Abstract

In this paper, we develop a multi-step estimation procedure to simulta

neously estimate the varying-coefficient functions using a local-linear generalized

method of moments (GMM) based on continuous moment conditions. To incorporate spatial dependence, the continuous moment conditions are first projected

onto eigen-functions and then combined by weighted eigen-values, thereby, solving the challenges of using an inverse covariance operator directly. We propose

an optimal instrument variable that minimizes the asymptotic variance function

among the class of all local-linear GMM estimators, and it outperforms the initial

estimates which do not incorporate the spatial dependence. Our proposed method

significantly improves the accuracy of the estimation under heteroskedasticity and

its asymptotic properties have been investigated. Extensive simulation studies illustrate the finite sample performance, and the efficacy of the proposed method is

confirmed by real data analysis.

Information

Preprint No.SS-2023-0366
Manuscript IDSS-2023-0366
Complete AuthorsPratim Guha Niyogi, Ping-Shou Zhong, Xiaohong Joe Zhou
Corresponding AuthorsPratim Guha Niyogi
Emailspgniyogi@gmail.com

References

  1. Ai, C. (1997). A semiparametric maximum likelihood estimator. Econometrica 65(4), 933–963.
  2. Ai, C. and X. Chen (2003). Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71(6), 1795–1843.
  3. Albert, R. and A.-L. Barab´asi (2002). Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97.
  4. Amemiya, T. (1977). The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica 45(4), 955–968.
  5. Bravo, F. (2021). Second order expansions of estimators in nonparametric moment conditions models with weakly dependent data. Econometric Reviews, 1–24.
  6. Cai, Z., M. Das, H. Xiong, and X. Wu (2006). Functional coefficient instrumental variables models. Journal of Econometrics 133(1), 207–241.
  7. Cai, Z. and Q. Li (2008). Nonparametric estimation of varying coefficient dynamic panel data models. Econometric Theory 24(5), 1321–1342.
  8. Chen, X. and D. Pouzo (2009). Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. Journal of Econometrics 152(1), 46–60. Recent Adavances in Nonparametric and Semiparametric Econometrics: A Volume Honouring Peter M. Robinson.
  9. Chiou, J.-M., H.-G. M¨uller, and J.-L. Wang (2003). Functional quasi-likelihood regression models with smooth random effects. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65(2), 405–423.
  10. Chiou, J.-M., H.-G. M¨uller, and J.-L. Wang (2004). Functional response models. Statistica Sinica, 675–693.
  11. Ding, X., D. Yu, Z. Zhang, and D. Kong (2021). Multivariate functional response low-rank regression with an application to brain imaging data. Canadian Journal of Statistics 49(1), 150–181.
  12. Fan, J. and I. Gijbels (1996). Local polynomial modelling and its applications. Chapman & Hall/CRC.
  13. Fan, J., Q. Yao, and Z. Cai (2003). Adaptive varying-coefficient linear models. Journal of the Royal Statistical Society: series B (statistical methodology) 65(1), 57–80.
  14. Fan, J. and W. Zhang (1999). Statistical estimation in varying coefficient models. The annals of Statistics 27(5), 1491–1518.
  15. Fan, J., W. Zhang, and J.-T. Zhang (2008). Statistical methods with varying coefficient models. Statistics and Its Interface 1(1), 179–195.
  16. Gajardo, A., C. Carroll, Y. Chen, X. Dai, J. Fan, P. Z. Hadjipantelis, K. Han, H. Ji, H.-G. Mueller,
  17. and J.-L. Wang (2021). fdapace: Functional Data Analysis and Empirical Dynamics. R package version 0.5.7.
  18. Ghosh, T., Y. Ma, R. Song, and P. Zhong (2023). Flexible inference of optimal individualized treatment strategy in covariate adjusted randomization with multiple covariates. Electronic Journal of Statistics 17(1), 1344 – 1370.
  19. Hall, A. R. (2004). Generalized method of moments. OUP Oxford.
  20. Hall, P. and M. Hosseini-Nasab (2006). On properties of functional principal components analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1), 109–126.
  21. Hastie, T. and R. Tibshirani (1993). Varying-coefficient models. Journal of the Royal Statistical Society: Series B (Methodological) 55(4), 757–779.
  22. J Mercer, B. (1909). Xvi. functions of positive and negative type, and their connection the theory of integral equations. Phil. Trans. R. Soc. Lond. A 209(441-458), 415–446.
  23. Jiang, C.-R. and J.-L. Wang (2011). Functional single index models for longitudinal data.
  24. Li, Y. (2011). Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika, 355–370.
  25. Li, Y. and T. Hsing (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. The Annals of Statistics 38(6), 3321– 3351.
  26. Lin, X. and R. J. Carroll (2001). Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association 96(455), 1045–1056.
  27. Lo`eve, M. (1946). Functions aleatoire de second ordre. Revue science 84, 195–206.
  28. Lu, C. and J. M. Wooldridge (2020). A gmm estimator asymptotically more efficient than ols and wls in the presence of heteroskedasticity of unknown form. Applied Economics Letters 27(12), 997–1001.
  29. Ma, Y., J.-M. Chiou, and N. Wang (2006). Efficient semiparametric estimator for heteroscedastic partially linear models. Biometrika 93(1), 75–84.
  30. M¨uller, H.-G. and F. Yao (2010). Empirical dynamics for longitudinal data. The Annals of Statistics 38(6), 3458–3486.
  31. Newey, W. K. (1990). Efficient instrumental variables estimation of nonlinear models. Econometrica: Journal of the Econometric Society, 809–837.
  32. Newey, W. K. (1994). The asymptotic variance of semiparametric estimators. Econometrica 62(6), 1349–1382.
  33. Qu, A. and R. Li (2006). Quadratic inference functions for varying-coefficient models with longitudinal data. Biometrics 62(2), 379–391.
  34. Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis. Springer series in statistics.
  35. Scheipl, F., A.-M. Staicu, and S. Greven (2015). Functional additive mixed models. Journal of Computational and Graphical Statistics 24(2), 477–501.
  36. Su, L., I. Murtazashvili, and A. Ullah (2013). Local linear gmm estimation of functional coefficient iv models with an application to estimating the rate of return to schooling. Journal of Business & Economic Statistics 31(2), 184–207.
  37. Sun, Y. (2016). Functional-coefficient spatial autoregressive models with nonparametric spatial weights. Journal of Econometrics 195(1), 134–153.
  38. Tran, K. C. and E. G. Tsionas (2009). Local gmm estimation of semiparametric panel data with smooth coefficient models. Econometric Reviews 29(1), 39–61.
  39. Wang, H., P.-S. Zhong, Y. Cui, and Y. Li (2017, 09). Unified Empirical Likelihood Ratio Tests for
  40. Functional Concurrent Linear Models and the Phase Transition from Sparse to Dense Functional Data. Journal of the Royal Statistical Society Series B: Statistical Methodology 80(2), 343–364.
  41. Wang, L. (2008). Karhunen-Lo´eve expansions and their applications. London School of Economics and Political Science (United Kingdom).
  42. Wang, L., H. Li, and J. Z. Huang (2008). Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. Journal of the American Statistical Association 103(484), 1556–1569.
  43. Wang, N. (2003). Marginal nonparametric kernel regression accounting for within-subject corre38 lation. Biometrika 90(1), 43–52.
  44. Wang, N., R. J. Carroll, and X. Lin (2005). Efficient semiparametric marginal estimation for longitudinal/clustered data. Journal of the American Statistical Association 100(469), 147– 157.
  45. Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Business Media.
  46. Wei, H. and Y. Sun (2017). Heteroskedasticity-robust semi-parametric gmm estimation of a spatial model with space-varying coefficients. Spatial Economic Analysis 12(1), 113–128.
  47. Wu, C. O. and C.-T. Chiang (2000). Kernel smoothing on varying coefficient models with longitudinal dependent variable. Statistica Sinica, 433–456.
  48. Xiong, Y., X. J. Zhou, R. A. Nisi, K. R. Martin, M. M. Karaman, K. Cai, and T. E. Weaver
  49. (2017). Brain white matter changes in cpap-treated obstructive sleep apnea patients with residual sleepiness. Journal of Magnetic Resonance Imaging 45(5), 1371–1378.
  50. Yao, F., H.-G. M¨uller, and J.-L. Wang (2005). Functional linear regression analysis for longitudinal data. The Annals of Statistics, 2873–2903.
  51. Yu, K. and M. Jones (2004). Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association 99(465), 139–144.
  52. Zhu, H., J. Fan, and L. Kong (2014). Spatially varying coefficient model for neuroimaging data with jump discontinuities. Journal of the American Statistical Association 109(507), 1084– 1098.
  53. Zhu, H., R. Li, and L. Kong (2012). Multivariate varying coefficient model for functional responses. The Annals of Statistics 40(5), 2634–2666.

Acknowledgments

The research was partially supported by an NIH grant R03NS128450 and an

NSF grant FRG-2152070. The authors thank Editor Prof. John Stufken,

the Associate Editor, and the two referees for their constructive comments,

which significantly improved the paper.

Supplementary Materials

The online supplementary material contains the proposed algorithm, the extension of the proposed method for the multivariate functional domain, com-

ments on assumptions, additional simulation results, proofs of the theorems

presented in Section 4, and a discussion on the choice of IVs.


Supplementary materials are available for download.