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S1. Central k—th moment deviation subspace and part of nu-

merical analysis

S1.1 Central k—th moment deviation subspace

In this section, we consider higher moments as we may have an interest
in detecting change points in the contemporaneous mean or second- order
moment change structures. Assume X; = (X;1,--+, X;,) ", fori=1--- n,
be independent p-dimensional random variable vectors. Define the new

high-dimensional variables Z; based on X as:

Zi - (Xilu very Xip7 Xi217 XiIXi27 XS] Xilx’ipu Xi227 X’i2Xi37 R3] XiQXipJ

o XX Xy ,X;;;)T, (S1.1)
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where k denotes some positive integer. Let pz denote the dimension of
Z;. Without loss of generality, assume that the sequence {Z;}!, of all
means follows a piecewise constant structure with K +1 segments. In other
words, there are K change points 1 < 271 < 25 < ... < zg < n such that
E(Z, ,+;) = pg), and Cov(Z,, ,4+;) = Zg), for k =1,--- K +1 and

1 <75 <2z — 2,1 where 20 =0 and 2,1 = n.

Definition S1.1. Span{,u%ﬂ — ,u(Zl), for k,1 =1,--- K + 1} is called the



S1.1 Central k—th moment deviation subspace

central k—th moment deviation subspace of the sequence {X;} , and is
written as Sfyyn . ¢x = dim{S{xy» } is called the structural dimension

of {X }
The following theorem states a similar result as that in Theorem 2.1.

Theorem S1.1. For any basis matriz B € RFZ*% of Sty s both the se-

quences of { B Z;}"_, and {Z;}"_, have the same locations of change points.

To get a consistent estimator of the basis matrix B about the subspace

S?Xi}’-;l’ we also consider the following Mahalanobis matrix of the sequence

{Z;}1, as:
Mgz, = SEE ZZZ Z)(Z; — Z;)". (S1.2)

Compute the expectation of My, to get:

E(Mgz,) = n_IZZE{Z Z)(Zi— Z;)"}

7,17,75]
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Asng/n — ¢, >0, for k=1,2,--- K+ 1, and Zszﬁlckzl,we have

K+1 K+1

EMza) — Y. Y aqaEP +39)+23 gnd
k=1 l#£k,I<K+1 k=1

K+1

k l k l
+>° > aalpy —p) g — )"

k=1 l£kJI<K+1
K+1 K+1

k k l k l
= 2> e3P+ > Y aalpy) - p) ) - )’
=1 k=1 I£kI<K+1

= 2% 4+ A, = My

'pooled

Theorem S1.2. Under the model , we have Span(Az) = Sfxn .
Furthermore, let B = (vy,- -+ ,v,,) denote the eigenvectors of Ay associated
with the nonzero eigenvalues of Ay, then B is the basis matrix of S'{“Xi}?:l,
namely, Span(B) = S{xn .

We need to consistently estimate the pooled covariance matrix %7

to estimate the target matrix Ay efficiently. Similarly, we adopt a “divide-
and-conquer” strategy. Divide the data into & segments with the subscript
as: Sy = {(m — 1)B, +1,--- ,mpB,}, form =1,--- K — 1 and S =

{(K —1)8,+1,---,n}. We calculate the covariance for each segment and

then average them to get an estimator of the pooled covariance matrix
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zjgooled as:
K 1
= ith ©zm = —a—~— > (Zo— Zu)(Z1 — 1.3)
pooledn mZ: m Wl Z #{Sm} 1 kezsm( k— ) k (S
where Z,, = ¥ S 7 > kes, 21 and #{Sy} denotes the cardinality of the set
S

Together the formula (S1.2) with (S1.3|), we can have an estimator of

Ay as:

Agn= My, —2%7

pooled,n*

(S1.4)

The basis matrix B € RP#*9 of S?Xi}”_l can be estimated as the eigenvec-

tors B, = (01, - ,0,,) associated with the largest ¢,, eigenvalues of Ay,,.

Theorem S1.3. Under the model , assume that X; — E(X;) are
independent random variables, and Assumptions S3.5, 3.6, S3.7 and S3.8

hold. Then,

1A, — Allr= 0, (\/Z) e (”’_—5) |
n n
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where ||-||F denotes the Frobenius norm of a matriz. Furthermore, we have

Remark S1.1. Theorem[SI.1|presents that based on the central 2—moment

deviation subspace, it is a direct application to identify the locations of

change points in the normal case, namely,

There are K change points 1 < 23 < 25 < ... < zxg < n such that
E(X,, ,+;) = p®, and Cov(X,,_,4;) = 2®, for k = 1,--- | K + 1 and

1<) <z — 21

Similarly, we can determine the dimension ¢, of the subspace S?Xi}n:1
based on TRR in (2.5) of the main body. Then, based on the lower-
dimensional sequence { B,] Z;}1" ,, we can estimate the locations {2, -+ , 2z}

and the number K by existing methods.
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S1.2 Numerical Studies with changes in covariance matrix

Ezxperiment 4: Changes in the covariance matrix. The data

are generated from the multivariate normal distributions:

Go = GQ = G4 = N(Op, Ipxp), and G1 = G3 = N(Op, E)

Consider the following four settings:

e Case 1: ¥ = (1 —a)l,«, with @ = 0.3,0.5, the change points are

located at 1007 for 7 = 1, 2, 3, 4, respectively;

e Case 2: ¥ = (0y;), where 0;; = I(i = j) + al(i # j) with a = 0.3, 0.5,

the settings of change points are the same as Case 1;

e Case 3: ¥ = (0y;), where o;; = a7l with a = 0.3,0.5, the settings of

change points are the same as Case 1;

e Case 4: the setting of ¥ = (0y;) is the same as Case 3, and change

points located at 90, 250, 390, and 450.

Here different values of a indicate the magnitudes of changes. We de-
sign p = 5, 10 associated with py = 20, 65, respectively. The results are re-
ported in Table[I} From Table[l] E-Divisivey. performs the best among the

competitors. The dimension reduction-based methods perform significantly

7



better than the three methods. The E-Divisive and KCP tend to under-
estimate the number of change points seriously, but ks-cp3o overestimates
it in this experiment. Additionally, the dimension reduction-based meth-
ods are relatively robust against the different covariance matrices, while
E-Divisive, KCP, and ks-cp3o are very sensitive. Thus, there are significant

improvements over the three methods by reducing the dimension.

S2. Genetics data with mean changes

Analyze the array comparative genomic hybridization (aCGH) microar-
ray data set, which was analyzed in [Stransky et al| [2006] to detect mean
changes in the data structure. The dataset includes 57 individuals with a
bladder tumor. We use the processed data in the R package: ecp to choose
43 individuals out of the 57 individuals at 2215 different loci’s on their
genome, namely p = 43 and n = 2215. This empirical study aims to find
unusual chromosomal characteristics.

Because the structural dimension is determined to be ¢ = 1 via the TR-
R criterion, Figure (1| plots the locations of change points using E-Divisive
and SBS before and after dimension reduction. We found 34 and 45 change
points using E-Divisivey. and SBS,,. while E-Divisive, SBS found 97 and 3

changes. It would say that E-Divisive has an overestimation issue, and SBS



underestimates the number of change points. It would suggest that the re-
sults after dimension reduction are reasonable. Further, when the methods
ks-cp3o, Multirank, KCP, Inspect, DCBS and GeomCP are used, we found
that they respectively identify 1, 7, 55, 254, 6, and 27 change points. This
shows that KCP, and Inspect would overestimate the number of changes.
ks-cp3o, Multirank, DCBS would also underestimate the number of change

points, GeomCP has a similar result with E-Divisivey, for this data set.

S3. Regularity Conditions and Proofs of the theorems

S3.1 Regularity Conditions

To investigate the asymptotic properties, we list the following assump-

tions. Let ¢ = X; — B(X,), & = Z; — E(Z;) and %; = Var(Z,).
Assumption S3.1. 0 < minj <<, Apin(2;) < max<i<p Amaz(2i) < 00.

Assumption S3.2. 0 < minj<;j<, Anin(Var(ee])) < maxicicn Anaz(Var(ee)) <

00.
Assumption S3.3. 0 < max;<;<, Anaz(E(ei6] — 3;)1) < oo.

Assumption S3.4. 0 < maxj<p<x1 ‘ozT,u(k)| < oo for all ||a]| = 1.

Assumption S3.5. 0 < minlgign )\mzn(iz) S maxi<;<n )\max(iz) < Q0.
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The E-Divisive method

BX

42401234

Inedex

Al
1

o

o 500 1000 1500 2000

Inclex

The SBS method

BX

42401234

T T T T T
o 500 1000 1500 2000

Inedex

The SBS method after

o
1

o 500 1000 1500 2000

Figure 1: Change point detection for aCGH data, the four figures plot the
locations detected by E-Divisive, E-Divisivey,., SBS and SBS,., respectively.

Assumption S3.6. 0 < minj<;j<, Anin(Var(&€)) < maxicicn Anae(Var(&€))) <
00.

Assumption S3.7. 0 < max;<;<, Amaz(E(&€] — 3)*) < oo.

Assumption S3.8. 0 < max;<p<pi1 ‘aT,ug)‘ < oo for all ||af| = 1.

Remark S3.1. These assumptions are satisfied in many situations we are

interested in, such as Y; = I, and m-dependent cases. See relevant refer-
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ences in the literature such as Dette et al. [2022] and |Chen et al.| [2010].

S3.2 Appendix. Proofs of the theorems

In this section, we present the proofs of the theoretical results.

Lemma 1. Under the model (2.1), assume that X; — E(X;) are independent

random variables. Under Assumptions S3.1-S3.4, then

o (f5)-0(52).

The proof of this lemma can be similar as that in the proof of Theo-

rem 2.3; we omit it here.

Proof of Theorem 2.1. For any basis matrix B € RP*? of Sig(x,)»
we have Span(B) = S{E(Xi)};;l' Assume there are K change points 1 < z; <
Zy < ... < Zg < n of the sequence {Y; = BT X;}?_ such that E(Y;,_,+;) =
BT/,Lgk71+j, fork=1,--- ,K+1,1<j<2% —%_1 and BT/,l/gk =+ BT,ung.

If the locations of change points in the sequence {B'X;} | are not
these in the sequence {X;}7 ,, there exist k such that pz; = pz,4+1. Then
we have BTz, = B iz, 1. However, Z; is a change point of the sequence
{BTX;}" |, which implies that B" uz, # B iz, +1. This is a contradiction.

Thus, the locations of change points in the sequence {BT X;}? , are those

11
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in the sequence {X;} ;.

On the other hand, if the locations of change points in the sequence
{X;}™, are not those in the sequence { B" X;}"_,, there exists a k such that
BT (ptz, — ptzp11) = 0 and pu,, # p, 11. Therefore, pi,, — g, 11 is vertical to

the subspace Span(B), namely

Pz — Mzt L Span(B). (S3.6)

By the definition of central mean deviation subspace Sig(x,)» ,, we have

Pap1 — Mz, € Sipx)yr - As Span(B) = Sip(x,))» ,, we conclude that

Pz — Pazpr1 € Span(B). (S3.7)

Altogether the results in (S3.6)) and , we conclude that p,, —p.,+1 = 0.
This produces the contradiction that zj is the location of a change point
in {X;}",, namely, p,, # -, +1. Therefore, the locations of change points
in the sequence {X;}* | are these in the sequence {BT X;}?,. The proof is

finished. O

12
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Proof of Theorem 2.2. Recall that

K+1

A=Y Y el - p ) - )T = 44T

k=1 I#kI<K+1

where A = (yag{p® — u®}, - | Jarman® — 109}, we have
Span(A) C Span(A).

As rank(A) = rank(AA") and Span(AAT) = Span(4), we conclude
that Span(A) = Span(A). By the definition of central mean deviation sub-
space Syp(x,)yr_,, Span(A) = Sp(x,))n - Therefore, we can get Span(A) =

SiEx)yn, - O

Proof of Theorem 2.3. By the Taylor expansion, we have (see also,

e.g., Sun| [1988] that was used in |Zhu and Fang| [1996])

As(A) = A(A) = ] (A, — A)vg 4 Ryg(A¥)

S

and

13
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where

Ris(A%) =v(AY) (A, — A)vg(AY) — v (A) (A, — A)ry(A),

f(a) = 3 OB = M) )07 (B = A

s As(A) = M(A) b Tks As(A) = A(A) 7
and A* — A — 0 in probability.
Firstly, we know
way I
t
L As(B) = (A ) = O(p).

Now we focus on the term v (A)(A, — A)vs(A).
Here we give a general conclusion: we consider a' (A, — A)a for any

||| = 1. Recall that

An_A = Mn_M_2(Zpooled,n_zpooled> = Mn_<A_22pooled)_2<2pooled,n_zpooled)-

Part 1. We calculate the convergence rate of M,, — A —23,,5¢q in the

first step. Let ¢; = X; — E(X;) and 0;; = E(X;) — E(X;). Then M,, can be

14
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decomposed as follows:

M, n—lZZX X)X - X;)T

=1 j#i
n(n—1) ZZ — 5+ 0ig)(ei — €5+ 0) "
i=1 j#i
7’L—1 ZZQ n—l ZZE.]]
i=1 ];ﬁz =1 j#i
n—l ZZ Zzéw i
=1 j#i i=1 j#i
:_Zee +—— nln—1) ZZE n—l ZZE
i=1 j#i i=1 j#i
n—l ZZE n_l ZZE n—l 2251]
11]7&1 ’Ll];é’L 11]752
2 « n
:ﬁ;qeiTJrE;E(X@')e w1 ;;E w1 ;;5]-55

=: 2M1n -+ 4M2n — 4M3n -+ M4n.

We now deal with the fourth terms o' M;,a one by one. For any fixed o

with ||a|| = 1, we have

1 & 1 <«

o My,a = — E ozTeieiToz = — E Lnis
n < 1 \/ﬁ i—1
1= 1=

15
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where Z,; = -—a'¢;e o is a double array sequence. Then we have
vn i

1 1 - _ RS T . T N_. np2
E(Z,;) = %a Yo, Var (; Zm) = ;Var(a €€, o) =: B

To verify the Lindeberg condition. For any n > 0, under Assumption-

s 53.2 and S3.3, we have

"1
Z _2/ (Zm' - E(Zm'))QdFm'
“— B J|2,;—E(Z.)|>nB

=5 3" B [(Zas = B(Z0) P1( s = B(Zu0)] > 1B)]

=1

=— max E [(a' e o — ' 0)] T [P(|Z0 — E(Zw)| > nB)|?

E[(aTeel a— ozTZioz)ﬂl/Q Var(Z:) 1"
<max -
=1 B2 B2

L max; A%{ﬁm(E(eiej — %)) max; )\iﬁw(Var(eiei))

- [ming Apwin(Var (eie] )] nv/n
ofz)

Thus, a' My,a — 370 o' S 2 N (0,5 37" Var(aTeel o)) which

implies that a' My, — 2a" Y ppeac = O, (\%) with %ZLI a'Sa 8

™Y ocac and Assumption S3.1.

16
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Nex , consider
a' My,a = — En o E(X)E o
" n — v

Note that if o E(X;) = 0 for all 4, then o' Ms,a = 0. Therefore,
by the piecewise constant structure of the sequence E(X;)’s, the number
of a" E(X;) # 0 is not smaller than min{n;} + 1, where min{n;} is the
minimum number of data points between any two true changes. Let N, =
{i : a"E(X;) # 0}. The cardinality #M\/,, of A, satisfies that min{n;}+1 <
#N, <n.

#N, 1

1 n
T T T T T
a Mo« nigla (Xi)e; o - N,niENa (Xy)e; a

maxi << |0 pF))? maxi<;<n Amaz(Zi)

3

i| 1/2

Thus, for every £ > 0, when we take M = [ +

1, then under Assumptions S3.1 and S3.4,

#L/\/ Z o' B(X;)el a

" ( N iEN, #HNM?

N M) gZiGN” [aTE(X)]" aT E(eel )a

< maxj<kg<k |OéT,LL(k) |2 maxj<i<n )\max(zi)

= e

< &.

Thus, ﬁ Yien, @ E(Xy)el a =0, ( L ) We could also obtain, since

17



S3.2  Appendix. Proofs of the theorems

a' My,o = #—N’HL Z a' B(X))el a = 0, ( i n) <0, (%) )

18
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Next, we turn to consider the term o' My, by rewriting it as

o My,o =——— n—l ZZOAT&](SZ

zl];éz

n(n — 1 ZZ@ E(X;))(E(X;) — BE(X;)) a
i=1 j#i

n—l Z Z Z Z (l))(u()_u())

k 1 l#kl<K+12 Zk— 1+1] =Z]— 1+1
K+1

Z Z e’ (p® — ) (u® — 10T

k=1 £k I<K+1

=a" Aa + o(1).

To sum up, together with all the results of the four terms o' M;,a’s, we

conclude that
ol (M, — A — 2% pooled) Y AN (0’ % Zz:; Va?“(ofe,-eja))

and then
a (M, — A =25 ppea)a = o' (M, — M)a = O, (L)

for any fixed a.

19
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Part 2. We decompose o' (Xpooted.n — Spooled) O aS

T
« (Epooled,n - Z;laooled) «

A

(Em - Epooled) (04

!
Q
_|
ol
()=

1

3
[

!
Q
_|
ol
MN*

Z > (X = X)X = X)) = Spootea | @

m:I keS 1#£k,1ESH
1 K
=a' _Z Z Z €k — €+ Op)(ex — €+ 61) " — Spooted | @
Km: keS I#£k,1€Sm,
1 &1 K
}Zﬁ_ Z Q EmGTOé Q Epooleda Z ) Z Z CY €k€l
=1"" keS, m=1 B k€S I#k,1€Sm
1 K
+Tzﬁ PP ILICEE
K m=1 n( keSm 1#£k,1€ESm
1 K
FEY e L X el
Km:l keS 1#£k,ESH

= E1n - ZQn + E?m + Z4n-

It is easy to obtain that

K
1
T T T T_ T T
Yip =— g — (a €LEL O — Epooleda) = — E (a €€, O — QU Epooleda)
B n “
kESm =1

20



S3.2  Appendix. Proofs of the theorems

which implies that ¥;, = O, <\/iﬁ> .

For X, we can rewrite it as

g 5 E g a ekel «Q
kesm l#k,JIESm

K

O[TG GTOK
\/Kﬁnﬁn—lml\/_\/ﬁn n keZSZ;:H;S !
1
KBp(Bn — 1) m=1

Tf(mv

where Tz, = Zkes D ihies, @ ek a. We can also derive
2% KBn n— m m
that

E(Tg, ) = ! Y Y E(e'e)BE(¢ a) =0,

Kﬁn(ﬁn - ].) kESm l7£k7lesm

2

1
Var(Tk,,) =E(T%, ) = = Z Z a'eel a
KB (Bn — 1) keSm l#k,15m

— E(a Ekla €l1a gyes 6l2)
K

kles ll#kl 11E€Sm ko €ESm 1275]{2 12€Sm

=550 ~1) Bn Z > Elle"e)El(a’e)’]

kesm I#£k,leSm

Kﬁ Z Z TZkOé TE[O()

kESm I#k,l€Sm

21
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Thus,under Assumptions S3.1 and S3.2, we could calculate

2 2 2 2
% Iélgn )\mzn(z ) < Var(TKm> < % 121?_); )\max<21)
and
K
2 . ~
2 12111<nn Amzn(zl) S Var ZTK’L < 2 1112?2; )\maz(z )

4 _ 1 )
ET: ] _[ffﬂn(ﬂn {Z Z o' epe] a }

kESm l#k,leSm

T L X EleTa) )

kESm l#k,l€SH

+[m GoTE e X 2 2

k1E€Sm l1#k1 kaFki1#l laFAl #k1#l
11€Sm k2€Sm 12€Sm

El(a’ e, )’ El(a"e,)’| Bl a,)? El(a " a,)’]

o)

where C; and (5 are positive integers that don’t take a lot of effort to

22
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calculate. For any n > 0, with Assumptions S3.1 and S3.2, we have

2
TimdF g,

(25;1 ) o

K K
Z T2 T [|Tgl > |[nVar ZTf(m

m=1

-
o~

K
< Z T 1/2P1/2 T, > |nVar
Var(Z T )

~ 1/2
< Kmax,_, .z E [T?(m} maXy << i Var(Tg,,)
= . 3/2

Var <Z§:1 Tf(m> V1

1/2

1
0| —— | —o

ok

Then

1 1
Recall the definition of S, right above equation (2.3) in the main body
of the paper. Write all those sets {Sm form=1,--- ,K'} . Note that all S,,
form=1,---,K are disjoint. Then we further split all sets into two disjoint
subsets of sets where §¢ = {S,,, where §,, contains at least an index m such that
Zm € Sy and z,, + 1 € S, }, and the rest sets as S. The number of the set

§¢ is less than or equal to the number of change points K.
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Based on this definition, we can write X3, as

Z Z o 5kl Ek—ﬁz

kESm I#k,l€Sm

D
; Z Z Oé5kl€k—€l

kesml;ékZESm
Z Z Z [0 (5kl Ek—El Oé
s €Se B” B” keS 1#k,1€Sm,
:_Zﬁ Zza5kzk—€la
SmeSe " P k:eS I#k,1€Sm,
=— Z ﬂ Z Z E(Xl))(ek,—q)Ta
smes nAET keS I#k,1€Sm,
—Z Z Z o B(X)el o
Smese "™ keS,
+_Z [ZZ@ EXkeloz—ZozTEXkekoz]
K s B" "_1 kESm l€S keS
_2#{S 1 )+ 248 ( 1 )
K P\VH#SIB)  KB.—-1) "\ VH#{S)B.
2 1 T Bn 1 T
= — E(X -
+K&§c _ﬁnkezsmo‘ () [ﬁn—lﬂn%o‘ i
28 1 ) L 2#HSY op< 1 )
K(B, —1) VH{S} B

K "\ /#{SI)B,
Z R ZO‘ “

S S leSm

() ) 50
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The last term is discussed under Assumption S3.4.

For X4, we have

T N 66T = 1y B _ o (P
Sin == > 2Bn(6n—1)z > a5kl5kla—KOp(f(>—KOp<n>—Op(n>.

SmES® kESm l#k,leSm

Therefore, together with the results about ¥, fort =1,--- .4, we conclude

that

O‘T(Epooled,n - Epooled)a :Op <

To sum up, we conclude that

Jro.(Gam) o () +or ()
>+%(

Si- 5l

=&
~

9 n
a' (A, — A)a = 3%, +0,(1) 2N (0, — Z Var(aTeieIa)>
i=1
when f3,/n — 0. Furthermore, we have

aT(An - A)CY = aT(Mn - M)Oé - QQT(Epooled,n - Epooled)&
1 Bn
“o(5) <o ()

Therefore, we have, recalling the definitions at the beginning of the proof
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of this theorem,

S\S(An) - )\5<A) = Op <%> —|—Op (%) ,8 = 1,27... . D

and

Then we get

1A, — Allp =v/tr(A, — A) (A, — A)T JZP:A A, —A)

0,7 o, (22).

where A\p(A, — A) is the eigenvalue of the matrix A, — A. These results

imply that

max [A(An) = A (4)] =l1A, - Al

1<s<p

<[|An — Allr

(o)
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where || - ||2 is Ly matrix norms. Thus, we
Pgbn
15, Blle =0, (/22 + 0, (V2.
n n
The proof is finished. U

Proof of Theorem 2.4. We follow the similar arguments of prov-
ing Theorem 2.2 in [Zhu et al|[2023] to prove this theorem. Write 7, =
max{\/g, ‘[pT’B"} S\S(An) and A\s(A) as A\ and )\, in short. From Lem-
ma [, we can get

max
1<s<p

The following deduction is in a sense with a probability tending to 1. The
above implies there exists a constant C' such that the following inequality
holds:

Ao — A

max
1<s<p

< Cn.

Then, we have Ay — Cfip < A\s < Ay + Cfjn, V1 < s < p. This implies that

~

—Cn, < min Ay < max A < C1p.

q+1<s<p q+1<s<p
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Since Ay > 0 and A;4; = 0, we can obtain

—Cn + ¢ < ;\(q+1) + Cn Cn, + ¢,
AN+ Cp+cn —

j\q—I—Cn _Aq_cﬁn‘i‘cn'

Due to the conditions ¢, — 0 and ¢, /7, — oo, and ¢,/\; — 0, we have

;\<q+1> +¢n
Ay +

Further, since for any [ > ¢, \; = 0 and ¢, /7, — 00, we achieve

~

A + ¢y,
AR

; > mingsq Aq + ¢, S —Cny + ¢,
> X\ + ¢,

= = = 1>
max;sq A\q + ¢y, Ciln + ¢

Therefore, we conclude that P(¢=q) — 1

Proofs of Theorems S1.1, S1.2, and S1.3. The arguments used for

proving Theorems 2.1, 2.2, and 2.3 can be used to prove these theorems;

we then omit the details here.

Proof of Theorem 4.1. For any basis matrix B € RPZ*9 of S?Xi}n:ﬂ
we have Span(B) = S’EXZ_}T_LZI. Assume X; € RP fori =1,--- ,n belongs to a

union of d categories {Cy}¢_, and B"Z; € R% for i = 1,--- ,n belongs to
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a union of K categories {C;}X .

First, for any pair X; and X; with ¢ # j belonging to the same category
Cr, we have pz; = E(Z;) = E(Z;) = pz; and then E(B'Z;) = E(B'Z;).
This implies that BT Z; and B'Z; simultaneously belong to the some cat-
egory C. Therefore, we can conclude that any category C; can belong to
some category él.

On the other hand, for any B'Z; and B"Z; with i # j in the same
category Cy, namely, E(BTZ;) = E(BTZ;). Then we can get that BT juz,; =

BT pz. Therefore, p1z; — jiz; is vertical to the subspace Span(B):

pzi — pzj L Span(B). (S3.8)

By the definition of the central k—moment deviation subspace S?&}’Ly we

have piz; — pz; € S{xyn . As Span(B) = Sfx yn , we conclude that

Wz — Hz; € Span(B). (S3.9)

Together the results in (S3.8) and (S3.9)), we can get that pz,; — pz,; = 0.
This produces that X; and X, are simultaneously in some category C;.
Hence, any category Ci belongs to some category C;. Therefore, for any

basis matrix B € RPZ*% of $%. .. , both the sequences {BTZ;}* , and
{Xz}2:1 =1
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{ X}, have the same clustering results.
The argument for proving Theorem 2.2 can be adopted to derive the

rest of this theorem. Hence we omit the details here. The proof is finished.

O
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Table 1: Changes in the covariance matrix in Experiment 4

Case| p. a  method k MSE RI | p. a  method k MSE RI
E-Divisivey, 4.133 1.196  0.883 E-Divisivey, 2.702 4.073  0.906
E-Divisive 0.148 15.048 0.239 E-Divisive 0.093 15.391 0.224
03 ks-cp3og4; 5.460 5.784  0.886 03 ks-cp3og; 6.031 8.651  0.838
"~ ks-cp3o 6.298 10.118 0.769 " ks-cp3o 6.265 10.550 0.773
KCPy, 3.363 6.695  0.704 KCPy, 2.094 11.890 0.488
1 65 KCP 0.006 15.966 0.200 2 KCP 0.079 15.555 0.212
E-Divisivey. 4.203 0.257  0.983 E-Divisivey, 4.116 0.144  0.972
E-Divisive 2.491 4.943 0.718 E-Divisive 0.557 12.807 0.333
05 ks-cp3og; 4.061 0.146  0.983 05 ks-cp3og; 4.487 1.534  0.960
" ks-cp3o 6.248 10.222 0.775 " ks-cp3o 6.181 9.751  0.776
KCPy,. 4.678 1.944 0.979 KCPy, 4.613 2.395 0.949
KCP 4.013 1479 0.935 KCP 4.327 11.267 0.785
E-Divisiveg. 4.074 0.092  0.969 E-Divisiveg. 3.499 1.822 0.841
E-Divisive 0.311 14.155 0.275 E-Divisive 0.148 15.072 0.238
0.3 ks-cp3og, 4.500 1.673  0.950 03 ks-cp304;- 5.721 7.487  0.867
" ks-cp3o 6.218 9.774  0.763 " ks-cp3o 6.189 9.847  0.766
KCPy, 4.891 7417 0.891 KCPy, 2.427 12.665 0.516
9 65 KCP 0.000 16.000 0.198 2 KCP 0.060 15.688 0.209
E-Divisiveg, 4.050 0.084  0.980 E-Divisiveg. 4.056 0.084  0.969
E-Divisive 0.600 12.626 0.336 E-Divisive 0.282 14.322 0.268
05 ks-cp3og; 4.128 0.319 0.976 05 ks-cp3og, 4.417 1.394  0.955
" ks-cp3o 6.165 9.655  0.762 " ks-cp3o 6.126  9.364  0.769
KCPy, 5.417 7.455  0.964 KCPy, 4.974 8482  0.882
KCP 0.446 14.512 0.267 KCP 0.546 14.766 0.269
E-Divisivey. 3.981 1.866 0.845 E-Divisivey, 2.263 5.563  0.632
E-Divisive 0.084 15.466 0.223 E-Divisive 0.099 15.367 0.226
0.3 ks-cp3og4; 5.606 7.152  0.863 03 ks-cp3og;- 6.128 9.256  0.809
" ks-cp3o 6.312 9.944 0.772 " ks-cp3o 6.317 10.399 0.768
KCPy, 3.146 8.238  0.637 KCPy, 2.362 17.662 0.441
3 65 KCP 0.001 15.993 0.199 2 KCP 0.028 15.818 0.203
E-Divisivey, 4.152 0.176  0.977 E-Divisivey, 4.023 0.521  0.936
E-Divisive 0.190 14.886 0.246 E-Divisive 0.178 14.896 0.245
05 ks-cp3og4; 4.201 0.621  0.967 05 ks-cp3og;- 4.898 3.228  0.930
" ks-cp3o 6.322 10.206 0.774 " ks-cp3o 6.240 9.910 0.765
KCPy,. 5.299 4.731  0.961 KCPy, 3.967 6.703  0.778
KCP 0.031 15.827 0.205 KCP 0.437 17.323 0.236
E-Divisivey, 4.137 2.105  0.850 E-Divisiveg. 2.054 6.200 0.626
E-Divisive 0.133 15.173 0.268 E-Divisive 0.085 15.422 0.259
0.3 ks-cp3og; 5.797 8.496  0.818 0.3 ks-cp3og; 6.327 10.061 0.773
" ks-cp3o 6.291 9.990 0.733 "~ ks-cp3o 6.407 10.753 0.731
KCPy, 4.110 8951  0.727 KCPy, 1.607 12.371 0.438
4 65 KCP 0.000 16.000 0.236 2 KCP 0.034 15.787 0.243
E-Divisivey, 4.242 0.433  0.970 E-Divisiveg. 3.835 0.639  0.936
E-Divisive 0.270 14.349 0.300 E-Divisive 0.147 15.140 0.268
05 ks-cp3og; 4.281 1.533  0.942 05 ks-cp3og; 5.063 5.390 0.874
" ks-cp3o 5.977 8.638 0.734 " ks-cp3o 6.141 9.828  0.725
KCPy, 6.010 9.077  0.946 KCPy, 5.154 9.923  0.845
KCP 0.000 16.000 0.236 KCP 0.180 15.278 0.260
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