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Supplementary material includes the interpretations of Conditions (A1)—
(A3), the detailed proofs of the main theorems and propositions, and the

additional simulation results.

S1. Interpretation of Condition (A1)

In the high-dimensional regime, we allow the v; and 7, to approach 0, as a
function of the sample size n, projection number £ and the dimensions p, q.
Recall from Remark 4 that we assume 7;p — oo and 75¢ — oo to make
sure that v, and ~9 can not approach 0 arbitrarily fast.

We consider (X,Y) € RP*? are jointly Gaussian with covariance matrix

Z]X EXY
=
z:YX 2Y

Suppose X and Y have uniformly upper and lower bounded fourth mo-

ments, and the spectrum of 3 is contained in [M ! M] for M > 1. Re-
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call from Section 4.2 that X; s is defined as the subvector of X; which
the coordinates belong to S. Let 75 5 = E[|X1s — Xos[]* = 2tr(Xx.s),
Tvs = El[Yis — Yas||* = 2tr(Xy,s), where Xy s and Yy,s are the covari-
ance matrices of X; s and Y; s, respectively.

Under the Gaussian design, Han and Shen (2021) provided the precise
mean and variance expansions for HSIC, (X, Y) in the regime that n — oo
and min{p, ¢} — oo. Next we apply these results to give the orders of the
corresponding quantities in Condition (Al). Recall from Section 2 that the
kernels can be represented compactly as

| X1 — Xo

K(Xl,XQ) — f ( fYX M) ,

) LY, Ys) =g (
Ty
where f(x), g(x) are continuously differentiable functions. Suppose that
f(z) and g(x) satisfy Assumption B in Han and Shen (2021), which can
easily be checked out to be satisfied for the common used kernels.
First we deal with the term E{d%(Xi, X5)?*}. Recall from (4.12) and
(4.13) that when « and f§ follow the randomly sparsified Gaussian distri-

bution with parameters v; and 72, the projection kernels K (X, X5) and

L(Y1,Y5) are essentially the weighted sum of the kernels K*(X,s,, Xas,)
and L*(Yis,, Yas,), respectively. Let pxs = Txs/7xs, pv,s = Tvs/Mvs

where vx s and yy,s denote the corresponding bandwidths. We also assume

that 7xs/vx.s and Tys/vy.s are contained in [M~', M]. Then using the
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mean expansion in Proposition E.8 of Han and Shen (2021)) with X =Y,

B{dg (X1, X,)? Z% L=y > B{dg(X1s,, Xas,)"}
Slc{l ,,,,, p}
[S1]=¢
p
b))
<OS -t Y f(ﬁxsl) I XSIHF
t=1 S1c{1,...p} ’VXS1 TXSl
|S1]=t

_o {Z 41— (f)%} o). sy

where C' is a positive constant, the second equality follows from the as-
sumptions that ¥ has bounded spectrum, the last equality follows from the
order of the inverse moments of binomial distribution as p — oo (see Ex-

ample 2.1 in Hu et al} (2014)), and the summation » 5 ¢y v s =, IS Over

.....

all t-subsets of {1,2,..., p}.

On the other hand, it follows from (4.12) and (4.13) that
E {U(Xl, XQ)Q} == E{d?(l (Xl, Xg)d?(z (Xh Xg)}

p
=2 > > AW = )P E{die (Xusy, Xas))die- (X1s,, Xas,) }

t=1 s=1 §;c{1,...,p} S2C{1,....,p}
‘S1|=t |32|=S

Note that for every set function F'(S;,Ss), the summation in the equality

can be expressed in the intersection form of &; and Ss, that is

ZZ Z Z F(81,8,) Z Z F(81,8,)

t=1 s=1 §;c{1,....p} S2C{1,...,p} k=0 |S1NS2|=k
|S1]=t |Sa|=s

where the summation Z\smsg|=k is over all subsets S;,S» C {1,2,...,p}
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satisfying |S; N Sz| = k. Then we have

E{U(X, X2)*}

= Z S AEBHISI SIS B (X s, X s )ik (X, Xo.s,)}
k=0 ‘81032| k

Using the mean expansion in Proposition E.8 of Han and Shen (2021), we

obtain

E{U(X1,X5)*}

/ ! 2
> OZ Z \31|+|52\ 71)2p—‘31|—|32|f (pX,S1)f (PX782) ||E$1732HF

T T
k= 0|81032‘ k 7X7817X732 X7$1 X782

k
> C \31|+|32\ 2p—|S1]|—|Sz|
> Y - S

k=0 |S1nSz2|=k
:CZ(Z)Z( ) Z ( ) ”J(l—w%—i—jlﬁj
oL QR (D

I P 1
>C§:() S =) ) e T D=k D)

~0 (j%ﬁ) , (S1.2)

where C' in each step represents a sufficiently small positive constant, the

third and the fourth inequalities utilize the fact that for k =1,...,p,

‘7.+1>l z—|—1> 1 .
j+k k" i+k T k+1

The last equality follows from the assumption that y,p — oo. The first

equality follows from the fact that for each function F(|S;|,|Sz|) that only
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depends on the size of the set,

P\ = (P K\~ (p—i
> risbis = (1) (020 X (7)) re
|$1ﬂ$2‘:k i=k =k
Combining (S1.1)) and () leads to
E{d§ (X1, X5)
E{U(Xy, X5)?

}} =0 (p*7) -

Similar result applies to E{d% (X1, X»)?} and E{U(X;, X3)?}. Thus under

the independence of X and Y,

B{d5 (X0, Xao?d; (V1. Y)Y} _ ) (pzq%?vé’) | (51.3)

(k An)o? kEAn

S2. Interpretations of Conditions (A2)—(A3)

In this section, we present the interpretations of Conditions (A2)—(A3).

Under the null hypothesis, Condition (A2) is satisfied when

E{QK(X1,X2,X3,X4)} — o(1) E{QL(Xl,XQ,Xs,X4)} — o(1)
[E{U(X1, X5)?}]? ’ [E{V(Y1,Y3)?}]? '

(S2.4)

Let L?(Px) be the space of functions such that F{f(X)?} < oo for f €
L*(Px). To provide some insight on Condition (A2), we define the inte-
gral operator T on L*(Px) as T(f)(z) = E{U(X,z)f(X)}. Suppose that
FE{K(X;,X3)'} < oco. According to Theorems VI.16 and VI.23 of Reed
(1972), the operator T is self-adjoint and Hilbert-Schmidt, then there exist a

complete orthonornal basis {¢;}5°, such that T'(¢;) = A\;¢;. The eigenvalues
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{\i}22, associated with operator T satisfy > 2, A < oo and \; = 0 as i —
co. Notice that E{gx (X1, Xa, X3, X4)} = Doy A} and E{U (X1, X2)?} =
Sooo A7, Thus the condition E{gx (X1, Xo, X5, X4)}/[E{U(X4, X2)?}]? =
o(1) boils down to Y oo A/ (D02, AF)? = o(1), which can be viewed as a
generalization of the condition in the covariance matrix level (see Condi-
tion (3.6) of Chen and Qin (2010) and Condition (2.8) of Zhong and Chen
(2011))) to the operator level.

Below, we give the orders of the associated moments in Condition (A2)
when (X,Y) are jointly Gaussian. Under the setting of Section S1, from
the residual moment estimates in Lemma 7.4 of Han and Shen (2021), we
obtain

E{gr (X1, Xo, X3, Xy)} = E{dy} (X1, Xo)diZ (X1, X3)did (Xo, Xy)di! (X3, Xu)}

p

_ Z Z ,ﬁ+s+u+v(1 _ 71)4p7t757u7v

t,s,u,v=1 |81 |=t,|S2|=s,|S3|=u,|S4|=v

E{dr(X1,5, Xos, )dr+(X1,5,, X3.8,)dr+(Xos,, Xasy)dr+(Xss,, Xas,)}

<C i Z 7§+5+u+v(1 _ 71)4p—t—s—u—v

t,5,u,v=1 |S1|=t,|S2|=s,|Ss|=u,|Ss|=v

Fpx.s)f (px.s)f (px.5)f (px.s.) EAX T s, Xo,5 X1 5,X3.8, X5 5, X1,5, X7 5, Xu.5,}

VX,85:17X,8:VX,S57VX,S4 TX,5:7X,5:TX,5:TX,5,
p
<C Z Z ,Yt+s+u+v ( 1— 71)4])77&73711,711 tr(253,31 E31 ,S2 E52,54 234,33)
B ! |S1[S2|[S5 ]S4l ’

t,s,u,v:l ‘Sl |=t,|SQ|ZS,‘83|:'U,,‘S4|:'U

where the summation > g\ _; 1s,1—s ssj=u,|ss|=0 1S OVer all t-subsets Sy, s-

=v
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subsets Ss, u-subsets S3 and v-subsets Sy C {1,2...,p}. It follows from

the bounded spectrum of ¥ that

E{gK(X17 XQ; X37 X4)}

P
sy ax{|S1], [Sal, [S5], [Sal}
S C Z Z ’7§+S+u+v(1 _,71)413 t—s—u—v 5 y 5
t,5,u0=1|8;|=t,|S2|=s,|S3|=u,|Ss|=v |Sl||82||83| |S4|
P
s [S1] £ |S2| +[S5] + |84
SC ,yt+5+u+’ul_7 4ptsuv’
2 2 Ce SSIISISH

t,5,u,0=1 |S1|=t,|S2|=s,|S3|=u,|Ss|=v

p
PY(P\[P) [P, t+stuto dp—t—s—u—yl TS FUFV
<C 1 — p
B Z (t) (5) (U> (U) n ( ) tsuv

t,s,u,v=1

(). 52

where C' in each step represents a sufficiently large positive constant, the

last equality follows from the order of the inverse moments of binomial
distribution as p — oo (see Example 2.1 in Hu et al} (2014)). Combining
() and () leads to

E{gr (X1, X2, X3, X4)}
[E{U (X1, X2)?}]?

=O0(p*}).

Similar result applies to E{gr (X1, Xo, X3, X4)}/[E{V (Y1, Y>2)?}]?>. Thus
() can be satisfied when p3y7 = o(1) and ¢*>v5 = o(1).
Now we turn to the interpretations of Condition (A3). Under the null

hypothesis, Condition (A3) is satisfied when

E{U(XlaXQ)}4 :O(n1/2) E{V()/lan)}Al :0(711/2)
[E{U (X1, X2)?}] L [E{V(Y, Y2 '

(52.6)
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By the similar calculations, we can deduce that

B{U (X1, X5)"} = B{d} (X1, X2)d? (X1, Xo)di? (X1, Xo)di (X1, X2)}

p

— Z Z ’7§+S+u+v(1 _ 71)4p—t—s—u—v

t,s,u,v:l ISl \:t,|$2|:8,|53\:u,|84\:11

E{d (X158, Xos,)dr(X1.5,, Xo.5,)dres (X155, Xoss)dr+ (X1s,, Xos,)}

P
< @ Z Z 7115+s+u+v(1 i 71)4p—t—s—u—v

t,5,u,v=1 |81 |=t,|S2|=s,|S3|=u,|Ss|=v

f/ (PX,S)f/ (pX,SQ )f/ (IOX7$3)fI (pX,S4) E{XI& X2751 Xl—l:SQ XQ»SQ XI«Ss X2,53 XIS4X2754 }
VX, S17VX,S:VX,S37VX,S4 TX,85:TX,8:TX,S3TX,S,
maxi;—i,..4 [E{ (XISiX2,$¢ )4}]

p
<C t+s+utv 1 — dp—t—s—u—v -
<C 2 2 T =) SIS ]SS

t,5,u,0=1 ‘81 |:t7|82|257‘83|:u7‘$4|:1)

It follows from the moments of the quadratic form of Gaussian vectors

(Proposition A.1 of Chen et al) (2010)) and the bouned spectrum of 3 that
E{(X\5X25)"} = Ol{tx(Z% 5,)}*] = O(S,)-
Similar to the derivation in (), we obtain

p
B{U(X0, X2)'} <C Y7 S (g e

t,5,u,0=1 |81 |=t,|S2|=s5,|S3|=u,|S4|=v
max{|S1|?, Sz, |Ss|?, |Sal*}
|S1]|S2|S3][S4]

1
=0 : S2.7
(p%?) (520
Combining () and () leads to

E{UX, Xo)} (P
o e~ ()
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Similar result applies to E{V (Y7, Y2)}*/(n'/2[E{V (Y1, Y3)?}]?). Thus ()

can also be implied by p*y%/n'/? = o(1) and ¢*7$/n'/? = o(1).

S3. Proof of Proposition 1

Proof. The class of distance-based kernels defined in (2.4) with positive def-
inite function f(z) in R is characterized by Schoenberg’s theorem (Theorem

1 of Schoenberg (1938) or Section 10 of Stewart] (1976)), that is

| X1 — Xo|

K(X0,X) = f ( —~

) _/ cos(t|[ X1 — Xa|)dA(t), WXy, X, € RP,
0

where A is a finite non-negative Borel measure on [0, c0). For a ~ N(0,, )
and Z ~ N(0,1), it follows from given X1, X», a' (X; — X3) 4 | X1 — Xa||Z

that

K(X1,Xo) = E{K (a"X,,a"X5) | X1, X, )}

o UOOO cos{t]| X, — Xo|| ZYAA()

- /wi (@;)f

<

(X1 — Xa) E(Z%7)dA(t)

3=0 )
- [T E i  xpes - yraag
o A T R
= [ G - xalpase

= /000 exp{—(t[ X1 — Xa|)?/2}dA(t) (53.8)
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where the third equality follows from Fubini’s theorem. For fixed ¢ > 0,
exp{—(t|| X1—X3||)?/2} is the Gaussian kernel which is characteristic. From
Proposition 5 of Sriperumbudur et al) (2011), the characteristic distance-
based kernel is equivalent to that of integrally strictly positive definite prop-

erty, that is for every finite signed Radon measure w on R?,

/Rp /R exp{—(t||z — y|)2/2}dw(x)dw(y) > 0. (S3.9)

Hence from (S3.§), () and Fubini’s theorem, we have

/Rp . K (z,y)dw(z)dw(y) > 0.

Thus using Proposition 5 of Sriperumbudur et all (2011) again, K (X1, X»)

is characteristic. This concludes the proof. O

S4. Proof of Proposition 2

From the representation of KPIC(X,Y') in (4.13), it is clear to see that
KPIC(X,Y) > 0 using the fact that HSIC(X, s,, Y1,s,) > 0. Suppose X and
Y are independent. From Proposition 1, HSIC(X s,, Y1.s,) completely mea-
sures the dependence of X; 5, and Y 5,. Then we obtain HSIC(X; s,,Y1.s,) =
0 for every & C {1,2,...,p} and S; C {1,2,...,¢q}. Thus we have
KPIC(X,Y) = 0 from the fact that KPIC is the weighted sum of HSIC

between the subvectors of X and Y.
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On the other hand, from the representation in (4.13), KPIC(X,Y) =0
implies HSIC(X,Y) = 0. The characteirstic property of HSIC shows that

X and Y are independent. This completes the proof.

S5. Proof of Theorem 1

Recall that U, in (3.7) is a generalized U-statistic of with degree (4,1).

For {z; = (X;,Y:),i =1,...,n}, we define
W0 (21, e 7Zi) = E{h (21,22,23,243041,51) ‘ 21y -,Zj}7

! (217 cee 721'7041751) = E{h (21722723724;061751) \ 21, ~,Zj,0417ﬁ1}7

where j = 1,2, 3,4. By direct calculation,

1
hl’o (21) =—

AE (KLl 2) + B (K L3)

+ B (KSLE | 2) + E (K“lLﬁl | zl>
— B (Kgi Ly | =

.y (KalLﬂl 1) E (K‘“Lﬁl | 21>
( ) - B (K512) §

Wt (e, Br) =E (KfﬁLfé | 041751) + B (KleLgi | 041,51>

—28 (KLY |, )

=B {d? (X0, X2)d} (V1,Y2) | a0, B
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1
hb! (217041,51) :§{E(d§? (X1:X2> d% (YhYz) ’ 21,061751)

+ E(dy (X3, Xy) dﬁl (Y3,Y)) | 041,51)}-

Through similar calculations, it can be verified that under the independence

of X and Y,
O (z) =0, h%'(aq,B1) =0, A" (z1,00,5) =0 (S5.10)
120 (21, 2) = éU (X1, Xa) V (Y1, Y2) | (85.11)
h2Y (21, 20, a1, By) = éd;’g (X1, Xo)d5' (Y1, Ys) . (55.12)

Thus by the Hoeffding decomposition (e.g. Chapter 2 of Lee (1990)) and

()—(), when X and Y are independent, we have

Ups = Wy + R, (55.13)

where W,, = (72‘)_1 > i UXG, X5)V (Y3, Y)). According to the expression
of variance of generalized U-statistic (e.g. Chapter 2 of Led (1990)) and

Jensen inequality, we obtain

var(Rox) < C(n 2k~ + n=°)E{h(z1, 22, 23, 25 v, B) }* (S5.14)

for some constant C' > 0. By Lemma E, it holds that

var(R, ) < C(n~ + k7Y E{d% (X1, X,)2dS (Y1, Ya)?). (S5.15)
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Denote ¢(z;, z;) = U(X;, X;)V(Y;,Y;) the kernel of W,,. Denote by ¢(z;, z;)

the normalized kernel defined via

n(n — 1) U(‘Xi’Xj)V(YZ?YJ)

2 01

(P(Zh Zj) =

From () we can deduce that

Uy W, R,
L = + o = Jy+ Loy, (S5.16)

{var(W,)}/2  {var(W,)}¥/2 = {var(W,)}/?

where J, = 3" ¢(2, 2j) and Ly x = Ry /{var(W,)}'/?. From the defini-
tion of Wasserstein distance and (), we obtain
dw(Jn + Lo, Z) < dw(Jn, Z) + {var(Ly )}/

< dw(Jn, Z) + C(n~" + k)P0 [E{d5 (X1, X2)?d] (Y1, Y2) "} /2.
($5.17)

For the degenerate U-statistic J,, of degree 2, the explicit bound on the
normal approximation can be derived using Stein’s method of exchangeable

pair. By Theorem 3.3 of Dobler and Peccati (2019), we have

dw(Jn, Z) < C{n" 2 + o (B[E{y (21, 22)¥ (21, 23) | 22, 23}]")"2
+n 2o [B{d(z1, 20) "3}
= C (077 + 07’ [B{gk (X1, Xo, X3, Xa)gr(V3, V3, Y, Yi) }]'/2
+n 2P BAU(Xy, X))V (Y1, Ya) 1)

where C' in each step represents a sufficiently large positive constant, and
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the equality follows from the independence of X and Y and the fact that

BIE{U(X1, X2)U (X1, X3) | Xa, X3}]?
= E[E{U(Xy, Xo)U(X1, X3)U(Xa, X2)U(X3, X4) | Xa, X3}]
= B{U(X1, Xo)U(X1, X3)U(Xa, X4)U(X3, X4)}

= F{gr (X1, X2, X5, X4)},

similar result applies to E[E{V(Y1,Y2)V(Y1,Y3) | Ys,Y3}]?. Combining

() and the above derivations, we complete the proof.

S6. Proof of Theorem 2

To prove Theorem 2, it suffices to show E(5%) = o7{1+0(1)} and var(c?) =

o(o}). Denote A;; = E(Aij | Xi, X;) and B;; = E(By;, | Y;,Y;). Under the

ir Lj

independence of X and Y, we have

B@) = 5 2 B e S AL BB

Z#J

::aﬂl+wx1»+—E{d§(thbyﬁ(YLY®}2{1+ou)}

=oi{l+o(1)},
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where the last equality follows from Condition (Al). On the other hand,

by direct calculation, we have

var(o7) = var{E(7; | 21,...,2,)} + E{var(G] | z1,...,2,)}
{Zvar AZQJBZQ] Z cov(A2 ij, Angfe)
1<J 1<j<l
+ Z COV(A2 ij, A?QBZI)

i<gl<q, {1,510 {l,a}=¢

Denote }N(z-j B(K | Xi, X;), K = f?z‘j - E(-’N{zl | Xi) — E(f(kj | X;) +
E(Ky) and Lij = E(L) | Y;,Y;), Lj = Lij — E(La | i) — E(Li; | Y;) +

E (Zkl) We can write ﬁij as four uncorrelated summands
>Rt iy 2
= — (n—1)(n— 2) —

— 3~
:n Kij_ (n Z Kzl n—l Z Kk]

n—1
lé{ JY ki{w}

1 -
tatDmoy, 2 Ku

2 —
kali {5} kA

n—3 - n—3 _ n—3 _
- K = (n—1)(n—2) Z Ka = (n—1)(n—2) Z Kis

n

~ ~ 1 ~
Ay =Ky — Y K-
1

n— 2

n—2

9 _
tatDmoy, 2 K

ki¢{i,j} k<l
Similar result applies to Eij can obtain

éij = n—_?)[_/” - Z Lzl Tl _ 1 Z Lk]

n—1 (n—
ng{ J} k¢{u}

2 _
T w2 D

k,i¢{i,j},k<l
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Following the proof of Lemma D.3 in the supplement of Chakraborty and
Zhang (2021), under Conditions (A2)—(A3), var(c?) = o(of;). This com-

pletes the proof.

S7. Proof of Theorem 3

It is known that U, — KPIC(X,Y) can be decomposed as a weighted
sum of degenerate U-statistics according to Hoeffding decomposition (see
e.g., Led (1990)), that is U, — KPIC(X,Y) = W, + R, where W,, =
(g)fl > i AU(Xe, X5)V(Y3,Y;) — KPIC(X,Y)} is the centered version of
W,, and Rn,k is the remainder term. By the variance expression of U, —
KPIC(X,Y) (e.g. Chapter 2 of Lee (1990)) and Jensen inequality, the

variance of ank is controlled by

1 1
Var<Rn,k> <C (ﬁ var[E{G (21, 22, a1, B1) | z1}] + %VaT[E{G(ZhZz,Omﬁl) | 21, 00, 1 }]

1

+% var[E{G(21, 22, o1, B1) | a1, Bi}] + (=%

1
% + ﬁ)VaT{h(ZlaZQa 23, 24; Oflaﬁl)g}) .

(S7.18)

By Lemma m, we obtain

2 2
var{h(z1, 20, 23, 243 a1, B1)°} < C {E {5 (X1, X0)a] (1, V) ) + B {die (X0, Xo)d (13, Y3) |

B {d (X1, X)) E{d}(v1, Y3) ]

(S7.19)
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Combining (E?.lé), (E?.la), Condition (A1) and Conditions (A4)—(Ab), we

can deduce that R, = o,(c1). Following the proof of Theorem 1, under

Conditions (A2)—-(A3), we can deduce that
(Uns — KPIC(X,Y)) /o1 % N(0, 1).

This completes the proof.

S8. Proof of Theorem 4

Proof. The proof of Theorem 4 mainly depends on Lemmas a@, which
are related to the bounds of KPIC and o%. It follows from Lemma —@,
71 =7 = 1A (c,n/?p~1) for ¢, — 0 that

n KPIC Cn
>

> — — 00.
01 P 172

This concludes the proof.

S9. Proof of Lemmas

Lemma 1. For any random vectors X and Y, we have

h (zl, 29, 23, 24; O 5)

(1,2,3,4)
> {d (0 X 4 (Vi Yo) + die (X0, X,) d] (Y2, Vo) — 2 (X0, X,) df (Y2, Y,) |

(t7u7v7w)

1
24
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Proof. Recall that h (21, 22, 23, 24; @, B) is the kernel function based on the

projected data { (X, BYY:) i=1,...,nyr=1,..., k}, namely

(1,2,3,4)
1
Bz 200 B) = 50 > (KLl + KoL, —2K5L) . (39.20)

(t’u7v7w)

Define

a(X;, Xj) = Ki; — E(K}; | o) a(X;) = E{a(X;, Xj) | o, X}

b(Y;,Y;) = LY, — E(LY; | B) b(Y;) = E{b(Y;,Y;)) | B,Y:},

then we can decompose the corresponding terms in ()
K, Ly, =a(Xe, X)b(Y:, V) + (X, Xu) E(Ly, | B)
+ (Y, V) E (K7, | o) + E (K7, | @) B(L, | 5)

K2 LB, =a(Xy, X)b(Y, V) + a(Xs, X.)E (L2, | B)

tuovw
+b(Y,, Vo) E (K5, | a) + B (Kf, | ) E (L, | B)
Kp Ly, =a(Xy, X)b(Y,, V) + a(Xy, X0 E(Ly, | B)

+0(Y, Y, B(KE, | o) + E (K¢, | ) E(Ly, | B).
We can observe that

(1727374)

> {alX0 X)BLL | B) + a(Xe, X E(LS, | B) = 2a(X0, X)E(L, | B)} = 0.

(t)u’v7w)

This is also true for other terms, thus () can be decomposed as

h (Zlu R, 23, 24, O /8)
(1,2,3,4)
{a(Xt7 Xu)b(}/;H Yu) + a’(Xt7 Xu)b(}/va Yw) - 2a(Xt7 Xu)b(nv Yl})} .

(t7u7v7w)

1
24
(S9.21)
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Since a(X;, X;) = d% (X;, X;) + a(Xi) + a(X;), b(Y;,Y;) = df (Y, Y;) +

y 4 » 4]
b(Y;) + b(Y;), it can be calculated that
CL(Xt, Xu)b<Y;57 Yu) :d?( (Xt7 Xu) dﬁ (Y;‘/a Yu) + d?{ (Xtu Xu) b(n) + d?{ (Xtu Xu) b(Yu)
+a(X)d] (Y2, Y,) + a(X)b(Y:) + a(X,)b(Y.,)

+a(X,)d] (Y, Ya) + a(X)b(Y) + a(X,)b(Y,)

a( Xy, X )b(Yy, Ya) =d% (X1, Xa) d2 (Y, Vi) + do (Xp, X) b(Y) + d% (Xp, Xu) b(Ya)
+a(X0)d] (Yo, Vo) + a(X0)b(Y,) + a(X,)b(Y,)
+ a(X,)d} (Y, Yy) + a(X)b(Y,) + a(X,)b(Yy,)

a( Xy, Xu)b(Y, Vo) =di (X, Xo) df (Y5, Ys) + dii (X, X0) b(Y2) + di (X, X,) b(Y,)
+a(Xy)d] (V;,Y,) + a(X)b(Yy) + a(X,)b(Y,)

+a(X,)d] (Y, Y,) + a(X,)b(Y,) + a(X,)b(Y,).

We can observe that
(1,2,3,4

)
> {5 (Xe, Xu) b(Y:) + de (Xo, Xo) (V) + die (Xp, Xo) b(Y,) + d5e (X4, X)) b(Ya)
(tyu,v,w)
— 2d5% (X4, Xu) b(Y;) — 2d5% (X, X,) b(Y,)} = 0.

Similar observation can also be implied other terms. Then we can show

that () can be written as

h (Zlu R, 23, 24, O /8)
(17273’4)

D7 {d (0 X0 4 (Ve Yo) + e (X, X) dF (Y2, V) = 25 (X, X 7 (Y, Vo) }

(t7u7v7w)

1
24

(S9.22)
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This completes the proof. [

Lemma 2. Under the independence of X and Y, we have

1

2
B{h (a1, 22, 2500 )Y = S B {di (X1, X2) d] (11, Y3)}

Proof. Follow Lemma EI, we can deduce that

E(h(zl,22,23,2’4§0m8))2
(1,2,3,4) (1,2,3,4)
— ST 0 X (V) i (X X) ] (%, Ya) — 2 (X, X d (V2 )

(t,u,v,w) (4,5,9,7)

ir Lj

{d?((Xi,X)dﬁ (Y., Y;) +d% (X5, X;) d (Y, Y,) — zd;g(xi,xj)dﬁ(n,n)}.

Since d% (X;, X;) and dﬁ (Y;,Y;) statisfy the double-centered property, un-

iy Lj

der the independence of X and Y, it holds that

1 2
== (484 48+ 192) B {d (X1, X2) d] (V1. Y2) }

1 2
=B {di (X0, X2) 4] (7, Y2)}

Thus we complete the proof. Il

E(h (21,22,23724;0475))

Lemma 3. Under the assumptions in Theorem 3, we have KPIC > Cp~2y7 1y, !

for some positive constant C.

Proof. In the remaining proof, we only need to use the bounded derivatives
of the kernels. Without losing generality, we assume that K(X;, Xs) and
L(Y1,Y;) are Gaussian kernels. Denote 72y = Ella’ X1|* = O(v1p) and

5y = E[|8TY1|* = O(72p). Let 7q,x and 73y denote the corresponding
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bandwidths satisfying 72 x/72 x and 73, /75, are bounded away from 0
and oco. Let F(z) = exp(—z/2). Taking the Taylor expansion of F'(x)

2 /.2 :
around 75 x /7 x, We obtain

(S9.23)
where by = F(75 x /72 x), b1 = Fu)(ﬂix/’ﬁ,x% by = F® (Tax/7a.x)/2 and
by = F®)(€)/6 for some & > 0. Similar result applies to L(3TY1, 87Y5) can
obtain ¢ = F(13y/75y), c1 = FO(5y /73y ), ca = FO(13y/75y) and

c3 = FO)(() for some ¢ > 0. Define

(aTX; — T X,)? (871 — BTYy)? TaX Tsy
Wi = 5 -1,V = 5 —L pax = 5= psy = g .
7-CY,AX' TB7Y f}/a,X fyﬁ7y

By invoking the bounded derivatives of F(x) we have Cy < b;, ¢; < C for
some positive constants Cy, C and for each 0 < ¢ < 3. Combining the above

expansions and Lemma 10 of Gao et al) (2021) yields that KPIC(X,,Y]) =
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I + Ir + I3 + 14 + I5, where

I = bicipaxppy{E(Wi2Via) — 2E(W1aVis) },

Iy = bicopax iy {E(W1aViy) = 2E(WiVi3)} + bacipl x sy { E(WiVia) — 2E(WVis)},
Iy = bicapa,x iy {E(Wi2Viy) — 2E(WiaViy)} + bseipy x sy {E(WiVia) — 2E(Wi3Vis) },
Iy = bycapl x Py {EWHVY) = 2E(WHVE) + EWH)E(VE)},

2/5

I; = {32 sl (BIWal’)"” (B ViaP)™ + 62 xohy (BEIWl)Y (B|Vsf?)

03 xphy (BIWal®)” (B Vial) 7}

Assume the expectations of the components of X are zero. Denote by
Vi=Y, - E (Y1) and Yo=Y, — F (Y32) the centered random variables and

define
(X)) = (" X1)? — E(a" X))} as (X1, Xo) = a' X1a" Xy,
Bi(V1) = (B')° = E(B™Y1)%, 52 (Y1,Ya) = BTYi8 Yo,
Observe that
Wiz = 7, 5 {1 (X1)+an(Xz) =200 (X1, Xo)}, Vie = 750{A1(Y1)+B1(Y2) =25, (Y1, Ya) },
then we have
E(Wi2Viz) = 17,5753 [2E {1 (X1)B1(V1)} + 4E {02 (X1, X2) B2 (Y1, Y2) }],
similarly, E(W12Vis) = 7, %755 E {01 (X1)1(Y1)}. Thus

p p
Iy = dbiery, X755 B o (X1, Xo) B2 (Y1, Ya)} = dbiein, X751 Z Z{COV(XM, Vi) F

i=1 j=1
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Under the symmetry assumptions, we can deduce that cov(X;;,Y;,;) =0
for1<i<p,1<j5<p. Thus I; =0.

For term I, by direct calculation, we have

I = biex; 5953 2B {0z (X1, X5) B3 (Y1, Ya)} + E {0z (X1, X5) By (Vi) B (Va))
—4E {az (X1, X5) 1 (Y1) Ba (Y1, Y2)}]
Fbac1 Yo x Yoy 2B {2 (Y1, Ya) 0 (X1, X2) } + E{f2 (Y1, Y2) ar (X1) o (X2)}

—4EA{B2 (Y1, Y2) o (X2) az (X1, X5)}].

Since X; has symmetry distribution and Y;; = g¢;(X;;) with symmetry

function g;(x) for each 1 < j < p, it follows that

E{as (X1, X2) 8 (11, Y2)} = B{ (X[ 00" ) (1, 857 ¥2)? |
=37kl {(XlTXQ) (Y/ITY/Q)z}
= 3B { (-X1X) (71V3)7)

=0.

Similarly, we can show that

E{ay (X1, X2) 51 (Y1) 51 (Ya)} =0,
E {042 (leXz) Io (Yl) B2 (Yl,Yz)} =0,

E{B2 (Y1,Y2) a1 (X2) g (X1, Xo)} = 0.



24

Besides, it holds that

p p _ 2
B {2 (V1. ¥2) 0 (X0, X)) = 317 D_ D { B (X0Xi,Vie) | 2 0.

E{f2 (Y1,Y2) n(Xp)on (Xa)} = 3me Z

Thus I, > 0.
By similar but tedious calculations, under symmetry assumptions, we
have
Iy = bserv, X5y [—3E {82 (Y1, Y2) an(X1)af (Xa) }

—12F {52 (Yl, Yz) OZI(X1>04§ (Xb XQ)H )

and

I =byco X vpy [4E {03 (X1, Xa) B3 (Y1, Y2)} + [E {ou (X1) 81 (Y2) }]°
+8E {a2 (X1, X5) B2 (V1,Ys)} + 4E {02 (X1, X5)} E {62 (W1, Y2)}
+2E {03 (X1, X0) /(Y1) B1(Ya) } = 8E {03 (X1, X3) B1(V1) B2 (Y1, Y2) }
+2F {a1(X1)a (X2) 85 (Y1, Y2) } — 4E {an (X1)on (X5)81(Y1) 85 (Y3, Y2)}

—38E {Ofg (X1, X2) B1 (Y3) Ba (YhYB)}] .
For term I3, denote D(i) = {(j, k,1) : max(|j — |, |k —i|, |l —i|) < 3m+1}.

By the m-dependent structure,

E{f: (V1,Ys) ar(X1)a? (X))}

—15%722 > E{Mu (XY, - EX7)}E{N (X7, - EXT,) (X7, - EX7)}

i=1 (j,k,))ED(i)

:O(’Yl’deéfm?’P)
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and

E {52 (Yh YQ) CYl(X1)Oé§ (Xh X2)}

p
=15myn Y > EMViXuXy) E{Yi (X7, — EX7)) X1:X1,}
i=1 (j,k,1)€D(7)

=0 (y172dym?p).
Thus |I5| = O(d8d; *m3y7%p3). For term Iy, it can be seen that [E {oq (X1)51 (Y)Y >

0 and E{a3 (X, X») 82 (Y1,Y3)} > 0. Moreover,

p

E {043 (X1, X>) B35 (Y4, Y2)} = 97172 Z E {X1,z’X1,jY1,kY1,z}2

i7j7k7l:1

2> I Z {E(X7,)E (Y12k)}2

li—k|>m

> 9d537172p(p — 2m),

and

E{o} (X, X2)} E{B; (V1,Y2)} =92 Y {E(X1:X1,) P {EMxY1)}

i7j7kvl:1

> 9day175p°.

In the same fashion, we can deduce that
E{a3 (X1, X2) 1(Y1)B1(Ya) } = O(ay2dim?p),

E{aj (X1, X3) B1(Y1)B2 (Y1,Y2) } = O(my2dim®p),
E{ai(X1)a1(X2)85 (Y1, Ya)} = O(nedim’p),

E {1 (X1)on(X5)51(Y1) B2 (Y1, Ya)} = O(mmadim?’p),

E{a3 (X1, X2) b1 (Ys) B2 (Y1,Y3) } = O(my2dim?p).
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As a consequence, there exists a constant C' such that Iy > Cp=2y; 'yt

By similar statements and the m-dependent structure, we can obtain

I =0 (p**%?).

As a consequence, combining all the bounds above and the fact that v;p —
oo leads to KPIC(X1,Y;) > Cp~2y; 'y, ! for some positive constant C.

Thus we complete the proof.

Lemma 4. Under the assumptions in Theorem 3, then o? < C for some

positive constant C'.

Proof. Recall that o = E{U(X1, X5)*} E{V (Y1, Y2)?}. Tt follows from the
definition of U(X7, X5) that E{U (X1, X32)?} is equal to a weighted sum of

HSIC(X; s,, X1,s,) With projective kernels

E {K (e:S'rlXLSlve:lS'—lX?,Sl) | X1>X2} = (1 + HXLSl - X2,$1||2/7§(,81)71/27

E {K (U§2X1,52>77§2X2,82) ’ Xl:XZ} = (1 + HXLSQ - X2,52H2/732/782)71/2'

Suppose X;5 € R' and X; 5, € R%. With a slight abuse of notation,

define 7% 5, = E([| X1, — X2, 1%), Ths, = E([ X5, — Xa5, %) and

XS—X52 XS—X52 T2 72
:H 1,12 2,1H _L‘/ij:H 1,22 2,2H _1’p81: )2(,31”082_ ;(,82.

TX,81 TX,S, Vx5 VXS,

Wij
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Similar to the proof of Lemma B, we have pg, £ 1 and PS, RS} Using the

Taylor expansion of F(z) = (1+ )~"/? around 7% g, /7x.s,,

—-1/2
(1 L Xs - Xz,sw) /

VX851
4 2
= by + by T)2(731 ||X1,51 — X2,51||2 N 7X,5 ||X1,31 — X2,51H2 1
- Y
fyX’Sl T;(,Sl 731(,81 T?(,Sl

where by = F(7% 5, /7x.5.): bt = FO (% 5, /7x.8,): b = F®(€) /2 for some
€ > 0. Similar result applies to (1 + || X35, — X2732||2/7§7Y)*1/2 can obtain
o = F(T)Q(,sg/’&,&% 1 = F(l)(Tg(,sQ/’Yg(,sQ% ¢y = F®)(() for some ¢ > 0.
Following the proof of Lemma a, we can obtain HSIC(X; s, Xas,) = J1 +
Jos + J3 where
Ji = bicips, ps, | E(Wi2Viz) — 2E(WiaViz) },
Jo = bicaps, ps, {E(WhaVip) — 2E(WiaVi)} + bacips, ps A E(WiaVia) — 2E(WiyVig) },
Jy = bQCQP?SlP?Sg{E(WéVfQ) —2B(WLVE) + E(Wh)E(V)}.
Observe that
Wiy = T)}?Sl{ozl(Xl) + a1(Xs) — 209 (X1, Xo)},

‘/12 = 7—)},252{011 (Xl,Sz) + aq (X2,S2) - 20[2(X1,52,X2752)}-

Then there exists a constant K such that

t s
E(WizViz) — 2E(WiaVis) = 4755 Tx s, O O _AE(X1: X)) < K

i=1 j=1

Thus J; < C for some sufficiently large constant. By similar but tedious

calculations, we can obtain Jo = O(1) and J; = O(1). Combining the above
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bounds leads to

E{U(X1, X’} <C Y - (1:) (i) S (1 = 7 PH(1 = )P

t=1 s=1

~o{3 (ot}

=C.
where C' in each step represents a sufficiently large constant. Similar state-

ment applies to E{V(Y1,Y3)?}. This completes the proof.

S10. Additional simulation results

S10.1 Number of random projections

We first examine how sensitive the proposed test is to the choices of pro-
jection numbers k. We mainly focus on the following two scenarios:
Example 1. Let 3, = (0.577) € RP® and r,e € (0,1]. Generate i.i.d.
samples from the following models for : = 1,...,n.

(i) Xi = (Xiny-. s Xip) ~ N(0,%,), Vi = (Yi,...,Y;,)", where

Y= XZ]- for 1 <j <wrp,and (Yi,ps1,...,Yip) ~ N (0(1_r)p, E(l_r)p);

. T

(11) Xz == (Xi,h e 7Xi,p) ~ N (Op, Ep), Zz == (Zi,la ceey Zi,p)y {Zi,j}gzl
,Yi7p)T, where

are i.i.d. standard Cauchy random variables, Y; = (Y;1,...

Y;’jzeij—i‘(l_E)sz forj=1,...,p.
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In the above scenarios, the parameters r and € can represent the strength
of the dependence between X and Y, where r represents the ratio of related
components and € represents the dependence level of components, respec-
tively. Weset r =0, 0.3,0.7, 1and e =0, 0.3, 0.7, 1, wherer =0 and e = 0
indicate that X and Y are independent, r = 1 and € = 1 indicate that X and
Y are component-wisely dependent. Figures EI—@ summarize the rejection
rates with the increasing number of random projections &k from 500 to 10000
by the increment of 500. We set (n,p) = (100, 300). It can be seen that the
proposed test has good performance in size control, and it is not sensitive
to the choice of projection numbers k. As for the power performance in
Example 5.1 (i), the proposed tests performs better when the number of
projections increases, especially in cases of strong component-wise depen-
dence. When £ is greater than 8000, the power performance of the tests
gradually becomes stable in the sense that the increase of power will not
exceed 0.1. On the other hand, similar performance of the proposed tests
appears in Example 5.1 (ii), except that the increase of power is not signifi-
cant when the strength of dependence is relatively weak (e.g., e = 0.3). The
computational complexity of the proposed test will increase as the projec-
tion number increases. Nevertheless, the computing time of the proposed

test can be reduced by parallelly executing the repetitive computations of
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projected statistic HSIC,, (o X, 3;Y") on machines with multiple cores. In
view of the computation efficiency, we suggest to choose a relatively larger

value k£ = 8000 throughout.

1.004

1)
3
o

Rejection rate
i d
>
1 4
3

o
N
o
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r=0 r=0.3

1.004

S} 5}
@ ~
S o
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o
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o
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2500 5000 7500 10000 2500 5000 7500 10000

r=0.5 =1

Figure 1: The rejection rates of KP¢ (solid) and KPy, (dashed) in Example 1 (i) for

(n,p) = (100,300) and different values of k.

S10.2 Normal approximation accuracy

In this subsection, we present the kernel density estimates of the standard-

ized test statistics under the cases of Example 5.2 in the main text and
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Figure 2: The rejection rates of KP¢ (solid) and KPp, (dashed) in Example 1 (ii) for

(n,p) = (100,300) and different values of k.

compared them with the standard normal distribution. Recall from Sec-
tion 5.1 that
Example 5.2. Let ¥ = (1—¢)],+cl,1) € RP*P with ¢ = 0.3 be a equicor-
relation matrix, which has diagonal elements 1 and off-diagonal elements c.
Generate i.i.d. samples from the following models for i =1,..., n.

() X = (Xt X))~ N (0 1), Y = (Vigo- o, Vi) T~ N (05, )

(i) X; = (Xiq, ..., Xip) ~ N(0,,%),Y; = (Y;1,...,Yi,) ~N(0,%);
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(i) Xi = (Xi1,.... Xip) ", {Xi;}0_; are iid. standardized x* random
variables with degree of freedom 1, Y; = (Y;1,...,Yi,) . {Yi; Y-, areiid.
standardized y? random variables with degree of freedom 1;

(iv) Xi = (X, .., Xip) | {Xi Y-, areii.d. standard Cauchy random
variables, Y; = (Yi1,...,Yi,) {Yi;}j—, are i.i.d. standard Cauchy random
variables.

Figure B—E show that the null distribution is quite close to standard
normal distribution when the dimensions and sample size increase for Ex-
ample 5.2 (i), (iii) and (iv), which confirms the asymptotic normality of
the standardized statistic under Hy given in Corollary 1. However, there
is some right skewness for Example 5.2 (ii). This is because Conditions
(A2)—(A3) that ensure the asymptotic normality of U, , may exclude some
situations such as the spiked model. See more detailed analysis in Example

5.2 of the main text.

S10.3 Power performance

In this subsection, we conduct additional simulations to assess the power
performance of different tests.
Example 2. Let 3, = (0.5771) € RPP and r,e € (0,1]. Generate i.i.d.

samples from the following models for i = 1,... n.
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i) X; = (Xig,..., Xip)' ~ N(0,,%,), Y; = (Yiq,...,Y;,)", where
Yi; = X7, for 1 < j < rp, and {Y;;}}_,, ., are iid. standard Cauchy
random variables;

(i) X = (Xigo- . Xip) ~ N(0,,5), Zi = (Zins..., Zip), {Zi5}0,
are i.i.d. standard Cauchy random variables, Y; = (Y;1,... ,YLP)T, where

Yij=eXl+(1—eZ for j=1,....p.

Table 1: Power comparison from Example 2 (i)

r  n_ p dC  nCq CZc KPe hCL CZ;p KP;, BSG HHG
50 50 0.058 0.056 0.113 0.456 0.063 0.114 0.847 0.066 0.045
50 100 0.063 0.048 0.128 0299 0061 0084 0568 0.069 0.051

0-3 100 100 0.056 0.063 0.250 0.626 0.058 0.139 0.909 0.053 0.045
100 300 0.068 0.049 0.239 0.212 0.059 0.109 0.359 0.051 0.052
50 50  0.052 0.068 0.293 0.859 0.076 0.218 0.996 0.099 0.047
50 100 0.064 0.045 0.281 0.558 0.057 0.183 0.891 0.058 0.047
0-5 100 100 0.068 0.058 0.583 0.957 0.060 0.367 0.999 0.070 0.049
100 300 0.059 0.054 0.580 0.407 0.061 0.207 0.666 0.063 0.048
50 50 0.058 0.070 0.628 0.983 0.080 0.573 1.000 0.222 0.088
07 50 100 0.055 0.059 0.577 0.822 0.060 0.424 0993 0.119 0.061

100 100 0.086 0.059 0.898 1.000 0.070 0.830 1.000 0.173 0.070
100 300 0.058 0.051 0.874 0.665 0.055 0.555 0.895 0.071 0.060
50 50 0.335 0.166 1.000 1.000 0.712 1.000 1.000 1.000 1.000
50 100 0.186 0.127 1.000 0.991 0.403 1.000 1.000 1.000 1.000
100 100 0.388 0.169 1.000 1.000 0.839 1.000 1.000 1.000 1.000
100 300 0.135 0.080 1.000 0.929 0.294 1.000 0.998 1.000 1.000

Tables me chart the empirical power of Example 2. As mentioned in
Example 1, the parameters r and € can represent the strength of the non-
linear dependence between X and Y. We set r = 0.3, 0.5, 0.7, 1 and € = 0.3,
0.5, 0.7, 1, where » = 1 and € = 1 indicate that X and Y are component-

wisely dependent. In particular, when r < 1, the dependence between X
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Table 2: Power comparison from Example 2 (ii)

€ n P dC hCq CZg KPc hCy, CZy, KPry, BSG HHG
50 50  0.050 0.063 0.052 0.164 0.067 0.042 0.330 0.049 0.054
50 100 0.067 0.057 0.071 0.116 0.054 0.052 0.194 0.060 0.061

0-3 100 100 0.052 0.050 0.057 0.074 0.061 0.059 0.144 0.048 0.042
100 300 0.049 0.058 0.037 0.060 0.059 0.054 0.073 0.047 0.047
50 50 0.070 0.052 0.048 0.478 0.048 0.067 0.773 0.047 0.048
05 50 100 0.065 0.066 0.051 0.241 0.078 0.061 0.494 0.047 0.050
100 100 0.054 0.062 0.063 0.171 0.056 0.052 0.404 0.056 0.052
100 300 0.067 0.044 0.055 0.088 0.049 0.063 0.146 0.049 0.054
50 50  0.070 0.053 0.048 0.478 0.048 0.067 0.773 0.047 0.048
0.7 50 100 0.065 0.066 0.051 0.241 0.078 0.061 0.494 0.047 0.050

100 100 0.062 0.063 0.066 0.550 0.060 0.062 0.858 0.037 0.034
100 300 0.076 0.056 0.057 0.163 0.055 0.074 0.310 0.064 0.056
50 50 0.335 0.166 1.000 1.000 0.712 1.000 1.000 1.000 1.000
50 100 0.186 0.127 1.000 0.991 0.403 1.000 1.000 1.000 1.000
100 100 0.388 0.169 1.000 1.000 0.839 1.000 1.000 1.000 1.000
100 300 0.135 0.080 1.000 0.929 0.294 1.000 0.998 1.000 1.000

and Y in Example 2 (i) is beyond the coordinate-wise dependence assumed
in Theorem 4. The proposed tests have higher power than other tests in
most cases, especially in scenarios with weak dependence. It means that the
proposed test with special selected parameters may have a wider range of
applications, going beyond the scenario considered in Theorem 4. Similar
to Example 5.3, the distance correlation test and the HSIC tests have poor
performance in all cases since the dependence between X and Y is pure
non-linear. The graph-based tests exhibit very low powers in detecting
the weak dependence. While the group-wise HSIC tests have relatively
good performance in Example 2 (i), these tests have substantial power loss

when the dependence is weak in Example 2 (ii). It means that the tests
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of Chakraborty and Zhang (2019) may not be well-performing when the
magnitude of coordinate-wise signals is weak.

Example 3. Let ¥ = (1—¢)I,+cl,1) € R”? with ¢ € (0,1) be a equicor-
relation matrix, which has diagonal elements 1 and off-diagonal elements

c. Let e € (0,1). Generate i.i.d. samples from the following models for

1) Xi = (Xig,- . Xip)' ~ N(0,,%), Zi = (Zin, .., Zip), {Zi;}0_,
are ii.d. standard Cauchy random variables, Y; = (Y;1,... ,}/Lp)T, where
Vij=eX}+(1—eZ forj=1,...,p.

In the above scenario, the parameter ¢ represents the strength of de-
pendence between the components of X, while € represents the strength of
the dependence between X and Y. Tables E—E summarizes the empirical
powers of Example 3 (i) with ¢ = 0.3, 0.5, 0.7 and € = 0.3, 0.7, 1. From Ta-
ble B which the magnitude of coordinate-wise dependence between X and
Y is strong, we can see that all tests except the dC test have good power
performance in all cases. The power of the dC test can still approach one
as the sample size n, the dimensionality p and the dependence strength c
increase. This interesting phenomenon indicates that the dependence be-
tween components can strengthen the coordinate-wise dependence between

X and Y, which is also observed by some recent researcher (e.g., Zhu et al.
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(2020), Gao et al| (2021)). On the other hand, it can be seen from Ta-
bles Hf@ that the proposed tests have superior performance in detecting the
weak dependence between X and Y, while the other tests exhibit very low

powers in these cases.

Table 3: Power comparison from Example 3 (i) with e = 0.3

c n_ p dC  nCg CZc KPe hCL  CZp KPr, BSG HHG
50 50 0.061 0.063 0.045 0.079 0.064 0.057 0.133 0.057 0.047
50 100 0.052 0.065 0.042 0.100 0.066 0.052 0.140 0.051 0.052

0-3 100 100 0.052 0.057 0.052 0.102 0.053 0.049 0.181 0.067 0.039
100 300 0.056 0.060 0.055 0.086 0.065 0.052 0.146 0.054 0.048

50 50  0.070 0.073 0.063 0.137 0.071 0.077 0.235 0.054 0.052

05 50 100 0.048 0.057 0.047 0.157 0.064 0.052 0.291 0.052 0.053
’ 100 100 0.063 0.080 0.067 0.285 0.076 0.075 0.582 0.048 0.056
100 300 0.076 0.063 0.050 0.328 0.064 0.069 0.685 0.044 0.047

50 50 0.075 0.057 0.064 0.279 0.063 0.065 0.550 0.054 0.046

07 50 100 0.072 0.079 0.055 0.383 0.073 0.073 0.704 0.056 0.051

100 100 0.061 0.065 0.058 0.678 0.063 0.077 0.957 0.058 0.050
100 300 0.066 0.068 0.053 0.832 0.066 0.064 0.997 0.056 0.049

Table 4: Power comparison from Example 3 (i) with e = 0.7

c  n P dC  hCg CZg KPe hCL CZ, KP;, BSG HHG
50 50 0.067 0.078 0.056 0457 0.066 0.064 0.708 0.049 0.051
50 100 0.072 0.064 0.057 0.362 0.069 0.061 0.565 0.056 0.053

0-3 100 100 0.081 0.058 0.076 0.730 0.059 0.077 0.927 0.043 0.054
100 300 0.051 0.061 0.053 0.575 0.057 0.049 0.773 0.049 0.045

50 50 0.063 0.060 0.054 0.766 0.071 0.061 0.924 0.052 0.061

0.5 50 100 0.066 0.072 0.062 0.767 0.071 0.069 0.905 0.054 0.051
’ 100 100 0.055 0.051 0.044 0.989 0.062 0.058 1.000 0.055 0.055
100 300 0.061 0.069 0.061 0.998 0.064 0.070 1.000 0.071 0.047

50 50 0.072 0.079 0.072 0.970 0.074 0.082 0.998 0.043 0.067

0.7 50 100 0.061 0.062 0.062 0.984 0.060 0.065 0.999 0.047 0.061

100 100 0.061 0.081 0.052 1.000 0.071 0.073 1.000 0.043 0.056
100 300 0.063 0.073 0.060 1.000 0.067 0.063 1.000 0.053 0.049
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Table 5: Power comparison from Example 3 (i) with e =1

c n P dC hCq CZg KPc hCy, CZy, KPry, BSG HHG
50 50  0.730 0.924 0.997 0.999 0.989 1.000 1.000 0.998 1.000
50 100 0.735 0.947 0991 0971 0.996 1.000 1.000 0.996 1.000

0-3 900 100 0996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 300 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 50 0986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
05 .50 100 0991 1000 1.000 1000 1.000 1.000 1.000 1.000 1.000
100 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
50 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
. 50 100 0099 1000 1000 1000 1000 1000 1000 1000 1000
07 =00 100 1.000 1.000 1.000 1.000 1000 1.000 1000 1.000 L.000
100 300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 3: The kernel density plot of KP¢ (dashed) and KPy, (dotted) in Example 5.2 (i):

(a) (n,p) = (50,50); (b) (n,p) = (50,100); (c) (n,p) = (100,100); (d) (n,p) = (100,300).

Solid lines correspond to the density of standard normal distribution.

metrics in high dimension. The Annals of Statistics 48(6), 3366-3394.
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Figure 4: The kernel density plot of KP¢ (dashed) and KPy, (dotted) in Example 5.2 (ii):

(a) (n,p) = (50,50); (b) (n,p) = (50,100); (¢) (n,p) = (100,100); (d) (n,p) = (100,300).

Solid lines correspond to the density of standard normal distribution.
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Density

Figure 5: The kernel density plot of KP¢ (dashed) and KPy, (dotted) in Example 5.2 (iii):
(50,100); (¢) (n, p) = (100,100); (d) (n,p) = (100,300).

(a) (n,p) = (50,50); (b) (n,p) =

Solid lines correspond to the density of standard normal distribution.
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Figure 6: The kernel density plot of KP¢ (dashed) and KPy, (dotted) in Example 5.2 (iv):
(50,100); (c) (n, p) = (100,100); (d) (n,p) = (100,300).

(a) (n,p) = (50,50); (b) (n,p) =
Solid lines correspond to the density of standard normal distribution.
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