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S1. Central κ−th moment deviation subspace and part of nu-

merical analysis

S1.1 Central κ−th moment deviation subspace

In this section, we consider higher moments as we may have an interest

in detecting change points in the contemporaneous mean or second- order

moment change structures. Assume Xi = (Xi1, · · · , Xip)
>, for i = 1 · · · , n,

be independent p-dimensional random variable vectors. Define the new

high-dimensional variables Zi based on Xi as:

Zi = (Xi1, ..., Xip, X
2
i1, Xi1Xi2, ..., Xi1Xip, X

2
i2, Xi2Xi3, ..., Xi2Xip,

· · ·Xκ
i1, X

κ−1
i1 Xi2 · · · , Xκ

ip)
>, (S1.1)

where κ denotes some positive integer. Let pZ denote the dimension of

Zi. Without loss of generality, assume that the sequence {Zi}ni=1 of all

means follows a piecewise constant structure with K+1 segments. In other

words, there are K change points 1 ≤ z1 < z2 < ... < zK ≤ n such that

E(Zzk−1+j) = µ
(k)
Z , and Cov(Zzk−1+j) = Σ

(k)
Z , for k = 1, · · · , K + 1 and

1 ≤ j ≤ zk − zk−1 where z0 = 0 and zK+1 = n.

Definition S1.1. Span{µ(k)
Z − µ

(l)
Z , for k, l = 1, · · · , K + 1} is called the
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S1.1 Central κ−th moment deviation subspace

central κ−th moment deviation subspace of the sequence {Xi}ni=1 and is

written as Sκ{Xi}ni=1
. qκ = dim{Sκ{Xi}ni=1

} is called the structural dimension

of Sκ{Xi}ni=1
.

The following theorem states a similar result as that in Theorem 2.1.

Theorem S1.1. For any basis matrix B ∈ RpZ×qκ of Sκ{Xi}ni=1
, both the se-

quences of {B>Zi}ni=1 and {Zi}ni=1 have the same locations of change points.

To get a consistent estimator of the basis matrix B about the subspace

Sκ{Xi}ni=1
, we also consider the following Mahalanobis matrix of the sequence

{Zi}ni=1 as:

MZ,n =
1

n(n− 1)

n∑
i=1

∑
i 6=j

(Zi − Zj)(Zi − Zj)>. (S1.2)

Compute the expectation of MZ,n to get:

E(MZ,n) =
1

n(n− 1)

n∑
i=1

∑
i 6=j

E
{

(Zi − Zj)(Zi − Zj)>
}

=
1

n(n− 1)

n∑
i=1

∑
i 6=j

Cov(Zi − Zj) +
1

n(n− 1)

n∑
i=1

∑
i 6=j

E(Zi − Zj)E(Zi − Zj)>

=
K+1∑
k=1

∑
l 6=k,l≤K+1

nknl
n(n− 1)

(Σ
(k)
Z + Σ

(l)
Z ) +

K+1∑
k=1

2nk(nk − 1)

n(n− 1)
Σ

(k)
Z

+
K+1∑
k=1

∑
l 6=k,l≤K+1

nknl
n(n− 1)

(µ
(k)
Z − µ

(l)
Z )(µ

(k)
Z − µ

(l)
Z )>.
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S1.1 Central κ−th moment deviation subspace

As nk/n→ ck > 0, for k = 1, 2, · · · , K + 1, and
∑K+1

k=1 ck = 1, we have

E(MZ,n) →
K+1∑
k=1

∑
l 6=k,l≤K+1

ckcl(Σ
(k)
Z + Σ

(l)
Z ) + 2

K+1∑
k=1

c2
kΣ

(k)
Z

+
K+1∑
k=1

∑
l 6=k,l≤K+1

ckcl(µ
(k)
Z − µ

(l)
Z )(µ

(k)
Z − µ

(l)
Z )>

= 2
K+1∑
k=1

ckΣ
(k)
Z +

K+1∑
k=1

∑
l 6=k,l≤K+1

ckcl(µ
(k)
Z − µ

(l)
Z )(µ

(k)
Z − µ

(l)
Z )>

=: 2ΣZ
pooled + ∆Z = MZ .

Theorem S1.2. Under the model (S1.1), we have Span(∆Z) = Sκ{Xi}ni=1
.

Furthermore, let B = (v1, · · · , vqκ) denote the eigenvectors of ∆Z associated

with the nonzero eigenvalues of ∆Z, then B is the basis matrix of Sκ{Xi}ni=1
,

namely, Span(B) = Sκ{Xi}ni=1
.

We need to consistently estimate the pooled covariance matrix ΣZ
pooled

to estimate the target matrix ∆Z efficiently. Similarly, we adopt a “divide-

and-conquer” strategy. Divide the data into K̃ segments with the subscript

as: Sm = {(m − 1)βn + 1, · · · ,mβn}, for m = 1, · · · , K̃ − 1 and SK̃ =

{(K̃ − 1)βn + 1, · · · , n}. We calculate the covariance for each segment and

then average them to get an estimator of the pooled covariance matrix
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S1.1 Central κ−th moment deviation subspace

ΣZ
pooled as:

ΣZ
pooled,n =

1

K̃

K̃∑
m=1

Σ̂Zm with Σ̂Zm =
1

#{Sm} − 1

∑
k∈Sm

(Zk − Z̄m)(Zk − Z̄m)>,(S1.3)

where Z̄m = 1
#{Sm}

∑
k∈Si Zk and #{Sm} denotes the cardinality of the set

Sm.

Together the formula (S1.2) with (S1.3), we can have an estimator of

∆Z as:

∆Z,n = MZ,n − 2ΣZ
pooled,n. (S1.4)

The basis matrix B ∈ RpZ×qκ of Sκ{Xi}ni=1
can be estimated as the eigenvec-

tors Bn = (v̂1, · · · , v̂qκ) associated with the largest qκ eigenvalues of ∆Z,n.

Theorem S1.3. Under the model (S1.1), assume that Xi − E(Xi) are

independent random variables, and Assumptions S3.5, S3.6, S3.7 and S3.8

hold. Then,

||∆n −∆||F = Op

(√
pZ
n

)
+Op

(√
pZβn

n

)
,

5



S1.1 Central κ−th moment deviation subspace

where || · ||F denotes the Frobenius norm of a matrix. Furthermore, we have

||Bn −B||F = Op

(√
pZ
n

)
+Op

(√
pZβn

n

)
.

Remark S1.1. Theorem S1.1 presents that based on the central 2−moment

deviation subspace, it is a direct application to identify the locations of

change points in the normal case, namely,

Xi ∼ N(ui,Σi), 1 ≤ i ≤ n. (S1.5)

There are K change points 1 ≤ z1 < z2 < ... < zK ≤ n such that

E(Xzk−1+j) = µ(k), and Cov(Xzk−1+j) = Σ(k), for k = 1, · · · , K + 1 and

1 ≤ j ≤ zk − zk−1.

Similarly, we can determine the dimension qκ of the subspace Sκ{Xi}ni=1

based on TRR in (2.5) of the main body. Then, based on the lower-

dimensional sequence {B>n Zi}ni=1, we can estimate the locations {ẑ1, · · · , ẑK̂}

and the number K̂ by existing methods.
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S1.2 Numerical Studies with changes in covariance matrix

S1.2 Numerical Studies with changes in covariance matrix

Experiment 4: Changes in the covariance matrix. The data

are generated from the multivariate normal distributions:

G0 = G2 = G4 = N(0p, Ip×p), and G1 = G3 = N(0p,Σ).

Consider the following four settings:

• Case 1: Σ = (1 − a)Ip×p with a = 0.3, 0.5, the change points are

located at 100i for i = 1, 2, 3, 4, respectively;

• Case 2: Σ = (σij), where σij = I(i = j) + aI(i 6= j) with a = 0.3, 0.5,

the settings of change points are the same as Case 1;

• Case 3: Σ = (σij), where σij = a|i−j| with a = 0.3, 0.5, the settings of

change points are the same as Case 1;

• Case 4: the setting of Σ = (σij) is the same as Case 3, and change

points located at 90, 250, 390, and 450.

Here different values of a indicate the magnitudes of changes. We de-

sign p = 5, 10 associated with pZ = 20, 65, respectively. The results are re-

ported in Table 1. From Table 1, E-Divisivedr performs the best among the

competitors. The dimension reduction-based methods perform significantly
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better than the three methods. The E-Divisive and KCP tend to under-

estimate the number of change points seriously, but ks-cp3o overestimates

it in this experiment. Additionally, the dimension reduction-based meth-

ods are relatively robust against the different covariance matrices, while

E-Divisive, KCP, and ks-cp3o are very sensitive. Thus, there are significant

improvements over the three methods by reducing the dimension.

S2. Genetics data with mean changes

Analyze the array comparative genomic hybridization (aCGH) microar-

ray data set, which was analyzed in Stransky et al. [2006] to detect mean

changes in the data structure. The dataset includes 57 individuals with a

bladder tumor. We use the processed data in the R package: ecp to choose

43 individuals out of the 57 individuals at 2215 different loci’s on their

genome, namely p = 43 and n = 2215. This empirical study aims to find

unusual chromosomal characteristics.

Because the structural dimension is determined to be q̂ = 1 via the TR-

R criterion, Figure 1 plots the locations of change points using E-Divisive

and SBS before and after dimension reduction. We found 34 and 45 change

points using E-Divisivedr and SBSdr while E-Divisive, SBS found 97 and 3

changes. It would say that E-Divisive has an overestimation issue, and SBS
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underestimates the number of change points. It would suggest that the re-

sults after dimension reduction are reasonable. Further, when the methods

ks-cp3o, Multirank, KCP, Inspect, DCBS and GeomCP are used, we found

that they respectively identify 1, 7, 55, 254, 6, and 27 change points. This

shows that KCP, and Inspect would overestimate the number of changes.

ks-cp3o, Multirank, DCBS would also underestimate the number of change

points, GeomCP has a similar result with E-Divisivedr for this data set.

S3. Regularity Conditions and Proofs of the theorems

S3.1 Regularity Conditions

To investigate the asymptotic properties, we list the following assump-

tions. Let εi = Xi − E(Xi), ε̃i = Zi − E(Zi) and Σ̃i = V ar(Zi).

Assumption S3.1. 0 < min1≤i≤n λmin(Σi) ≤ max1≤i≤n λmax(Σi) <∞.

Assumption S3.2. 0 < min1≤i≤n λmin(V ar(εiε
>
i )) ≤ max1≤i≤n λmax(V ar(εiε

>
i )) <

∞.

Assumption S3.3. 0 < max1≤i≤n λmax(E(εiε
>
i − Σi)

4) <∞.

Assumption S3.4. 0 ≤ max1≤k≤K+1

∣∣α>µ(k)
∣∣ <∞ for all ||α|| = 1.

Assumption S3.5. 0 < min1≤i≤n λmin(Σ̃i) ≤ max1≤i≤n λmax(Σ̃i) <∞.
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S3.1 Regularity Conditions

Figure 1: Change point detection for aCGH data, the four figures plot the
locations detected by E-Divisive, E-Divisivedr, SBS and SBSdr, respectively.

Assumption S3.6. 0 < min1≤i≤n λmin(V ar(ε̃iε̃
>
i )) ≤ max1≤i≤n λmax(V ar(ε̃iε̃

>
i )) <

∞.

Assumption S3.7. 0 < max1≤i≤n λmax(E(ε̃iε̃
>
i − Σ̃i)

4) <∞.

Assumption S3.8. 0 ≤ max1≤k≤K+1

∣∣∣α>µ(i)
Z

∣∣∣ <∞ for all ||α|| = 1.

Remark S3.1. These assumptions are satisfied in many situations we are

interested in, such as Σi = Ip and m-dependent cases. See relevant refer-
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S3.2 Appendix. Proofs of the theorems

ences in the literature such as Dette et al. [2022] and Chen et al. [2010].

S3.2 Appendix. Proofs of the theorems

In this section, we present the proofs of the theoretical results.

Lemma 1. Under the model (2.1), assume that Xi−E(Xi) are independent

random variables. Under Assumptions S3.1–S3.4, then

max
1≤s≤p

∣∣∣λ̂s(∆n)− λs
∣∣∣ = Op

(√
p

n

)
+Op

(√
pβn

n

)
.

The proof of this lemma can be similar as that in the proof of Theo-

rem 2.3; we omit it here.

Proof of Theorem 2.1. For any basis matrix B ∈ Rp×q of S{E(Xi)}ni=1
,

we have Span(B) = S{E(Xi)}ni=1
. Assume there are K̄ change points 1 ≤ z̄1 <

z̄2 < ... < z̄K̄ ≤ n of the sequence {Yi = B>Xi}ni=1 such that E(Yz̄k−1+j) =

B>µz̄k−1+j, for k = 1, · · · , K̄ + 1, 1 ≤ j ≤ z̄k − z̄k−1 and B>µz̄k 6= B>µz̄k+1.

If the locations of change points in the sequence {B>Xi}ni=1 are not

these in the sequence {Xi}ni=1, there exist k such that µz̄k = µz̄k+1. Then

we have B>µz̄k = B>µz̄k+1. However, z̄k is a change point of the sequence

{B>Xi}ni=1, which implies that B>µz̄k 6= B>µz̄k+1. This is a contradiction.

Thus, the locations of change points in the sequence {B>Xi}ni=1 are those
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S3.2 Appendix. Proofs of the theorems

in the sequence {Xi}ni=1.

On the other hand, if the locations of change points in the sequence

{Xi}ni=1 are not those in the sequence {B>Xi}ni=1, there exists a k such that

B>(µzk − µzk+1) = 0 and µzk 6= µzk+1. Therefore, µzk − µzk+1 is vertical to

the subspace Span(B), namely

µzk − µzk+1 ⊥ Span(B). (S3.6)

By the definition of central mean deviation subspace S{E(Xi)}ni=1
, we have

µzk+1 − µzk ∈ S{E(Xi)}ni=1
. As Span(B) = S{E(Xi)}ni=1

, we conclude that

µzk − µzk+1 ∈ Span(B). (S3.7)

Altogether the results in (S3.6) and (S3.7), we conclude that µzk−µzk+1 = 0.

This produces the contradiction that zk is the location of a change point

in {Xi}ni=1, namely, µzk 6= µzk+1. Therefore, the locations of change points

in the sequence {Xi}ni=1 are these in the sequence {B>Xi}ni=1. The proof is

finished. �
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Proof of Theorem 2.2. Recall that

∆ =
K+1∑
k=1

∑
l 6=k,l≤K+1

ckcl(µ
(k) − µ(l))(µ(k) − µ(l))> = AA>,

where A = (
√
c1c2{µ(1) − µ(2)}, · · · ,√cK+1cK{µ(K+1) − µ(K)}), we have

Span(∆) ⊆ Span(A).

As rank(A) = rank(AA>) and Span(AA>) = Span(A), we conclude

that Span(∆) = Span(A). By the definition of central mean deviation sub-

space S{E(Xi)}ni=1
, Span(A) = S{E(Xi)}ni=1

. Therefore, we can get Span(∆) =

S{E(Xi)}ni=1
. �

Proof of Theorem 2.3. By the Taylor expansion, we have (see also,

e.g., Sun [1988] that was used in Zhu and Fang [1996])

λ̂s(∆n)− λs(∆) = ν>s (∆n −∆)νs +R1s(∆
?)

and

ν̂s(∆n)− νs(∆) =

p∑
t=1,t6=s

νt(∆)(ν>s (∆)(∆n −∆)νs(∆))

λs(∆)− λt(∆)
+R2s(∆

?),
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S3.2 Appendix. Proofs of the theorems

where

R1s(∆
?) =νs(∆

?)>(∆n −∆)νs(∆
?)− ν>s (∆)(∆n −∆)νs(∆),

R2s(∆
?) =

p∑
t=1,t6=s

νt(νs(∆
?)>(∆n −∆)νs(∆

?))

λs(∆)− λt(∆)
−

p∑
t=1,t6=s

νt(∆)(ν>s (∆−∆)νs)

λs(∆)− λt(∆)
,

and ∆? −∆→ 0 in probability.

Firstly, we know

∣∣∣∣∣
∣∣∣∣∣

p∑
t=1,t6=s

νt(∆)

λs(∆)− λt(∆)

∣∣∣∣∣
∣∣∣∣∣
2

F

= O(p).

Now we focus on the term ν>s (∆)(∆n −∆)νs(∆).

Here we give a general conclusion: we consider α>(∆n − ∆)α for any

||α|| = 1. Recall that

∆n−∆ = Mn−M−2(Σpooled,n−Σpooled) = Mn−(∆−2Σpooled)−2(Σpooled,n−Σpooled).

Part 1. We calculate the convergence rate of Mn−∆− 2Σpooled in the

first step. Let εi = Xi−E(Xi) and δij = E(Xi)−E(Xj). Then Mn can be
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decomposed as follows:

Mn =
1

n(n− 1)

n∑
i=1

∑
j 6=i

(Xi −Xj)(Xi −Xj)
>

=
1

n(n− 1)

n∑
i=1

∑
j 6=i

(εi − εj + δij)(εi − εj + δij)
>

=
1

n(n− 1)

n∑
i=1

∑
j 6=i

εiε
>
i +

1

n(n− 1)

n∑
i=1

∑
j 6=i

εjε
>
j

+
2

n(n− 1)

n∑
i=1

∑
j 6=i

(εi − εj)δ>ij +
1

n(n− 1)

n∑
i=1

∑
j 6=i

δijδ
>
ij

=
2

n

n∑
i=1

εiε
>
i +

2

n(n− 1)

n∑
i=1

∑
j 6=i

E(Xi)ε
>
i +

2

n(n− 1)

n∑
i=1

∑
j 6=i

E(Xj)ε
>
j

− 2

n(n− 1)

n∑
i=1

∑
j 6=i

E(Xi)ε
>
j −

2

n(n− 1)

n∑
i=1

∑
j 6=i

E(Xj)ε
>
i +

1

n(n− 1)

n∑
i=1

∑
j 6=i

δijδ
>
ij

=
2

n

n∑
i=1

εiε
>
i +

4

n

n∑
i=1

E(Xi)ε
>
i −

4

n(n− 1)

n∑
i=1

∑
j 6=i

E(Xi)ε
>
j +

1

n(n− 1)

n∑
i=1

∑
j 6=i

δijδ
>
ij

=: 2M1n + 4M2n − 4M3n +M4n.

We now deal with the fourth terms α>Minα one by one. For any fixed α

with ||α|| = 1, we have

α>M1nα =
1

n

n∑
i=1

α>εiε
>
i α =:

1√
n

n∑
i=1

Zni,
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S3.2 Appendix. Proofs of the theorems

where Zni = 1√
n
α>εiε

>
i α is a double array sequence. Then we have

E(Zni) =
1√
n
α>Σiα, V ar

(
n∑
i=1

Zni

)
=

1

n

n∑
i=1

V ar(α>εiε
>
i α) =: B2

To verify the Lindeberg condition. For any η > 0, under Assumption-

s S3.2 and S3.3, we have

n∑
i=1

1

B2

∫
|Zni−E(Zni)|>ηB

(Zni − E(Zni))
2dFni

=
1

B2

n∑
i=1

E
[
(Zni − E(Zni))

2I(|Zni − E(Zni)| > ηB)
]

≤ n

B2
max
i
E
[
(Zni − E(Zni))

4
]1/2

[P (|Zni − E(Zni)| > ηB)]1/2

=
1

B2
max
i
E
[
(α>εiε

>
i α− α>Σiα)4

]1/2
[P (|Zni − E(Zni)| > ηB)]1/2

≤max
i

E
[
(α>εiε

>
i α− α>Σiα)4

]1/2
B2

[
V ar(Zni)

η2B2

]1/2

≤maxi λ
1/2
max(E(εiε

>
i − Σi)

4) maxi λ
1/2
max(V ar(εiεi))[

mini λmin(V ar(εiε>i ))
]3/2

η
√
n

=O

(
1√
n

)
→ 0.

Thus, α>M1nα − 1
n

∑n
i=1 α

>Σiα
D→ N

(
0, 1

n2

∑n
i=1 V ar(α

>εiε
>
i α)

)
which

implies that α>M1nα − 2α>Σpooledα = Op

(
1√
n

)
with 1

n

∑n
i=1 α

>Σiα
a.s.→

α>Σpooledα and Assumption S3.1.
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S3.2 Appendix. Proofs of the theorems

Next, consider

α>M2nα =
1

n

n∑
i=1

α>E(Xi)ε
>
i α.

Note that if α>E(Xi) = 0 for all i, then α>M2nα = 0. Therefore,

by the piecewise constant structure of the sequence E(Xi)’s, the number

of α>E(Xi) 6= 0 is not smaller than min{ni} + 1, where min{ni} is the

minimum number of data points between any two true changes. Let Nn =

{i : α>E(Xi) 6= 0}. The cardinality #Nn of Nn satisfies that min{ni}+1 ≤

#Nn ≤ n.

α>M2nα =
1

n

n∑
i=1

α>E(Xi)ε
>
i α =

#Nn
n

1

#Nn

∑
i∈Nn

α>E(Xi)ε
>
i α.

Thus, for every ξ > 0, when we takeM =
[

max1≤k≤K |α>µ(k)|2 max1≤i≤n λmax(Σi)

ξ

]1/2

+

1, then under Assumptions S3.1 and S3.4,

Pr

(√
#Nn

∣∣∣∣∣ 1

#Nn

∑
i∈Nn

α>E(Xi)ε
>
i α

∣∣∣∣∣ > M

)
≤
∑

i∈Nn

[
α>E(Xi)

]2
α>E(εiε

>
i )α

#NnM2

≤max1≤k≤K |α>µ(k)|2 max1≤i≤n λmax(Σi)

M2
< ξ.

Thus, 1
#Nn

∑
i∈Nn α

>E(Xi)ε
>
i α = Op

(
1√

#Nn

)
. We could also obtain, since
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S3.2 Appendix. Proofs of the theorems

#Nn ≤ n,

α>M2nα =
#Nn
n

1

#Nn

∑
i∈Nn

α>E(Xi)ε
>
i α = Op

(√
#Nn
n

)
≤ Op

(
1√
n

)
.

Consider the term α>M3nα. Under Assumption S3.4, we have

α>M3nα =
1

n(n− 1)

n∑
i=1

∑
j 6=i

α>E(Xi)ε
>
j α

=
1

n(n− 1)

[
n∑
i=1

n∑
j=1

α>E(Xi)ε
>
j α

]
− 1

n(n− 1)

n∑
i=1

α>E(Xi)ε
>
i α

=
n2

n(n− 1)

[
1

n

n∑
i=1

α>E(Xi)

][
1

n

n∑
j=1

α>εj

]
− 1

n− 1
α>M2nα

≤ n

n− 1

∣∣∣∣∣ 1n
n∑
i=1

α>E(Xi)

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
j=1

α>εj

∣∣∣∣∣+Op

(
1

n
√
n

)

≤ n

n− 1

∣∣∣∣ max
1≤k≤K

α>µ(k)

∣∣∣∣
∣∣∣∣∣ 1n

n∑
j=1

α>εj

∣∣∣∣∣+Op

(
1

n
√
n

)

=Op

(
1√
n

)
+Op

(
1

n
√
n

)
=Op

(
1√
n

)
.
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Next, we turn to consider the term α>M4nα by rewriting it as

α>M4nα =
1

n(n− 1)

n∑
i=1

∑
j 6=i

α>δijδ
>
ijα

=
1

n(n− 1)

n∑
i=1

∑
j 6=i

α>(E(Xi)− E(Xj))(E(Xi)− E(Xj))
>α

=
1

n(n− 1)

K+1∑
k=1

∑
l 6=k,l≤K+1

zk∑
i=zk−1+1

zl∑
j=zl−1+1

α>(µ(k) − µ(l))(µ(k) − µ(l))>α

=
1

n(n− 1)

K+1∑
k=1

∑
l 6=k,l≤K+1

nknlα
>(µ(k) − µ(l))(µ(k) − µ(l))>α

=α>∆α + o(1).

To sum up, together with all the results of the four terms α>Minα’s, we

conclude that

α>(Mn −∆− 2Σpooled)α
D→ N

(
0,

4

n2

n∑
i=1

V ar(α>εiε
>
i α)

)

and then

α>(Mn −∆− 2Σpooled)α = α>(Mn −M)α = Op

(
1√
n

)

for any fixed α.
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Part 2. We decompose α> (Σpooled,n − Σpooled)α as

α> (Σpooled,n − Σpooled)α

=α>

 1

K̃

K̃∑
m=1

(Σ̂m − Σpooled)

α
=α>

 1

K̃

K̃∑
m=1

1

2βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

(Xk −Xl)(Xk −Xl)
> − Σpooled

α

=α>

 1

K̃

K̃∑
m=1

1

2βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

(εk − εl + δkl)(εk − εl + δkl)
> − Σpooled

α

=
1

K̃

K̃∑
m=1

1

βn

∑
k∈Sm

(
α>εmε

>
mα− α>Σpooledα

)
− 1

K̃

K̃∑
m=1

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>εkε
>
l α

+
1

K̃

K̃∑
m=1

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δkl(εk − εl)>α

+
1

K̃

K̃∑
m=1

1

2βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δklδ
>
klα

=: Σ1n − Σ2n + Σ3n + Σ4n.

It is easy to obtain that

Σ1n =
1

K̃

K̃∑
m=1

1

βn

∑
k∈Sm

(
α>εkε

>
k α− α>Σpooledα

)
=

1

n

n∑
i=1

(
α>εiε

>
i α− α>Σpooledα

)
D→N

(
0,

1

n2

n∑
i=1

V ar(α>εiε
>
i α)

)
,
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which implies that Σ1n = Op

(
1√
n

)
.

For Σ2n, we can rewrite it as

Σ2n =
1

K̃

K̃∑
m=1

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>εkε
>
l α

=
1√

K̃βn(βn − 1)

K̃∑
m=1

1√
K̃

1√
βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>εkε
>
l α

=
1√

K̃βn(βn − 1)

K̃∑
m=1

TK̃m,

where TK̃m = 1√
K̃βn(βn−1)

∑
k∈Sm

∑
l 6=k,l∈Sm α

>εkε
>
l α. We can also derive

that

E(TK̃m) =
1√

K̃βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

E(α>εk)E(ε>l α) = 0,

V ar(TK̃m) =E(T 2
K̃m

) =

 1√
K̃βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>εkε
>
l α

2

=
1

K̃βn(βn − 1)

∑
k1∈Sm

∑
l1 6=k1,l1∈Sm

∑
k2∈Sm

∑
l2 6=k2,l2∈Sm

E(α>εk1α
>εl1α

>εk2α
>εl2)

=
2

K̃βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

E[(α>εk)
2]E[(α>εl)

2]

=
2

K̃βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

(
α>Σkα

) (
α>Σlα

)
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Thus,under Assumptions S3.1 and S3.2, we could calculate

2

K̃
min

1≤i≤n
λ2
min(Σi) ≤ V ar(TK̃m) ≤ 2

K̃
max
1≤i≤n

λ2
max(Σi)

and

2 min
1≤i≤n

λ2
min(Σi) ≤ V ar

 K̃∑
i=1

TK̃i

 ≤ 2 max
1≤i≤n

λ2
max(Σi).

E
[
T 4
K̃m

]
=

1

[K̃βn(βn − 1)]2
E

{∑
k∈Sm

∑
l 6=k,l∈Sm

α>εkε
>
l α

}4

=
C1

[K̃βn(βn − 1)]2

∑
k∈Sm

∑
l 6=k,l∈Sm

E[(α>εk)
4]E[(ε>l α)4]

+
C2

[K̃βn(βn − 1)]2

∑
k1∈Sm

∑
l1 6=k1
l1∈Sm

∑
k2 6=k1 6=l1
k2∈Sm

∑
l2 6=l1 6=k1 6=l1

l2∈Sm

E[(α>εk1)
2]E[(α>εl1)

2]E[(α>εk2)
2]E[(α>εl2)

2]

=O

(
1

K̃2

)
,

where C1 and C2 are positive integers that don’t take a lot of effort to
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calculate. For any η > 0, with Assumptions S3.1 and S3.2, we have

K̃∑
m=1

1

V ar
(∑K̃

m=1 TK̃m

) ∫
|TK̃m|>

√
ηV ar

(∑K̃
m=1 TK̃m

) T 2
K̃m

dF ′
K̃m

=
1

V ar
(∑K̃

i=1 TK̃m

) K̃∑
m=1

E

T 2
K̃m

I

|TK̃m| >
√√√√√ηV ar

 K̃∑
m=1

TK̃m





≤ 1

V ar
(∑K̃

m=1 TK̃m

) K̃∑
m=1

E
[
T 4
K̃m

]1/2
P 1/2

|TK̃m| >
√√√√√ηV ar

 K̃∑
m=1

TK̃m




≤
K̃ max1≤m≤K̃ E

[
T 4
K̃m

]1/2
max1≤m≤K̃ V ar(TK̃m)1/2

V ar
(∑K̃

m=1 TK̃m

)3/2√
η

=O

 1√
ηK̃

→ 0.

Then

Σ2n = Op

 1√
K̃βn(βn − 1)

 = Op

(
1√
nβn

)
.

Recall the definition of Sm right above equation (2.3) in the main body

of the paper. Write all those sets
{
Sm for m = 1, · · · , K̃

}
. Note that all Sm

for m = 1, · · · , K̃ are disjoint. Then we further split all sets into two disjoint

subsets of sets where Sc = {Sm, where Sm contains at least an index m such that

zm ∈ Sm and zm + 1 ∈ Sm}, and the rest sets as S. The number of the set

Sc is less than or equal to the number of change points K.
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Based on this definition, we can write Σ3n as

Σ3n =
1

K̃

K̃∑
m=1

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δkl(εk − εl)>α

=
1

K̃

∑
Sm∈S

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δkl(εk − εl)>α

+
1

K̃

∑
Sm∈Sc

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δkl(εk − εl)>α

=
1

K̃

∑
Sm∈Sc

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δkl(εk − εl)>α

=
1

K̃

∑
Sm∈Sc

1

βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>(E(Xk)− E(Xl))(εk − εl)>α

=
2

K̃

∑
Sm∈Sc

1

βn

∑
k∈Sm

α>E(Xk)ε
>
k α

+
2

K̃

∑
Sm∈Sc

1

βn(βn − 1)

[∑
k∈Sm

∑
l∈Sm

α>E(Xk)ε
>
l α−

∑
k∈Sm

α>E(Xk)ε
>
k α

]

=
2#{Sc}
K̃

Op

(
1√

#{Sc}βn

)
+

2#{Sc}
K̃(βn − 1)

Op

(
1√

#{Sc}βn

)

+
2

K̃

∑
Sm∈Sc

[
1

βn

∑
k∈Sm

α>E(Xk)

][
βn

βn − 1

1

βn

∑
l∈Sm

α>εl

]

=
2#{Sc}
K̃

Op

(
1√

#{Sc}βn

)
+

2#{Sc}
K̃(βn − 1)

Op

(
1√

#{Sc}βn

)

+O(1)

[
2

K̃

∑
Sm∈Sc

βn
βn − 1

1

βn

∑
l∈Sm

α>εl

]

=Op

(√
#{Sc}
K̃
√
βn

)
= Op

( √
K√
K̃n

)
= Op

(√
Kβn
n

)
= Op

(√
βn
n

)
.

24



S3.2 Appendix. Proofs of the theorems

The last term is discussed under Assumption S3.4.

For Σ4n, we have

Σ4n =
1

K̃

∑
Sm∈Sc

1

2βn(βn − 1)

∑
k∈Sm

∑
l 6=k,l∈Sm

α>δklδ
>
klα = KOp

(
1

K̃

)
= KOp

(
βn
n

)
= Op

(
βn
n

)
.

Therefore, together with the results about Σin for i = 1, · · · , 4, we conclude

that

α>(Σpooled,n − Σpooled)α =Op

(
1√
n

)
+Op

(
1√
nβn

)
+Op

(√
βn
n

)
+Op

(
βn
n

)
=Op

(
1√
n

)
+Op

(
βn
n

)
.

To sum up, we conclude that

α>(∆n −∆)α = 3Σ1n + op(1)
D→ N

(
0,

9

n2

n∑
i=1

V ar(α>εiε
>
i α)

)

when βn/n→ 0. Furthermore, we have

α>(∆n −∆)α = α>(Mn −M)α− 2α>(Σpooled,n − Σpooled)α

= Op

(
1√
n

)
+Op

(
βn
n

)
.

Therefore, we have, recalling the definitions at the beginning of the proof
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of this theorem,

λ̂s(∆n)− λs(∆) = Op

(
1√
n

)
+Op

(
βn
n

)
, s = 1, 2, · · · , p,

and

ν̂s(∆n)− νs(∆) = Op

(√
p

n

)
+Op

(√
pβn

n

)
.

Then we get

||∆n −∆||F =
√
tr(∆n −∆)(∆n −∆)> =

√√√√ p∑
k=1

λ2
k(∆n −∆)

=Op

(√
p

n

)
+Op

(√
pβn

n

)
,

where λk(∆n − ∆) is the eigenvalue of the matrix ∆n − ∆. These results

imply that

max
1≤s≤p

∣∣∣λ̂s(∆n)− λs(∆)
∣∣∣ =||∆n −∆||2

≤||∆n −∆||F

=Op

(√
p

n

)
+Op

(√
pβn

n

)
,
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where || · ||2 is L2 matrix norms. Thus, we

||Bn −B||F = Op

(√
pq

n

)
+Op

(√
pqβn

n

)
.

The proof is finished. �

Proof of Theorem 2.4. We follow the similar arguments of prov-

ing Theorem 2.2 in Zhu et al. [2023] to prove this theorem. Write η̃n =

max
{√

p
n
,
√
pβn
n

}
. λ̂s(∆n) and λs(∆) as λ̂s and λs in short. From Lem-

ma 1, we can get

max
1≤s≤p

∣∣∣λ̂s − λs∣∣∣ = Op(η̃n).

The following deduction is in a sense with a probability tending to 1. The

above implies there exists a constant C such that the following inequality

holds:

max
1≤s≤p

∣∣∣λ̂s − λs∣∣∣ ≤ Cη̃n.

Then, we have λs − Cη̃n ≤ λ̂s ≤ λs + Cη̃n,∀1 ≤ s ≤ p. This implies that

−Cη̃n ≤ min
q+1≤s≤p

λ̂s ≤ max
q+1≤s≤p

λ̂s ≤ Cη̃n.
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Since λq > 0 and λq+1 = 0, we can obtain

−Cη̃n + cn
λq + Cη̃n + cn

≤
λ̂(q+1) + cn

λ̂q + cn
≤ Cη̃n + cn
λq − Cη̃n + cn

.

Due to the conditions cn → 0 and cn/η̃n →∞, and cn/λq → 0, we have

λ̂(q+1) + cn

λ̂q + cn
→ 0.

Further, since for any l > q, λl = 0 and cn/η̃n →∞, we achieve

min
l>q

λ̂(l+1) + cn

λ̂l + cn
≥ minl>q λ̂q + cn

maxl>q λ̂q + cn
≥ −Cη̃n + cn

Cη̃n + cn
→ 1 > τ.

Therefore, we conclude that P (q̂ = q)→ 1. �

Proofs of Theorems S1.1, S1.2, and S1.3. The arguments used for

proving Theorems 2.1, 2.2, and 2.3 can be used to prove these theorems;

we then omit the details here.

Proof of Theorem 4.1. For any basis matrix B ∈ RpZ×qκ of Sκ{Xi}ni=1
,

we have Span(B) = Sκ{Xi}ni=1
. Assume Xi ∈ Rp for i = 1, · · · , n belongs to a

union of d categories {Ck}dk=1 and B>Zi ∈ Rqκ for i = 1, · · · , n belongs to
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a union of K̃ categories {C̃k}K̃k=1.

First, for any pair Xi and Xj with i 6= j belonging to the same category

Ck, we have µZ,i = E(Zi) = E(Zj) = µZ,j and then E(B>Zi) = E(B>Zj).

This implies that B>Zi and B>Zj simultaneously belong to the some cat-

egory C̃l. Therefore, we can conclude that any category Ck can belong to

some category C̃l.

On the other hand, for any B>Zi and B>Zj with i 6= j in the same

category C̃k, namely, E(B>Zi) = E(B>Zj). Then we can get that B>µZ,i =

B>µZ,j. Therefore, µZ,i − µZ,j is vertical to the subspace Span(B):

µZ,i − µZ,j ⊥ Span(B). (S3.8)

By the definition of the central κ−moment deviation subspace Sκ{Xi}ni=1
, we

have µZ,i − µZ,j ∈ Sκ{Xi}ni=1
. As Span(B) = Sκ{Xi}ni=1

, we conclude that

µZ,i − µZ,j ∈ Span(B). (S3.9)

Together the results in (S3.8) and (S3.9), we can get that µZ,i − µZ,j = 0.

This produces that Xi and Xj are simultaneously in some category Cl.

Hence, any category C̃k belongs to some category Cl. Therefore, for any

basis matrix B ∈ RpZ×qκ of Sκ{Xi}ni=1
, both the sequences {B>Zi}ni=1 and
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{Xi}ni=1 have the same clustering results.

The argument for proving Theorem 2.2 can be adopted to derive the

rest of this theorem. Hence we omit the details here. The proof is finished.

�
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Table 1: Changes in the covariance matrix in Experiment 4

Case pz a method k̂ MSE RI pz a method k̂ MSE RI

1 65

0.3

E-Divisivedr 4.133 1.196 0.883

20

0.3

E-Divisivedr 2.702 4.073 0.906
E-Divisive 0.148 15.048 0.239 E-Divisive 0.093 15.391 0.224
ks-cp3odr 5.460 5.784 0.886 ks-cp3odr 6.031 8.651 0.838
ks-cp3o 6.298 10.118 0.769 ks-cp3o 6.265 10.550 0.773
KCPdr 3.363 6.695 0.704 KCPdr 2.094 11.890 0.488
KCP 0.006 15.966 0.200 KCP 0.079 15.555 0.212

0.5

E-Divisivedr 4.203 0.257 0.983

0.5

E-Divisivedr 4.116 0.144 0.972
E-Divisive 2.491 4.943 0.718 E-Divisive 0.557 12.807 0.333
ks-cp3odr 4.061 0.146 0.983 ks-cp3odr 4.487 1.534 0.960
ks-cp3o 6.248 10.222 0.775 ks-cp3o 6.181 9.751 0.776
KCPdr 4.678 1.944 0.979 KCPdr 4.613 2.395 0.949
KCP 4.013 1.479 0.935 KCP 4.327 11.267 0.785

2 65

0.3

E-Divisivedr 4.074 0.092 0.969

20

0.3

E-Divisivedr 3.499 1.822 0.841
E-Divisive 0.311 14.155 0.275 E-Divisive 0.148 15.072 0.238
ks-cp3odr 4.500 1.673 0.950 ks-cp3odr 5.721 7.487 0.867
ks-cp3o 6.218 9.774 0.763 ks-cp3o 6.189 9.847 0.766
KCPdr 4.891 7.417 0.891 KCPdr 2.427 12.665 0.516
KCP 0.000 16.000 0.198 KCP 0.060 15.688 0.209

0.5

E-Divisivedr 4.050 0.084 0.980

0.5

E-Divisivedr 4.056 0.084 0.969
E-Divisive 0.600 12.626 0.336 E-Divisive 0.282 14.322 0.268
ks-cp3odr 4.128 0.319 0.976 ks-cp3odr 4.417 1.394 0.955
ks-cp3o 6.165 9.655 0.762 ks-cp3o 6.126 9.364 0.769
KCPdr 5.417 7.455 0.964 KCPdr 4.974 8.482 0.882
KCP 0.446 14.512 0.267 KCP 0.546 14.766 0.269

3 65

0.3

E-Divisivedr 3.981 1.866 0.845

20

0.3

E-Divisivedr 2.263 5.563 0.632
E-Divisive 0.084 15.466 0.223 E-Divisive 0.099 15.367 0.226
ks-cp3odr 5.606 7.152 0.863 ks-cp3odr 6.128 9.256 0.809
ks-cp3o 6.312 9.944 0.772 ks-cp3o 6.317 10.399 0.768
KCPdr 3.146 8.238 0.637 KCPdr 2.362 17.662 0.441
KCP 0.001 15.993 0.199 KCP 0.028 15.818 0.203

0.5

E-Divisivedr 4.152 0.176 0.977

0.5

E-Divisivedr 4.023 0.521 0.936
E-Divisive 0.190 14.886 0.246 E-Divisive 0.178 14.896 0.245
ks-cp3odr 4.201 0.621 0.967 ks-cp3odr 4.898 3.228 0.930
ks-cp3o 6.322 10.206 0.774 ks-cp3o 6.240 9.910 0.765
KCPdr 5.299 4.731 0.961 KCPdr 3.967 6.703 0.778
KCP 0.031 15.827 0.205 KCP 0.437 17.323 0.236

4 65

0.3

E-Divisivedr 4.137 2.105 0.850

20

0.3

E-Divisivedr 2.054 6.200 0.626
E-Divisive 0.133 15.173 0.268 E-Divisive 0.085 15.422 0.259
ks-cp3odr 5.797 8.496 0.818 ks-cp3odr 6.327 10.061 0.773
ks-cp3o 6.291 9.990 0.733 ks-cp3o 6.407 10.753 0.731
KCPdr 4.110 8.951 0.727 KCPdr 1.607 12.371 0.438
KCP 0.000 16.000 0.236 KCP 0.034 15.787 0.243

0.5

E-Divisivedr 4.242 0.433 0.970

0.5

E-Divisivedr 3.835 0.639 0.936
E-Divisive 0.270 14.349 0.300 E-Divisive 0.147 15.140 0.268
ks-cp3odr 4.281 1.533 0.942 ks-cp3odr 5.053 5.390 0.874
ks-cp3o 5.977 8.638 0.734 ks-cp3o 6.141 9.828 0.725
KCPdr 6.010 9.077 0.946 KCPdr 5.154 9.923 0.845
KCP 0.000 16.000 0.236 KCP 0.180 15.278 0.260
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