
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2022-0366 

Title A Kernel Independence Test Using Projection-Based 

Measure in High-Dimension 

Manuscript ID SS-2022-0366 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202022.0366 

Complete List of Authors Yuexin Chen and  

Wangli Xu 

Corresponding Authors Wangli Xu 

E-mails wlxu@ruc.edu.cn 



Statistica Sinica

A KERNEL INDEPENDENCE TEST

USING PROJECTION-BASED MEASURE

IN HIGH-DIMENSION

Yuexin Chen and Wangli Xu

Renmin University of China

Abstract: Testing the independence between two high-dimensional random vec-

tors is a fundamental and challenging problem in statistics. Most existing tests

based on distance and kernel may fail to detect the non-linear dependence in the

high-dimensional regime. To tackle this obstacle, this paper proposes a kernel

independence test for assessing the independence between two random vectors

based on a class of Gaussian projections relying on tuning parameters. The

proposed test can be generally implemented for a wide class of distance-based

kernels and completely characterizes dependence in the low-dimensional regime.

Besides, the test captures pure non-linear dependence in the high-dimensional

regime. Theoretically, we develop central limit theorem and associated rate of

convergence for the proposed statistic under some mild regularity conditions and

the null hypothesis. Moreover, we derive the asymptotic power of the proposed

test enabling us to select suitable parameters for a special alternative, to achieve

superior power in the high-dimensional regime. The choices of tuning parameters

ensure that the proposed test has comparable power with the original kernel-
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based test in the moderately high-dimensional regime. Numerical experiments

also demonstrate the satisfactory empirical performance of the proposed test in

various scenarios.

Key words and phrases: High-dimension, independence test, kernel independence

measure, random projections, U-statistics.

1. Introduction

Testing the independence of a pair of potentially high-dimensional random

vectors has gained importance due to the increasing attention from big data

applications (see e.g., Kong et al. (2015), Chakraborty and Zhang (2019)).

Let X ∈ Rp and Y ∈ Rq be two random vectors with probability measures

PX and PY , respectively. Given independent samples {(Xi, Yi), i = 1, . . . , n}

from PXY , the hypothesis of interest is

H0 : PXY = PXPY v. s. H1 : PXY ̸= PXPY . (1.1)

There exists a wide spectrum of dependency measures and tests. Notable

examples include Pearson correlation (Pearson (1895)), rank correlation co-

efficients ( Kendall (1938), Spearman (1961)), coefficients based on cumula-

tive distribution function (Hoeffding (1994), Blum et al. (1961), Zhu et al.

(2017), Pan et al. (2020)), measures based on signs and empirical character-

istic functions (Sinha and Wieand (1977), Gieser and Randles (1997)), sign
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covariances (Bergsma and Dassios (2014), Weihs et al. (2018)), graph-based

tests (Heller et al. (2012), Heller et al. (2013), Biswas et al. (2016)), mea-

sures based on distance and kernel (Bach and Jordan (2002), Székely et al.

(2007), Gretton et al. (2007)). See also Pfister et al. (2018), Chakraborty

and Zhang (2019) and Roy et al. (2020) for some recent developments on

testing the joint dependence among more than two random vectors.

Among the plentiful independence tests, the distance and kernel-based

tests have gained growing popularity in recent years. These tests utilize

some dependency correlations which possess the characteristic property that

a zero correlation is equivalent to independence. Székely et al. (2007) intro-

duced a dependence metric named distance covaraiance, which has gained

lots of attention due to its ability to quantify non-linear dependence and

the flexibility to be applicable to two random vectors in arbitrary dimen-

sions. Gretton et al. (2007) proposed a kernel independence measure named

Hilbert-Schmidt Independence Criterion using the Hilbert-Schmidt norm of

the cross-covariance opertor. This criterion, denoted by HSIC, requires the

use of characteristic kernels to guarantee that the zero value implies the

independence between random vectors. Sejdinovic et al. (2013) provided a

unifying framework establishing the equivalence between the distance cor-

relation and HSIC. For every negative type metric, there exists a positive-
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definite kernel such that the quantities are equal.

In the high-dimensional setting, the asymptotic behavior of the sample

distance correlation and sample HSIC was recently studied in the literature

(e.g., Zhu et al. (2020), Gao et al. (2021) and Han and Shen (2021)), where

they established the asymptotic normality for these test statistics under

the null and alternative hypotheses. However, there have been some recent

works to gain insight on the limitation of the kernel and distance-based tests

for high-dimensional setting (see Székely and Rizzo (2013); Ramdas et al.

(2015); Chakraborty and Zhang (2021)). For example, Chakraborty and

Zhang (2021) showed that the distance and kernel-based tests can only de-

tect component-wise linear dependency and fail to detect non-linear depen-

dency in the regime of fast growing dimensionality, e.g., min(p, q)/n2 → ∞.

Various attempts have been made to improve the behaviors of the dis-

tance and kernel-based tests. Székely and Rizzo (2013) extended the dis-

tance correlation and further proposed a t-test for (1.1) under the setting

that the dimensions p and q grow while sample size n is fixed. Leung

and Drton (2018) proposed using sum of pairwise rank correlations to test

for mutual independence of high-dimensional vectors. Recently, some re-

searchers considered the tests based on the low-dimensional structures of

X and Y . Zhu et al. (2020) suggested test of independence by aggregat-
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ing the pairwise squared sample HSIC and studied its asymptotic behavior

in the high-dimensional setup. However, the marginally aggregated statis-

tic can detect only the component-wise dependency and thus may be less

powerful when X and Y have more complex dependency. Subsequently, a

generalization of the marginally aggregated method of Zhu et al. (2020) was

presented in Chakraborty and Zhang (2021). They considered a new depen-

dence metric based on grouping the components of two high-dimensional

random vectors separately, and further showed that their statistic is able to

detect the non-linear dependencies between the different groups of X and

Y . However, the theoretical framework in Chakraborty and Zhang (2021)

does not encompass the applicable methods to partition the random vec-

tors in the group-wise statistic. Additionally, their test mainly accounts for

group-wise dependency at the risk that it may suffer from power loss if the

true dependence in data is more than group-wise dependence.

Identifying the optimal grouping structures including the grouping di-

mensions and components is pivotal to the group-wise methods. However,

it is a non-trivial task when the prior knowledge of the true data structure

is unavailable (see Chakraborty and Zhang (2021)). Therefore, employing

randomness in the selection of low-dimensional structures is highly sug-

gested. In this paper, we propose a new independence criterion incorporat-
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ing HSIC with random projections to characterize the dependence between

two random vectors. We introduce a class of Gaussian projections rely-

ing on tuning parameters to randomly sparsify X and Y and project them

into one-dimensional spaces. The main contributions can be summarized

as follows.

• Under the proposed class of projections, the proposed independence

criterion inherits the desirable characteristic property that completely

characterizes dependence for low-dimensional setting. In particular,

the proposed criterion boils down to HSIC when the tuning param-

eters are set to 1. Furthermore, the proposed criterion is generally

applicable to the kernels with positive definite functions without re-

quiring the use of characteristic kernels.

• We propose an unbiased U-statistic type estimator of the proposed

criterion. Moreover, we establish the explicit rate of convergence to

normal distribution and further obtain the central limit theorem of

the proposed statistic under the null hypothesis. Thus the test based

on the proposed statistic can be conveniently implemented by using

standard normal critical values.

• We also derive the asymptotic power of the proposed test. The signal-
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to-noise ratio related to the power function enables the principled se-

lection of tuning parameters to obtain the power consistency of the

proposed test under a special alternative. This demonstrates the ca-

pability of the proposed test in detecting the pure non-linear depen-

dency in the high-dimensional regime, as opposed to merely measuring

component-wise linear dependence by the HSIC.

The rest of this paper is organized as follow. In Section 2, we review

the kernel test based on HSIC. Section 3 introduces the new independence

criterion and further constructs a natural unbiased U-statistic type estima-

tor of the proposed criterion. In Section 4, we investigate the asymptotic

null distribution and power study of the proposed statistic. The numerical

simulation results and real data analysis will be presented in Section 5.

Notation. For a, b ∈ R, a ∨ b = max(a, b) and a ∧ b = min(a, b). Let

0p be the origin of Rp. For b ∈ Rp and U ∈ Rp×p, denote by ∥b∥ and

∥U∥F the Euclidean norm of b and the matrix Frobenious norm of U . Let

Ip denote the p × p identity matrix, respectively. Given two real-valued

random variables U, V , we write

dW(U, V ) = sup
h∈Lip(1)

|E{h(U)} − E{h(V )}|,

where Lip(1) is the class of all 1-Lipschitz mappings h : R → R, to indicate

the Wasserstein distance between the distributions of U and V .
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2. Overview of HSIC

Gretton et al. (2007) proposed the HSIC to measure the dependence be-

tween X and Y . It embeds the joint distribution and the product of the

marginal distributions into a reproducing kernel Hilbert space (RKHS) and

measures their squared distance. Following the notation in Gretton et al.

(2007), let F be a RKHS on Rp with the positive definite kernel K(·, ·) that

satisfies K (x, x′) = ⟨ϕ(x), ϕ (x′)⟩F . Likewise, let G be a RKHS on Rq with

the positive definite kernel L(·, ·) that satisfies L (y, y′) = ⟨ψ(y), ψ (y′)⟩G.

The HSIC is defined as

HSIC (X, Y ) = E {K (X1, X2)L (Y1, Y2)}+ E {K (X1, X2)}E {L (Y1, Y2)}

− 2E {K (X1, X2)L (Y1, Y3)} , (2.1)

where (X1, Y1), (X2, Y2), (X3, Y3) are independent identically distributed sam-

ples. Moreover, one can show that HSIC(X, Y ) = E{dK(X1, X2)dL(Y1, Y2)}

with the double-centered distance

dK(X1, X2) =K(X1, X2)− E{K(X1, X2) | X1} − E{K(X1, X2) | X2}

+ E{K(X1, X2)}, (2.2)

and dL(Y1, Y2) can be defined similarly.

Key to the kernel measure of independence is the notion of characteristic

kernels, which provide sufficiently rich RKHSs to characterize dependence
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between two random vectors (see, e.g., Fukumizu et al. (2008), Hofmann

et al. (2008)). Sriperumbudur et al. (2011) proved that some widely used

kernels such as Laplacian kernel, Gaussian kernel and rational quadratic

kernel are characteristic. Generally, we assume that the kernels can be

represented compactly as

K(X1, X2) = f

(
∥X1 −X2∥

γX

)
, L(Y1, Y2) = g

(
∥Y1 − Y2∥

γY

)
, (2.3)

where f(x), g(x) are continuously differentiable, real-valued functions, γX

and γY are the bandwidth parameters. For technical convenience, this paper

focuses on deterministic choices of γX and γY satisfying that γ2X/E∥X1 −

X2∥2 and γY /E∥Y1 − Y2∥2 are bounded away from 0 and ∞.

We also assume f(x) and g(x) have bounded derivatives, which are

commonly assumed in the analysis of kernel measures (see e.g., Han and

Shen (2021) and Yan and Zhang (2023)). The function f : R → R is called

positive definite in R if

n∑
i,j=1

f(ζi − ζj)ξiξj ≥ 0

holds for n ∈ N, every choice of ζ1, . . . , ζn ∈ R and ξ1, . . . , ξn ∈ R. Further-

more, f(x) is said to be of positive type if for all m,n ∈ N, every choice of

x1, . . . , xn ∈ Rm and ξ1, . . . , ξn ∈ R, it holds that
n∑

i,j=1

f(∥xi − xj∥)ξiξj ≥ 0.
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Similar definitions apply to g(x). In general, a distance-based kernelK(X1, X2) =

f (∥X1 −X2∥/γX) is positive definite if and only f(x) is of positive type.

We emphasis that positive definite function in R is not necessarily to be of

positive type. For example, f(x) = cos(x) is positive definite in R (Stewart

(1976)), but not of positive type since cos(
√
x) does not satisfy the com-

pletely monotone condition (see e.g., Theorem 7.14 of Wendland (2004)).

Therefore, the class of distance-based kernels with positive definite func-

tions in R is not necessarily positive definite.

The class of distance-based kernels of the form in (2.3) contains the

aforementioned kernels. For example, characteristic Laplacian kernel can

be defined by choosing f(y) = exp(−y), i.e., K(X1, X2) = exp(−∥X1 −

X2∥/γX). Non-characteristic cosine kernel can be defined by choosing

f(y) = cos(x), i.e., K(X1, X2) = cos(∥X1 − X2∥/γX). In practice, the

bandwidth parameters γX and γY are heuristically chosen as the median

distance between the sample observations.

While the HSIC can be used as a measure of dependence when using

characteristic kernels, Chakraborty and Zhang (2021) showed that in the

high-dimensional regime, HSIC can be asymptotically represented as

HSIC(X, Y ) =
1

4ρXρY

p∑
i=1

q∑
j=1

cov2(X1,i, Y1,j) +R,

where ρ2X = E{K(X1, X2)
2}, ρ2Y = E{L(Y1, Y2)2}, and R = o(1). Thus
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HSIC can only measure the linear dependency when dimensions grow high.

Recently, Chakraborty and Zhang (2021) proposed independence test us-

ing the sum of group-wise squared sample HSIC, and further showed that

the sample estimator asymptotically quantifies group-wise non-linear de-

pendence between two high-dimensional vectors. In Example 2 of Supple-

mentary Material, we give an example illustrating that the group-wise type

test can indeed be less powerful when the dependence between X and Y is

weak.

3. The Proposed Test Statistic

3.1 The proposed independence criterion

Modern research seeks to construct test statistics based on projection onto

lower dimensional subspace (see e.g., Zhu et al. (2017), Wang and Xu (2018),

Kim et al. (2020)). Testing the independence betweenX and Y is equivalent

to testing the independence between all one-dimensional projections of X

and Y . To cope with the high-dimensionality issue, we propose to randomly

sparsify X and Y and project them into one-dimensional spaces.

Heuristically, a pair of projection directions (θ, η) is of interest if it cap-

tures sufficient dependence betweenX and Y in the sense that the projected

vectors (θ⊤X, η⊤Y ) are strongly correlated relative to other projections.
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3.1 The proposed independence criterion12

However, the prior information of (X, Y ) on these interesting directions is

generally unknown or unavailable in the real world applications. Therefore,

the projection distribution should cover as many directions as possible. As

shown in Section 2 of Fang et al. (2018), spherically symmetric projection

distributions possess good properties. In this view, spherically symmetric

projections should be chosen. It is well-known that the standard normal

distribution is spherically distributed (see Section 4 of Fang et al. (2018)).

In this paper, we consider p-dimensional projection α with i.i.d. component-

wise mixture distribution having a point mass at 0 with probability 1− γ1

and a N(0, 1) distribution with probability γ1, where the parameter γ1 ∈

(0, 1]. The projection β is independent of α and has a similar component-

wise distribution with parameter γ2 ∈ (0, 1]. Let µ be the probability

measure of α on Rp and υ be the probability measure of β on Rq. To assess

the independence of X and Y , we define Kernel Projection Independence

Criterion, denoted by KPIC(X, Y ) as

KPIC (X, Y ) =

∫
Rp

∫
Rq

HSIC
(
α⊤X, β⊤Y

)
dµ(α)dυ(β).

Define the projection kernels K̃ (X1, X2) = E
{
K

(
α⊤X1, α

⊤X2

)
| X1, X2

}
and L̃ (Y1, Y2) = E

{
L
(
β⊤Y1, β

⊤Y2
)
| Y1, Y2

}
. Using the definition of HSIC

Statistica Sinica: Preprint 
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3.1 The proposed independence criterion13

in (2.1), the proposed criterion can be represented as

KPIC (X, Y ) = E
{
K̃ (X1, X2) L̃ (Y1, Y2)

}
+ E

{
K̃ (X1, X2)

}
E
{
L̃ (Y1, Y2)

}
− 2E

{
K̃ (X1, X2) L̃ (Y1, Y3)

}
. (3.1)

By the construction of projection distribution, the parameter γ1 represents

the ratio of non-zero entries of the projection. In the completely dense case

(γ1 = 1), the following proposition indicates that the projection kernels

coincide with the characteristic kernels required in HSIC.

Proposition 1. Suppose that γ1 = 1 and K(X1, X2) is a distance-based

kernel defined in (2.3) with positive definite function f(x) in R, then the

projection kernel K̃(X1, X2) is characteristic.

As we can see, the proposed criterion with dense projections is actually

HSIC using characteristic kernels. Furthermore, the following proposition

establishes the characteristic property of KPIC for any γ1, γ2 ∈ (0, 1], which

means that (3.1) equal to zero if and only if X and Y are independent.

Proposition 2. Suppose K(X1, X2) and L(Y1, Y2) are distance-based ker-

nels defined in (2.3) with positive definite functions f(x) and g(x) in R, then

for γ1, γ2 ∈ (0, 1], KPIC (X, Y ) is nonnegative and has the characteristic

property

KPIC (X, Y ) = 0 if and only if PXY = PXPY .
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In the low-dimensional setting, Proposition 2 states that the proposed

criterion completely characterizes independence between X and Y . Re-

cently, Banerjee and Ghosh (2022) proposed a similar projection-based

kernel independence criterion for quantifying the independence of random

functions modelled as elements of a separable Hilbert space. The results

presented in Banerjee and Ghosh (2022) can also be applied to the random

vectors. From this view, they proposed using the joint probability measure

PXY as the projection distribution and obtained the explicit expression

of their independence criterion under some condition on the support set of

PXY . While their criterion has a wider range of applications to random func-

tions, the theoretical results for the random vectors in the high-dimensional

regime (p, q → ∞) remain largely unknown. In contrast to their work, our

main goal is to tackle the high-dimensional issue of HSIC (see Section 2)

and thus the randomly sparsified Gaussian projections are introduced. For

simplicity and when there is no ambiguity, we may write KPIC (X, Y ) and

HSIC(X, Y ) as KPIC and HSIC, respectively.

Remark 1. A distinctive feature of KPIC is that it only requires kernels

with positive definite function in R. As commented in Section 2, this class

of kernel is not necessarily positive definite or characteristic. This implies

that the proposed criterion has wider application prospect than the original
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kernel independence measures that requires a restricted class of character-

istic kernels (see Sriperumbudur et al. (2010)). The key to this advantage

is the adoption of Gaussian distribution in the proposed projection. If

f(x) = cos(x) in (2.3) and α ∼ N(0p, Ip), then the projection kernel is

K̃ (X1, X2) = E

[
cos

{
|α⊤(X1 −X2)|

γX

}
| X1, X2

]
= exp

(
−∥X1 −X2∥2

2γ2X

)
.

After the Gaussian projection, the non-characteristic cosine kernel (see The-

orem 9 in Sriperumbudur et al. (2010)) can derive the characteristic Gaus-

sian kernel.

3.2 The proposed statistic

Suppose that {zi = (Xi, Yi), i = 1, 2, . . . , n} and {(αr, βr), r = 1, 2, . . . , k}

are the independent copies of (X, Y ) and (α, β), respectively. Define Kαs
ij =

K(α⊤
s Xi, α

⊤
s Xj) and Lβs

ij = L(β⊤
s Yi, β

⊤
s Yj). A natural estimator for (3.1)

can be derived using generalised two-sample U-statistic of degree (4,1)

Un,k =

{(
n

4

)
k

}−1 n∑
i<j<ℓ<r

k∑
s=1

h (zi, zj, zℓ, zr;αs, βs) , (3.2)

where

h (z1, z2, z3, z4;αs, βs) =
1

24

(1,2,3,4)∑
(t,u,v,w)

(
Kαs

tu L
βs
tu +Kαs

tu L
βs
vw − 2Kαs

tu L
βs
tv

)
.

The summation
∑(1,2,3,4)

(t,u,v,w) is over the set of all 4-permutations from {1, 2, 3, 4}.

Leveraging the theory of U-statistics (see e.g. Korolyuk and Borovskich
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3.2 The proposed statistic16

(2013)), it is clear that Un,k is an unbiased estimator of KPIC. Moreover,

we can apply the asymptotic theory for degenerate two-sample U-statistic

(see page 158 of Korolyuk and Borovskich (2013)). When p, q are fixed, un-

der the null hypothesis, we have nUn,k
d→
∑∞

i=1 λi(Z
2
i −1), where {Zi, i ≥ 1}

are i.i.d. standard normal random variables and {λi, i ≥ 1} are the eigen-

values of some operator. In general, this asymptotic null distribution is

intractable and only allows for low-dimensional setting. Thus it is of great

significance to obtain the asymptotic distribution of the proposed statistic

in high-dimensional regime.

Remark 2. The idea of kernel projection can be further extended to the

independence testing among multiple random vectors. Pfister et al. (2018)

proposed dHSIC as an extension of HSIC to measure the joint independence

among d ≥ 2 random vectors. For j ∈ {1, . . . , d}, let pj ∈ N and X(j) be a

Rpj -valued random vector, and let K(j)(·, ·) be a positive definite distance-

based kernel on Rpj . The dHSIC can be defined similarly as

dHSIC(X(1), . . . , X(d)) =E

{
d∏

j=1

K(j)(X
(j)
1 , X

(j)
2 )

}
+ E

{
d∏

j=1

K(j)(X
(j)
2j−1, X

(j)
2j )

}

− 2E

{
d∏

j=1

K(j)(X
(j)
1 , X

(j)
j+1)

}
. (3.3)

For j ∈ {1, . . . , d}, let α(j) and µ(j) be the pj-dimensional projection and

the corresponding probability measure respectively. Using the definition of
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dHSIC in (3.3), the d-variate KPIC can be defined as

dKPIC =E

{
d∏

j=1

K(j)(α(j)⊤X
(j)
1 , α(j)⊤X

(j)
2 )

}
+ E

{
d∏

j=1

K(j)(α(j)⊤X
(j)
2j−1, α

(j)⊤X
(j)
2j )

}

− 2E

{
d∏

j=1

K(j)(α(j)⊤X
(j)
1 , α(j)⊤X

(j)
j+1)

}
.

Similarly to Pfister et al. (2018), for a set of random samples {(X(1)
i , . . . , X

(d)
i ), i =

1, 2, . . . , n} and {(α(1)
r , . . . , α

(d)
r ), r = 1, 2, . . . , k}, the sample dKPIC can be

defined using V-statistic:

Tn,k =
1

k

k∑
s=1

 1

n2

∑
M2,n

d∏
j=1

K(j)(α(j)⊤

s X
(j)
i1
, α(j)⊤

s X
(j)
i2
) +

1

n2d

∑
M2d,n

d∏
j=1

K(j)(α(j)⊤

s X
(j)
i2j−1

, α(j)⊤

s X
(j)
i2j
)

− 2

nd+1

∑
Md+1,n

d∏
j=1

K(j)(α(j)⊤

s X
(j)
i1
, α(j)⊤

s X
(j)
ij+1

)

 ,
whereMq,n = {1, . . . , n}q is the q-fold Cartesian product of the set {1, . . . , n}

and (i1, . . . , iq) ∈Mq,n for n ≥ 2q.

4. Asymptotic Properties

4.1 The null distribution

Similar to (2.2), the double-centered distances based on the projection data

are defined as

dαK(X1, X2) = Kα
12 + E(Kα

12 | α)− E(Kα
12 | α,X1)− E(Kα

12 | α,X2),

dβL(Y1, Y2) = Lβ
12 + E(Lβ

12 | β)− E(Lβ
12 | β, Y1)− E(Lβ

12 | β, Y2).

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0366



4.1 The null distribution 18

Denote U (X1, X2) = E{dαK(X1, X2) | X1, X2}, V (Y1, Y2) = E{dβL(Y1, Y2) |

Y1, Y2} and σ2
1 = E {U(X1, X2)V (Y1, Y2)}2. We define the following quan-

tities

gK(X1, X2, X3, X4) = U (X1, X2)U (X1, X3)U (X2, X4)U (X3, X4) ,

gL(Y1, Y2, Y3, Y4) = V (Y1, Y2)V (Y1, Y3)V (Y2, Y4)V (Y3, Y4) .

By the Hoeffding decomposition (see e.g., Korolyuk and Borovskich (2013)),

the proposed statistic (3.2) can be decomposed as Un,k = Wn +Rn,k, where

Wn =
(
n
2

)−1 ∑
i<j U (Xi, Xj)V (Yi, Yj) and Rn,k is the remainder term. The

following theorem establishes explicitly the rate of convergence for the nor-

mal approximation of the proposed statistic Un,k.

Theorem 1. Suppose that E{K(X1, X2)}4 < ∞ and E{L(Y1, Y2)}4 < ∞,

then under H0,

dW

{√
n(n− 1)

2

Un,k

σ1
, Z

}
≤ C

(
n−1/2 + σ−2

1 [E {gK(X1, X2, X3, X4)gL(Y1, Y2, Y3, Y4)}]1/2

+n−1/2σ−2
1

[
E
{
U (X1, X2)

4 V (Y1, Y2)
4}]1/2

+(n−1 + k−1)1/2σ−1
1 [E{dαK (X1, X2)

2 dβL (Y1, Y2)
2}]1/2

)
,

where Z ∼ N(0, 1) and C is some positive constant.

Theorem 1 quantifies the accuracy of the normal approximation and

reveals how the rate of convergence depends on the sample size n, projection
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4.1 The null distribution 19

number k and dimensions p, q. The proof of Theorem 1 is built on Hoeffding

decomposition and Stein’s method. In fact, via the Hoeffding decomposition

we obtain the dominating part of Un,k and the Wasserstein distance between

the rescaled statistic and normal distribution can be derived using Stein’s

method.

To derive the asymptotic null normality of Un,k, we make the following

conditions on the moments of the corresponding quantities.

(A1) E{dαK (X1, X2)
2 dβL (Y1, Y2)

2} = o{(k ∧ n)σ2
1}.

(A2) E {gK(X1, X2, X3, X4)gL(Y1, Y2, Y3, Y4)} = o(σ4
1).

(A3) E
{
U (X1, X2)

4 V (Y1, Y2)
4} = o(nσ4

1).

Combining the above regularity conditions and the non-asymptotic bound

obtained in Theorem 1 immediately yields the central limit theorem.

Corollary 1. Suppose Conditions (A1)–(A3) hold, then {n(n−1)/2}1/2Un,k/σ1

is asymptotically standard normal under H0 as n, k → ∞ and min(p, q) →

∞.

Condition (A1) guarantees that the remainder term Rn,k in the Ho-

effding decomposition of Un,k is asymptotically negligible, while Conditions

(A2)–(A3) ensure the asymptotic normality of the leading term Wn. Al-

though Corollary 1 can be applied to the general case, the calculation of
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4.1 The null distribution 20

the moments involved for the general joint distribution of (X, Y ) can be

challenging. To gain more intuition on the Conditions (A1)–(A3), we pro-

vide a illustration in Sections S1–S2 which states that these conditions can

be made more explicit.

Remark 3. Under the null hypothesis, these conditions are in fact fairly

mild in the Gaussian design. For example, when the element-wise fourth

moments and the eigenvalues of the covariance matrix are lower and upper

bounded uniformly, Condition (A1) is satisfied when p2q2γ31γ
3
2/(k ∧ n) =

o(1). Moreover, Condition (A2) can be satisfied when p3q3γ51γ
5
2 = o(1), and

Condition (A3) holds true when p4q4γ61γ
6
2/n = o(1). See more details in the

Sections S1–S2 of the Supplementary Material.

Remark 4. It seems from Remark 3 that γ1 and γ2, corresponding to the

ratios of non-zero entries of the projections, can be chosen to approach

zero arbitrarily fast. However, these parameters cannot approach zero at

a faster rate than p−1, which would result in complete loss of information

since the average number of non-zero entries γ1p → 0. In this paper, we

assume γ1p→ ∞ and γ2q → ∞ to avoid these extreme cases.

In order to formulate a testing procedure based on Corollary 1, we

propose estimating σ2
1 by σ̂2

1 = {n(n − 3)k2}−1
∑n

i̸=j

∑k
s,tAijsAijtBijsBijt,
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4.2 Power analysis21

where Aijr, Bijr are the double-centered distances defined as

Aijr = Kαr
ij − 1

n− 2

n∑
s=1

Kαr
sj − 1

n− 2

n∑
t=1

Kαr
it +

1

(n− 1)(n− 2)

n∑
s,t=1

Kαr
st ,

Bijr = Lβr

ij − 1

n− 2

n∑
s=1

Lβr

sj −
1

n− 2

n∑
t=1

Lβr

it +
1

(n− 1)(n− 2)

n∑
s,t=1

Lβr
st .

(4.1)

The ratio consistency of σ̂2
1 is shown in the next theorem.

Theorem 2. Under the conditions of Corollary 1 and H0, σ̂
2
1/σ

2
1 converges

in probability to 1, as n, k → ∞ and min(p, q) → ∞.

For α ∈ (0, 1), denote by ξα the 1 − α quantile of the standard nor-

mal distribution. Combining Corollary 1 and Theorem 2, the size-α test

procedure can be defined as

ϕn,α = I

{√
n(n− 1)

2

Un,k

σ̂1
> ξα

}
, (4.2)

which rejects the null hypothesis if {n(n− 1)/2}1/2Un,k/σ̂1 > ξα.

4.2 Power analysis

In this subsection, we focus on the asymptotic power performance for the

proposed test. Let G(z1, z2, α1, β1) = dα1
K (X1, X2)d

β1

L (Y1, Y2). To derive

limiting distribution of the proposed statistic (3.2) under H1, we assume

the following regularity conditions.
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(A4) E [E {G(z1, z2, α1, β1) | z1}]2 = o(n−1σ2
1),

E [E {G(z1, z2, α1, β1) | z1, α1, β1}]2 = o(k−1σ2
1),

E [E {G(z1, z2, α1, β1) | α1, β1}]2 = o(kn−2σ2
1).

(A5) E
{
dαK(X1, X2)

2dβL(Y1, Y3)
2
}
= o{(k ∧ n)σ2

1},

E {dαK(X1, X2)}2E{dβL(Y1, Y3)}2 = o{(k ∧ n)σ2
1}.

Conditions (A4)–(A5) characterize the local alternative in an abstract

way. Under the null that X and Y are independent, Condition (A4) is auto-

matically satisfied and Condition (A5) is equivalent to Condition (A1). For

the local alternative, these conditions require the alternative to be not too

far away from the null. The following theorem establishes the asymptotic

normality of Un,k under H1.

Theorem 3. Suppose Conditions (A1)–(A5) hold, then {n(n−1)/2}1/2(Un,k−

KPIC)/σ1 is asymptotically standard normal as n, k → ∞ and min(p, q) →

∞.

Theorem 3 indicates that the asymptotic power of the proposed test is

given by

βn = Φ

{
−ξα +

√
n(n− 1)

2

KPIC

σ1

}
, (4.3)

which is related to the signal-to-noise ratio√
n(n− 1)

2

KPIC

σ1
. (4.4)
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Now we utilize the signal-to-noise ratio in (4.4) to choose the parameters

γ1 and γ2. To ease further illustration, we make the following notations.

Let S be a subset of (1, 2, . . . , p) and |S| be the size of S. Denote X1,S

the subvector of X1 which the coordinates belong to S. For example, when

S = {2, 3, 4}, we have X1,S = (X1,2, X1,3, X1,4). For |S1|-dimensional and

|S2|-dimensional standard normal vectors θ and η respectively, let

K∗(X1,S1 , X2,S1) = E
{
K

(
θ⊤S1

X1,S1 , θ
⊤
S1
X2,S1

)
| X1, X2

}
,

L∗(Y1,S2 , Y2,S2) = E
{
L
(
η⊤S2

Y1,S2 , η
⊤
S2
Y2,S2

)
| Y1, Y2

}
. (4.5)

Under the projections α and β with the parameters γ1 and γ2 respectively,

the proposed criterion in (3.1) can be equivalently expressed as

KPIC =

p∑
t=1

q∑
s=1

h1(t, γ1)h2(s, γ2)
∑
|S1|=t

∑
|S2|=s

HSIC(X1,S1 , Y1,S2), (4.6)

where h1(t, γ1) = γt1(1 − γ1)
p−t, h2,s = γs2(1 − γ2)

q−s and the summations∑
|S1|=t and

∑
|S2|=s are over all t-subsets and s-subsets of (1, 2, . . . , p) and

(1, 2, . . . , q), respectively. From Proposition 1, HSIC(X1,S1 , Y1,S2) based on

projection kernels K∗(X1,S1 , X2,S1) and L
∗(Y1,S2 , Y2,S2) can measure the de-

pendence between XS1 and YS2 . The expression in (4.6) indicates that the

proposed criterion is essentially a weighted sum of HSIC between the sub-

vectors of X and Y , which can be considered to contain low-dimensional

structures. Thus it is natural to expect that the proposed test has compet-
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itive power performance when encountering high-dimensionality.

In the following theorem, we show that the signal strength (4.4) can be

enhanced with specific choice of tuning parameters.

Theorem 4. Assume that X1 = (X1,1, . . . , X1,p) has a symmetric distri-

bution and {X1,i, 1 ≤ i ≤ p} are m-dependent for some fixed positive

integer m. Let Y1 = (Y1,1, . . . , Y1,p) be given by Y1,i = gi(X1,i) for each

1 ≤ i ≤ p, where {gi(x), 1 ≤ i ≤ p} are symmetric functions satisfying

gi(x) = gi(−x) for x ∈ R. Assume further that E(X12
1,i) + E(Y 12

1,i ) ≤ d121 ,

var(X1,i) ≥ d22 and var(Y1,i) ≥ d22 for some positive constants d1, d2. Suppose

γ1 = γ2 = 1 ∧ (cnn
1/2p−1) where the positive sequence cn satisties cn → 0

and cnn
1/2 → ∞. Then √

n(n− 1)

2

KPIC

σ1
→ ∞ (4.7)

as n→ ∞ and min(p, q) → ∞.

The power consistency of the proposed test ϕn,α can be established

combining (4.7) and the power function (4.3), that is βn → 1 as n → ∞,

min(p, q) → ∞. Recently, Han and Shen (2021) worked with the Gaussian

assumption (X, Y ) ∼ N(0p+q,Σ) and established the power consistency for

the sample HSIC under the bounded spectrum condition on Σ in the high-

dimensional regime of n → ∞ and min(p, q) → ∞. Let ΣX , ΣY and ΣXY
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be the sub-blocks of the covariance matrix Σ = [ΣX ,ΣXY ; ΣY X ,ΣY ]. They

obtained the power consistency for the sample HSIC using the signal-to-

noise ratio n∥ΣXY ∥2F/∥ΣX∥F∥ΣY ∥F without requiring the m-dependence

structure assumed in Theorem 4. However, they only studied the power

performance of the HSIC test in the Gaussian case that ΣXY ̸= 0, while the

HSIC is designed to detect the complete dependence including non-linear

dependence between X and Y without the Gaussian assumption. On the

other hand, under the general multivariate model, Zhu et al. (2020) showed

that the HSIC test has trivial limiting power whenX and Y are non-linearly

dependent but component-wisely uncorrelated.

Under the symmetry alternatives and the m-dependence structure in

Theorem 4, there is no linear dependence between X and Y by noting that

cov(X1,i, Y1,j) = 0 for each 1 ≤ i, j ≤ p. This clearly highlights the merit of

the proposed test in detecting the pure non-linear dependence under high-

dimensional setting, going beyond the scope of HSIC which has been shown

merely to capture the component-wise linear dependence when encountering

high-dimensional problem.

To gain some insights into the parameters γ1 = γ2 = 1∧ (cnn
1/2p−1), it

can be seen that when p = o(cnn
1/2), the choices of γ1 and γ2 should boil

down to the completely dense case, i.e., γ1 = γ2 = 1. Then from Proposition
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1, the signal-to-noise ratio in (4.4) coincides with the counterpart of HSIC in

the dense case. This is consistent with the results in Gao et al. (2021), which

states that the distance correlation achieves asymptotic power one when p =

o(n1/2) under the symmetry alternatives in Theorem 4. By the equivalence

between distance correlation and HSIC (see Sejdinovic et al. (2013)), the

proposed test can serve as an adaptable test since it has comparable power

performance with HSIC in the moderately high-dimensional regime.

5. Numerical Results

In this section, we examine the simulation performance of the proposed

test. Here, we consider two types of kernels, non-characteristic cosine ker-

nel and characteristic Laplacian kernel. Denote these two tests as KPC and

KPL. In view of Theorem 4 and Remark 4, the parameters are chosen as

γ1 = γ2 = 1 ∧ [n1/2/{p log(n)}] where we set cn = {log(n)}−1. Following

Gretton et al. (2009), we choose the bandwidth parameter of kernel heuris-

tically as the median distance between the sample observations. However,

the theoretical results in this paper do not accommodate cases with data-

dependent kernels, which also remains an open problem in the field of kernel

literature (e.g., Ramdas et al. (2015), Garreau et al. (2017)). Nevertheless,

the simulation results show that the median heuristic choice of bandwidth
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works well in most cases.

In view of the computation efficiency, we suggest to choose a relatively

larger value k = 8000 throughout. To save space, results for the depictions

of the sensitivity on the choice of k are reported in the Supplementary Ma-

terial, Section S10.1. The significance level is set as α = 0.05. Throughout

these simulations, we set (n, p) to be (50,50), (50,100), (100,100), (100,300).

All the numerical results will repeat 1000 times to report the empirical sizes

and powers.

5.1 Comparison with other tests

In this subsection, we consider several numerical examples to compare the

proposed test with some existing tests, including the distance correlation

test of Székely et al. (2007) (dC), the HSIC tests of Gretton et al. (2007) us-

ing characteristic Gaussian kernel and Laplacian kernel (hCG and hCL), the

group-wise HSIC tests of Chakraborty and Zhang (2021) using characteris-

tic Gaussian kernel and Laplacian kernel (CZG and CZL), the graph-based

test of Biswas et al. (2016) (BSG) and the test based on ranks of distances

of Heller et al. (2013) (HHG). We first consider some simulated examples

to compare the aforementioned tests for testing the independence between

two random vectors in high-dimensions.
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Example 5.1. Let Σ = (1− c)Ip+ c1p1⊤p ∈ Rp×p with c = 0.3 be a equicor-

relation matrix, which has diagonal elements 1 and off-diagonal elements c.

Generate i.i.d. samples from the following models for i = 1, . . . , n.

(i)Xi = (Xi,1, . . . , Xi,p)
⊤ ∼ N (0p, Ip) , Yi = (Yi,1, . . . , Yi,p)

⊤ ∼ N (0p, Ip);

(ii)Xi = (Xi,1, . . . , Xi,p)
⊤ ∼ N (0p,Σ), Yi = (Yi,1, . . . , Yi,p)

⊤ ∼ N (0p,Σ);

(iii) Xi = (Xi,1, . . . , Xi,p)
⊤, {Xi,j}pj=1 are i.i.d. standardized χ2 random

variables with degree of freedom 1, Yi = (Yi,1, . . . , Yi,p)
⊤, {Yi,j}pj=1 are i.i.d.

standardized χ2 random variables with degree of freedom 1;

(iv) Xi = (Xi,1, . . . , Xi,p)
⊤, {Xi,j}pj=1 are i.i.d. standard Cauchy random

variables, Yi = (Yi,1, . . . , Yi,p)
⊤, {Yi,j}pj=1 are i.i.d. standard Cauchy random

variables.

Table 1 summarizes the empirical sizes of Example 5.1. The graph-

based tests of Biswas et al. (2016) and Heller et al. (2013) can control the

Type I error rate well in all cases. The distance correlation test of Székely

et al. (2007), the HSIC tests of Gretton et al. (2007) and the group-wise

HSIC tests of Chakraborty and Zhang (2021) tend to have inflated or con-

servative empirical sizes for Example 5.1 (ii) and (iv). The proposed tests

have slightly inflated empirical sizes for Example 5.1 (ii). We provide in Fig-

ure 4–6 of the Supplementary Material the kernel density estimates of the

standardized test statistics under the cases of Example 5.1 and compared
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Table 1: Size comparison from Example 5.1

n p dC hCG CZG KPC hCL CZL KPL BSG HHG

(i)

50 50 0.058 0.058 0.057 0.052 0.059 0.056 0.055 0.059 0.051

50 100 0.050 0.051 0.049 0.073 0.048 0.048 0.060 0.043 0.048

100 100 0.047 0.049 0.045 0.055 0.052 0.045 0.043 0.057 0.043

100 300 0.053 0.053 0.061 0.053 0.051 0.058 0.056 0.059 0.052

(ii)

50 50 0.068 0.069 0.071 0.068 0.066 0.066 0.076 0.054 0.050

50 100 0.071 0.076 0.071 0.070 0.071 0.072 0.070 0.056 0.044

100 100 0.073 0.081 0.076 0.086 0.079 0.079 0.080 0.052 0.050

100 300 0.063 0.060 0.060 0.064 0.058 0.058 0.059 0.041 0.038

(iii)

50 50 0.057 0.063 0.058 0.059 0.056 0.055 0.061 0.058 0.046

50 100 0.067 0.063 0.052 0.048 0.064 0.051 0.058 0.053 0.044

100 100 0.052 0.052 0.061 0.059 0.058 0.062 0.047 0.038 0.051

100 300 0.058 0.057 0.036 0.045 0.062 0.039 0.051 0.051 0.040

(iv)

50 50 0.034 0.070 0.045 0.050 0.067 0.050 0.061 0.062 0.045

50 100 0.047 0.069 0.047 0.059 0.067 0.062 0.061 0.046 0.049

100 100 0.031 0.055 0.040 0.055 0.051 0.041 0.044 0.052 0.042

100 300 0.027 0.060 0.039 0.056 0.068 0.050 0.057 0.069 0.046

them with the standard normal distribution. It shows that the null distribu-

tion is quite close to standard normal distribution when the dimensions and

sample size increase for Example 5.1 (i), (iii) and (iv), which confirms the

asymptotic normality of the standardized statistic under H0 given in Corol-

lary 1. However, there is some right skewness for Example 5.1 (ii). This

is because Conditions (A2)–(A3) that ensure the asymptotic normality of

Un,k may exclude some situations such as the spiked model. For example, as

analysed in Section S2 of the Supplementary Material, Condition (A2) holds

true when
∑∞

i=1 λ
4
i /(

∑∞
i=1 λ

2
i )

2 = o(1) where {λi}∞i=1 are the eigenvalues of
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an operator, and it can be viewed as a generalization of Condition (3.6) of

Chen and Qin (2010) which is formulated as tr(Σ4)/{tr(Σ2)}2 = o(1) where

Σ is the covariance matrix of (X, Y ). Recent studies have shown that when

when there exists unbounded eigenvalues, these types of assumptions can

be violated (e.g., Ma et al. (2015), Wang and Xu (2022)). For example, the

equicorrelation matrix considered in Example 5.1 (ii) has unbounded eigen-

value (1 − c) + cp. Next we compare the empirical power of the previous

tests in the following examples.

Example 5.2. Generate i.i.d. samples from the following models for i =

1, . . . , n.

(i) Xi = (Xi,1, . . . , Xi,p)
⊤ ∼ N (0p, Ip), Yi = (Yi,1, . . . , Yi,p)

⊤, where

Yi,j = |Xi,j|−1 for j = 1, . . . , p;

(ii) Xi = (Xi,1, . . . , Xi,p)
⊤ ∼ N (0p, Ip), Yi = (Yi,1, . . . , Yi,p)

⊤, where

Yi,j = log |Xi,j| for j = 1, . . . , p;

(iii) Xi = (Xi,1, . . . , Xi,p)
⊤, {Xi,j}pj=1 are i.i.d. standard Cauchy random

variables, Yi = (Yi,1, . . . , Yi,p)
⊤ where Yi,j = |Xi,j|−1 for j = 1, . . . , p;

(iv) Xi = (Xi,1, . . . , Xi,p)
⊤, {Xi,j}pj=1 are i.i.d. standard Cauchy random

variables, Yi = (Yi,1, . . . , Yi,p)
⊤ where Yi,j = log |Xi,j| for j = 1, . . . , p.

Table 2 summarizes the empirical powers of Example 5.2. Notice that

in Example 5.2, the m-dependence condition of X and the coordinate-wise
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Table 2: Power comparison from Example 5.2

n p dC hCG CZG KPC hCL CZL KPL BSG HHG

(i)

50 50 0.054 0.053 0.386 0.970 0.062 0.259 0.961 0.032 0.083

50 100 0.056 0.050 0.378 0.697 0.053 0.191 0.699 0.034 0.073

100 100 0.051 0.069 0.737 0.979 0.060 0.427 0.984 0.028 0.096

100 300 0.068 0.067 0.727 0.431 0.071 0.255 0.437 0.029 0.066

(ii)

50 50 0.094 0.094 1.000 1.000 0.133 1.000 1.000 0.307 0.052

50 100 0.066 0.066 1.000 0.975 0.084 1.000 0.975 0.198 0.050

100 100 0.077 0.077 1.000 1.000 0.121 1.000 1.000 0.370 0.067

100 300 0.060 0.061 1.000 0.859 0.065 1.000 0.857 0.185 0.063

(iii)

50 50 0.045 0.067 0.151 0.997 0.057 0.095 0.994 0.047 0.036

50 100 0.039 0.079 0.147 0.799 0.078 0.078 0.816 0.045 0.057

100 100 0.030 0.061 0.256 0.995 0.062 0.089 0.997 0.055 0.047

100 300 0.041 0.073 0.232 0.482 0.068 0.071 0.475 0.062 0.061

(iv)

50 50 0.339 0.442 0.983 1.000 0.749 0.996 1.000 0.998 1.000

50 100 0.208 0.229 0.978 1.000 0.419 0.932 1.000 0.991 0.984

100 100 0.318 0.462 0.979 1.000 0.845 0.998 1.000 1.000 1.000

100 300 0.150 0.164 0.981 0.984 0.302 0.969 0.982 0.998 0.999

non-linear dependence between X and Y assumed in Theorem 4 are satis-

fied. From Table 2, we can observe that the performance of distance corre-

lation test and the HSIC tests deteriorate quickly in the high-dimensional

regime. This is in line with the aforementioned issue that HSIC and distance

correlation can only catch linear dependence in high-dimension. The graph-

based tests appear to be very ineffective except in Example 5.2 (iv). The

group-wise HSIC tests have relatively good performance in Example 5.2 (i),

(ii) and (iv). In contrast, the proposed tests are much more powerful in cap-

turing the coordinate-wise non-linear dependence in the high-dimensional
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regime. Furthermore, as commented in Section 3.1, KPIC only requires

kernels with positive definite function in R (e.g., cosine kernel), as opposed

to the requirement of characteristic kernels for the existing kernel-based

tests. It can be seen that the proposed test based on cosine kernel performs

reasonably well in these cases. This suggests that the proposed test has

wider application prospects compared to the other kernel-based tests. See

Remark 1 for more details.

In the Supplementary Material, Section S10.3, we present the additional

simulated examples that does not meet the conditions in Theorem 4, such

as the non-coordinate-wise dependence between X and Y . It shows that

the proposed tests still have higher power than other tests in most cases.

5.2 Real data analysis

We consider the independence testing problem on Earthquakes data. The

data set is orginally from the Northern California Earthquake Data Center

and has classes of positive and negative major earthquake events. It can be

download from UCR Time Series Classification Archive (Dau et al. (2019))

and has been analyzed by Zhu et al. (2020) and Chakraborty and Zhang

(2021) in a similar way. Each data point is of length 512, which is an aver-

aged reading of 512 surrounding areas for one hour. Let the reading vector
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Zi = (Zi,1, Zi,2, . . . , Zi,512) for i = 1, . . . , 461. According to the data descrip-

tion, a major earthquake event is defined as any reading of over 5 on the

Richter scale. A positive case is defined as a major event which is not pre-

ceded by another major event for at least 512 hours, while the negative cases

are instances where there is a reading below 4 and is preceded by at least

20 non-zero readings in the previous 512 hours. There are 93 positive cases

and 368 negative cases. We are interested in the correlation of earthquake

readings between two regions which are composed of different surrounding

areas, and proceed by testing the independence between two random vec-

tors of the selected areas from the reading vectors. For the two regions, we

select p different areas starting from the center of Zi and moving forward

and backward respectively, that is, we set Xi = (Zi,256−p+1, . . . , Zi,256) and

Yi = (Zi,257, . . . , Zi,256+p) for i = 1, . . . , 461. We consider different cases for

(n, p) = (50, 50), (50,100), (100,100), (100,256). We will randomly sample

n rows from the full dataset {(Xi, Yi)}461i=1 without replacement.

Table 3 shows the rejection rates corresponding to the different tests.

X and Y are expected to be dependent due to the serial nature of Zi, which

means that components arranged in sequence correspond to the readings

from near areas. The graph-based tests have relatively poor power perfor-

mance especially when the sample size is small. The tests based on the
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proposed criterion and the group-wise tests have higher power as compared

to the tests based on distance correlation and HSIC. These results indicate

that the dependence among the earthquake readings of the surrounding ar-

eas is non-linear and thus cannot be fully detected by traditional distance

and kernel-based metrics in the high-dimensional regime.

Table 3: Rejection rates of tests for Earthquakes data

n p dC hCG CZG KPC hCL CZL KPL BSG HHG

50 50 0.070 0.071 0.988 1.000 0.079 0.991 1.000 0.051 0.077

50 100 0.078 0.080 1.000 1.000 0.088 1.000 1.000 0.010 0.343

100 100 0.137 0.135 1.000 1.000 0.167 1.000 1.000 0.003 0.665

100 256 0.243 0.242 1.000 1.000 0.455 1.000 1.000 0.000 1.000

Supplementary Material

Supplementary material includes the interpretations of Conditions (A1)–

(A3), the detailed proofs of the main theorems and propositions, and the

additional simulation results.
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