), we have

E [X] = µn(r)
2 + σ2, E

[
X2
]
= µ4

n(r) + 4µ2
n(r)σ

2 + 3σ4, (S2.65)
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and Var [X] = 2µ2
n(r)σ

2 + 2σ4 hence it follows that with Q
(n)
i = χ2(r, σ),

2n ≤ E
[
Fn|H(n)

1

]
= 2n(1− ϵn) + n · ϵn

(
2r log(n) + σ2

)
= 2n(1 + o(1/

√
n)),

where in the last transition we used that β > 1/2. Similarly, we have

4n ≤ Var
[
F 2
n |H

(n)
1

]
= 4n(1− ϵn) + n · ϵn

(
4r log(n)σ2 + 2σ2

)
= 4n(1 + o(1/

√
n)) = 4n(1 + o(1))

hence (S2.64) holds in this case.

For the general case of (2.10) under (2.8), first note that

E
X∼E(n)

i
[X] =

∫ ∞

0

Pr
[
X ≥ x|X ∼ E

(n)
i

]
dx

= 2 log(n)

∫ ∞

0

Pr
[
X ≥ 2y log(n)|X ∼ E

(n)
i

]
dy

= 2 log(n)

∫ ∞

0

e−y log(n)(1+o(1))dy = 2(1 + o(1)), (S2.66)

and

E
X∼E(n)

i

[
X2
]
=

∫ ∞

0

xPr
[
X ≥ x|X ∼ E

(n)
i

]
dx

= (2 log(n))2
∫ ∞

0

y Pr
[
X ≥ 2y log(n)|X ∼ E

(n)
i

]
dy

= (2 log(n))2
∫ ∞

0

ye−y log(n)(1+o(1))dy = 4(1 + o(1)).

It follows that

E
[
Fn|H(n)

0

]
= 2n(1 + an), and Var

[
Fn|H(n)

0

]
= 4n(1 + o(1)), (S2.67)
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where an → 0. Next, notice that

E
X∼Q(n)

i
[X] =

∫ ∞

0

Pr
[
X ≥ x|X ∼ Q

(n)
i

]
dx

= 2 log(n)

∫ ∞

0

Pr
[
X ≥ 2y log(n)|X ∼ Q

(n)
i

]
dy

=

∫ ∞

0

n−α(y;r,σ)+o(1)dy, (S2.68)

= no(1), (S2.69)

where (S2.68) follows from (2.8) and (S2.69) follows since∫ ∞

0

n−α(y;r,σ)dy =
σ2n− r

σ2

log(n)
+ 2σ

√
πr

log(n)
Φ

(√
2r log(n)

σ

)
= o(1).

From (S2.66) and because β > 1/2,

2n ≤ E
[
Fn|H(n)

1

]
= 2n(1− ϵn) (1 + an)) + ϵnn

1+o(1)

≤ 2n(1 + an) + o(1/
√
n)

Similarly,

E
X∼Q(n)

i

[
X2
]
=

∫ ∞

0

xPr
[
X ≥ x|X ∼ Q

(n)
i

]
dx

= (2 log(n))2
∫ ∞

0

y Pr
[
X ≥ 2y log(n)|X ∼ Q

(n)
i

]
dy

= (2 log(n))2
∫ ∞

0

y · n−α(y;r,σ)+o(1)dy = no(1),

where in the last transition we used that∫ ∞

0

y · n−α(y;r,σ)dy = o(1),
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as can be deduced from the analytic expression of this integral. We obtain

4n ≤ E
[
F 2
n |H

(n)
1

]
= 4n(1− ϵn)(1 + o(1)) + n · ϵn · no(1) (S2.70)

= 4n(1 + o(1)). (S2.71)

Evaluations similar to those in (S2.67) and (S2.71) imply that Fn sat-

isfies the conditions of the Lyaponov central limit theorem for sums of

independent but perhaps non-identically distributed RVs. Consequently,

Fn is asymptotically normal both under H
(n)
0 and H

(n)
1 . Since we have

E
[
Fn|H(n)

1

]
− E

[
Fn|H(n)

0

]
√
Var

[
Fn|H(n)

0

] → 0, and
Var

[
Fn|H(n)

0

]
Var

[
Fn|H(n)

1

] → 1,

we conclude that Fn is asymptotically powerless (e.g., c.f. (Arias-Castro

and Wang, 2013, Lem. B.2)).

S3 Proofs of Results in Section 3

S3.1 Proof of Proposition 7

We use Lemma8 with λn = λi, an = 2q log(n) and bn = 2r log(n). We

obtain

− log Pr
[
−2 log P̄(Xi;λ) ≥ 2q log(n)

]
= log(n)α(q; r, 1)(1 + o(1)),

where o(1) → 0 independently of λi. Proposition 7 follows.
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S3.2 Proof of Proposition 9

Because Bin(m, 1/2) is symmetric around m/2, for x ≥ 0 we have

pBin(x) = Pr
[∣∣∣Bin(m, 1/2)− m

2

∣∣∣ ≥ |x−m/2|
]

= 2Pr

[
Bin(m, 1/2)− m

2√
m/2

≥ |x−m/2|√
m/2

]
.

A Berry-Essen type argument applied to the binomial survival function

implies

∣∣∣∣pBin(x)− 2Φ̄

(
|x−m/2|√

m/2

)∣∣∣∣ ≤ C1√
t(x)

, t(x) =
|x−m/2|√

m/2
.

for some constant C. Therefore, by Mill’s ratio, as t→ ∞,

−2 log pBin(x) =

(
x−m/2√

m/2

)2

+O(1).

The central limit theorem implies

X −m(1/2 + δ)√
m(1− δ2)

D
= Z + op(1), Z ∼ N (0, 1),

as m→ ∞, hence

t(X) + op(1)
D
=

√
1− 4δ2Z + 2

√
mδ =

√
1− srZ +

√
2r log(n)



Alon Kipnis

converges to infinity in probability as n→ ∞. We obtain

log Pr [pBin(X) ≥ 2q log(n)] = log Pr

[(
X −m/2√

m/2

)2

+OP (1) ≥ 2q log(n)

]

= log Pr

[
X −m/2√

m/2
≥
√

2q log(n)(1 + o(1))

]
= log Pr

[
√
1− 4δ2

X −m(1/2 + δ)√
m(1/4− δ2)

+ 2
√
mδ ≥

√
2q log(n)(1 + o(1))

]

= log Pr

[
√
1− sr

X −m(1/2 + δ)√
m(1/4− δ2)

+
√

2r log(n) ≥
√

2q log(n)(1 + o(1))

]

= log Pr

[
X −m(1/2 + δ)√

m(1/4− δ2)
≥
√

2 log(n)

√
q −

√
r

√
1− rs

(1 + o(1))

]

= log Pr

[
X −m(1/2 + δ)√

m(1/4− δ2)
≥
√

2 log(n)α(q; r, 1− sr)(1 + o(1))

]
.

From here, (3.42) follows by applying Cramér’s (1.1).

S3.3 Proof of Proposition 8

Our analysis relies on moderate deviation estimate for variance-stabilized

Poisson counts as provided in the following lemma from (Donoho and Kip-

nis, 2022).

Lemma 11. (Donoho and Kipnis, 2022, Lemma 5.3) Let Υ′
λ,Υλ denote two

independent Poisson RVs. Let a(λ) be a non-negative function. Consider

a sequence of pairs (λ, λ′) such that λ → ∞, λ′ ≥ λ, λ′/λ → 1 as n → ∞.
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Also suppose a(λ)− (
√
2λ′ −

√
2λ) → ∞ while a(λ)/λ→ 0. Then:

lim
n→∞

1(√
a(λ)− (

√
2λ′ −

√
2λ)
)2 log [Pr(√2Υλ′ −

√
2Υλ ≥

√
a(λ)

)]
= −1

2
.

Let Wi :=
√
2Yi −

√
2Xi and Si := −2 log(πi). We have

Pr [Si > 2q log(n)] = Pr
[
2Φ̄(Wi) < n−q]

= Pr
[
Wi > Φ̄−1(n−q/2)

]
By Mill’s ratio,

Φ̄−1(n−q/2) =
√

2q log(n)(1 + o(1)).

We now apply Lemma 11 with λ = λi, λ
′ = λi+

√
2r log(n)λi and

√
a(λ) =

Φ̄−1(n−q/2).

Let λ′i = λi +
√
µn(r)λi Note that λ′/λ = 1 +

√
2r log(n)/λi → 1

uniformly in i ≤ n by (3.31), we have

√
2λ′ −

√
2λ =

√
r log(n)(1 + o(1))

where here and henceforth o(1) indicates a sequence tending to → 0 uni-

formly in i. Consequently,

√
a(λ)− (

√
2λ′ −

√
2λ) =

√
2q log(n)(1 + o(1))−

√
2λ (1 + o(1))

=: 2 log(n)α(q; r/2, 1)(1 + o(1)).
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Lemma 11 implies

log
(
Pr
[
Wi > Φ̄−1(n−q/2)

])
= − log(n)α(q; r/2, 1)(1 + o(1)),

hence

max
1≤i≤n

∣∣∣∣− log Pr [Si > 2q log(n)]

log(n)
− α(q; r/2, 1)

∣∣∣∣→ 0.
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