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This supplementary material is organized as follows. Section S1 gives the proofs for the

theoretical results of the paper. Section S2 defines the metrics, including the inception score,

Wasserstein distance, and maximum mean discrepancy, used for quantifying the performance of

image generation for different methods. Section S3 presents more numerical examples, includ-

ing those on image generation, conditional independence tests, and nonparametric clustering.

Section S4 presents parameter settings used in the numerical experiments.

S1 Theoretical Proofs

S1.1 Proof of Lemma 1

Proof.

EπgJd(θd; θg) =

∫
ϕ1(Dθd(x))pdata(x)dx+

∫ ∫
ϕ2(Dθd(Gθg (z)))q(z)πg(θg)dzdθg

=

∫
ϕ1(Dθd(x))pdata(x)dx+

∫ ∫
ϕ2(Dθd(x))pθg (x)πg(θg)dθgdx

=

∫ [
ϕ1(Dθd(x))pdata(x) + ϕ2(Dθd(x))pπg (x)

]
dx,

(S1.1)

where the mixture generator formed by πg can be viewed as a single super
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generator θ∗g such that pθ∗g (x) = pπg(x). Then, by the proof of Theorem 1 of

Goodfellow et al. (2014), we have minπg maxθd EπgJd(θd; θg) = − log(4). It is

easy to verify that at the Nash equilibrium point, Eπ̃gJd(θ̃d; θg) = − log(4).

By the proof of Theorem 1 of Goodfellow et al. (2014), if

θ̃d = argmax
θd

Eπ̃gJd(θd; θg)

holds, then Eπ̃gJd(θ̃d; θg) = − log(4) implies the Jensen–Shannon divergence

JSD(pdata|pπ̃g) = 0 and thus pπ̃g = pdata. Further, by Proposition 1 of

Goodfellow et al. (2014), we have Dθ̃d
(x) = 1/2 when pπ̃g = pdata holds.

S1.2 Proof of Theorem 1

Proof. The proof consists of two steps. First, we would prove that

∫
Jd(θ̃d; θg)π(θg|θ̃d,D)dθg = − log 4, as N → ∞. (S1.2)

For the game (2.4), it is easy to see that

min
πg

max
θd

Eθg∼πgJd(θg; θg) ≤ max
θd

∫
Jd(θd; θg)π(θg|θd,D)dθg =

∫
Jd(θ̃d; θg)π(θg|θ̃d,D)dθg

= − log 4 +
1

N

∫
{N(Jd(θ̃d; θg) + log 4)− log qg(θg) + logZ(θ̃d)}π(θg|θ̃d,D)dθg

+
1

N

∫
{log qg(θg)}π(θg|θ̃d,D)dθg − 1

N
logZ(θ̃d)

= − log 4 + (I) + (II) + (III),

(S1.3)
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where Z(θ̃d) is the normalizing constant of π(θg|θ̃d,D).

As implied by (S1.1), maxθd
∫
Jd(θd; θg)πg(θg)dθg is equivalent to maxθd Jd(θd; θg)

for a fixed generator θg that pθg(x) = pπg(x) holds. Therefore, by Theorem

1 of Goodfellow et al. (2014), we have Jd(θ̃d; θg) ≥ − log 4 for any θg ∈ Θg.

That is, N(Jd(θ̃d; θg) + log 4) − log qg(θg) can be treated as the energy of

the posterior π(θg|θ̃d,D), and then

(I) = − 1

N

∫
{log π(θg|θ̃d,D)}π(θg|θ̃d,D)dθg.

By the Kullback-Leibler divergence DKL(π(θg|θ̃d,D)|qg) ≥ 0,

(II) ≤ 1

N

∫
{log π(θg|θ̃d,D)}π(θg|θ̃d,D)dθg.

As justified in Remark S1, | logZ(θ̃d)| is of the order O(dim(θg) logN) and

thus (III) → 0 as N → ∞. Summarizing these terms, we have

∫
Jd(θ̃d; θg)π(θg|θ̃d,D)dθg

N→∞
≤ − log 4. (S1.4)

By (S1.3) and Lemma 1, we have

∫
Jd(θ̃d; θg)π(θg|θ̃d,D)dθg ≥ min

πg

max
θd

Eθg∼πgJd(θg; θg) = − log 4.

3



Combining it with (S1.4), we can conclude equation (S1.2).

Next, to apply Lemma 1 to claim that (θ̃d, pπ̃g) is a Nash equilibrium

point, we still need to prove that θ̃d is also the maximizer of
∫
Jd(θd; θg)π(θg|θ̃d,D)dθg.

We do this by proof of contradiction. Suppose

∥θ̃d − argmax
θd

∫
Jd(θd; θg)π(θg|θ̃d,D)dθg∥ > δ0

for some δ0 > 0. Then, by Proposition 1 of Goodfellow et al. (2014), there

exist a function ϵ(x) and a constant ϵ0 > 0 such that

Dθ̃d
(x) =

pdata(x) + ϵ(x)

pdata(x) + pπ̃g(x)
,

and |ϵ(x)| > ϵ0 on some non-zero measure set of X , where X denotes the

domain of x and −pdata(x) ≤ ϵ(x) ≤ pπ̃(x) for ensuring 0 ≤ Dθ̃d
(x) ≤ 1.

Following the proof of Theorem 1 of Goodfellow et al. (2014), we have

∫
Jd(θ̃d; θg)π(θg|θ̃d,D)dθg = Ex∼pdata log

pdata(x) + ϵ(x)

pdata(x) + pπ̃g (x)
+ Ex∼pπ̃g

log
pπ̃g (x)− ϵ(x)

pdata(x) + pπ̃g (x)

= − log 4 + 2JSD(pdata|pπ̃g ) + Ex∼pdata log(1 +
ϵ(x)

pdata(x)
) + Ex∼pπ̃g

log(1− ϵ(x)

pπ̃g (x)
).

(S1.5)

If pπ̃g = pdata, then JSD(pdata|pπ̃g) = 0, Ex∼pdata log(1 + ϵ(x)
pdata(x)

) +
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Ex∼pπ̃g
log(1− ϵ(x)

pπ̃g (x)
) < 0 by Jensen’s inequality, and thus

∫
Jd(θ̃d; θg)π(θg|θ̃d,D)dθg < − log 4.

In what follows we show that this is in contradiction to (S1.2) by show-

ing that the θ̃d corresponding to pπ̃g = pdata is a solution to the problem

maxθd
∫
Jd(θd; θg)π(θg|θd,D)dθg.

Suppose that N is sufficiently large and pπg = pdata holds, then we

have: (i) Dθ̃′d
= 1/2 by (S1.1) and Proposition 1 of Goodfellow et al. (2014),

where θ̃′d = argmaxEπgJd(θd; θg) with pπg = pdata; (ii) in the space of pθg

the posterior π(θg|θ̃′d,D) has the mode at pθg = pdata as N → ∞ following

from the arguments that Jg(θg; θ̃
′
d) is concave with respect to pθg as shown

in Proposition 2 of Goodfellow et al. (2014), and that Jg(θg; θ̃
′
d) attains its

maximum at pθg = pdata by Theorem 1 of Goodfellow et al. (2014); and (iii)

Jd(θ̃
′
d; θg) = − log 4 at the posterior mode pθg = pdata. Then, by Laplace

approximation (Kass et al., 1990), we have
∫
Jd(θ̃

′
d; θg)π(θg|θ̃′d,D)dθg →

− log 4 and pπ̃′
g
=
∫
pθgπ(θg|θ̃′d,D)dθg = pdata as N → ∞. That is, the θ̃d

corresponding to pπ̃g = pdata (changing the notations θ̃
′
d to θ̃d and pπ̃′

g
to pπ̃g)

is indeed a maximizer of
∫
Jd(θd; θg)π(θg|θd,D)dθg as N → ∞. Note that

π(θg|θ̃d,D) may contain multiple equal modes in the space of θg due to the

nonidentifiability of the neural network model, which does not affect the
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validity of the above arguments. Therefore, by the contradiction, we can

conclude that θ̃d = argmaxθd
∫
Jd(θd; θg)π(θg|θ̃d,D)dθg by the arbitrariness

of δ0.

The proof can then be concluded by Lemma 1 with the results of the

above two steps.

Remark S1. The order of | logZ(θ̃d)| given in the proof of Theorem 1 can

be justified based on Laplace approximation (Kass et al., 1990), and the jus-

tification can be extended to any fixed value of θd. Let c = minθg∈Θg Jd(θd; θg)

for any fixed value of θd. Applying the Laplace approximation to the inte-

gral
∫
exp{−N(Jd(θd; θg)− c)}qg(θg)dθg, we have

Z(θd) = (2π)dim(θg)/2[det(NHe)]
−1/2 exp{−N(Jd(θd; θ̂g)−c)}qg(θ̂g)

(
1+O(

1

N
)
)
,

(S1.6)

where θ̂g = argmaxθg∈Θg{−(Jd(θd, θg)−c)+ 1
N
log qg(θg)}, He is the Hessian

of Jd(θd; θg)−c− 1
N
log qg(θg) evaluated at θ̂g, and det(·) denotes the determi-

nant operator. By the convexity of Jd(θd, θg) (with respect to pθg as shown

in Proposition 2 of Goodfellow et al. (2014)) and the boundedness of the

prior density function by Assumption (ii) of Theorem 1, it is easy to see that

N(Jd(θd, θ̂g)−c)−log qg(θ̂g) is finite and thus (Jd(θd; θ̂g)−c)− 1
N
log qg(θ̂g) →

0 as N → ∞. If all the eigenvalues of He are bounded by some positive
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constants, then − 1
N
logZ(θd) = O(dim(θg) logN/N) = o(1). Finally, we

note that the analytical assumptions for Laplace’s method (Kass et al.,

1990) can be verified based on the convexity of Jd(θd, θg) and some mild

assumptions on the derivatives of Jd(θd, θg) − c − 1
N
log qg(θg) at θ̂g; and

that the posterior may contain multiple equal modes in the space of θg due

to the nonidentifiability of the neural network model, which does not affect

the validity of the above approximation.

S1.3 Proof of Corollary 1

Proof. Extension of Theorem 1 to the case ϕ3(D) = log(D) can be justified

as follows. Let

π′(θg|θ̃d,D) = exp{N(−Ex∼pdataϕ1(Dθ̃d
(x))+Ex∼pθg

ϕ3(Dθ̃d
(x))}qg(θg)/Z ′(θ̃d)

for ϕ3(D) = log(D), and let

π(θg|θ̃d,D) = exp{N(−Ex∼pdataϕ1(Dθ̃d
(x))+Ex∼pθg

ϕ3(Dθ̃d
(x))−c)}qg(θg)/Z(θ̃d)
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for ϕ3(D) = − log(1−D), where c = − log 4, and Z ′(θ̃d) and Z(θ̃d) denote

their respective normalizing constants. Then∫
Jd(θ̃d; θg)π

′(θg|θ̃d,D) = c+
1

N

∫ [
N(Jd(θ̃d; θg)− c)− log qg(θg) + logZ(θ̃d)

]
π′(θg|θ̃d,D)dθg

+
1

N

∫
log qg(θg)π

′
g(θg|θ̃d,D)dθg − 1

N
logZ(θ̃d)

≤ c+
1

N

∫ [
− log π(θg|θ̃d,D) + log π′(θg|θ̃d,D)

]
π′(θg|θ̃d,D)dθg − 1

N
logZ(θ̃d)

= c+ (I) + (II),

where the inequality follows from that the Kullback-Leibler divergence

DKL(π
′
g|qg) ≥ 0.

By Remark S1, we have (II) → 0 as N → ∞. The term (I) is the

Kullback-Leibler divergence between π′(θg|θ̃d,D) and π(θg|θ̃d,D). By the

upper bound of the Kullback-Leibler divergence (Dragomir et al., 2000), we

have

(I) ≤ 1

N

∫
π′(θg|θ̃d,D)

π(θg|θ̃d,D)
π′(θg|θ̃d,D)dθg − 1

N

=
1

N
× Z(θ̃d)

Z′(θ̃d)
×

∫ ∏
xi∼pθg ,i=1,2,...,N

[4Dθ̃d
(xi)(1−Dθ̃d

(xi))]π
′(θg|θ̃d,D)dθg − 1

N

=
1

N
× (I1)× (I2)−

1

N
.

Since 4Dθ̃d
(xi)(1−Dθ̃d

(xi)) ≤ 1 for each xi, we have (I2) ≤ 1. Next, we

consider the term (I1). For both choices of ϕ3, as implied by (S1.1) where

the mixture generator proposed in the paper is represented as a single super

generator, the arguments in Goodfellow et al. (2014) on the non-saturating

case can be applied here, and thus π(θg|θ̃d,D) and π′(θg|θ̃d,D) have the same

maximum a posteriori (MAP) estimate θ̂g as N → ∞. Further, by Lemma
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1, we have Dθ̃d
(x) = 1/2 for any x ∈ pdata. Then it is easy to see that

log π(θg|θ̃d,D) and log π′(θg|θ̃d,D) have exactly the same first and second

gradients at (θ̃d, θ̂g), which implies that they have the same Hessian matrix.

Therefore, by (S1.6), (I1) = Z(θ̃d)/Z
′(θ̃d) → 1 as N → ∞. Summarizing

(I1) and (I2), we have (I) → 0 as N → ∞. Summarizing all the above

arguments, we have
∫
Jd(θ̃d; θg)π

′
g(θg|θ̃d,D) → − log 4 as N → ∞.

The proof for θ̃d = argmaxθd
∫
Jd(θd; θg)π

′(θg|θ̃d,D)dθg is similar to

step 2 of the proof of Theorem 1. The corollary can then be concluded.

S1.4 Adaptive Stochastic Gradient MCMC

Consider to solve the mean field equation:

h(θ) =

∫
X
H(θ, β)π(β|θ)dβ = 0, (S1.7)

where β ∈ X can be viewed a latent variable. Following Deng et al. (2019),

we propose the following adaptive stochastic gradient MCMC algorithm for

solving the equation (S1.7):

Algorithm 1 An adaptive stochastic gradient MCMC algorithm

1. βk+1 = βk + ϵk+1(∇βL̃(βk, θk) + ρkmk) +
√
2ϵτN (0, I),

2. mk+1 = αmk + (1− α)∇βL̃(βk, θk),

3. θk+1 = θk + wk+1H(θk, βk+1),
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In this algorithm, MSGLD (Kim et al., 2022) is used in drawing samples

of β, ∇βL̃(βk, θk) denotes an unbiased estimator of ∇β log π(β|θk) obtained

with the sample βk, ϵk+1 is called the learning rate used at iteration k + 1,

τ is the temperature, wk+1 is the step size used at iteration k + 1, α is

the momentum smoothing factor, and ρk is the momentum biasing factor.

The algorithm is said “adaptive”, as the parameter θ changes along with

iterations.

Notations Algorithm 1 has the following notational correspondence with

the EBGAN: (β, θ) in Algorithm 1 corresponds to (θg, θd) in the EBGAN;

equation (S1.7) corresponds to

h(θd) =

∫
H(θd, θg)π(θg|θd,D)dθg = 0,

whereH(θd; θg) is as defined in (3.13), and π(θg|θd,D) ∝ exp(Jg(θg; θd))qg(θg);

L(β, θ) corresponds to log π(θg|θd,D) (up to an additive constant), and the

stochastic gradient ∇βL̃(β, θ) in Algorithm 1 corresponds to ∇θg L̃(θg, θd)

defined in (3.13).
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S1.5 Convergence of the discriminator

To establish convergence of {θk} for Algorithm 1, we make the following

assumptions.

Assumption S1. (Conditions on stability and {ωk}k∈N) There exist a con-

stant δ and a stationary point θ∗ such that ⟨θ − θ∗, h(θ)⟩ ≤ −δ∥θ − θ∗∥2

for any θ ∈ Θ. The step sizes {wk}k∈N form a positive decreasing sequence

such that

wk → 0,
∞∑
k=1

wk = +∞, lim inf
k→∞

2δ
wk

wk+1

+
wk+1 − wk

w2
k+1

> 0. (S1.8)

Similar to Benveniste et al. (1990) (p.244), we can show that the fol-

lowing choice of {wk} satisfying (S1.8):

wk = c1/(c2 + k)ζ1 , (S1.9)

for some constants c1 > 0, c2 ≥ 0 and ζ1 ∈ (0, 1], provided that c1 has been

chosen large enough such that 2δc1 > 1 holds.

Assumption S2. (Smoothness and Dissipativity) L(β, θ) is M-smooth on

θ and β, and (m, b)-dissipative on β. In other words, for any β, β1, β2 ∈ X
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and θ1, θ2 ∈ Θ, the following inequalities hold:

∥∇βL(β1, θ1)−∇βL(β2, θ2)∥ ≤M∥β1 − β2∥+M∥θ1 − θ2∥, (S1.10)

⟨∇βL(β, θ), β⟩ ≤ b−m∥β∥2. (S1.11)

Let β∗ be a maximizer such that ∇βL(β
∗, θ∗) = 0, where θ∗ is the sta-

tionary point defined in Assumption S1. By the dissipativity in Assumption

S2, we have ∥β∗∥2 ≤ b
m
. Therefore,

∥∇βL(β, θ)∥ ≤ ∥∇βL(β
∗, θ∗)∥+M∥β∗ − β∥+M∥θ − θ∗∥

≤M∥θ∥+M∥β∥+ B̄,

where B̄ =M(
√

b
m
+ ∥θ∗∥). This further implies

∥Lβ(β, θ)∥2 ≤ 3M2∥β∥2 + 3M2∥θ∥2 + 3B̄2. (S1.12)

Assumption S3. (Noisy gradient) Let ξk = ∇βL̃(βk, θk) − ∇βL(βk, θk)

denote the white noise contained in the stochastic gradient. The white noises

ξ1, ξ2, . . . are mutually independent and satisfy the conditions:

E(ξk|Fk) = 0,

E∥ξk∥2 ≤M2E∥β∥2 +M2E∥θ∥2 +B2,

(S1.13)
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where Fk = σ{θ1, β1, θ2, β2, . . .} denotes a σ-filter.

The smoothness, dissipativity and noisy gradient conditions are regu-

lar for studying the convergence of stochastic gradient MCMC algorithms.

Similar conditions have been used in many existing works such as Raginsky

et al. (2017), Deng et al. (2019), and Gao et al. (2021).

Assumption S4. (Boundedness) Assume that the trajectory of θ belongs

to a compact set Θ, i.e. {θk}∞k=1 ⊂ Θ and ∥θk∥ ≤M for some constant M .

This assumption is more or less a technical condition. Otherwise, we

can show that the Markov transition kernel used in Algorithm 1 satisfies

the drift condition and, therefore, the varying truncation technique (see

e.g. Chen and Zhu (1986); Andrieu et al. (2005)) can be employed in the

algorithm for ensuring that {θk : k = 1, 2, . . .} is almost surely contained in

a compact space.

Lemma S1. (Uniform L2 bound) Suppose Assumptions S1-S4 hold. Given

a sufficiently small learning rate ϵ, we have

sup
t
E∥βt∥2 ≤ Gβ,

sup
t
E⟨βt,mt⟩ ≤ Gm,

for some constants Gβ and Gm.
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Proof. We prove this lemma by mathematical induction under the weakest

condition that both ϵt and ρt are set to constants. Assume that E∥βt∥2 ≤

Gβ and E⟨βt,mt⟩ ≤ Gm for all t = 1, . . . , k. By Algorithm 1, we have

E∥βk+1∥2 = E∥βk + ϵ[∇βL̃(βk, θk) + ρmk]∥2 + 2τϵd

= E∥βk + ϵ[∇βL(βk, θk) + ρmk]∥2 + ϵ2E∥ξk∥2 + 2τϵd (by Assumption S3)

= E∥βk∥2 + 2ϵE⟨βk,∇βL(βk, θk)⟩+ 2ρϵE⟨βk,mk⟩+ ϵ2E∥∇βL(βk, θk) + ρmk∥2

+ ϵ2(M2E∥βk∥2 +M2E∥θk∥2 +B2) + 2τϵd,

(S1.14)

where d is the dimension of β. Further, we can show that mk = (1 −

α)∇βL̃(βk−1, θk−1)+α(α−1)∇βL̃(βk−2, θk−2)+α
2(α−1)∇βL̃(βk−3, θk−3)+

· · · . By Assumption S2-S3 and equation (S1.12), for any i ≥ 1, we have

E∥∇βL̃(βk−i, θk−i)∥2 ≤ E∥∇βL(βk−i, θk−i)∥2+E∥ξk−i∥2 ≤ 4M2E∥βk−i∥2+

4M2E∥θ∥2 + 3B̄2 +B2 ≤ 4M2Gβ + 4M4 + 3B̄2 +B2. Therefore,

E∥mk∥2 =

k∑
i=1

[(1− α)αi−1]2E∥∇βL̃(βk−i, θk−i)∥2

+ 2
∑

1≤i,j≤k

[(1− α)αi−1][(1− α)αj−1]

√
E∥∇βL̃(βk−i, θk−i)∥2

√
E∥∇βL̃(βk−j , θk−j)∥2

≤ 4M2Gβ + 4M4 + 3B̄2 +B2.

(S1.15)
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Combined with (S1.14), this further implies

E∥βk+1∥2 ≤ E∥βk∥2 + 2ϵE(b−m∥βk∥2) + 2ρϵGm

+ 2ϵ2(3M2E∥βk∥2 + 3M4 + 3B̄2) + 2ϵ2ρ2(4M2Gβ + 4M4 + 3B̄2 +B2)

+ ϵ2(M2E∥βk∥2 +M2E∥θk∥2 +B2) + 2τϵd

= (1− 2ϵm+ 7M2ϵ2)E∥βk∥2 + 2ϵb+ 2ρϵGm + 2τϵd+ 2ϵ2(3M4 + 3B̄2)

+ 2ϵ2ρ2(4M2Gβ + 4M4 + 3B̄2 +B2) + ϵ2(M4 +B2).

(S1.16)

On the other hand,

E⟨βk+1,mk+1⟩ = E⟨βk + ϵ[∇βL̃(βk, θk) + ρmk], αmk + (1− α)∇βL̃(βk, θk)⟩

≤αE⟨βk,mk⟩+ E⟨βk, (1− α)∇βL(βk, θk)⟩+ ϵ(1 + ρ)max{E∥∇βL̃(βk, θk)∥2, E∥mk∥2}

≤αGm + (1− α)b+ ϵ(1 + ρ)(4M2Gβ + 4M4 + 3B̄2 +B2).

(S1.17)

To induce mathematical induction, following from (S1.16) and (S1.17),

it is sufficient to show

Gβ ≤ 1

2ϵm− 7M2ϵ2 − 8ϵ2ρ2M2

{
2ϵb+ 2ρϵGm + 2τϵd

+ 2ϵ2(3M4 + 3B̄2) + 2ϵ2ρ2(4M4 + 3B̄2 +B2) + ϵ2(M4 +B2)

}
,

Gm ≤ 1

1− α

{
(1− α)b+ ϵ(1 + ρ)(4M2Gβ + 4M4 + 3B̄2 +B2)

}
.

When ϵ is sufficiently small, it is not difficult to see that the above inequal-

ities holds for some Gβ and Gm.

Assumption S5. (Lipschitz condition of H(θ, β)) H(θ, β) is Lipschitz con-

tinuous on β; i.e., there exists a constant M such that

∥H(θ, β1)−H(θ, β2)∥ ≤M∥β1 − β2∥.
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By Assumption S5, ∥H(θk, βk+1)∥2 ≤ 2M∥βk+1∥2+2∥H(θk, 0)∥2. Since

θk belongs to a compact set and H(θ, 0) is a continuous function, there

exists a constant B such that

∥H(θk, βk+1)∥2 ≤ 2M2∥βk+1∥2 + 2B2. (S1.18)

Assumption S6. (Solution of Poisson equation) For any θ ∈ Θ, β ∈ X ,

and a function V (β) = 1 + ∥β∥, there exists a function µθ(β) that solves

the Poisson equation µθ(β)− Tθµθ(β) = H(θ, β)− h(θ) such that

H(θk, βk+1) = h(θk) + µθk(βk+1)− Tθkµθk(βk+1), k = 1, 2, . . . , (S1.19)

where Tθ is the probability transition kernel and Tθµθ(β) =
∫
µθ(β

′)Tθ(β, dβ
′).

Moreover, for all θ, θ′ ∈ Θ and β ∈ X , we have ∥µθ(β) − µθ′(β)∥ ≤

ς1∥θ−θ′∥V (β) and ∥µθ(β)∥ ≤ ς2V (β) for some constants ς1 > 0 and ς2 > 0.

This assumption has often been used in the study for the convergence

of the SGLD algorithm, see e.g. Whye et al. (2016) and Deng et al. (2019).

Alternatively, as mentioned above, we can show that the Markov transition

kernel used in Algorithm 1 satisfies the drift condition and thus Assumption

S6 can be verified as in Andrieu et al. (2005).

Proof of Lemma 2
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Proof. Our proof follows the proof of Theorem 1 in Deng et al. (2019). How-

ever, Algorithm 1 employs MSGLD for updating β, while Deng et al. (2019)

employs SGLD. We replace Lemma 1 of Deng et al. (2019) by Lemma S1 to

accommodate this difference. In addition, Proposition 3 and Proposition 4

in Deng et al. (2019) are replaced by equation (S1.12) and equation (S1.18)

respectively.

Further, based on the proof of Deng et al. (2019), we can derive an

explicit formula for γ:

γ = γ0 + 12
√
3M

(
(2M2 + ς22 )Gβ + 2B2 + ς22

) 1
2 , (S1.20)

where γ0 together with t0 can be derived from Lemma 3 of Deng et al.

(2019) and they depend on δ and {ωt} only. The second term of γ is ob-

tained by applying the Cauchy-Schwarz inequality to bound the expectation

E⟨θt − θ∗, Tθt−1µθt−1(βt)⟩, where E∥θt − θ∗∥2 can be bounded by 2M2 by

Assumption S4 and E∥Tθt−1µθt−1(βt)∥2 can be bounded according to (S1.19)

and the upper bound of H(θ, β) given in (S1.18).
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S1.6 Convergence of the Generator

To establish the weak convergence of βt in Algorithm 1, we need more

assumptions. Let the fluctuation between ψ and ψ̄:

Lf(θ) = ψ(θ)− ψ̄, (S1.21)

where f(θ) is the solution to the Poisson equation, and L is the infinitesimal

generator of the Langevin diffusion

Assumption S7. Given a sufficiently smooth function f(θ) as defined in

(S1.21) and a function V(θ) such that the derivatives satisfy the inequality

∥Djf∥ ≲ Vpj(θ) for some constant pj > 0, where j ∈ {0, 1, 2, 3}. In ad-

dition, Vp has a bounded expectation, i.e., supk E[Vp(θk)] < ∞; and Vp is

smooth, i.e. sups∈(0,1) Vp(sθ + (1 − s)ϑ) ≲ Vp(θ) + Vp(ϑ) for all θ, ϑ ∈ Θ

and p ≤ 2maxj{pj}.

Proof of Lemma 3

Proof. The update of β can be rewritten as

βk+1 = βk + ϵk+1(∇βL(βk, θ̃d) + ∆Ṽk) +
√
2ϵτN (0, I),

where ∆Ṽk = ∇βL(βk, θk)−∇βL(βk, θ̃d) + ξk + ρkmk can be viewed as the
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estimation error of ∇βL̃(βk, θk) for the “true” gradient ∇βL(βk, θ̃d). For

the terms in ∆Ṽk, by Lemma 2 and Assumption S2, we have

E∥∇βL(βk, θk)−∇βL(βk, θ̃d)∥ ≤ME∥θk − θ̃d∥ ≤M
√
γωk → 0;

by Assumption 3 and Lemma S1, E∥ξk∥2 ≤ M2E∥β∥2 +M2E∥θ∥2 + B2 is

upper bounded; and as implied by (S1.15), there exists a constant C such

that E∥ρkmk∥ ≤ Cρk. Then parts (i) and (ii) can be concluded by applying

Theorem 5 and Theorem 3 of Chen et al. (2015), respectively, where the

proofs only need to be slightly modified to accommodate the convergence of

θk → θ̃d (as shown in Lemma 2) and the momentum biasing factor ρk.

S2 Evaluation Metrics for Generative Adversarial Net-

works

The inception scores (IS) (Salimans et al., 2016), Wasserstein distance

(WD), and maximum mean discrepancy (MMD) are metrics that are often

used for assessing the quality of images generated by a generative image

model. See Xu et al. (2018) for an empirical evaluation on them.

Let pg(x) be a probability distribution of the images generated by the

model, and let pdis(y|x) be the probability that image x has label y according
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to a pretrained discriminator. The IS of pgen relative to pdis is given by

IS(pg) = exp

{
Ex∼pgDKL(pdis(y|x)|

∫
pdis(y|x)pg(x)dx

}
,

which takes values in the interval [1,m] with m being the total number of

possible labels. A higher IS value is preferred as it means pg is a sharp

and distinct collection of images. To calculate IS, we employed transfer

learning to obtain a pretrained discriminator, which involves retraining the

pretrained ResNet50, the baseline model, on Fashion MNIST data by tuning

the weights on the first and last hidden layers.

The first moment Wasserstein distance, denoted by 1-WD in the paper,

for the two distributions pg and pdata is defined as

WD(pg, pdata) = inf
γ∈Γ(pg ,pdata)

Exg∼pg ,xr∼pdata∥xg − xr∥,

where Γ(pg, pdata) denotes the set of all joint distributions with the respec-

tive marginals pg and pdata. The 1-WD also refers to the earth mover’s

distance. Let {xg,i : i = 1, 2, . . . , n} denote n samples drawn from pg,

and let {xr,i : i = 1, 2, . . . , n} denote n samples drawn from pdata. With

the samples, the 1-WD can be calculated by solving the optimal transport
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problem:

WD(pg, pdata) = min
w∈Rn×n

n∑
i=1

n∑
j=1

wij∥xg,i − xr,j∥,

s.t.
n∑

j=1

wij = pg(xg,i),∀i;
n∑

i=1

wij = pdata(xr,j),∀j.

To calculate Wasserstein distance, we used the code provided at https:

//github.com/xuqiantong/GAN-Metrics/.

To address the computational complexity of 1-WD, which is of O(n3),

we partitioned the samples drawn at each run to 1000 groups, each group

being of size 100, and calculated 1-WD for each group and then average the

distance over the groups. The distance values from each run were further

averaged over five independent runs and reported in Table 1 of the main

text.

The MMD measures the dissimilarity between the two distributions pg

and pdata for some fixed kernel function κ(·, ·), and it is defined as

MMD2(pg, pdata) = Exg ,x′
g∼pg ;xr,x′

r∼pdata [κ(xg, x
′
g)− 2κ(xg, xr) + κ(xr, x

′
r)].

A lower MMD value means that pg is closer to pdata. In this paper, we calcu-

lated MMD values using the code provided at https://www.onurtunali.

com/ml/2019/03/08/maximum-mean-discrepancy-in-machine-learning.
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html with the “rbf” kernel option. We calculated the MMD values with the

same sample grouping method as used in calculation of 1-WD.

S3 More Numerical Examples

S3.1 A Gaussian Example: Additional Results

Figure S1 shows the empirical means of D
θ
(t)
d
(x) and D

θ
(t)
d
(x̃) produced by

the two methods along with iterations, which indicates that both methods

can reach the 0.5-0.5 convergence very fast.

(a) (b)

Figure S1: Empirical means of D
θ
(t)
d

(xi) and D
θ
(t)
d

(x̃i) produced by (a) GAN and (b)

EBGAN with a Gaussian prior along with iterations.

S3.2 A Mixture Gaussian Example: Additional Results

For this example, we have tried the choice ϕ3(D) = log(D) of non-saturating

GAN. Under this non-saturating setting, the game is no longer of the
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minimax style. However, it helps to overcome the gradient vanishing is-

sue suffered by the minimax GAN. Figure S2 shows the empirical means

E(D
θ
(t)
d
(xi)) and E(D

θ
(t)
d
(x̃i)) produced by different methods along with iter-

ations. The non-saturating GAN and Lipschitz GAN still failed to converge

to the Nash equilibrium, but BGAN and ProbGAN nearly converged after

about 2000 iterations. In contrast, EBGAN still worked very well: It can

converge to the Nash equilibrium in either case, with or without a Lipschitz

penalty.

Figure S3 shows the plots of component recovery from the fake data.

It indicates that EBGAN has recovered all 10 components of the real data

in either case, with or without a Lipschitz penalty. Both ProbGAN and

BGAN worked much better with this non-saturating choice than with the

minimax choice of ϕ3: The ProbGAN has even recovered all 10 components,

although the coverage area is smaller than that by EBGAN; and BGAN

just had one component missed in recovery. The non-saturating GAN and

Lipschitz GAN still failed for this example, which is perhaps due to the

the model collapse issue. Using a single generator is hard to generate data

following a multi-modal distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure S2: Nash equilibrium convergence plots with ϕ3(D) = log(D), which compare
the empirical means of D

θ
(t)
d

(xi) and D
θ
(t)
d

(x̃i) produced by different methods along with

iterations: (a) EBGAN with λ = 0, (b) non-saturating GAN, (c) BGAN, (d) ProbGAN,
(e) Lipschitz GAN, and (f) EBGAN with a Lipschitz penalty.
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(a) (b)

(c) (d)

(e) (f)

Figure S3: Component recovery plots produced by different methods with ϕ3(D) =
log(D): (a) EBGAN with λ = 0, (b) non-saturating GAN, (c) BGAN, (d) ProbGAN,
(e) Lipschitz GAN, and (f) EBGAN with a Lipschitz penalty.
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S3.3 Image Generation: HMNIST

We compared GAN and EBGAN on another real data problem, the HAM10000

(“Human Against Machine with 10000 training images”) dataset, which

is also known as HMNIST and available at https://www.kaggle.com/

kmader/skin-cancer-mnist-ham10000. The dataset consists of a total of

10,015 dermatoscopic images of skin lesions classified to seven types of skin

cancer. Unlike other benchmark computer vision datasets, HMNIST has

imbalanced group sizes. The largest group size is 6705, while the smallest

one is 115, which makes it hard for conventional GAN training algorithms.

Our results for the example are shown in Figure S4, which indicates

again that the EBGAN outperforms the GAN. In particular, the GAN is

far from the 0.5-0.5 convergence, while EBGAN can achieve it. In terms

of images generated by the two methods, it is clear that GAN suffers from

a mode collapse issue; many images generated by it have a similar pattern

even, e.g., those shown in the cells (1,4), (2,1), (4,1), (4,5), (5,2), (5,5) and

(6,2) share a similar pattern. In contrast, the images generated by EBGAN

show a clear clustering structure; each row corresponds to one different

pattern.

Since the clusters in the dataset are imbalanced, the IS score does not

work well for measuring the quality of the generated images. To tackle
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(a) (b)

(c) (d)

(e) (f)

Figure S4: Results for the HMNIST example: (a) convergence plot of GAN; (b) conver-
gence plot of EBGAN; (c) images generated by GAN; (d) images generated by EBGAN;
(e) histograms of SSIMs for the images shown in plot (c) ; and (f) histograms of SSIMs
for the images shown in plot (d).
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this issue, we calculated the structural similarity index measure (SSIM)

Wang et al. (2004) for each pair of the images shown in Figure S4(c) and

those shown in Figure S4(d), respectively. SSIM is a metric that measures

the similarity between two images; it takes a value of 1 if two images are

identical. Figure S4(e) & (f) shows the histograms of SSIMs for the images

shown in Figure S4(c) & (d), respectively. The comparison shows clearly

that the images generated by EBGAN have a larger diversity than those by

GAN.

S3.4 Conditional Independence Tests

Conditional independence is a fundamental concept in graphical modeling

(Lauritzen, 1996) and causal inference (Pearl, 2009) for multivariate data.

Conditional independence tests have long been studied in statistics, which

are to test the hypotheses

H0 : X |= Y |Z versus H1 : X ̸ |= Y |Z,

where X ∈ Rdx , Y ∈ Rdy and Z ∈ Rdz . For the case that the variables are

discrete and the dimensions are low, the Pearson χ2-test and the likelihood

ratio tests are often used. For the case that the variables are Gaussian and

linearly dependent, one often conducts the test using the partial correlation
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coefficient or its equivalent measure, see e.g., Spirtes et al. (1993) and Liang

et al. (2015). However, in real-life situations, the normality and linear

dependence assumptions are often not satisfied and thus nonparametric

conditional independence tests are required. An abundance of such type of

tests have been developed in the literature, e.g., permutation-based tests

(Doran et al., 2014; Berrett et al., 2019), kernel-based tests (Zhang et al.,

2012; Strobl et al., 2019), classification or regression-based tests (Sen et al.,

2017; Zhang et al., 2017), and knockoff tests (Candès et al., 2018). Refer

to Li and Fan (2019) for an overview.

As pointed out in Li and Fan (2019), the existing nonparametric con-

ditional independence tests often suffer from the curse of dimensionality

in the confounding vector Z; that is, the tests may be ineffective when

the sample size is small, since the accumulation of spurious correlations

from a large number of variables in Z makes it difficult to discriminate

between the hypotheses. As a remedy to this issue, Bellot and van der

Schaar (2019) proposed a generative conditional independent test (GCIT)

based on GAN. The method belongs to the class of nonparametric con-

ditional independence tests and it consists of three steps: (i) simulating

samples X̃1, . . . , X̃M ∼ qH0(X) under the null hypothesis H0 via GAN,

where qH0(X) denotes the distribution of X under H0; (ii) defining an ap-
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propriate test statistic ϱ(·) which captures the X-Y dependency in each

of the samples {(X̃1, Y, Z), (X̃2, Y, Z), . . . , (X̃M , Y, Z)}; and (iii) calculating

the p-value

p̂ =

∑M
m=1 1

{
ϱ(X̃m,Y,Z) > ϱ(X,Y,Z)

}
M

, (S3.22)

which can be made arbitrarily close to the true probability

EX̃∼qH0
(X)1

{
ϱ(X̃,Y,Z) ≥ ϱ(X,Y,Z)

}

by sampling a large number of samples X̃ from qH0(X). Bellot and van der

Schaar (2019) proved that this test is valid and showed empirically that it

is robust with respect to the dimension of the confounding vector Z. It

is obvious that the power of the GCIT depends on how well the samples

{X̃1, X̃2, . . . , X̃m} approximate the distribution qH0(X).

Simulation Studies

To show that EBGAN improves the testing power of GCIT, we consider a

simulation example taken from Bellot and van der Schaar (2019) for testing

the hypotheses:

H0 : X = f1(AxZ + ϵx), Y = f2(AyZ + ϵy),

H1 : X = f1(AxZ + ϵx), Y = f3(αAxyX + AyZ + ϵy),
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where the matrix dimensions of A(·) are such that X and Y are univariate.

The entries of A(·) as well as the parameter α are randomly drawn from

Unif[0, 1], and the noise variables ϵ(·) are Gaussian with mean 0 and variance

0.025. Three specific cases are considered in the simulation:

• Case 1. Multivariate Gaussian: f1, f2 and f3 are identity functions,

Z ∼ N (0, Idz), which result in multivariate Gaussian data and linear

dependence under H1.

• Case 2. Arbitrary relationship: f1, f2 and f3 are randomly sampled

from {tanh(x), exp(−x), x2}, Z ∼ N(0, Idz), which results in more

complex distributions and variable dependencies. It resembles the

complexities we can expect in real applications.

• Case 3. Arbitrary relationships with a mixture Z distribution:

H0 : X = {f1,a(AxZa + ϵx), f1,b(AxZb + ϵx)}, Y = f2(AyZ + ϵy),

H1 : X = {f1,a(AxZa + ϵx), f1,b(AxZb + ϵx)}, Y = f3(αAxyX + AyZ + ϵy),

where Za ∼ N (1d, Id), Zb ∼ N (−1d, Id), Za, Zb ∈ Rn
2
×d, Z = (ZT

a , Z
T
b )

T ,

f1,a, f1,b, f2 and f3 are randomly sampled from {tanh(x), exp(−x), x2}

and f1,a ̸= f1,b.

For each case, we simulated 100 datasets under H1, where each dataset
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consisted of 150 samples. Both GAN and EBGAN were applied to this ex-

ample with the randomized dependence coefficient (Lopez-Paz et al., 2013)

used as the test statistic ϱ(·). Here GAN was trained as in Bellot and

van der Schaar (2019) with the code available at https://github.com/

alexisbellot/GCIT. In GAN, the objective function of the generator was

regularized by a mutual information which encourages to generate samples

X̃ as independent as possible from the observed variables X and thus en-

hances the power of the test. The EBGAN was trained in a plain manner

without the mutual information term included in J (θd; θg). Detailed set-

tings of the experiments were given in the supplement. In addition, two

kernel-based methods, KCIT (Zhang et al., 2012) and RCoT (Strobl et al.,

2019), were applied to this example for comparison.

Figure S5 summarizes the results of the experiments. For case 1,

EBGAN, GAN and RCoT are almost the same, and they all outperform

KCIT. For case 2 and case 3, EBGAN outperforms the other three meth-

ods significantly. Note that, by Bellot and van der Schaar (2019), GAN

represents the state-of-the-art method for high-dimensional nonparametric

conditional independence tests. For similar examples, Bellot and van der

Schaar (2019) showed that GAN significantly outperformed the existing

statistical tests, including the kernel-based tests (Zhang et al., 2012; Strobl
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(a)

(b)

(c)

Figure S5: Generative conditional independence tests with GAN (denoted by GCIT)
and EBGAN (denoted by EBGCIT): (a) Power curve for Case 1; (b) Power curve for
Case 2 ; (c) Power curve for Case 3
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et al., 2019), knockoff-based test (Candès et al., 2018), and classification-

based test (Sen et al., 2017).

Identifications of Drug Sensitive Mutations

As a real data example, we applied EBGAN to identification of genetic

mutations that affect response of cancer cells to an anti-cancer drug. This

helps cancer clinics, as the treatment for a cancer patient can strongly

depend on the mutation of his/her genome (Garnett et al., 2012) in precision

medicine. We used a sub-dataset of Cancer Cell Line Encyclopedia (CCLE),

which relates the drug response of PLX4720 with 466 genetic mutations.

The dataset consists of 474 cell lines. Detailed settings of the experiment

were given in the supplement.

Table S1 shows the mutations identified by EBGAN at a significance

level of 0.05, where the dependency of the drug response on the first 12

mutations has been validated by the existing literature at PubMed. Since

PLX4720 was designed as a BRAF inhibitor, the low p-values of BRAF.MC,

BRAF.V600E and BRAF confirm the validity of the proposed test. EBGAN

also identified MYC as a drug sensitive mutation, but which was not de-

tected via GAN in Bellot and van der Schaar (2019). Our finding is val-

idated by Singleton et al. (2017), which reported that BRAF mutant cell
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lines with intrinsic resistance to BRAF rapidly upregulate MYC upon treat-

ment of PLX4720. CRKL is another mutation identified by EBGAN but

not by GAN, and this finding can be validated by the experimental results

reported in Tripathi et al. (2020).

Table S1: Genetic experiment results: Each cell gives the p-value indicating the depen-
dency between a mutation and drug response, where the superscript − indicates that
the dependency of drug response on the mutation has not yet been validated in the
literature.

BRAF.MC IRAK1 BRAF.V600E BRAF HIP1 SRPK3 MAP2K4 FGR
0.001 0.002 0.003 0.003 0.004 0.012 0.014 0.014

PRKD1 CRKL MPL MYC MTCP1− ADCK2− RAD51L1−

0.015 0.016 0.027 0.037 0.011 0.037 0.044

S3.5 Nonparametric Clustering

This section gives details for different datasets we tried.
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Two-Circle Problem

The most notorious example for classical clustering methods is the two-

circle problem. The dataset is generated as follows:

Zi = (z1i, z2i), where z1i, z2i
iid∼ Unif[−1, 1], i = 1, . . . , 1000;

Inner Circle : 0.25 ∗

(
z1i√

z21i + z22i
,

z2i√
z21i + z22i

)
+ ϵ, i = 1, . . . , 500;

Outer Circle :

(
z1i√

z21i + z22i
,

z2i√
z21i + z22i

)
+ ϵ, i = 501, . . . , 1000,

(S3.23)

where ϵ ∼ N (0, 0.052I2). For this example, the K-means and agglomerative

clustering methods are known to fail to detect the inner circle unless the

data are appropriately transformed; DBSCAN is able to detect the inner

circle, but it is hard to apply to other high-dimensional problems due to its

density estimation-based nature.

For a simulated dataset, each of the methods, including K-means, ag-

glomerative, DBSCAN, Cluster GAN and Cluster EBGAN, was run for 100

times with different initializations. Figure S6 shows the histogram of the

adjust Rand index (ARI) (Rand, 1971) values obtained in those runs. It

indicates that K-means, agglomerative and DBSCAN produced the same

clustering results in different runs, while Cluster GAN and Cluster EBGAN

36



Figure S6: Histogram of ARI produced by different methods: Cluster EBGAN, Cluster
GAN, K-means, Agglomerative, and DBSCAN.

produced different ones in different runs. In particular, the ARI values re-

sulted from Cluster GAN are around 0, whereas those from Cluster EBGAN

are around 1.0. Figure S7 shows some clustering results produced by these

methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S7: (a) K-means clustering, (b) Agglomerative clustering, (c) DBSCAN, (d)
Cluster-GAN, (e)-(h) Cluster-EBGAN in different runs.

Figure S6 and Figure S7 indicate that DBSCAN can constantly detect
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the inner circle; Cluster EBGAN can detect the inner circle in nearly 80% of

the runs; while K-means, agglomerative, and Cluster GAN failed to detect

the inner circle. The comparison with Cluster GAN indicates that Cluster

EBGAN has made a significant improvement in GAN training.

Iris This is a classical clustering example. It contains the data for 50 flow-

ers from each of three species - Setosa, Versicolor and Virginica. The dataset

is available at https://archive.ics.uci.edu/ml/datasets/iris, which

gives the measurements of the variables sepal length and width and petal

length and width for each of the flowers. Table 2 summarizes the perfor-

mance of different methods on the dataset. Other than ARI, the cluster

purity is also calculated as a measure of the quality of clusters. Suppose

that the data consists of K clusters and each cluster consists of nk observa-

tions denoted by {xjk}
nk
j=1. If the data were grouped into M clusters, then

the cluster purity is defined by

∑K
k=1max{

∑nk

j=1 1(E2(x
j
k) = l) : l = 1, 2, . . . ,M}

n1 + · · ·+ nK

,

which measures the percentage of the samples being correctly clustered.

Both the measures, ARI and cluster purity, have been used in Mukherjee

et al. (2019) for assessing the performance of Cluster GAN. The comparison
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shows that Cluster EBGAN significantly outperforms Cluster GAN and

classical clustering methods in both ARI and cluster purity.

Seeds The dataset is available at https://archive.ics.uci.edu/ml/

datasets/seeds. The examined group comprised kernels belonging to

three different varieties of wheat: Kama, Rosa and Canadian, 70 elements

each, randomly selected for the experiment. Seven geometric parameters

of wheat kernels were measured, including area, perimeter, compactness,

length, width, asymmetry coefficient, and length of kernel groove. Table 2

summarizes the performance of different methods on the dataset. The com-

parison indicates that Cluster EBGAN significantly outperforms others in

both ARI and cluster purity. For this dataset, DBSCAN is not available any

more, as performing density estimation in a 7-dimensional space is hard.

MNIST The MNIST dataset consists of 70,000 images of digits ranging

from 0 to 9. Each sample point is a 28 × 28 grey scale image. Figure

S8 compares the images generated by Cluster GAN and Cluster EBGAN,

each representing the best result achieved by the corresponding method in

5 independent runs. It is remarkable that Cluster EBGAN can generate

all digits from 0 to 9 and there is no confusion of digits between different

generators. However, Cluster GAN failed to generate the digit 1 and con-
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fused the digits 4 and 9. Table 2 summarizes the performance of different

methods, which indicates again the superiority of the Cluster EBGAN over

Cluster GAN and classical nonparametric methods.

(a) (b)

Figure S8: Images generated by (a) Cluster GAN and (b) Cluster EBGAN, where each
row corresponds to a different zc index vector.

S4 Experimental Settings

In all training with the Adam algorithm (Kingma et al., 2015), we set

the tuning parameters (α1, α2) = (0.5, 0.999). In this paper, all the deep

convolutional GANs (DCGANs) were trained using the Adam algorithm.

For Algorithm 1 (of the main text), the step size is chosen in the form

wt = c1(t+ c2)
−ζ1 , and the momentum smoothing factor α is re-denoted by

α1 in Tables S3-S5. A constant learning rate ϵ and a constant momentum

biasing factor ρ = 1.
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S4.1 A Gaussian Example

Table S2 gives the parameter settings of GAN and EBGAN for the Gaussian

example.

Table S2: Parameter settings for the 2D Gaussian dataset with ϕ3(D) = log(D)

Method Learning rate α1 α2 ρ
Discriminator(ωt) Generator(ϵt)

GAN 0.00002 0.0002 0.5 0.999
EBGAN (c1, c2, ζ1) = (1, 1000, 0.75) 0.01 0.9 1

S4.2 A Mixture Gaussian Example

Tables S3 and S4 give the parameter settings of different methods for the

minimax and non-saturating cases, respectively. For EBGAN, we set τ =

0.01.

Table S3: Parameter settings for the synthetic dataset: the minimax case with ϕ3(D) =
− log(1−D)

Method Learning rate α1 α2 ρ λ(Lipshitz)
Discriminator Generator

GAN 0.0002 0.0002 0.5 0.999
BGAN 0.001 0.001 0.9
Probgan 0.0005 0.0005 0.5
EBGAN (c1, c2, ζ1) = (1, 1000, 0.75) 0.5 0.9 1
Lipshitz-GAN 0.0002 0.0002 0.5 0.999 5
Lipshitz-EBGAN (c1, c2, ζ1) = (1, 1000, 0.75) 0.5 0.9 1 5
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Table S4: Parameter settings for the synthetic dataset: the non-saturating case with
ϕ3(D) = log(D)

Method Learning rate α1 α2 ρ λ(Lipshitz)
Discriminator Generator

GAN 0.0002 0.0002 0.5 0.999
BGAN 0.001 0.001 0.9
Probgan 0.0005 0.0005 0.9
EBGAN (c1, c2, ζ1) = (1, 1000, 0.75) 0.5 0.9 1
Lipshitz-GAN 0.0002 0.0002 0.5 0.999 5
Lipshitz-EBGAN (c1, c2, ζ1) = (1, 1000, 0.75) 0.5 0.9 1 5

S4.3 Fashion MNIST

The network structures of all models are typical DCGAN style. We set the

mini-batch size to 300, set the total number of epochs to 200, and set the

dimension of zn to 10. For training the inception model, we used Adam

with a learning rate of 0.0003, (α1, α2) = (0.9, 0.999), a mini-batch size of

50, and 5 epochs. After training, the prediction accuracy on the test data

set was 0.9304. Table S5 gives the parameter settings used by different

methods. And we set ζ2 = 1
40

for EBGAN referring to Kim et al. (2022).

In addition, we set τ = 0.001 for EBGAN, and set kg = 10 for EBGAN,

BGAN and ProbGAN.

S4.4 HMNIST

We set the latent dimension as 20, and use the normal prior N(0, 1
80
) on

7 generator parameters with temperature τ = 0.001, with 200 batch size.
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Table S5: Parameter settings for the Fashion MNIST

Method Learning rate α1 α2 ρ
Discriminator Generator

GAN 0.0002 0.0002 0.5 0.999
BGAN 0.005 0.005 0.9
ProbGAN 0.005 0.005 0.9
EBGAN-KL (c1, c2, ζ1) = (0.5, 250, 1) with Adam 0.01 0.9 1
EBGAN-Gaussian (c1, c2, ζ1) = (1, 500, 1) with Adam 0.01 0.9 1

Table S6: Model structure of EBGAN for Fashion MNIST

Generator Discriminator

4× 4 conv, 512 stride 2 ReLU 4× 4 conv, 64 stride 2 pad 1 LReLU

3× 3 conv, 256 stride 2 pad 1 ReLU 4× 4 conv, 128 stride 2 pad 1 LReLU

4× 4 conv, 128 stride 2 pad 1 ReLU 3× 3 conv, 256 stride 2 pad 1 LReLU

4× 4 upconv 64 stride 2 pad 1 Tanh 4× 4 conv, 512 stride 2 LReLU

Other parameter settings and the model structure are given in Table S7

and Table S8, respectively.

Table S7: Parameter settings for the HMNIST

Method Learning rate α1 α2 ρ
Discriminator Generator

GAN 0.0002 0.0002 0.5 0.999
EBGAN-Gaussian (c1, c2, ζ1) = (0.05, 250, 1) with Adam 0.001 0.9 1

S4.5 Conditional independence test

Simulated Data The network structures of all models we used are the

same as in Bellot and van der Schaar (2019). In short, the generator net-
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Table S8: Model structure of EBGAN for HMNIST

Generator Discriminator

4× 4 conv, 512 stride 2 ReLU 4× 4 conv, 64 stride 2 pad 1 LReLU

3× 3 conv, 256 stride 2 pad 1 ReLU 4× 4 conv, 128 stride 2 pad 1 LReLU

4× 4 conv, 128 stride 2 pad 1 ReLU 3× 3 conv, 256 stride 2 pad 1 LReLU

4× 4 upconv 64 stride 2 pad 1 Tanh 4× 4 conv, 512 stride 2 LReLU

work has a structure of (d + d/10) − (d/10) − 1 and the discriminator

network has a structure of (1 + d) − (d/10) − 1, where d is the dimension

of the confounding vector Z. All experiments for GCIT were implemented

with the code given at https://github.com/alexisbellot/GCIT/blob/

master/GCIT.py. For the functions ϕ1, ϕ2 and ϕ3, the nonsaturating set-

tings were adopted, i.e., we set (ϕ1, ϕ2, ϕ3) = (log x, log(1 − x), log x). For

both cases of the synthetic data, EBGAN was run with a mini-batch size of

64, Adam optimization was used with learning rate 0.0001 for discriminator.

A prior pg = N(0, 100Ip), p for dimension of parameters, and a constant

learning rate of 0.005 were used for the generator. Lastly, we set τ = 1.

Each run consisted of 1000 iterations for case 1, case 2 and case 3. KCIT and

RcoT were run by R-package at https://github.com/ericstrobl/RCIT.

CCLE Data For the CCLE dataset, EBGAN was run for 1000 iterations

and (c1, c2, η1, α1) = (1, 1000, 0.75, 0.9) was used. Other parameters were

set as above.
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S4.6 Nonparametric Clustering

Two Circle We set the dimension of zn to 3, set (βn, βc) = (0.1, 0.1), set

the mini-batch size to 500, and set a constant learning rate of 0.05 with

τ = 1 for the generator. For optimization of the discriminator, we used

Adam and set (α1, α2) = (0.5, 0.9) with a constant learning rate of 0.1. The

total number of epochs was set to 2000.

Table S9: Model structure of Cluster-GAN and Cluster-EBGAN for two-circle data

Generator Encoder Discriminator

FC 20 LReLU FC 20 LReLU FC 30 LReLU

FC 20 LReLU FC 20 LReLU FC 30 LReLU

FC 2 linear Tanh FC 5 linear FC 1 linear

Iris For the iris data, we used a simple feed-forward network structure

for Cluster GAN and Cluster EBGAN. We set the dimension of zn to 20,

set (βn, βc) = (10, 10), set the mini-batch size to 32, and set a constant

learning rate of 0.01 for the generator with τ = 1. For optimization of the

discriminator, we used Adam and set (α1, α2) = (0.5, 0.9) with a learning

rate of 0.0001. The hyperparameters of Cluster-GAN is set to the default

values.

Seeds For the seeds data, we used a simple feed-forward network structure

for Cluster-GAN and Cluster-EBGAN. We set the dimension of zn to 20,
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Table S10: Model structure of Cluster-GAN and Cluster-EBGAN for Iris

Generator Encoder Discriminator

FC 5 LReLU FC 5 LReLU FC 5 LReLU

FC 5 LReLU FC 5 LReLU FC 5 LReLU

FC 4 linear Sigmoid FC 23 linear FC 1 linear

set (βn, βc) = (5, 5), set the mini-batch size to 128, and set a constant

learning rate of 0.01 for generator with τ = 0.0001. For optimization of the

discriminator, we used Adam and set (α1, α2) = (0.5, 0.9) with a learning

rate of 0.005. The hyperparameters of Cluster-GAN is set to the default

values.

Table S11: Model structure of Cluster-GAN and Cluster-EBGAN for Seeds

Generator Encoder Discriminator

FC 20 LReLU FC 20 LReLU FC 100 LReLU

FC 20 LReLU FC 20 LReLU FC 100 LReLU

FC 7 linear Tanh FC 23 linear FC 1 linear

MNIST For Cluster GAN, our implementation is based on the code given

at https://github.com/zhampel/clusterGAN, with a a small modifica-

tion on Encoder. The Structures of the generator, encoder and discrimi-

nator are given as follow. Cluster GAN was run with the same parameter

setting as given in the original work Mukherjee et al. (2019).

For Cluster EBGAN, to accelerate computation, we used the parameter

sharing strategy as in Hoang et al. (2018), where all generators share the
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Table S12: Model structure of ClusterGAN for MNIST data

Generator Encoder Discriminator

FC 1024 ReLU BN 4× 4 conv, 64 stride 2 LReLU 4× 4 conv, 64 stride 2 LReLU

FC 7× 7× 128 ReLU BN 4× 4 conv, 128 stride 2 LReLU 4× 4 conv, 64 stride 2 LReLU

4× 4 upconv 64 stride 2 ReLU BN 4× 4 conv, 256 stride 2 LReLU FC1024 LReLU

4× 4 upconv 1 stride 2 Sigmoid FC 1024 LReLU FC 1 linear

FC 40

parameters except for the first layer. We set the dimension of zn to 5,

(c1, c2, η1, α1) = (40, 10000, 0.75, 0.9), set the mini-batch size to 100, and set

a constant learning rate of 0.005 for the generator. For the functions ϕ1, ϕ2

and ϕ3, the non-saturating settings were adopted, i.e., we set (ϕ1, ϕ2, ϕ3) =

(log x, log(1− x), log x).

Table S13: Model structure of ClusterEBGAN for MNIST simulation

Generator Encoder Discriminator

4× 4 conv, 512 stride 2 ReLU 4× 4 conv, 64 stride 2 LReLU 4× 4 conv, 64 stride 2 LReLU

3× 3 conv, 128 stride 2 pad 1 ReLU 4× 4 conv, 128 stride 2 LReLU 4× 4 conv, 64 stride 2 LReLU

4× 4 conv, 64 stride 2 pad 1 ReLU 4× 4 conv, 256 stride 2 LReLU FC1024 LReLU

4× 4 upconv 1 stride 2 pad 1 Sigmoid FC 1024 LReLU FC 1 linear

FC 30
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Gao, X., M. Gürbüzbalaban, and L. Zhu (2021). Global convergence of

stochastic gradient hamiltonian monte carlo for nonconvex stochastic op-

timization: Nonasymptotic performance bounds and momentum-based

acceleration. Operations Research.

Garnett, M. J., E. J. Edelman, S. J. Heidorn, C. D. Greenman, A. Dastur,

K. W. Lau, P. Greninger, I. R. Thompson, X. Luo, J. Soares, Q. Liu, F. Io-

rio, D. Surdez, L. Chen, R. J. Milano, G. R. Bignell, A. T. Tam, H. Davies,

J. A. Stevenson, S. Barthorpe, S. R. Lutz, F. Kogera, K. Lawrence,

A. McLaren-Douglas, X. Mitropoulos, T. Mironenko, H. Thi, L. Richard-

son, W. Zhou, F. Jewitt, T. Zhang, P. O’Brien, J. L. Boisvert, S. Price,

49



W. Hur, W. Yang, X. Deng, A. Butler, H. G. Choi, J. W. Chang,

J. Baselga, I. Stamenkovic, J. A. Engelman, S. V. Sharma, O. Delattre,

J. Saez-Rodriguez, N. S. Gray, J. Settleman, P. A. Futreal, D. A. Haber,

M. R. Stratton, S. Ramaswamy, U. McDermott, and C. H. Benes (2012,

March). Systematic identification of genomic markers of drug sensitivity

in cancer cells. Nature 483 (7391), 570—575.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio (2014). Generative adversarial

nets. NIPS , 2672–2680.

Hoang, Q., T. D. Nguyen, T. Le, and D. Phung (2018). MGAN: Training

generative adversarial nets with multiple generators. In ICLR.

Kass, R. E., L. Tierney, and J. B. Kadane (1990). The validity of posterior

expansions based on Laplace’s method. In S. Geisser, J. S. Hodges, S. J.

Press, and A. ZeUner (Eds.), Bayesian and likelihood methods in statistics

and econometrics: essays in honor of George A. Barnard, Volume 7, pp.

473–488. Amsterdam: North Holland.

Kim, S., Q. Song, and F. Liang (2022). Stochastic gradient langevin dy-

namics with adaptive drifts. Journal of Statistical Computation and Sim-

ulation 92 (2), 318–336.

50



Kingma, D. P., and J. L. Ba (2015). Adam: a method for stochastic opti-

mization. In International Conference on Learning Representations.

Lauritzen, S. (1996). Graphical Models. Clarendon Press.

Li, C. and X. Fan (2019, 12). On nonparametric conditional independence

tests for continuous variables. Wiley Interdisciplinary Reviews: Compu-

tational Statistics 12.

Liang, F., Q. Song, and P. Qiu (2015). An equivalent measure of partial

correlation coefficients for high dimensional gaussian graphical models.

Journal of the American Statistical Association 110, 1248–1265.

Lopez-Paz, D., P. Hennig, and B. Schölkopf (2013). The randomized depen-

dence coefficient. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-

mani, and K. Q. Weinberger (Eds.), Advances in Neural Information Pro-

cessing Systems, Volume 26, pp. 1–9. Curran Associates, Inc.

Mukherjee, S., H. Asnani, E. Lin, and S. Kannan (2019). Clustergan: Latent

space clustering in generative adversarial networks. In AAAI, pp. 4610–

4617. AAAI Press.

Pearl, J. (2009, 01). Causal inference in statistics: An overview. Statistics

Surveys 3, 96–146.

51



Raginsky, M., A. Rakhlin, and M. Telgarsky (2017). Non-convex learning

via stochastic gradient langevin dynamics: a nonasymptotic analysis. In

Conference on Learning Theory, pp. 1674–1703. PMLR.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering

methods. Journal of the American Statistical Association 66 (336), 846–

850.

Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen (2016). Improved techniques for training gans. In NIPS, pp.

2234–2232.

Sen, R., A. T. Suresh, K. Shanmugam, A. G. Dimakis, and S. Shakkettai

(2017). Model-powered conditional independence test. In Proceedings of

the 31st International Conference on Neural Information Processing Sys-

tems, NIPS’17, Red Hook, NY, USA, pp. 2955–2965. Curran Associates

Inc.

Singleton, K. R., L. Crawford, E. Tsui, H. E. Manchester, O. Maertens,

X. Liu, M. V. Liberti, A. N. Magpusao, E. M. Stein, J. P. Tingley,

D. T. Frederick, G. M. Boland, K. T. Flaherty, S. J. McCall, C. Krepler,

K. Sproesser, M. Herlyn, D. J. Adams, J. W. Locasale, K. Cichowski,

S. Mukherjee, and K. C. Wood (2017). Melanoma therapeutic strate-

52



gies that select against resistance by exploiting myc-driven evolutionary

convergence. Cell Reports 21 (10), 2796 – 2812.

Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, prediction and

search. New York: Springer.

Strobl, E. V., K. Zhang, and S. Visweswaran (2019). Approximate kernel-

based conditional independence tests for fast non-parametric causal dis-

covery. Journal of Causal Inference 7 (1), 20180017.

Tripathi, R., Z. Liu, A. Jain, A. Lyon, C. Meeks, D. Richards, J. Liu,

D. He, C. Wang, M. Nespi, A. Rymar, P. Wang, M. Wilson, and R. Plat-

tner (2020, 11). Combating acquired resistance to mapk inhibitors in

melanoma by targeting abl1/2-mediated reactivation of mek/erk/myc sig-

naling. Nature Communications 5463.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). Image

quality assessment: from error visibility to structural similarity. IEEE

Transactions on Image Processing 13, 600–612.

Whye, T., H. ThieryAlexandre, and J. VollmerSebastian (2016). Consis-

tency and fluctuations for stochastic gradient langevin dynamics. Journal

of Machine Learning Research.

Xu, Q., G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Q. Weinberger

53



(2018). An empirical study on evaluation metrics of generative adversarial

networks. ArXiv abs/1806.07755.

Zhang, K., J. Peters, D. Janzing, and B. Schölkopf (2012). Kernel-based

conditional independence test and application in causal discovery. In Pro-

ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial

Intelligence, UAI’11, Arlington, Virginia, USA, pp. 804–813. AUAI Press.

Zhang, Q., S. Filippi, S. Flaxman, and D. Sejdinovic (2017). Feature-to-

feature regression for a two-step conditional independence test. In UAI.

54


	Theoretical Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Corollary 1
	Adaptive Stochastic Gradient MCMC
	Convergence of the discriminator
	Convergence of the Generator

	Evaluation Metrics for Generative Adversarial Networks
	More Numerical Examples
	A Gaussian Example: Additional Results
	A Mixture Gaussian Example: Additional Results
	Image Generation: HMNIST
	Conditional Independence Tests
	Nonparametric Clustering

	Experimental Settings
	A Gaussian Example
	A Mixture Gaussian Example
	Fashion MNIST
	HMNIST
	Conditional independence test
	Nonparametric Clustering


