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S1 Proofs of results in Section 3

To present the arguments of this section, we require some additional notation. In

all to follow define η̂(j) = θ̂(j) − θ̂(j+1), j = 1, ..., N. For any non-negative sequences

0 ≤ vT ≤ uT ≤ 1 define the following collection,

Gj(uT , vT ) =
{
τj ∈ {1, 2, ..., (T − 1)}; TvT ≤ |τj − τ 0

j | ≤ TuT

}
(S1.1)

Finally, for any vectors θ(j) ∈ Rp and any (τj, τ
T
−j)

T ∈ {1, ..., (T − 1)}N , define,

Uj(τj, τ−j, θ) = Qj(τj, τ−j, θ)−Qj(τ
0
j , τ−j, θ), j = 1, ..., N. (S1.2)

Recall that Qj(· , · , · ) is the squared loss defined in (2.3).

Lemma S1.1. Suppose conditions A, B and C hold and let 0 ≤ vT ≤ uT ≤ 1, be any

non-negative sequences. Then, for any 0 < a < 1, choosing ca ≥
√

(1/a) and for any

given j = 1, ..., N, we have the following uniform lower bound,

inf
τj∈Gj(uT ,vT )

Uj(τj, τ̂−j, θ̂) ≥
ξ2
j

2

[
vT −

cucaσ

ξj

(uT
T

) 1
2
]
,



Abhishek Kaul and George Michailidis

with probability at least 1− 2a− o(1)− πT .

Proof of Lemma S1.1. We begin with a few observations that shall be required to ob-

tain the desired lower bound of this lemma. Define,A = {event where Condition C holds},

then we have by assumption pr(A) ≥ 1− πT . First, begin by noting that from Condi-

tion C(i) we have, max1≤j≤N |τ̂j − τ 0
j | ≤ cu1T`, for a suitably small constant cu1 > 0.

Since by Condition B(ii), T` is the least separation between consecutive change points,

consequently, τ 0
j must lie between τ̂j−1 and τ̂j+1 on the event under consideration.

Moreover, the same assumption also provides that there can only be atmost the im-

mediate neighboring change points τ 0
j−1 and τ 0

j+1 in the interval τ̂j−1 and τ̂j+1 on the

event A, and no further change points can be contained in this interval on this event.

Second, from Condition C(ii) we have the following relations on the event A, for all

j = 1, ..., N,

‖η̂(j) − η0
(j)‖2 ≤ ‖θ̂(j) − θ0

(j)‖2 + ‖θ̂(j+1) − θ0
(j+1)‖2 ≤

2cu1ξ

(Ns)1/2 log(p ∨ T )
and,

‖η̂(j) − η0
(j)‖1 ≤ 4

√
Ns‖θ̂1 − θ0

1‖2 + 4
√
Ns‖θ̂2 − θ0

2‖2 ≤
8cu1ξ

log(p ∨ T )
(S1.3)

The third inequality follows from assumption ‖(θ̂(j))Scj‖1 ≤ 3‖(θ̂(j) − θ0
(j))Sj‖1 of Con-

dition C(iia) which implies that ‖θ̂(j) − θ0
(j)‖1 ≤ 4

√
(Ns)‖θ̂(j) − θ0

(j)‖2. Next, consider

‖η̂(j)‖2 ≤ ‖η0
(j)‖2 + ‖η̂(j) − η0

(j)‖2 ≤ ξj
{

1 +
2cu1

(Ns)1/2 log(p ∨ T )

}
≤ 3

2
ξj, and,

‖η̂(j)‖1 ≤ ‖η0‖1 + ‖η̂ − η0‖1

≤
√

(Ns)ξj
{

1 +
2cu1

(Ns)1/2 log(p ∨ T )

}
≤ 3

2

√
(Ns)ξj, (S1.4)

The second inequality follows from (S1.3). The `1 bound follows analogously. In the
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following consider any τj ∈ Gj(uT , vT ), and assume the ordering τj ≥ τ 0
j+1 > τ 0

j . The

remaining permutations of the ordering of τj with respect to τ 0
j−1, τ

0
j and τ 0

j+1, possible

on the set A are τ 0
j+1 > τj ≥ τ 0

j , τj ≤ τ 0
j−1 < τ 0

j , and τ 0
j−1 ≤ τj < τ 0

j . These ordering

permutations can be handled with analogous arguments as below, all yielding the same

uniform lower bounds stated in the lemma. Another observation here is that under

the assumed ordering, for any τj ∈ Gj(uT , vT ) and on the set A and applicable in the

construction of the squared loss Qj, we have the following relation,

(τj − τ 0
j+1)

(τ 0
j+1 − τ 0

j )
≤

(τ̂j+1 − τ 0
j+1)

(τ 0
j+1 − τ 0

j )
≤ cu1T`

T`j
≤ cu1, (S1.5)

for a suitably small constant cu1 > 0. Here the first inequality follows from the

construction of the refitted squared loss Qj, i.e, the search space is restricted to

{τ̂j−1, ..., τ̂j+1 − 1}. The second inequality follows from Condition C(i) (on numerator)

and the definition of `j (on denominator). The final inequality follows from definition

of `. The relation (S1.5) directly implies the following,

(τj − τ 0
j+1)

(τj − τ 0
j )

=
(τj − τ 0

j+1)

(τj − τ 0
j ) + (τ 0

j+1 − τ 0
j )
≤ cu1, (S1.6)

on the event A and for all τj ∈ Gj(uT , vT ) under consideration in context of the squared

loss Qj. As a final observation, consider the expression,

‖η̂(j)‖2
2 + 2(θ̂(j+1) − θ0

(j+1))
T η̂(j) − 2

(τj − τ 0
j+1)

(τj − τ 0
j )

(θ0
(j+2) − θ0

(j+1))
T η̂(j) (S1.7)

= ‖η0
(j) + (η̂(j) − η0

(j))‖2
2 + 2(θ̂(j+1) − θ0

(j+1))
T η̂(j)

−2
(τj − τ 0

j+1)

(τj − τ 0
j )

(θ0
(j+2) − θ0

(j+1))
T η̂(j)
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≥ ‖η0
(j)‖2

2 + 2(η̂(j) − η0
(j))

Tη0
(j) + 2(θ̂(j+1) − θ0

(j+1))
T η̂(j)

−2
(τj − τ 0

j+1)

(τj − τ 0
j )

(θ0
(j+2) − θ0

(j+1))
T η̂(j)

≥ ‖η0
(j)‖2

2 − 2‖η̂(j) − η0
(j)‖2‖η0

(j)‖2 − 2‖θ̂(j+1) − θ0
(j+1)‖2‖η̂(j)‖2

−2
(τj − τ 0

j+1)

(τj − τ 0
j )
‖θ0

(j+2) − θ0
(j+1)‖2‖η̂(j)‖2

≥ ξ2
j

(
1− 4cu1

(Ns)1/2 log(p ∨ T )
− 3cu1

(Ns)1/2 log(p ∨ T )
− 3cu1cu

)
≥
ξ2
j

2
,

which holds on the set A with probability at least 1−πT . Note that the first inequality

is simply an algebraic manipulation, the second follows from the Cauchy-Schwartz

inequality and the third follows from Condition C.1, (S1.3) and (S1.4) together with

Condition B(iv) and (S1.6).

We can now proceed to the main proof of the uniform bound of this lemma. Con-

sider the following decomposition under the ordering τj ≥ τ 0
j+1 > τ 0

j ,

Uj(τj, τ̂ , θ̂) = Qj(τj, τ̂−j, θ̂)−Qj(τ
0
j , τ̂−j, θ̂)

=

τj∑
t=τ̂j−1

‖xt − θ̂(j)‖2 +

τ̂j+1∑
t=τj+1

‖xt − θ̂(j+1)‖2

−
τ0j∑

t=τ̂j−1

‖xt − θ̂(j)‖2 +

τ̂j+1∑
t=τ0j +1

‖xt − θ̂(j+1)‖2

=

τj∑
t=τ0j +1

‖xt − θ̂(j)‖2 −
τj∑

t=τ0j +1

‖xt − θ̂(j+1)‖2

= (τj − τ 0
j )
{
‖η̂(j)‖2

2 + 2(θ̂(j+1) − θ0
(j+1))

T η̂(j)

−2
(τj − τ 0

j+1)

(τj − τ 0
j )

(θ0
(j+2) − θ0

(j+1))
T η̂(j)

}
− 2

τj∑
t=τ0j +1

ε∗Tt η̂(j)
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≥
TvT ξ

2
j

2
− 2

τj∑
t=τ0j +1

ε∗Tt η̂(j)

=
TvT ξ

2
j

2
− 2

τj∑
t=τ0j +1

ε∗Tt η
0
(j) − 2

τj∑
t=τ0j +1

ε∗Tt (η̂(j) − η0
(j)), (S1.8)

on the event A which holds with probability at least 1− πT . Here the first inequality

follows from (S1.7) and construction of the set Gj(uT , vT ). The noise variables ε∗t arise

from the reparametrized model (2.1). We now consider uniform upper bounds for each

of the stochastic terms in the expression (S1.8). First, applying Lemma S3.4 for any

0 < a < 1, with ca ≥
√

(1/a), we have,

sup
τj∈Gj(uT ,vT );

τj≥τ0j

2
∣∣∣ τ∑
t=τ0+1

ε∗Tt η
0
(j)

∣∣∣ ≤ cucaσξj
(
TuT

) 1
2 (S1.9)

w.p. at least 1− 2a. The second stochastic term in (S1.8) can be bounded above as,

2

τj∑
t=τ0j +1

ε∗Tt (η̂(j) − η0
(j)) ≤ 2

∥∥∥ τj∑
t=τ0j +1

ε∗t

∥∥∥
∞

∥∥η̂(j) − η0
(j)

∥∥
1
≤ cuσξ

(
TuT

) 1
2 , (S1.10)

w.p. at least 1 − o(1) − πT . Here the second inequality follows using the deviation

bounds in Lemma S3.2 together with the `1 error bound of (S1.3). Substituting (S1.9)

and (S1.10) in (S1.8), we obtain,

inf
τj∈Gj(uT ,vT );

τj≥τ0j

Uj(τj, τ̂−j, θ̂) ≥
TvT ξ

2
j

2
− cucaσξj

(
TuT

) 1
2 − cuσξ

(
TuT

) 1
2

≥
Tξ2

j

2

[
vT −

cucaσ

ξj

(uT
T

) 1
2
]

w.p. at least 1 − 2a − o(1) − πT . The remaining permutations of τ 0
j+1 > τj ≥ τ 0

j ,

τj ≤ τ 0
j−1 < τ 0

j , and τ 0
j−1 ≤ τj < τ 0

j , can be handled with analogous arguments. This

completes the proof of the lemma.
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Lemma S1.2. Suppose conditions A, B and C hold and let 0 ≤ vT ≤ uT ≤ 1, be any

non-negative sequences. Then, we have the following uniform lower bound

min
1≤j≤N

inf
τj∈Gj(uT ,vT )

Uj(τj, τ̂−j, θ̂) ≥
ξ2

2

[
vT −

cuσ

ξ

(uT log2 T

T

) 1
2
]
,

with probability at least 1− o(1)− πT .

Proof of Lemma S1.2. The structure of this proof is similar to that of Lemma S1.1,

with an additional uniformity required over j = 1, ..., N, which in turn requires uti-

lizing stochastic bounds with this additional uniformity (Lemma S3.3). Proceeding

identically as in Lemma S1.1, under the ordering τj ≥ τ 0
j+1 > τ 0

j , we have (S1.8), i.e.,

Uj(τj, τ̂ , θ̂) ≥
TvT ξ

2
j

2
− 2

τj∑
t=τ0j +1

ε∗Tt η
0
(j) − 2

τj∑
t=τ0j +1

ε∗Tt (η̂(j) − η0
(j)), (S1.11)

on the event A which holds with probability at least 1− πT . Now consider each of the

stochastic terms in (S1.11) and apply the bounds of Lemma S3.3 which possess the

required additional uniformity over j = 1, ..., N. First, from Part (ii) of Lemma S3.3,

max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τ∑
t=τ0+1

ε∗Tt η
0
(j)

∣∣∣ ≤ cuξσ{TuT log2 T}
1
2 (S1.12)

w.p. at least 1− o(1). Second,

max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

τj∑
t=τ0j +1

ε∗Tt (η̂(j) − η0
(j))

≤ max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∥∥∥ τj∑
t=τ0j +1

ε∗t

∥∥∥
∞

∥∥η̂(j) − η0
(j)

∥∥
1
≤ cuσξ

(
TuT

) 1
2 , (S1.13)

w.p. at least 1−o(1)−πT , where the second inequality follows from Part (i) of Lemma

S3.3 together with the `1 error bound of (S1.3). Substituting (S1.12) and (S1.13) in
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(S1.11) yields,

min
1≤j≤N

inf
τj∈Gj(uT ,vT );

τj≥τ0j

Uj(τj, τ̂ , θ̂) ≥
TvT ξ

2

2
− cuσξ

(
TuT log2 T

) 1
2 − cuσξ

(
TuT

) 1
2

≥
Tξ2

2

[
vT −

cuσ

ξ

(uT log2 T

T

) 1
2
]
,

w.p. at least 1− o(1)−πT . Note that we have also utilized ξ ≤ cuξ of Condition B(iv).

The same bound can be obtained for all other permutations of the ordering of τjs w.r.t

τ 0
j s via analogous arguments. This completes the proof of this lemma.

Proof of Theorem 1. The proof of this result relies on a recursive argument on Lemma

S1.1, where the desired rate of convergence is obtained by a series of recursions, with

this rate being sharpened at each step. We begin by considering any given j = 1, ..., N,

and any vT > 0 and applying Lemma S1.1 on the set Gj(1, vT ) to obtain,

inf
τj∈Gj(1,vT )

Uj(τj, τ̂−j, θ̂) ≥
ξ2
j

2

[
vT −

cucaσ

ξj

( 1

T

) 1
2
]
.

with probability at least 1− 2a− o(1)− πT . Now upon choosing any,

vT > v∗T =
cucaσ

ξj

( 1

T

) 1
2
,

we obtain infτj∈Gj(1,vT ) Uj(τj, τ̂−j, θ̂) > 0, thus implying that τ̃j /∈ Gj(1, v∗T ), i.e., |τ̃j −

τ 0
j | ≤ Tv∗T , with probability at least 1−2a−o(1)−πT .1 Now reset uT = v∗T and reapply

Lemma S1.1 for any vT > 0 to obtain,

inf
τj∈Gj(uT ,vT )

Uj(τj, τ̂−j, θ̂) ≥
ξ2
j

2

[
vT −

(cucaσ
ξj

)1+ 1
2
( 1

T

) 1
2

+ 1
4
]
,

1Since by construction of τ̃j , we have Uj(τj , τ̂−j , θ̂) ≤ 0.
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with probability at least 1− 2a− o(1)− πT .. Again choosing any,

vT > v∗T =
(cucaσ

ξj

)1+ 1
2
( 1

T

) 1
2

+ 1
4
,

we obtain infτj∈Gj(uT ,vT ) Uj(τj, τ̂−j, θ̂) > 0, thus yielding τ̃j /∈ Gj(uT , v∗T ), i.e.,

|τ̃j − τ 0
j | ≤ T

(cucaσ
ξj

)a2( 1

T

)b2
, (S1.14)

with probability at least 1− 2a− o(1)− πT . Where,

a2 = 1 +
1

2
=

1∑
j=0

1

2j
, and b2 =

1

2
+

1

4
=

2∑
j=1

1

2j
.

Note that the rate of convergence of τ̃ has been sharpened at the second recursion in

comparison to the first. Continuing these recursions by resetting uT to the bound of

the previous recursion, and applying Lemma S1.1, we obtain for the mth recursion,

|τ̃j − τ 0
j | ≤ T

(cucaσ
ξj

)am( 1

T

)bm
, (S1.15)

with probability at least 1 − 2a − o(1) − πT . Repeating these recursions an infinite

number of times and noting that a∞ =
∑∞

j=0(1/2j) = 2, and b∞ =
∑∞

j=1(1/2j) = 1 we

obtain,

|τ̃j − τ 0
j | ≤ T

(cucaσ
ξj

)2 1

T
= c2

uc
2
aσ

2ξ−2
j

with probability at least 1− 2a− o(1)−πT . Finally, note that despite the recursions in

the above argument, the probability of the bound after every recursion is maintained to

be at least 1−2a−o(1)−πT . This follows since the probability statement of Lemma S1.1

arises from the stochastic upper bounds in Lemma sS3.2 and S3.4 applied recursively
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with a tighter bound at each recursion. This yields a sequence of events such that the

event at each recursion is a proper subset of the event at the previous recursion. This

completes the proof of this theorem.

Proof of Theorem 2. The argument to follow is largely similar to that of the proof

of Theorem 1. It is a recursive argument applied on Lemma S1.2 which possesses

uniformity over j = 1, ..., N, in comparison to Lemma S1.1 which does not. Recall that

this uniformity is gained in exchange for a weaker bound in comparison to Lemma

S1.1. Consider any vT > 0 and apply Lemma S1.2 on the sets Gj(1, vT ), j = 1, ..., N,

to obtain,

min
1≤j≤N

inf
τj∈Gj(1,vT )

Uj(τj, τ̂−j, θ̂) ≥
ξ2

2

[
vT −

cuσ

ξ

( log2 T

T

) 1
2
]
.

with probability at least 1− o(1)− πT . Upon choosing any,

vT > v∗T =
cuσ

ξj

( log2 T

T

) 1
2
,

we obtain min1≤j≤N infτj∈Gj(1,vT ) Uj(τj, τ̂−j, θ̂) > 0, thus implying that τ̃j /∈ Gj(1, v∗T ),

∀j = 1, ..., N, with probability at least 1−o(1)−πT .Note that this implies max1≤j≤N |τ̃j−

τ 0
j | ≤ Tv∗T , with the same probability. Now reset uT = v∗T and reapply Lemma S1.2 for

any vT > 0 to obtain,

min
1≤j≤N

inf
τj∈Gj(uT ,vT )

Uj(τj, τ̂−j, θ̂) ≥
ξ
j

2

[
vT −

(cuσ
ξ

)1+ 1
2
( log2 T

T

) 1
2

+ 1
4
]
,

with probability at least 1− o(1)− πT .. Again choosing any,

vT > v∗T =
(cuσ
ξ

)1+ 1
2
( log2 T

T

) 1
2

+ 1
4
,
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we obtain min1≤j≤N infτj∈Gj(uT ,vT ) Uj(τj, τ̂−j, θ̂) > 0, thus yielding τ̃j /∈ Gj(uT , v∗T ), ∀j,

i.e.,

max
1≤j≤N

|τ̃j − τ 0
j | ≤ T

(cuσ
ξ

)a2( log2 T

T

)b2
, (S1.16)

with probability at least 1− o(1)− πT . Where,

a2 = 1 +
1

2
=

1∑
j=0

1

2j
, and b2 =

1

2
+

1

4
=

2∑
j=1

1

2j
.

Continuing these recursions by resetting uT to the bound of the previous recursion,

and applying Lemma S1.2, we obtain for the mth recursion,

max
1≤j≤N

|τ̃j − τ 0
j | ≤ T

(cuσ
ξ

)am( log2 T

T

)bm
, (S1.17)

with probability at least 1− o(1)− πT . Repeating these recursions an infinite number

of times and noting that a∞ =
∑∞

j=0(1/2j) = 2, and b∞ =
∑∞

j=1(1/2j) = 1 we obtain,

max
1≤j≤N

|τ̃j − τ 0
j | ≤ T

(cuσ
ξ

)2 log2 T

T
= c2

uσ
2ξ−2 log2 T

with probability at least 1 − o(1) − πT . As in the proof of Theorem 1, despite the

recursions in the above argument, the probability of the bound after every recursion is

maintained to be at least 1− o(1)− πT , for the same reason as described there. Thus

completing the proof of this theorem.

As the reader may have observed, a change of notation has been carried out for the

results of Theorems 3 and 4. These results are presented in more conventional argmax

notation instead of the argmin notation of the problem setup in Section 1. This is
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purely a notational change and all results can equivalently be stated in the argmin

language. Accordingly we define the following versions. Let Uj(τj, τ−j, θ) j = 1, ..., N,

be as defined in (S1.2) and consider,

Cj(τ, τ−j, θ) = −Uj(τ, τ−j, θ), j = 1, ..., N. (S1.18)

Then, we can re-express the change point estimators τ̃j(τ̂−j, θ̂) as,

τ̃j(τ̂−j, θ̂) = arg max
τ̂j−1≤τj<τ̂j+1

Cj(τj, τ̂−j, θ̂), j = 1, ..., N.

The proofs of Theorem 3, Theorem 4 and Theorem 5 below are applications of the

Argmax Theorem (reproduced as Theorem S4.2 in Appendix S4). The arguments here

are largely an exercise in verification of requirements of this theorem.

Proof of Theorem 3. Consider any fixed j = 1, ..., N, then we begin by noting that

although (τ̃j − τ 0
j ) is discrete, however the sequence whose limiting distribution is

being examined is ξ2
j (τ̃j − τ 0

j ), consequently, the underlying indexing metric space here

is R. Now consider the two cases of known and unknown plug-in parameters.

Case I
(
τ 0
−j and θ0 known

)
: The following requirements of the Argmax theorem

need to be verified for this case (see, page 288 of Vaart and Wellner (1996)).

1. The sequence ξ2
j (τ̃
∗
j − τ 0

j ) is uniformly tight (see, Definition S4.3 in Appendix S4).

2.
{

2σ(∞,j)Wj(ζ)− |ζ|} satisfies suitable regularity conditions2.

3. For any ζ ∈ [−cu, cu] we have

Cj(τ 0
j + ζξ−2

j , τ 0
−j, θ

0)⇒
{

2σ(∞,j)Wj(ζ)− |ζ|}.
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Note that by setting θ̂ = θ0, and τ̂−j = τ 0
−j, the requirements of Condition C

are trivially satisfied. Now using Theorem 1 we have that ξ2
j (τ̃
∗
j − τ 0

j ) = Op(1). This

yields requirement (1). The second requirement follows from well known properties of

Brownian motion. The only remaining requirement is (3), which is provided below.

ζ ← (ζ − ξ2
j ) ≤ ξ2

j bζξ−2
j c ≤ (ζ + ξ2

j )→ ζ

Hence, w.l.o.g. we may assume ζξ−2
j is integer valued. Now for any ζ ∈ (0, cu], consider

Cj(τ 0
j + ζξ−2

j , τ 0
−j, θ

0) = −
τ0j +ζξ−2

j∑
t=(τ0j +1)

{
‖xt − θ0

(j)‖2
2 − ‖xt − θ0

(j+1)‖2
2

}

= 2

τ0j +ζξ−2
j∑

t=(τ0j +1)

ε∗Tt η
0
(j) − ζ

= 2

τ0j +ζξ−2
j∑

t=(τ0j +1)

εTt η
0
(j) − ζ − 2ζξ−2

j ε̄Tη0
(j)

= 2

τ0j +ζξ−2
j∑

t=(τ0j +1)

εTt η
0
(j) − ζ − op(1)

⇒ 2σ(∞,j)W1j(ζ)− ζ, (S1.19)

where the final equality follows from (S3.8) together with Condition B(iv) and Condi-

tion E. The weak convergence follows from the functional central limit theorem. Re-

peating the same argument with ζ ∈ [−cu, 0), yields C(τ 0+ζξ−2
j , τ 0

−j, θ
0)⇒ 2σ(∞,j)W2j(−ζ)−

|ζ|. his completes the proof of requirement (3) for the Argmax theorem and conse-

quently an application of its results yields ξ2
j (τ̃
∗
j − τ 0

j ) ⇒ arg maxζ∈R
{

2σ(∞,j)Wj(ζ) −
2Almost all sample paths ζ →

{
2σ(∞,j)Wj(ζ) − |ζ|} are upper semicontinuous and posses a unique maximum at a

(random) point arg maxζ∈R
{

2σ(∞,j)Wj(ζ)− |ζ|}, which as a random map in the indexing metric space is tight.



S1. PROOFS OF RESULTS IN SECTION 3

|ζ|}, which completes the proof of this case.

Case II
(
τ 0
−j and θ0 unknown

)
: In this case, to apply the Argmax theorem requires

verifying the following conditions.

1. The sequence ξ2
j (τ̃j − τ 0

j ) is uniformly tight.

2.
{

2σ(∞,j)Wj(ζ)− |ζ|} satisfies suitable regularity conditions.

3. For any ζ ∈ [−cu, cu] we have

Cj(τ 0
j + ζξ−2

j , τ̂−j, θ̂)⇒
{

2σ(∞,j)Wj(ζ)− |ζ|}.

Part (i) again follows from the result of Theorem 1 under the assumed Condition C on

the nuisance estimates τ̂−j and θ̂. Part (2) is identical to the corresponding requirement

of Case I. Finally to prove part (3) note that from Lemma S1.3 we have that,

sup
τj∈Gj

(
cuT−1ξ−2

j ,0
) |Cj(τj, τ̂−j, θ̂)− Cj(τj, τ 0

−j, θ
0)| = op(1). (S1.20)

The approximation (S1.20) and Part (3) of Case I together imply Part (3) for this case.

This completes the verification of all requirements for this case. The stated limiting

distribution now follows by an application of the Argmax theorem.

Proof of Theorem 4. The proof of this theorem is similar to Theorem 3 in that it is

also an application of the Argmax theorem. The distinction here is in the limiting

distribution that is induced by the change of regime of the jump size. Consider any

given j = 1, ..., N and the discrete sequence (τ̃w − τ 0
w), consequently the underlying
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indexing metric space here is Z. Now consider the two cases of known and unknown

plug-in parameters.

Case I
(
τ 0
−j and θ0 known

)
: The requirements to be verified here are as follows.

1. The sequence (τ̃ ∗j − τ 0
j ) is uniformly tight.

2. C(∞,j)(ζ) satisfies suitable regularity conditions.

3. For any ζ ∈ {−cu,−cu + 1, ...,−1, 0, 1, ...cu}, we have

Cj(τ 0
j + ζ, τ 0

−j, θ
0)⇒ C(∞,j)(ζ).

As in the proof of Theorem 3, requirement (1) follows directly from the result of

Theorem 1. Requirement (2) of regularity of the argmax of two sided negative drift

random walk C(∞,j)(ζ) has been proved earlier in Lemma A.3 of the Supplement in

Kaul et al. (2021). The requirement (3) is verified next. For any ζ ∈ {1, 2, ..., cu},

consider

Cj(τ 0
j + ζ, τ 0

−j, θ
0) = −

τ0j +ζ∑
t=(τ0j +1)

{
‖xt − θ0

(j)‖2
2 − ‖xt − θ0

(j+1)‖2
2

}

=

τ0j +ζ∑
t=(τ0j +1)

(
2ε∗Tt η

0
(j) − ξ2

j

)

=

τ0j +ζ∑
t=(τ0j +1)

(
2εTt η

0
(j) − ξ2

j − op(1)
)

⇒
ζ∑
t=1

P
(
− ξ2

(∞,j), 4ξ
2
(∞,j)σ

2
(∞,j)

)
, (S1.21)
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The final equality follows similarly to the final equality of (S1.19). The conver-

gence in distribution follows from Condition A′, Condition D together with Slut-

sky’s theorem. Repeating the same argument with ζ ∈ {−cu,−cu + 1, ...,−1}, yields

Cj(τ 0
j + ζ, τ 0

−j, θ
0) ⇒

∑−ζ
t=1P

(
− ξ2

(∞,j), 4ξ
2
(∞,j)σ

2
(∞,j)

)
. An application the Argmax the-

orem now yields (τ̃ ∗j − τ 0
j ) ⇒ arg maxζ∈Z C(∞,j)(ζ), which completes the proof of this

case.

Case II
(
τ 0
−j and θ0 unknown

)
: In this case, the applicability of the Argmax The-

orem requires verification of the following.

(i) The sequence (τ̃j − τ 0
j ) is uniformly tight.

(ii) C(∞,j)(ζ) satisfies suitable regularity conditions.

(iii) For any ζ ∈ {−cu,−cu + 1, ...,−1, 0, 1, ...cu} we have, C(τ 0
j + ζ, τ̂−j, θ̂)⇒ C(∞,j)(ζ).

Part (i) follows from Theorem 1 under the assumed Condition C on the nuisance

estimates τ̂−j and θ̂. Part (ii) is identical to the corresponding requirement of Case I.

Finally to prove part (iii) note that from Lemma S1.3 we have that,

sup
τj∈Gj(cuT−1ξ−2

j ,0)

|Cj(τj, τ̂−j, θ̂)− Cj(τj, τ 0
−j, θ

0)| = op(1). (S1.22)

The approximation (S1.22) and Part (iii) of Case I together imply Part (iii) for this

case. This completes the verification of all requirements for this case. The statement

of the theorem now follows by an application of the Argmax theorem.

Lemma S1.3. Suppose Conditions A, B, C and E hold and let Cj(τj, τ−j, θ̂) be as in

(S1.18). Further, assume that rT in Condition C satisfies rT = {o(1)ξ}
/
{(Ns)1/2 log(p ∨ T )}.
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Then, for any given j = 1, ..., N and any cu > 0, we obtain

sup
τj∈Gj

(
cuT−1ξ−2

j ,0
) ∣∣Cj(τj, τ̂−j, θ̂)− Cj(τj, τ 0

−j, θ
0)
∣∣ = op(1).

Proof of Lemma S1.3. Recall that

Cj(τj, τ̂−j, θ̂) =

τj∑
t=τ̂j−1+1

‖xt − θ̂(j)‖2
2 +

τ̂j+1∑
t=τj+1

‖xt − θ̂(j+1)‖2
2

Cj(τj, τ 0
−j, θ

0) =

τj∑
t=τ0j−1+1

‖xt − θ0
(j)‖2

2 +

τ0j+1∑
t=τj+1

‖xt − θ0
(j+1)‖2

2,

Further, note that Cj(τj, τ̂−j, θ̂) and Cj(τj, τ 0
−j, θ

0) are sums over indices whose start and

end points may differ. Despite this incoherence, the desired supremum over collection

Gj
(
cuT

−1ξ−2
j , 0

)
is well defined. This is enforced by Condition C together with the

rate assumption of Condition F. These ensure that the collection of τ ′js over which

the supremum is evaluated remains between max{τ̂j−1, τ
0
j−1} and min{τ̂j+1, τ

0
j+1} with

probability 1−πT . Specifically, from Condition B(ii) we have that (τ 0
j − τ 0

j−1) ≥ T`, ∀j

and from Condition C that maxj |τ̂j−τ 0
j | ≤ cu1T`, w.p. 1−πT . In addition, the left and

right end points of the set Gj
(
cuT

−1ξ−2
j , 0

)
, i.e., τ 0

j − cuξ−2
j and τ 0

j + cuξ
−2
j , respectively.

Consequently, the rate assumption of Condition F forces these end points to be in

a sufficiently small neighborhood of τ 0
j , such that all values of τj in the collection

Gj
(
cuT

−1ξ−2
j , 0

)
, remain away from τ̂j−1, τ

0
j−1 as well as τ̂j+1, τ

0
j+1, w.p. 1 − πT , thus

allowing the desired supremum of interest to be well defined.

The second observation is that by proceeding as in (S1.3), under Condition C with
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rT = {o(1)ξ}
/
{(Ns)1/2 log(p ∨ T )}, we get

‖η̂(j) − η0
(j)‖1 ≤ cu1

√
Ns‖η̂(j) − η0

(j)‖2 =
o(1)ξ

log(p ∨ T )
(S1.23)

w.p. at least 1− πT . Next, consider any τj ≥ τ 0
j and define the following:

R1 = 2

τj∑
t=τ0j +1

ε∗Tt (η̂(j) − η0
(j)), and R2 = (τj − τ 0

j )
(
‖η̂(j)‖2

2 − ‖η0
(j)‖2

2).

Then, under the orientation min{τ̂j+1, τ
0
j+1} > τj ≥ τ 0

j , we have the following algebraic

expansion,

Cj(τj, τ̂−j, θ̂)− Cj(τj, τ 0
−j, θ

0)

= 2

τj∑
t=τ0j +1

ε∗Tt (η̂(j) − η0
(j))− (τj − τ 0

j )
(
‖η̂(j)‖2

2 − ‖η0
(j)‖2

2)

= R1 −R2 (S1.24)

Next, we provide uniform bounds for the terms R1 and R2 of (S1.24). Consider

sup
τj∈Gj(cuT−1ξ−2

j ,0);

τj≥τ0j

|R1| ≤ 2 sup
τj∈Gj(cuT−1ξ−2

j ,0);

τj≥τ0j

∥∥ τj∑
t=τ0j +1

ε∗t
∥∥
∞‖η̂(j) − η0

(j)‖1

≤ cuσξ
−1
j log(p ∨ T )‖η̂(j) − η0

(j)‖1 = o(1), (S1.25)

w.p. at least 1− o(1)− πT . The second inequality follows from Lemma S3.2, while the

final equality follows from an application of (S1.23). Next, consider term R2 of (S1.24)

sup
τj∈G(cuT−1ξ−2

j ,0);

τj≥τ0j

|R2| ≤ cuξ
−2
j

∣∣‖η̂(j)‖2
2 − ‖η0

(j)‖2
2

∣∣ (S1.26)

= cuξ
−2
j

∣∣‖η̂(j) − η0
(j)‖2

2 + 2(η̂(j) − η0
(j))

Tη0
(j)

∣∣
≤ cuξ

−2
j ‖η̂(j) − η0

(j)‖2
2 + 2cuξ

−1
j ‖η̂(j) − η0

(j)‖2 = op(1),
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wherein the second inequality follows as an application of the Cauchy-Schwarz inequal-

ity and the final equality follows from (S1.23). Applying (S1.25) and (S1.26) in the

expression (S1.24) yields

sup
τj∈Gj(cuT−1ξ−2

j ,0);

τj≥τ0j

∣∣Cj(τj, τ̂−j, θ̂)− Cj(τj, τ 0
−j, θ

0)
∣∣

≤ sup
τj∈Gj(cuT−1ξ−2

j ,0);

τj≥τ0j

|R1|+ sup
τj∈Gj(cuT−1ξ−2

j ,0);

τj≥τ0j

|R2| = op(1)

Per the discussion in the first paragraph, the only other orientation allowed for any τj

in the set Gj(cuT−1ξ−2
j , 0) is max{τ̂j−1, τ

0
j−1} ≤ τj < τ 0

j , w.p. 1− πT . Hence, the same

bound for this mirroring orientation can be obtained via symmetrical arguments. This

completes the proof of the lemma.

The proof of Theorem 5 is also an application of the Argmax Theorem. However,

we require preliminary work in order to establish a framework for this problem that

can fit into the setup of the theorem. To that end, introduce some additional notation.

Let H ⊆ {1, ..., N} be any finite subset, and let τ̂ , θ̂ be the preliminary estimates as

discussed in the main article. Define a new estimator

τ̆H = arg max
τH∈Z|H|;

τ̂j−1<τj<τ̂j+1;
∀j∈H

∑
j∈H

Cj(τj, τ̂−j, θ̂), (S1.27)

with Cj(τj, τ̂−j, θ̂) defined in (S1.18). Then, all but the jth summand in (S1.27) are

constants in the jth component of the maximizing argument τH , and thus this estimator
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(S1.27) is the same as the component-wise refitted estimates of (2.4), i.e.,

τ̆j = τ̃j ∀j ∈ H. (S1.28)

Proof of Theorem 5. Let H ⊆ {1, ..., N} be any finite subset. Recall that by the non-

vanishing jump size regime assumption, we have, ξj → ξ(∞,j), 0 < ξ(∞,j) < ∞, ∀j ∈

H. The proceeding argument shall apply the Argmax theorem in context of the H

dimensional sequence (τ̆H − τ 0
H) of (S1.27), the limiting result of which shall pass over

to the proposed τ̃H due to the equality (S1.28). Clearly, the underlying indexing metric

space is Z|H|. The reequirements to be verified for the Argmax theorem are:

1. The sequence (τ̆H − τ 0
H) is uniformly tight in Z|H|.

2. The Z|H| → R random field
∑

j∈H C(∞,j)(ζj) satisfies suitable regularity conditions.

3. For any ζ = (ζ1, ..., ζ|H|)
T ∈

{
−cu, ..., cu

}
|H|×1

, with cu ∈ Z+|H|, we have

∑
j∈H

Cj(τ 0
j + ζj, τ̂−j, θ̂)⇒

∑
j∈H

C(∞,j)(ζj). (S1.29)

From Theorem 1 we have for each fixed j ∈ H, the sequence (τ̃j − τ 0
j ) is uniformly

tight in Z. Then, the equality (S1.28) together with the assumption that |H| is finite,

implies Requirement (1). The second requirement is verified in Lemma S1.4 below. To

prove requirement (3), first note that from Lemma S1.3 and the finiteness of |H|, we

obtain

sup
τH∈GH

(
cuT−1,0

) ∣∣∣∑
j∈H

Cj(τj, τ̂−j, θ̂)−
∑
j∈H

Cj(τj, τ 0
−j, θ

0)
∣∣∣ = op(1).3
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Thus, to complete the proof of requirement (3) it only remains to show that

∑
j∈H

Cj(τ 0
j + ζj, τ

0
−j, θ

0)⇒
∑
j∈H

C(∞,j)(ζj), (S1.30)

where the increments of C(∞,j)(ζj) are additionally independent over all j’s. In all

arguments to follow, we assume w.l.o.g. |H| = 2, where H = {1, 2}. Let ζ1 > 0, and

ζ2 < 0. Proceeding analogously as in (S1.21), we get

C1(τ 0
1 + ζ1, τ

0
−1, θ

0) + C2(τ 0
2 + ζ2, τ

0
−2, θ

0)

=

τ01 +ζ1∑
t=(τ01 +1)

(
2ε∗Tt η

0
(1) − ξ2

1

)
+

τ02∑
t=(τ02 +ζ2+1)

(
2ε∗Tt η

0
(2) − ξ2

2

)

=

τ01 +ζ1∑
t=(τ01 +1)

(
2εTt η

0
(1) − ξ2

1

)
+

τ02∑
t=(τ02 +ζ2+1)

(
2εTt η

0
(2) − ξ2

2

)
− op(1)

⇒
2∑
j=1

|ζj |∑
t=1

ztj,

where ztj ∼ P
(
− ξ2

(∞,j), 4ξ
2
(∞,j)σ

2
(∞,j)

)
, for each t and each j, which are independent

over all t and j. Independence over j’s follows since by Condition B(ii), we have (τ 0
2 −

τ 0
1 ) ≥ T` → ∞; consequently, for T sufficiently large, the two sums of interest are

over non-overlapping indices, i.e., τ 0
1 + ζ1 < τ 0

2 + ζ2. The second equality of (S1.31)

follows analogously to (S1.19). The weak convergence follows from Condition A′. The

remaining permutations of the signs of ζ1, ζ2 can be handled symmetrically to yield the

same result. This completes the verification of requirement (3). An application of the

3Here GH
(
cuT−1, 0

)
= Gj1

(
cuT−1, 0

)
× ....× Gj|H|

(
cuT−1, 0

)
, for H = {j1, ...., j|H|}.
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Argmax theorem together with the equality (S1.28) now yields

(τ̃H − τ 0
H) = (τ̆H − τ 0

H)⇒ arg max
ζ∈Z|H|

∑
j∈H

C(∞,j)(ζj)

thereby establishing the first claim of the theorem. Next, note that

arg max
ζ∈Z|H|

∑
j∈H

C(∞,j)(ζj) =
(

arg max
ζ1∈Z

C(∞,1)(ζ1), arg max
ζ2∈Z

C(∞,2)(ζ2)
)T
. (S1.31)

This equality follows along the same lines as (S1.28).Also note that (S1.31) is an exact

equality and not just equality in distribution. The independence of C(∞,j)(ζj) over j as

discussed earlier implies

(
arg max
ζ1∈Z

C(∞,1)(ζ1), arg max
ζ2∈Z

C(∞,2)(ζ2)
)T

=d Πj∈H arg max
ζj∈Z

C(∞,j)(ζj),

which proves the second claim of this theorem. The final claim of asymptotic indepen-

dence of τ̃j, over j ∈ H now follows by comparing (3.11) to the marginal distributions

obtained in Theorem 4. This completes the proof of the theorem.

Lemma S1.4. Suppose Conditions A′, B and D hold, and let H ⊆ {1, 2, ..., N} be

any finite subset and assume the non-vanishing jump size regime of ξj → ξ(∞,j), 0 <

ξ(∞,j) < ∞, ∀j ∈ H. Let C(∞,j)(ζj) be as defined in (3.7). Then, the Z|H| → R

map
∑

j∈H C(∞,j)(ζj) is continuous with respect to the domain space. Additionally,

arg maxζ∈Z|H|
∑

j∈H C(∞,j)(ζj) possesses an almost sure unique maximum at ω∞ which

as a random map in Z|H| is tight.

Proof of Lemma S1.4. This proof has been adapted from Lemma A.3 of Kaul et al.

(2021) for the process under consideration. Continuity of sample paths of the ran-
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dom field
∑

j∈H C(∞,j)(ζj) follows trivially since the domain space Z|H| is discrete.

Next, from Condition A′ we have that incremental distributions are continuous, thus,

if maxζ∈Z|H|
∑

j∈H C(∞,j)(ζj) < ∞ a.s. then ω∞ must be unique and tight. Conse-

quently, the only thing that remains to show is that maxζ∈Z|H|
∑

j∈H C(∞,j)(ζj) < ∞

a.s., for this purpose, w.l.o.g. let |H| = 2 with H = {1, 2}. Now consider any fixed

ζ2 = ζ0
2 , and note that

∑
j∈H C(∞,j)(ζj) is a two sided random walk over ζ1. Moreover,

under the assumed non-vanishing jump size this two sided random walk is negative

drift, from Condition D the incremental variances are finite, and from the assumed

underlying subexponential distribution, all moments of incremental distributions exist.

Consequently, we have
∑

j∈H C(∞,j)(ζj) → −∞, as ζ1 → ∞ or ζ1 → ∞, a.s. (strong

law of large numbers). This implies that maxζ1∈Z
∑

j∈H C(∞,j)(ζj) < ∞, a.s. (follows

from the Hewitt-Savage 0-1 law, see, e.g. (1.1) and (1.2) on Page 172, 173 of Durrett

(2010)). Next, applying union bounds over the countable collection of ζ2 ∈ Z, yields

maxζ2∈Z maxζ1∈Z
∑

j∈H C(∞,j)(ζj) < ∞, a.s. (countable intersection of a.s. events is

a.s.), thereby completing the proof of the lemma.

Proof of Theorem 6. The main idea of this proof is first to prove the weak convergence

of the two underlying stochastic processes, i.e., the two sided random walk and the

Brownian motion on the lhs and rhs of (3.13), repsectively, followed by an application

of continuous mapping type results to obtain the weak convergence of the desired

argmax.

The first immediate roadblock towards this approach is the incoherence of the
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indexing spaces of the stochastic processes on the lhs and rhs of (3.13). To alleviate

this incoherence one may consider representing the lhs of (3.13) as arg maxr∈RC∞(brc).

This representation is however not well defined due to the non-uniqueness of the argmax

functional in this case. Thus, argmax needs to be re-defined as the smallest maximizer:

sargmax f(x) = min{x; f(x) ≥ f(y) ∀ y}. The functional sargmax has been studied

in the literature, e.g., Lan et al. (2009) and Seijo and Sen (2011) whose motivations

are exactly the same that arise here. Under this definition, one can re-write the lhs of

(3.13) as,

arg max
ζ∈Z

C∞
(
ζ, ξT , σ

2
T

)
=d sargmax

ζ′∈R
C∞
(
bζ ′c, ξT , σ2

T

)
=d bξ−2

T c sargmax
ζ∈R

C∞
(
bζbξ−2

T cc, ξT , σ
2
T

)
, (S1.32)

where the second equality follows directly from a change of variables ζ ′ = ζbξ−2
T c. Next,

consider the random walk on the rhs of (S1.32) as per the defining relation (3.6).

C∞
(
bζbξ−2

T cc, ξT , σ
2
T

)
=



∑−bζbξ−2
T cc

t=1 P
(
− ξ2

T , 4ξ2
Tσ

2
T

)
, ζ ∈ R−

0, ζ = 0

∑bζbξ−2
T cc

t=1 P
(
− ξ2

T , 4ξ2
Tσ

2
T

)
, ζ ∈ R+.

=d



∑−bζbξ−2
T cc

t=1

[
P
(
0, 4ξ2

Tσ
2
T

)
− ξ2

T

]
, ζ ∈ R−

0, ζ = 0

∑bζbξ−2
T cc

t=1

[
L
(
0, 4ξ2

Tσ
2
T

)
− ξ2

T

]
, ζ ∈ R+.

where the second equality follows from the additive invariance of P w.r.t scalar addition.
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Next, consider the positive arm (ζ > 0) of this process, to obtain

bζbξ−2
T cc∑

t=1

[
P
(
0, 4ξ2

Tσ
2
T

)
− ξ2

T

]
=d bξT c

bζbξ−2
T cc∑

t=1

P
(
0, 4bξ−2

T cξ
2
Tσ

2
T

)
− ξ2

T bζbξ−2
T cc

⇒ 2σ∞W (ζ)− σ2
∞ζ (S1.33)

The equality follows from the invariance of P w.r.t scalar multiplication. The weak

convergence follows from the functional central limit theorem, together with the limit

assumptions on the underlying sequences, specifically, ξT → 0, σ2
T → σ2

∞. Here we have

also utilized the elementary result ξ2
T bζbξ−2

T cc → ζ. The relation (S1.33) together with

a symmetric result on the negative arm (ζ < 0) of this process yields,

C∞
(
bζbξ−2

T cc, ξT , σ
2
T

)


2σ∞W1(ζ) + σ2
∞ζ if ζ < 0,

0, if ζ = 0,

2σ∞W2(ζ)− σ2
∞ζ if ζ > 0,

(S1.34)

Now applying the continuous mapping theorem for the sargmax functional (Lemma 3.1

of Lan et al. (2009) or Theorem 3.1 of Seijo and Sen (2011)) we obtain,

sargmax
ζ∈R

C∞
(
bζbξ−2

T cc, ξT , σ
2
T

)
⇒ arg max

ζ∈R
2σ∞W (ζ)− σ2

∞|ζ|

=d σ−2
∞ arg max

ζ∈R
2W (ζ)− |ζ|,

The equality follows from a change of variables (also see, proof of Theorem 3). Also

note that sargmax of the rhs has been replaced by argmax, since the rhs possesses

a unique maximizer. Finally, the statement of the theorem now follows by a back

substitution to the relation (S1.32) and noting that ξ2
T bξ−2

T c → 1. This completes the
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proof of this theorem.

S2 Proofs of results in Section 4

The proof of Theorem 7 requires some preliminary work. For any non-negative sequence

uT ≤ 1, define the collection,

G(uT ) =
{
τ ∈ {1, ..., T − 1}N ; max

1≤j≤N
|τj − τ 0

j | ≤ TuT

}
We begin by first examining the behavior of the estimates θ̃(j)(τ), j = 1, ..., N + 1,

uniformly over the collection G(uT ). This is provided in the following theorem.

Theorem S2.1. Suppose Conditions A and B(i, ii) hold and let G be as defined in

(S2.1). Let 0 ≤ uT ≤ cu1`, be any sequence with a suitably small constant cu1 > 0,

and let ψ = maxj ‖η0
(j)‖∞. Further, assume T` ≥ log(p ∨ T ) and for any constants

cu, cu2, > 0, and j = 1, ..., N, let

λj = λ = 16 max
[
σ
{2cu2 log(p ∨ T )

cuT`

} 1
2
,
uTψ

cu`

]
. (S2.1)

Then, θ̂(j)(τ), j = 1, ..., N + 1 of (4.3) satisfy the following two results

(i) For any τ ∈ Gw(uT ), and any j = 1, ..., N + 1, such that (τj − τj−1) ≥ cuT`, we

have
∥∥(θ̂(j)(τ)

)
Scj

∥∥
1
≤ 3
∥∥(θ̂(j)(τ)− θ0

(j)

)
Sj

∥∥
1
, for sets Sj as defined in (3.1).

(ii) The following bound is satisfied

max
1≤j≤N+1

sup
τ∈G(uT );

minj(τj−τj−1)≥cuT`

‖θ̂(j)(τ)− θ0
(j)‖2 ≤ 6

√
(Ns)λ,
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where both parts (i) and (ii) hold with probability at least 1−4 exp
{
−(cu3−4) log(p∨T )

}
,

cu3 = cu2 ∧
√

(cu2cu/2)..

Proof of Theorem S2.1. We begin with an observation that proves useful for the ensu-

ing argument. The assumption uT ≤ cu1`, yields that for any τ = (τ1, ..., τN)T ∈ G(uT ),

we obtain maxj |τj−τ 0
j | ≤ cu1T`. recall from Condition B(ii), that all change points are

separated by at least T`, i.e., minj(τj − τj−1) ≥ T`. Consequently, any τ ∈ G(uT ) must

satisfy any one of the four orientations τ 0
j−1 ≤ τj−1 < τ 0

j ≤ τj, τj−1 ≤ τ 0
j−1 < τ 0

j ≤ τj,

τ 0
j−1 ≤ τj−1 < τj ≤ τ 0

j or τj−1 ≤ τ 0
j−1 < τj ≤ τ 0

j , for any j = 1, ..., N. No other orienta-

tions are feasible under these assumed conditions. In view of this observation, w.l.o.g.

we assume one of the first of these four possible orientations, τ 0
j−1 ≤ τj−1 < τ 0

j ≤ τj in

the argument to follow. The remaining three permutations of the ordering of τj−1, τj

w.r.t. τ 0
j−1, τ

0
j , can be proved using symmetrical arguments.

Let τ ∈ G(uT ) additionally satisfy the relation minj(τj − τj−1) ≥ cuT`, then an al-

gebraic rearrangement of the elementary inequality
∥∥x̄(j)(τ)− θ̂(j)(τ)

∥∥2

2
+λj‖θ̂(j)(τ)‖1 ≤∥∥x̄(j)(τ)− θ0

(j)

∥∥2

2
+ λj‖θ0

(j)‖1 yields,

∥∥θ̂(j)(τ)− θ0
(j)

∥∥2

2
+ λj

∥∥θ̂(j)(τ)
∥∥

1
≤ λj

∥∥θ0
(j)

∥∥
1

+ 2

τj∑
t=τj−1+1

ε̂∗Tt (θ̂(j)(τ)− θ0
(j)),

= λj
∥∥θ0

(j)

∥∥
1

+
2

(τj − τj−1)

τj∑
t=τj−1+1

ε∗Tt (θ̂(j)(τ)− θ0
(j))

−2
(τj − τ 0

j )

(τj − τj−1)
(θ0

(j) − θ0
(j+1))

T (θ̂(j)(τ)− θ0
(j))
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≤ λj
∥∥θ0

(j)

∥∥
1

+
2

(τj − τj−1)

∥∥∥ τj∑
t=τj−1

ε∗t

∥∥∥
∞

∥∥θ̂(j)(τ)− θ0
(j)

∥∥
1

+
2uT
cu`

ψ
∥∥θ̂(j)(τ)− θ0

(j)

∥∥
1
, (S2.2)

where in the first inequality we have ε̂∗t =
(
xt − θ0

(j)

)
. The last inequality follows since

τ ∈ G(uT ), and by definition ‖θ0
(j) − θ0

(j+1)‖∞ ≤ ψ. Now using the bound of Lemma

S3.5 we have that,

2

(τj − τj−1)

∥∥∥ τj∑
t=τj−1

ε∗t

∥∥∥
∞
≤ 4
√

(2cu2/cu)σ
{ log(p ∨ T )

T`

} 1
2

(S2.3)

with probability at least 1 − 4 exp
{
− (cu3 − 4) log(p ∨ T )

}
, cu3 = cu2 ∧

√
(cu2cu/2).

Consequently, upon choosing,

λ∗ = 8 max
{√

(2cu2/cu)σ
{ log(p ∨ T )

T lT

} 1
2
,
uTψ

culT

}
,

and substituting in (S2.2), we obtain

∥∥θ̂(j)(τ)− θ0
(j)

∥∥2

2
+ λj

∥∥θ̂(j)(τ)
∥∥

1
≤ λj

∥∥θ0
(j)

∥∥
1

+ λ∗
∥∥θ̂(j)(τ)− θ0

(j)

∥∥
1
, (S2.4)

with probability at least 1− 4 exp
{
− (cu2− 4) log(p∨T )

}
. choosing λj = 2λ∗, leads to

‖
(
θ̂(j)(τ)

)
Scj
‖1 ≤ 3‖

(
θ̂(j)(τ)− θ0

(j)

)
Sj
‖1, which upon noting that the bound (S2.3) arises

from Lemma S3.5 which holds uniformly over j as well as over all considered values of

τ, proves part (i) of this theorem.

Next, from inequality (S2.4) we also have that,

‖θ̂(j)(τ)− θ0
(j)‖2

2 ≤
3

2
λj‖θ̂(j)(τ)− θ0

(j)‖1 ≤ 6λj
√

(Ns)‖θ̂(j)(τ)− θ0
(j)‖2 (S2.5)

This directly implies that ‖θ̂(j)(τ)− θ0
(j)‖2 ≤ 6λj

√
(Ns), where we have used ‖θ̂(j)(τ)−

θ0
(j)‖1 ≤ 4

√
(Ns)‖θ̂(j)(τ) − θ0

(j)‖2, which follows in turn Part (i). To complete the
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proof of this part recall that the only stochastic bound used here is the uniform bound

of Lemma S3.5; consequently, the final bound also holds uniformly over the same

collection. This result can alternatively be proved using the properties of the soft-

thresholding operator kλ(· ), by building uniform versions of arguments such as those

in Kaul et al. (2017).

Proof of Theorem 7. To prove the first claim, note that by Condition E′(i) we have,

cuσ
2ξ−2Ns log2(p ∨ T ) ≤ cu1T` (S2.6)

This relation together with assumed properties (4.5) of the preliminary change point

estimates imply that Condition C(i) is satisfied. The remaining claims of this theorem

are largely an application of Theorem S2.1. Note that relations (4.5) and (S2.6) imply

that τ̂ lies in the collection over which the uniform results of Theorem 7 are established,

i.e., τ̂ ∈ G(uT ), uT = cuT
−1σ2ξ−2Ns log2(p ∨ T ) ≤ `, and minj(τ̂j−1 − τ̂j) ≥ cuT`, w.p.

1− πT . Now consider λ as defined in (S2.1) with this choice of uT ,

λ = cu max
[
σ
{ log(p ∨ T )

T`

} 1
2
,
ψσ2ξ−2Ns log2(p ∨ T )

T`

]
= cuσ

{ log(p ∨ T )

T`

} 1
2

max
[
1,
(ψ
ξ

)(σ
ξ

){Ns log3/2(p ∨ T )√
(T`)

}]
≤ cuσ

{ log(p ∨ T )

T`

} 1
2
, (S2.7)

wherein the inequality follows by using the assumption ψ
/
ξ = O(1), together with Con-

dition E′(ii). The second claim and the bound (4.6) now follows from the corresponding

results of Theorem S2.1. To establish the final claim, note that from Condition E′(ii)
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we also have that,

cuσ
{Ns log(p ∨ T )

T`

} 1
2 ≤

cu1ξ

(Ns)1/2 log(p ∨ T )
(S2.8)

Thus, (4.6) together with (S2.8) imply that θ̂(j)(τ̂), j = 1, ...., N + 1 satisfy all require-

ments of Condition C(ii). This completes the proof of the theorem.

Proof of Corollary 1. This result is a direct consequence of Theorem 7 and the results

of Section 3. In particular, under the assumed conditions, Theorem 7 yields that the

preliminary estimates τ̂ and θ̂ satisfy all requirements of Condition C. All claims of

this now follow from corresponding results of Section 3.

The proof of Lemma 1 relies on the following Lemma that provides an `∞ bound

for the sample covariance obtained by centering the data based on estimated mean and

change point parameters.

Lemma S2.1. Let A be the event in (4.9) and assume conditions of Corolllary 1. Let

Σ̃ be as defined in 4.8 then on the event A, we have,

‖Σ̃− Σ‖∞ ≤ C
{ log(p ∨ T )

T`

}1/2

,

where C is a finite constant and Σ = Eεtε
T
t as defined in Condition B.

Proof of Lemma S2.1. The proof of this result relies on a recent result in the literature.

Define a version of the sample covariance computed via the true mean and change point

parameters as,

Σ̂ =
1

T

N+1∑
j=1

τ0j∑
t=τ0j−1

(xt − θ0
(j))(xt − θ0

(j))
T =

1

T

T∑
t=1

ε∗t ε
∗T
t (S2.9)
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Then, we have

‖Σ̂− Σ‖∞ ≤ C
{ log(p ∨ T )

T

}1/2

, (S2.10)

with probability at least 1 − o(1). The result S2.10 is well known under subgaussian

distributions, see e.g., Yuan (2010). In the case of subexponential distributions as

assumed in our article, the same result has recently been established in Kuchibhotla

and Chakrabortty (2022) (see, Theorem 4.1 and Remark 4.1 therein)4.

The remainder of this proof establishes ‖Σ̃ − Σ̂‖∞ ≤ C
√

log(p ∨ T )/T` on the

event A. This in turn shall complete the proof of this result. For this purpose we shall

utilize the following bounds that are induced by the set A and have also been proved

in the supplement. Specifically,

(i) max
j
|τ̃j − τ 0

j | ≤ Cξ−2 log2 T,

(ii) max
j
‖θ̂(j) − θ0

(j)‖2 ≤ C
{Ns log(p ∨ T )

T`

}1/2

(iii) max
j
‖θ̂(j) − θ0

(j)‖1 ≤ CNs
{ log(p ∨ T )

T`

}1/2

(iv) max
j
‖θ̂(j) − θ0

(j+1)‖2 ≤ Cξ, max
j
‖θ̂(j) − θ0

(j+1)‖1 ≤ C
√

(s)ξ (S2.11)

The first two follow directly from the set A. The third has been illustrated in last para

in the Proof of Theorem S2.1. The final two can be obtained directly by a triangle

inequality as well as by recalling Condition B(iii) on sparsity s of η0
(j) = (θ0

(j) − θ0
(j+1)).

4Note that the article Kuchibhotla and Chakrabortty (2022) establishes (S2.10) for 1
T

∑T
t=1 εtε

T
t , it can be shown

by arguments similar to those in Section S3 that the impact of ε̄ in ε∗t = εt − ε̄ is ignorable.
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We shall also require the following bounds on stochastic terms,

(v) max
j

∥∥ τ̃j∑
t=τ0j +1

ε∗t
∥∥
∞ ≤ Cξ−1 log(p ∨ T ) log T

(vi) max
j

1

T

∣∣ τ0j+1∑
t=τ0j +1

ε∗Tt δ
∣∣ ≤ C

log T√
(T`)

, (S2.12)

where δ is a unit vector. While both are stochastic bounds, however these are both

implicit in the event A, as both are utilized in order to obtain the results assumed in

event A. The first inequality can be obtained by (i) of Lemma S3.3 by substituting

TuT = Cξ−2 log2 T which in turn follows from the restriction in set A. The final

inequality can be obtained by arguments analogous to (ii) of Lemma S3.3.

For ease of exposition, we illustrate the following relation in the case of two change

points N = 2. A reproduction of the same arguments yields the same bound in the

more general case an arbitrary N. Let (τ̃1, τ̃2) represent the change point estimates of

(τ 0
1 , τ

0
2 ), recall that all arguments are on event A thus we implicitly assume N̂ = N

under this event. Consider the orientation τ 0
1 ≤ τ̃1 < τ 0

2 ≤ τ̃2, then we have,

(
Σ̃− Σ̂

)
=

1

T

N+1∑
j=1

τ̃j∑
t=τ̃j−1

(xt − θ̂(j))(xt − θ̂(j))
T − 1

T

T∑
t=1

ε∗t ε
∗T
t

=
1

T

[ τ01∑
t=1

(xt − θ̂(1))(xt − θ̂(1))
T +

τ̃1∑
t=τ01 +1

(xt − θ̂(1))(xt − θ̂(1))
T

+

τ02∑
t=τ̃1+1

(xt − θ̂(2))(xt − θ̂(2))
T +

τ̃2∑
t=τ02 +1

(xt − θ̂(2))(xt − θ̂(2))
T

+
T∑

t=τ̃02 +1

(xt − θ̂(3))(xt − θ̂(3))
T
]
− 1

T

T∑
t=1

ε∗t ε
∗T
t (S2.13)



Abhishek Kaul and George Michailidis

In order to bound the lhs of the above expression, decompose each term in the rhs as

follows:

τ01∑
t=1

(xt − θ̂(1))(xt − θ̂(1))
T =

τ01∑
t=1

(ε∗t − (θ̂(1) − θ0
(1))(ε

∗
t − (θ̂(1) − θ0

(1))
T

=

τ01∑
t=1

ε∗t ε
∗T
t + τ 0

1 ‖θ̂(1) − θ0
(1)‖2

2 − 2

τ01∑
t=1

ε∗t (θ̂(1) − θ0
(1))

T

τ̃1∑
t=τ01 +1

(yt − θ̂(1))(yt − θ̂(1))
T =

τ̃1∑
t=τ01 +1

(ε∗t − (θ̂(1) − θ0
(2)))(ε

∗
t − (θ̂(1) − θ0

(2))
T

=

τ̃1∑
t=τ01 +1

ε∗t ε
∗T
t + (τ̃1 − τ 0

1 )‖θ̂(1) − θ0
(2)‖2

2

−2

τ̃1∑
t=τ01 +1

ε∗t (θ̂(1) − θ0
(2))

T

τ02∑
t=τ̃1+1

(yt − θ̂(2))(yt − θ̂(2))
T =

τ02∑
t=τ̃1+1

ε∗t ε
∗T
t + (τ 0

2 − τ̃1)‖θ̂(2) − θ0
(2)‖2

2

−2

τ02∑
t=τ̃1+1

ε∗t (θ̂(2) − θ0
(2))

T

=

τ02∑
t=τ̃1+1

ε∗t ε
∗T
t + (τ 0

2 − τ 0
1 )‖θ̂(2) − θ0

(2)‖2
2 − (τ̃1 − τ 0

1 )‖θ̂(2) − θ0
(2)‖2

2

−2

τ02∑
t=τ01 +1

ε∗t (θ̂(2) − θ0
(2))

T + 2

τ̃1∑
t=τ01 +1

ε∗t (θ̂(2) − θ0
(2))

T

τ̃2∑
t=τ02 +1

(yt − θ̂(2))(yt − θ̂(2))
T =

τ̃2∑
t=τ02 +1

ε∗t ε
∗T
t + (τ̃2 − τ 2

2 )‖θ̂(2) − θ0
(3)‖2

2

−2

τ̃2∑
t=τ02 +1

ε∗t (θ̂(2) − θ0
(3))

T

T∑
t=τ̃2+1

(yt − θ̂(3))(yt − θ̂(3))
T =

T∑
t=τ̃2+1

ε∗t ε
∗T
t + (T − τ̃2)‖θ̂(3) − θ0

(3)‖2
2
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−2
T∑

t=τ̃2+1

ε∗t (θ̂(3) − θ0
(3))

T

Aggregating the above decompositions and substituing in (S2.13) yields,

‖Σ̃− Σ̂‖∞ ≤ max
j
‖θ̂(j) − θ0

(j)‖2
2 +

N

T
max
j
|τ̃j − τ 0

j |max
j
‖θ̂(j) − θ0

j‖2
2

+
N

T
max
j
|τ̃j − τ 0

j |max
j
‖θ̂(j) − θ0

(j+1)‖2
2

+
2N

T
max
j
‖θ̂(j) − θ2

(j)‖2 max
j

∣∣ τ0j+1∑
t=τ0j +1

εTt δ
∣∣

+
2N

T
max
j
‖θ̂(j) − θ0

(j)‖1 max
j

∥∥ τ̃j∑
t=τ0j +1

εt
∥∥
∞

+
2N

T
max
j
‖θ̂(j) − θ0

(j+1)‖1 max
j

∥∥ τ̃j∑
t=τ0j +1

εt
∥∥
∞ (S2.14)

where δ is a unit vector. It can be verified that the final inequality (S2.14) holds for

any orientation of τ̃ w.r.t τ 0 allowed under the event A, moreover also holds for any

number of change points N. Substituing the bounds of (S2.11) and (S2.12) in (S2.14)

and utilizing the rate assumption of Condition E(iii) it can be observed that the slowest

remainder term is of order C{log(p ∨ T )/T`}1/2, i.e., it yields,

‖Σ̃− Σ̂‖∞ ≤ C
{ log(p ∨ T )

T`

}
, (S2.15)

on the event A. Combining this inequality with (S2.10) via a triangle inequality yields

the statement of this result, i.e.,

‖Σ̃− Σ‖∞ ≤ ‖Σ̃− Σ̂‖∞ + ‖Σ̂− Σ‖∞ ≤ C
{ log(p ∨ T )

T`

}
+ C

{ log(p ∨ T )

T

}
This completes the proof.
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Proof of Lemma 1. The structure of this proof is as follows. First recall the event A

from (4.9) and note that we have already shown that P (A) → 1, as part of different

results of this paper; specifically, this holds by an aggregation of Theorems2 and S2.1

and (S2.7) in the Proof of Theorem 7. Next, we apply the bounds of this event A along

with Lemma S2.1 in order to establish the desired consistency.

We begin by proving part (i), and consider for any j = 1, ..., N

ξ̃2
j = ‖θ̂(j) − θ̂(j+1)‖2

2 = ‖(θ̂(j) − θ0
(j))− (θ̂(j+1) − θ0

(j+1)) + η0
(j)‖2

2

≤ ‖θ̂(j) − θ0
(j)‖2

2 + ‖θ̂(j+1) − θ0
(j+1)‖2

2 + ‖η0
(j)‖2

2

+2‖θ̂(j) − θ0
(j)‖2‖η0

(j)‖2 + 2‖θ̂(j+1) − θ0
(j+1)‖2‖η0

(j)‖2

+2‖θ̂(j) − θ0
(j))‖2‖θ̂(j+1) − θ0

(j+1))‖2

≤ ξ2
j + C

{Ns log(p ∨ T )

T`

}
+ Cξj

{NS log(p ∨ T )

T`

}1/2

(S2.16)

The final inequality follows by noting that by definition ξ2
j = ‖η0

(j)‖2
2, and that maxj ‖θ̂(j)−

θ̂(j+1)‖2 ≤ C
{
Ns log(p ∨ T )/T`

}1/2
, by restriction on the event A. Next, dividing

both sides of (S2.16) by ξ2
j and utilizing the rate restriction of Condition E(iii) yields

(ξ̃2
j /ξ

2
j ) ≤ 1 + o(1). Repeating a similar argument as (S2.16) from below can be utilzed

to analogously obtain (ξ̃2
j /ξ

2
j ) ≥ 1 − o(1). Combining both bounds from above and

below yields (ξ̃2
j /ξ

2
j )→ 1, which also directly implies Part (i) of this lemma.

We proceed to the proof of Part (ii). For this purpose we require the following

bounds

(i) ‖Σ̃− Σ‖∞ ≤ C
{ log(p ∨ T )

T`

}1/2

(S2.17)
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(ii) ‖η̂(j) − η0
(j)‖2 ≤ C

{Ns log(p ∨ T )

T`

}1/2

(iii) ‖η̂(j)‖2 ≤ Cξj, (iv) ‖η̂(j)‖1 ≤ C
√

(s)ξj,

for all j = 1, ..., N. The first inequality is proved in Lemma S2.1. The second follows

from the triangle inequality ‖η̂(j) − η0
(j)‖2 ≤ ‖θ̂(j) − θ0

(j)‖2 + ‖θ̂(j+1) − θ0
(j+1)‖2, and then

bounding individual terms directly from the restriction in event A. The third and

fourth can be obtained quite analogously by straightforward triangle inequalities and

utilizing the same restriction in event A, the sparsity of η0
(j) and the rate assumption

of Condition E(iii). Next, consider the decomposition,

(η̂T(j)Σ̃η̂(j) − η0T
(j)Ση

0
(j)) = η̂T(j)(Σ̃− Σ)η̂(j) + η0T

(j)Σ(η̂(j) − η0
(j)) + (η̂T(j) − η0)Ση̂(j)

= R1 +R2 +R3, (S2.18)

and then upper bound each of R1, R2 and R3 by utilizing (S2.17) as follows,

R1 = η̂T(j)(Σ̃− Σ)η̂(j) ≤ ‖(Σ̃− Σ)‖∞‖η̂(j)‖2
1 ≤ Cξ2

j s
{ log(p ∨ T )

T`

}1/2

|R2| ≤ φ2‖η̂(j)‖2‖η̂(j) − η0
(j)‖2 ≤ Cφ2ξj

{Ns log(p ∨ T )

T`

}1/2

|R3| ≤ φ2‖η0
(j)‖2‖η̂(j) − η0

(j)‖2 ≤ Cφ2ξj

{Ns log(p ∨ T )

T`

}1/2

(S2.19)

The bound for R1 utilizes (i) and (iv) of (S2.17). The bounds for R2, R3 utilize (ii)

and (iii) of (S2.17) along with the bounded maximum eigenvalue from Condition B(i).

From (S2.18), we have the following upper and lower bounds,

( η̂T(j)Σ̃η̂(j)

η0T
(j)Ση

0
(j)

− 1
)

=
1

(η0T
(j)Ση

0
(j))

(R1 +R2 +R3)
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≤ 1

κ2ξ2
j

(R1 + |R2|+ |R3|), and,

( η̂T(j)Σ̃η̂(j)

η0T
(j)Ση

0
(j)

− 1
)
≥ 1

φ2ξ2
j

(R1− |R2| − |R3|), (S2.20)

The first inequality follows directly by the bounded minimum eigenvalue of Condition

B(i) and the second from the maximum eigenvalue of the same condition. Now substi-

tute bounds of (S2.19) in (S2.20) and apply the rate assumption of Condition E(iii).

This yields that the rhs in both inequalities converges to zero. Combining this result

with Part (i) yields the statement of the Lemma.

Proof of Corollary 2. The proof of this result is consequence of the consistency of esti-

mates established in Lemma 1. Consider the non-vanishing regime and the correspond-

ing two sided random walk defined in (3.6) for any given j = 1, ..., N, under estimated

parameters, then we have the following convergence,

C∞(ζ, ξ̃j, σ̃
2
j )⇒ C∞(ζ, ξj, σ

2
∞,j) = C(∞,j)(ζ)

This convergence follows directly from Slutsky’s Theorem together with Lemma 1. The

convergence of argmax, now follows from Lemma 3.1 of Lan et al. (2009) which is a

version of the continuous mapping theorem, i.e., we have, arg maxζ∈Z C∞(ζ, ξ̃j, σ̃
2
j ) ⇒

arg maxζ∈Z C(∞,j)(ζ). This in turn implies that for any given 0 < α < 1, the quantiles

q̃nvα and qnvα obtained from either of arg maxζ∈Z C∞(ζ, ξ̃j, σ̃
2
j ) or arg maxζ∈Z C(∞,j)(ζ),

are asymptotically euivalent, i.e, (q̃nvα /q
nv
α ) → 1. The statement of the result is now a

direct consequence. Analogous arguments also provide the corresponding validity in

the vanshing case as well as the case for simultaneous intervals.
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S3 Deviation bounds

Lemma S3.1. Assume Condition A holds and let ε̄ =
∑T

t=1 εt
/
T. Then, for any

cu > 0, we get

‖ε̄‖∞ ≤


σ
√
{2cu log(p ∨ T )/T}, when T ≥ 2cu log(p ∨ T )

2cuσ log(p ∨ T )/
√
T, when T ≥ 1,

(S3.1)

with probability at least 1− 2 exp{−(cu − 1) log(p ∨ T )}. Further, for any non-random

δ ∈ Rp, ‖δ‖2 = 1, we have,
√
TδT ε̄ = Op(1). More precisely, for any 0 < a < 1,

choosing ca =
√

(1/a), we have, pr
(
|
√
TδT ε̄| > 4caσ

)
≤ a.

Proof of Lemma S3.1. Applying Bernstein’s inequality (Lemma S4.4) for each k =

1, ..., p,, we obtain

pr
(∣∣ T∑

t=1

εtk
∣∣ > dT

)
≤ 2 exp

{
− T

2

(d2

σ2
∧ d
σ

)}
. (S3.2)

In the case where T ≥ 2cu log(p∨T ), select d = σ{2cu log(p∨T )/T}1/2 to get (d2/σ2)∧

(d/σ) = d2/σ2. Substituting d in (S3.2) and applying union bounds over k = 1, ...p

yields the desired bound for this case. In the case where T ≥ 1, select d = 2cuσ{log2(p∨

T )/T}1/2, and note that

T

2

(d2

σ2

)
= 2cu log2(p ∨ T ), and

T

2

(d
σ

)
≥ cu log(p ∨ T ).

Since in this case the latter expression is smaller, substituting this choice of d in (S3.2)

and applying union bounds over k = 1, ...p yields the desired bound. The second claim

follows from the Markov inequality upon noting that
√
TδT ε̄ ∼ subE(σ2) (Lemma
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S4.3) together with a second moment bound for subexponential distributions (Lemma

S4.2).

Lemma S3.2. Assume that Conditions A and B(i) hold and ε∗t , t = 1, ..., T be as

defined in (2.1). Let 0 ≤ vT ≤ uT ≤ 1, be any non-negative sequences. Then, for any

cu ≥ 1, we get

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∥∥∥ τj∑
t=τ0j +1

ε∗t

∥∥∥
∞
≤ 4cuσ log(p ∨ T )

√(
TuT

)
, for given j = 1, ..., N.

with probability at least 1− 4 exp{−(cu − 2) log(p ∨ T )}.

Proof of Lemma S3.2. Without loss of generality assume vT ≥ (1/T ) (else, the sum of

interest is over an empty set of indices and trivially zero). Consider any k ∈ {1, 2, ..., p}

and any τj > τ 0
j , and apply Bernstein’s inequality (Theorem S4.4) for any d > 0 to

obtain

pr
(∣∣ τj∑

t=τ0j +1

εtk
∣∣ > d(τj − τ 0

j )
)
≤ 2 exp

{
−

(τj − τ 0
j )

2

(d2

σ2
∧ d
σ

)}
. (S3.3)

Select d = 2cuσ{log2(p ∨ T )/(τj − τ 0
j )}1/2, and note that

(τj − τ 0
j )

d2

2σ2
= 2c2

u log2(p ∨ T ), and,

(τj − τ 0
j )

d

2σ
≥ cu log(p ∨ T ),

where we have used (τj − τ 0
j ) ≥ TvT ≥ 1 to obtain the inequality. Substituting this

choice of d in (S3.3), we obtain

∣∣ τj∑
t=τ0j +1

εtk
∣∣ ≤ 2cuσ(τj − τ 0

j )1/2{log2(p ∨ T )}1/2 ≤ 2cuσ{TuT log2(p ∨ T )}1/2,
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w.p. at least 1 − 2 exp{−cu log(p ∨ T )}. Applying union bounds over k = 1, ..., p and

T possible distinct values of τj, yields,

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∥∥ τj∑
t=τ0j +1

εt
∥∥
∞ ≤ 2cuσ{TuT log2(p ∨ T )}1/2,

w.p. at least 1− 2 exp{−(cu− 2) log(p∨T )}. Finally, recall from (2.1) that ε∗t = εt− ε̄,

consequently,

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∥∥∥ τj∑
t=τ0j +1

ε∗t

∥∥∥
∞
≤ sup

τj∈Gj(uT ,vT );

τj≥τ0j

∥∥∥ τj∑
t=τ0j +1

εt

∥∥∥
∞

+ TuT‖ε̄‖∞

≤ 2cuσ{TuT log2(p ∨ T )}
1
2 + 2cuσuT{T log2(p ∨ T )}

1
2

≤ 2cuσ{TuT log2(p ∨ T )}
1
2

[
1 +
√
uT
]

≤ 4cuσ{TuT log2(p ∨ T )}
1
2 , (S3.4)

w.p. at least 1 − 2 exp{−(cu − 2) log(p ∨ T )} − 2 exp{−(cu − 1) log(p ∨ T )} ≥ 1 −

4 exp{−(cu − 2) log(p ∨ T )}. The second inequality follows from Lemma S3.1 and the

final inequality follows from uT ≤ 1. This completes the proof of the lemma.

Lemma S3.3. Assume that Conditions A and B(i) hold and ε∗t , t = 1, ..., T be as

defined in (2.1). Let 0 ≤ vT ≤ uT ≤ 1, be any non-negative sequences. Then, for any

cu ≥ 1, we have

(i) max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∥∥∥ τj∑
t=τ0j +1

ε∗t

∥∥∥
∞
≤ 4cuσ log(p ∨ T )

√(
TuT

)
, (S3.5)

with probability at least 1 − 4 exp{−(cu − 3) log(p ∨ T )}. Additionally, let ξ be as in
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(1.2), then,

(ii) max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τj∑
t=τ0j +1

ε∗Tt η
0
(j)

∣∣∣ ≤ 2cuξσ{TuT log2 T}1/2, (S3.6)

with probability at least 1− 4 exp{−(cu − 2) log T}.

Proof of Lemma S3.3. The first part of this lemma is a direct application of Lemma

S3.2 and is obtained by supplying an additional union bound over j = 1, .., N, and

noting that N ≤ T. To establish Part (ii), we have εTt η
0
(j) ∼ subE(ξ2

jσ
2), for each

t = 1, ..., T. Now proceed analogously to Lemma S3.2 by applying Bernstein’s inequality

to obtain for any given j = 1, ..., N and d > 0,

pr
(∣∣ τj∑

t=τ0j +1

εTt η
0
(j)

∣∣ > d(τj − τ 0
j )
)
≤ 2 exp

{
−

(τj − τ 0
j )

2

( d2

ξ2
jσ

2
∧ d

ξjσ

)}
. (S3.7)

Selecting d = 2cuξjσ{log2 T/(τj − τ 0
j )}1/2 and substituting in (S3.7), we obtain

∣∣ τj∑
t=τ0j +1

εTt η
0
(j)

∣∣ ≤ 2cuξjσ{TuT log2 T}1/2,

w.p. at least 1 − 2 exp{−cu log T}. Supplying union bounds over T possible distinct

values of τj and over j = 1, ..., N, and that by definition ξj ≤ ξ, we obtain

max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣ τj∑
t=τ0j +1

εTt η
0
(j)

∣∣ ≤ 2cuξσ{TuT log2 T}1/2,

w.p. at least 1− 2 exp{−(cu− 2) log T}. In order to obtain the analogous bound w.r.t.

ε∗t , note that
√
T ε̄Tη0

(j) ∼ subE(ξ2
jσ

2). Again employing Bernstein’s inequality together

with union bounds over j = 1, ..., N, we get

max
1≤j≤N

∣∣ε̄Tη0
(j)

∣∣ ≤ 2cuξσ{log2 T/T}1/2, (S3.8)
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w.p. at least 1− 2 exp{−(cu − 1) log T}. Next, proceeding as in (S3.4), we obtain

max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣ τj∑
t=τ0j +1

ε∗Tt η
0
(j)

∣∣ ≤ max
1≤j≤N

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣ τj∑
t=τ0j +1

εTt η
0
(j)

∣∣+ TuT max
1≤j≤N

∣∣ε̄Tη0
(j)

∣∣
≤ 2cuξσ{TuT log2 T}1/2 + 2cuξσ{T log2 T}1/2

≤ 4cuξσ{TuT log2 T}1/2,

w.p. at least 1− 4 exp{−(cu − 2) log T}, which completes the proof of the lemma.

Lemma S3.4. Assume that Conditions A and B(i) hold and let uT , vT be any non-

negative sequences satisfying 0 ≤ vT ≤ uT ≤ 1. Then, for any 0 < a < 1, with

ca ≥
√

(1/a) and for any given j = 1, ..., N, we get

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τj∑
t=τ0j +1

ε∗Tt η
0
(j)

∣∣∣ ≤ 8caσξj
√

(TuT ),

with probability at least 1− 2a.

Proof of Lemma S3.4. This result is largely an application of Kolmogorov’s inequality

(Theorem S4.1). For any given j = 1, ..., N, we have

var(εTt η
0
(j)) ≤ 16ξ2

jσ
2

where the inequality follows from Lemma S4.2. Next, note that there are at most TuT

distinct values of τj in the set Gj(uT , vT ). Now apply Kolmogorov’s inequality (Theorem

S4.1) for any d > 0 to obtain

pr
(

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τj∑
t=τ0j +1

εTt η
0
(j)

∣∣∣ > d
)
≤ TuT

d2
16σ2ξ2

j .
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Selecting d = 4caσξj
√

(TuT ) with ca ≥
√

(1/a) yields

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τj∑
t=τ0j +1

εTt η
0
(j)

∣∣∣ ≤ 4caσξj
√

(TuT ),

w.p. at least 1− a. The analogous bound w.r.t ε∗t can be obtained as

sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τj∑
t=τ0j +1

ε∗Tt η
0
(j)

∣∣∣ ≤ sup
τj∈Gj(uT ,vT );

τj≥τ0j

∣∣∣ τj∑
t=τ0j +1

εTt η
0
(j)

∣∣∣+ TuT |ε̄Tη0
(j)|

≤ 4caσξj
√

(TuT ) + 4caσξjuT
√
T

≤ 8caσξj
√

(TuT ),

w.p. at least 1− 2a. Here the second inequality follows from (S3.9) together with the

second claim of Lemma S3.1. This completes the proof.

Lemma S3.5. Assume Conditions A and B(i) hold and that T` ≥ log(p ∨ T ). Then,

for any cu, cu1 > 0, we have

max
1≤j≤N+1

sup
τj−1,τj∈{1,.....,T−1};

(τj−τj−1)≥cuT`

1

(τ(j) − τ(j−1))

∥∥∥ τj∑
t=τj−1+1

ε∗t

∥∥∥
∞

≤ 2σ
{2cu1 log(p ∨ T )

cuT`

} 1
2

with probability at least 1−4 exp
{
− (cu2−4) log(p∨T )

}
, where cu2 = cu1∧

√
(cucu1/2).

Proof of Lemma S3.5. For any given j = 1, ..., N consider any τj−1 < τj ∈ {1, ..., T}

satisfying (τj − τj−1) ≥ cuT`, and any k ∈ {1, ..., p}. Then applying the Bernstein’s

inequality (Lemma S4.4) for any d > 0, we obtain,

pr
(∣∣∣ τj∑

t=τj−1+1

εtk

∣∣∣ > d(τj − τj−1)
)
≤
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2 exp
{
−

(τj − τ(j−1))

2

(d2

σ2
∧ d
σ

)}
. (S3.9)

Choose d = σ
{

2cu1 log(p ∨ T )
/(
τ(j) − τ(j−1)

)}1/2

, then, we have,

(
τj − τj−1

) d2

2σ2
= cu1 log(p ∨ T ), and,(

τj − τj−1

) d
2σ

≥
√

(cu1/2)(cuT`)
1/2{log(p ∨ T )}1/2

≥
√

(cucu1/2) log(p ∨ T ).

The first inequality follows since by choice
(
τj+1 − τj−1

)
≥ cuT`, and the second

inequality follows by assumption T` ≥ log(p ∨ T ). Substituting this choice of d in

(S3.9), we obtain,

1(
τj − τj−1

)∣∣∣ τj∑
t=τj−1+1

εtk

∣∣∣ ≤ σ
{

2cu1 log(p ∨ T )
/(
τj − τj−1

)}1/2

≤ σ
{2cu1 log(p ∨ T )

cuT`

}1/2

with probability at least 1 − 2 exp{−cu2 log(p ∨ T )}, where cu2 = cu1 ∧
√

(cucu1/2).

Applying union bounds over k = 1, ..., p, the upper bound T 2 of at most distinct

combinations of τj−1 and τj+1, and then over j = 1, ..., N + 1, (N ≤ T ) yields,

max
1≤j≤N+1

sup
τj−1,τj∈{1,.....,T−1};

(τj−τj−1)≥cuT`

1(
τj − τj−1

)∣∣∣ τj+1∑
t=τj−1+1

εtk

∣∣∣ ≤ σ
{2cu1 log(p ∨ T )

cuT`

}1/2

,

w.p. at least 1− 2 exp
{
− (cu2 − 4) log(p ∨ T )

}
. Finally utilizing the form ε∗t = εt − ε̄,

t = 1, ..., T, together with the first bound for ‖ε̄‖∞ of Lemma S3.1 by an argument

analogous to that in (S3.4) yields the statement of the lemma.
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S4 Definitions and auxiliary results

The following definitions and results provide basic properties of subexponential dis-

tributions. These are largely reproduced from Vershynin (2019) and Rigollet (2015).

Theorem S4.1 and S4.2 below reproduce Kolmogorov’s inequality and the Argmax

Theorem.

Definition S4.1. [Subexponential r.v.] A random variable X ∈ R is said to be sub-

exponential with parameter σ2 > 0
(
denoted by X ∼ subE(σ2)

)
if E(X) = 0 and its

moment generating function

E(etX) ≤ et
2σ2/2, ∀ |t| ≤ 1

σ

Definition S4.2. A random vector X ∈ Rp is subexponential with parameter σ2, if

the inner product 〈X, v〉 ∼ subE(σ2), respectively, for any v ∈ Rp with ‖v‖2 = 1.

Following is the elementary definition of uniform tightness of a sequence of random

variables reproduced from Page 166, Chapter 2 of Durrett (2010).

Definition S4.3. A sequence of random variables Xn is said to be uniformly tight if

for every ε > 0, there is a compact set K such that pr(Xn ∈ K) > 1− ε.

Lemma S4.1. [Tail bounds] If X ∼ subE(σ2), then

pr(|X| ≥ λ) ≤ 2 exp
{
− 1

2

(λ2

σ2
∧ λ
σ

)}
.

Lemma S4.2 (Moment bounds). If X ∼ subE(σ2), then

E|X|k ≤ 4σkkk, k > 0.
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Lemma S4.3. Assume that X ∼ subE(σ2), and that α ∈ R, then αX ∼ subE(α2σ2).

Moreover, assume that X1 ∼ subE(σ2
1) and X2 ∼ subE(σ2

2), then X1+X2 ∼ subE((σ1 + σ2)2),

additionally, if X1 and X2 are independent, then X1 +X2 ∼ subE(σ2
1 + σ2

2).

Lemma S4.4 (Bernstein’s inequality). Let X1, X2, ..., XT be independent random vari-

ables such that Xt ∼ subE(λ2). Then for any d > 0 we have,

pr(|X̄| > d) ≤ 2 exp
{
− T

2

(d2

λ2
∧ d
λ

)}
The next result is Kolmogorov’s inequality reproduced from Hájek and Rényi (1955)

Theorem S4.1 (Kolmogorov’s inequality). If ξ1, ξ2, ... is a sequence of mutually inde-

pendent random variables with mean values E(ξk) = 0 and finite variance var(ξk) = D2
k

(k = 1, 2, ...), we have, for any ε > 0,

pr
(

max
1≤k≤m

∣∣ξ1 + ξ2 + ...+ ξk
∣∣ > ε

)
≤ 1

ε2

m∑
k=1

D2
k

Next, we provide the Argmax Theorem reproduced from Theorem 3.2.2 of Vaart

and Wellner (1996).

Theorem S4.2 (Argmax Theorem). Let Mn,M be stochastic processes indexed by a

metric space H such that Mn ⇒M in `∞(K) for every compact set K ⊆ H. Suppose

that almost all sample paths h→M(h) are upper semicontinuous and posses a unique

maximum at a (random) point ĥ, which as a random map in H is tight. If the sequence

ĥn is uniformly tight and satisfies Mn(ĥn) ≥ suphMn(h)− op(1), then ĥn ⇒ ĥ in H.

Theorem S4.3. Let X1, ..., Xn be independent marginally sub-Weibull random vectors
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in Rp satisfying

max
1≤i≤n

‖Xi‖M,ψn ≤ Kn,p <∞, forsome 0 < α ≤ 2.

Fix n, p ≥ 1. Then for any t ≥ 0, with probability at least 1− 3 exp(−t),

‖Σ̂n − Σn‖∞ ≤ 7An,p

√
t+ 2 log p

n
+
CαK

2
n,p

(
log(2n)

)2/α
(t+ 2 log p)2/α

n
,

where Cα > 0 is a constant depending only on α, and A2
n,p is given by,

A2
n,p = max

1≤j≤k≤p

1

n

n∑
i=1

Var
(
Xi(j)Xi(k)

)
(S4.1)

S5 Additional details and numerical results

S5.1 Estimation of drifts, asymptotic variances and quantiles

Next, we provide a discussion on the estimation of ξj, and σ2
(∞,j), j = 1, ..., N, employed

to obtain confidence intervals for τ 0 = (τ 0
1 , ..., τ

0
N)T , using the results of Theorems 3, 4

and 5.

First, to alleviate finite sample regularization biases we employ refitted mean es-

timates computed as θ̃(j) =
[
x̄(j)(τ̃)

]
Ŝj
j = 1, ..., N wherein τ̃ is the change point

estimate of Algorithm 1. Here Ŝj = {k θ̂(j)k 6= 0}, j = 1, ..., N correspond to the

estimated sparsity sets, where θ̂(j), j = 1, ..., N are the Step 2 mean estimates of Al-

gorithm 1. All remaining indices of these mean estimates are set to zero. It is known

that refitted mean estimates preserve the rate of convergence of the regularized version

while reducing finite sample biases, e.g. Belloni et al. (2011). The jump vectors and
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jump sizes η̃(j) and ξ̃j, j = 1, ..., N, are then evaluated as plug-in estimates per the

defining relations (1.2).

Next, consider the asymptotic variances σ2
(∞,j), j = 1, ..., N of Condition D. Note

the finite sample representation of this parameter, ξ−2
j η0T

(j)Ση
0
(j). Plug-in versions σ̃2

(∞,j),

j = 1, ..., N, are computed by employing the above described estimated parameters.

The covariance matrix Σ is estimated as the sample covariance Σ̃ computed by utilizing

the entire data set centered with the estimated mean parameters θ̃(j), j = 1, ..., N over

estimated partitions induced by τ̃ of Algorithm 1. Note that since we are not interested

in the estimation of Σ itself, but instead the quadratic form described above, employing

the sample covariance is effectively identical to employing the refitted covariance on

the adjacency matrix estimated by the jump vectors η̃′(j)s, in turn making this shortcut

valid despite potential high dimensionality.

Finally, for quantiles of the limiting distributions characterized in Theorems 3 and

4 in the vanishing and non-vanishing regimes, respectively, we note the following: in

the former case, we employ the cdf of this distribution which was first presented in Yao

(1987). In the latter case, we assume in all calculations that the underlying distribution

is Gaussian and consequently the distribution of the increments P of Condition A′ is

also Gaussian. The above estimated parameters are then used to produce realizations

of the increments’ distribution, and thus realizations of the two-sided random walk

and in turn those of its argmax. The quantiles are then estimated by a Monte Carlo

approximation.
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S5.2 Additional numerical results of Section 5

Results of Scenarios A an B (Gaussian errors): Tables 1 and 2 below provide

results for these scenarios for N = 4 change points, respectively.

N = 4,

s = 4 haus.d (sd)

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

(1− α)N = 0.814T p Vanishing Non-Vanishing

450 50 1.31 (1.28) 0.964 (2.08) 0.978 (2.02) 0.794

450 200 1.31 (1.15) 0.936 (2.07) 0.958 (2) 0.79

450 350 1.33 (1.42) 0.946 (2.07) 0.978 (2.01) 0.798

450 500 1.35 (1.37) 0.954 (2.12) 0.976 (2.06) 0.79

600 50 1.41 (1.32) 0.96 (2.12) 0.976 (2.03) 0.79

600 200 1.31 (1.3) 0.934 (2.08) 0.96 (2.02) 0.808

600 350 1.38 (1.17) 0.952 (2.05) 0.978 (1.99) 0.798

600 500 1.36 (1.19) 0.94 (2.05) 0.97 (1.98) 0.772

750 50 1.39 (1.22) 0.958 (2.12) 0.972 (2.02) 0.786

750 200 1.33 (1.28) 0.946 (2.09) 0.962 (2.02) 0.788

750 350 1.41 (1.41) 0.95 (2.09) 0.968 (2) 0.768

750 500 1.42 (1.38) 0.954 (2.08) 0.972 (2.02) 0.774

Table 1: Results of Scenario A with N = 4 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.
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Method

N = 4,

s = 4 haus.d (sd) N-match

Comp. cov. (av. ME)
∣∣N̂ = N

(1− α) = 0.95

Simul.

cov.
∣∣N̂ = N

(1− α)N = 0.814T p Vanishing Non-Vanishing

KFJS+

BS+

LR

450 50 2.81 (6.46) 0.95 0.951 (2.08) 0.975 (1.99) 0.753

450 200 5.09 (10.6) 0.88 0.939 (2.08) 0.964 (2.02) 0.722

450 350 4.15 (9.57) 0.90 0.924 (2.09) 0.955 (2.02) 0.753

450 500 4.27 (9.33) 0.89 0.921 (2.11) 0.946 (2.05) 0.742

600 50 3.79 (9.86) 0.94 0.932 (2.11) 0.951 (2.02) 0.756

600 200 4.86 (11.71) 0.92 0.954 (2.07) 0.963 (2.00) 0.771

600 350 5.19 (12.6) 0.92 0.948 (2.10) 0.969 (2.03) 0.734

600 500 4.57 (11.4) 0.92 0.939 (2.07) 0.961 (2.02) 0.747

750 50 6.18 (16.19) 0.91 0.956 (2.14) 0.978 (2.04) 0.776

750 200 7.10 (17.78) 0.90 0.942 (2.10) 0.969 (2.02) 0.752

750 350 6.78 (16.79) 0.90 0.951 (2.11) 0.976 (2.03) 0.734

750 500 6.16 (16.14) 0.91 0.941 (2.10) 0.956 (2.03) 0.742

WS

+LR

450 50 12.54 (17.97) 0.64 0.934 (2.06) 0.959 (1.99) 0.723

450 200 14.16 (22.25) 0.64 0.938 (2.07) 0.959 (1.99) 0.716

450 350 24.83 (53.64) 0.58 0.911 (2.08) 0.955 (2.01) 0.712

450 500 84.14 (116.91) 0.49 0.918 (2.07) 0.951 (2.00) 0.694

600 50 15.77 (23.71) 0.62 0.926 (2.10) 0.945 (2.00) 0.746

600 200 18.55 (25.95) 0.62 0.942 (2.04) 0.971 (1.97) 0.759

600 350 18.09 (29.49) 0.64 0.928 (2.09) 0.950 (2.00) 0.704

600 500 30.79 (68.63) 0.60 0.957 (2.06) 0.973 (2.01) 0.739

750 50 20.57 (30.58) 0.60 0.94 (2.15) 0.967 (2.05) 0.779

750 200 20.14 (29.03) 0.62 0.935 (2.09) 0.955 (2.00) 0.718

750 350 19.38 (29.51) 0.66 0.961 (2.10) 0.976 (2.02) 0.721

750 500 23.25 (38.99) 0.65 0.923 (2.09) 0.944 (2.02) 0.728

Table 2: Results of Scenario B with N = 4 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.



Abhishek Kaul and George Michailidis

Results of Scenarios A′ and B′ (subexponential errors): Tables 3 and 5 below

provide results for these scenarios with N = 2 change points, and Tables 4 and 6 with

N = 4.. Under Scenario B′ with subexponential errors, the method WS for preliminary

estimation was found to have a very low proportion of replicates wherein N̂ = N.

Hence, it was rendered unsuitable for calculating the coverage metrics. Consequently

in Scenario B′ we only report results obtained by the KFJS+BS+LR method.

N = 2,

s = 4 haus.d (sd)

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

(1− α)N = 0.902T p Vanishing Non-Vanishing

450 50 0.79 (1.00) 0.962 (2.16) 0.982 (2.05) 0.888

450 200 0.76 (1.10) 0.956 (2.15) 0.968 (2.05) 0.894

450 350 0.75 (1.02) 0.950 (2.12) 0.964 (2.05) 0.882

450 500 0.79 (1.06) 0.954 (2.11) 0.968 (2.02) 0.878

600 50 0.71 (1.11) 0.958 (2.18) 0.964 (2.05) 0.908

600 200 0.81 (1.13) 0.940 (2.15) 0.952 (2.03) 0.886

600 350 0.84 (1.03) 0.946 (2.16) 0.964 (2.04) 0.862

600 500 0.70 (0.96) 0.948 (2.14) 0.972 (2.03) 0.898

750 50 0.74 (0.99) 0.958 (2.17) 0.966 (2.03) 0.888

750 200 0.81 (1.07) 0.954 (2.17) 0.962 (2.03) 0.864

750 350 0.70 (0.97) 0.956 (2.16) 0.968 (2.02) 0.888

750 500 0.72 (0.92) 0.962 (2.17) 0.974 (2.03) 0.898

Table 3: Results of Scenario A′ with N = 2 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.
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N = 4,

s = 4 haus.d (sd)

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

(1− α)N = 0.814T p Vanishing Non-Vanishing

450 50 1.28 (1.33) 0.962 (2.08) 0.972 (2.00) 0.808

450 200 1.34 (1.23) 0.958 (2.06) 0.976 (1.98) 0.788

450 350 1.31 (1.31) 0.958 (2.08) 0.968 (2.00) 0.796

450 500 1.37 (1.15) 0.946 (2.09) 0.964 (2.02) 0.770

600 50 1.32 (1.24) 0.958 (2.11) 0.980 (2.04) 0.798

600 200 1.26 (1.20) 0.940 (2.06) 0.958 (1.98) 0.798

600 350 1.40 (1.30) 0.956 (2.07) 0.982 (2.00) 0.768

600 500 1.44 (1.47) 0.956 (2.06) 0.974 (1.99) 0.770

750 50 1.29 (1.25) 0.940 (2.14) 0.952 (2.04) 0.814

750 200 1.36 (1.31) 0.946 (2.09) 0.962 (2.02) 0.772

750 350 1.29 (1.25) 0.956 (2.09) 0.970 (2.00) 0.806

750 500 1.46 (1.35) 0.950 (2.10) 0.972 (2.03) 0.784

Table 4: Results of Scenario A′ with N = 4 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.
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Method

N = 2,

s = 4 haus.d (sd) N-match

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

(1− α)N = 0.902T p Vanishing Non-Vanishing

KFJS+

BS+

LR

450 50 18.14 (25.7) 0.65 0.957 (2.16) 0.957 (2.12) 0.877

450 200 18.96 (26.59) 0.66 0.955 (2.16) 0.970 (2.12) 0.882

450 350 17.16 (26.31) 0.70 0.940 (2.18) 0.974 (2.11) 0.883

450 500 16.66 (26.04) 0.71 0.924 (2.21) 0.941 (2.18) 0.876

600 50 25.75 (34.03) 0.60 0.940 (2.18) 0.957 (2.10) 0.881

600 200 26.55 (35.15) 0.62 0.913 (2.14) 0.926 (2.06) 0.859

600 350 25.90 (35.85) 0.65 0.938 (2.18) 0.969 (2.12) 0.864

600 500 23.78 (34.47) 0.66 0.952 (2.16) 0.967 (2.08) 0.891

750 50 24.18 (39.17) 0.70 0.936 (2.21) 0.954 (2.09) 0.858

750 200 31.50 (42.29) 0.62 0.964 (2.18) 0.964 (2.09) 0.877

750 350 33.38 (44.07) 0.61 0.944 (2.17) 0.958 (2.06) 0.869

750 500 33.99 (45.38) 0.62 0.929 (2.18) 0.936 (2.09) 0.878

Table 5: Results of Scenario B′ with N = 2 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.
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Method

N = 4,

s = 4 haus.d (sd) N-match

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

(1− α)N = 0.814T p Vanishing Non-Vanishing

KFJS+

BS+

LR

450 50 3.57 (8.71) 0.93 0.961 (2.09) 0.970 (2.08) 0.773

450 200 4.32 (9.75) 0.91 0.928 (2.08) 0.952 (2.08) 0.740

450 350 3.86 (8.63) 0.90 0.934 (2.11) 0.962 (2.09) 0.723

450 500 4.01 (9.21) 0.91 0.940 (2.14) 0.962 (2.14) 0.753

600 50 4.42 (11.27) 0.93 0.950 (2.11) 0.974 (2.07) 0.767

600 200 4.92 (12.32) 0.92 0.939 (2.08) 0.961 (2.05) 0.762

600 350 5.51 (13.30) 0.91 0.945 (2.08) 0.967 (2.06) 0.750

600 500 4.50 (11.71) 0.93 0.940 (2.09) 0.970 (2.08) 0.755

750 50 5.64 (14.81) 0.92 0.948 (2.14) 0.952 (2.08) 0.754

750 200 5.55 (14.99) 0.93 0.942 (2.09) 0.952 (2.05) 0.769

750 350 5.47 (14.83) 0.93 0.959 (2.09) 0.974 (2.05) 0.754

750 500 6.26 (16.56) 0.91 0.949 (2.08) 0.967 (2.04) 0.786

Table 6: Results of Scenario B′ with N = 4 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.

Setup and results of Scenario C: The design of this simulation is largely identical

to that of Scenario B (Gaussian errors) described in Section 5, with the only distinction

being that we consider larger values of the sampling period T ∈ {1000, 1500}. Results

are provided in Table 7 below.
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Method

N = 4,

s = 4 haus.d (sd) N-match

Comp. coverage (av. ME)

(1− α) = 0.95

Simul.

Coverage

(1− α)N = 0.814T p Vanishing Non-Vanishing

KFJS+

BS+

LR

1000 200 8.01 (21.17) 0.90 0.967 (2.12) 0.978 (2.01) 0.792

1000 350 9.85 (23.37) 0.87 0.945 (2.12) 0.956 (2.02) 0.793

1000 500 8.91 (22.70) 0.89 0.935 (2.11) 0.957 (2.02) 0.763

1500 200 12.85 (34.33) 0.89 0.957 (2.18) 0.969 (2.02) 0.804

1500 350 13.78 (35.74) 0.88 0.957 (2.17) 0.973 (2.02) 0.758

1500 500 11.77 (32.69) 0.89 0.955 (2.16) 0.971 (2.01) 0.786

WS+

LR

1000 200 24.70 (41.09) 0.66 0.964 (2.12) 0.976 (2.00) 0.781

1000 350 24.99 (38.80) 0.63 0.937 (2.13) 0.947 (2.03) 0.767

1000 500 21.60 (37.41) 0.71 0.949 (2.11) 0.966 (2.02) 0.764

1500 200 34.72 (61.29) 0.67 0.941 (2.17) 0.962 (2.01) 0.776

1500 350 35.65 (61.65) 0.68 0.959 (2.17) 0.974 (2.01) 0.752

1500 500 37.09 (63.98) 0.68 0.950 (2.16) 0.962 (2.01) 0.776

Table 7: Results of Scenario C with N = 4 based on 500 replicates. Coverage metrics rounded to

three decimals, all other metrics rounded to two decimals.

S5.3 Description of second method (KFJS+BS) employed for preliminary

estimation in Section 5

Kaul et al. (2021) considers a mean shift model with a single change point under

potential high dimensionality, i.e., model (1.1) with N = 1. They propose a two step

algorithmic procedure which yields an estimate that is optimal is its rate of convergence

(this estimate is the same to τ̃ in Algorithm 1 in Section 3 for N = 1). While not

of direct interest, the paper also establishes that the first update in their algorithm is
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near optimal, i.e., obeys the bound (4.5) with N = 1, under identical assumptions as

those assumed here, including the relaxation to subexponential distributions. Remark

4.2 of the paper provides an `0 regularization that also enables boundary selection of

the change point estimate, i.e., identifying that a change point is not present. This

estimator is compiled as Algorithm 2 below.

Algorithm 2 (KFJS): Near optimal estimation of τ0 with boundary selection (under N = 1)

(Initialize): Select a preliminary evenly spaced coarse grid D ⊂ {1, ..., T} of cardinality log T.

Select an initializer τ̌ ∈ D as the best fitting value to the data
{
xt
}T
t=1

.

Step 1: Obtain mean estimates θ̌(j) = θ̂(j)(τ̌), j = 1, 2, and update change point estimates as

τ̂ = arg min
τ∈{1,...,(T−1)}

Q(τ, θ̌),

and perform an `0 regularization as

τ̂∗ =


T (no change) if {Q(T, θ̌)−Q(τ̂ , θ̌)} < γ

τ̂ else.

(Output): τ̂∗

The mean estimates θ̂(τ) of Algorithm 2 are the soft-thresholded sample means as

defined in (4.3), and Q(τ, θ) represents the squared loss under a single change point
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assumption defined as

Q(τ, θ) =
τ∑
t=1

‖xt − θ(1)‖2
2 +

T∑
t=τ+1

‖xt − θ(2)‖2
2.

It can be observed that the regularization carried out in Step 1 of Algorithm 2 is

equivalent to

τ̂ ∗ = arg min
τ∈{1,...,(T−1)}

{
Q(τ, θ̌) + γ1[τ 6= T ]

}
.

Further, the BIC criterion to tune this regularization reduces to γ = (|Ŝ2| + 1) log T .

Note that at the boundary value τ = T, the model has |S2| fewer mean parameters

and one less change point parameter. It can be shown that in addition to near optimal

estimation of τ 0, Algorithm 2 also provides selection consistency, i.e., pr(τ̂ ∗ = T )→ 1

when τ 0 = T. A natural extension of Algorithm 2 is employed in Section 5 by leveraging

binary segmentation, i.e., recursive application of Algorithm 2 on estimated partitions,

performed until no further change points are detected. This extension is summarized

in Algorithm 3.
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