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Abstract: In this paper, we develop a multi-step estimation procedure to simulta-

neously estimate the varying-coefficient functions using a local-linear generalized

method of moments (GMM) based on continuous moment conditions. To incor-

porate spatial dependence, the continuous moment conditions are first projected

onto eigen-functions and then combined by weighted eigen-values, thereby, solv-

ing the challenges of using an inverse covariance operator directly. We propose

an optimal instrument variable that minimizes the asymptotic variance function

among the class of all local-linear GMM estimators, and it outperforms the initial

estimates which do not incorporate the spatial dependence. Our proposed method

significantly improves the accuracy of the estimation under heteroskedasticity and

its asymptotic properties have been investigated. Extensive simulation studies il-

lustrate the finite sample performance, and the efficacy of the proposed method is

confirmed by real data analysis.

Key words and phrases: Diffusion tensor imaging; Heteroskedasticity; Local-linear
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GMM; Moment conditions; Multi-step estimation procedure; Varying-coefficient

model.

1. Introduction

Due to modern advancements in technology, varying-coefficient models in

functional data have become popular to analyze data coming from several

imaging technologies such as magnetic resonance imaging (MRI), diffusion

tensor imaging (DTI), etc. We consider the problem of estimating non-

parametric coefficient function β(s) which is defined on the functional domain

(for example, space) S to understand the relationship between functional

response Y (s) and real-valued covariates denoted by X = (X1, · · · , Xp)
T,

which takes the following form,

Y (s) = XTβ(s) + U(s), (1.1)

where β(s) = (β1(s), · · · , βp(s))T is a p-dimensional vector of unknown smooth

functions, and it is assumed that β(·) is twice-differentiable with contin-

uous second-order derivatives. The random error {Ui(s) : s ∈ S} is as-

sumed to be a stochastic process indexed by s ∈ S and it characterizes the

within-curve dependence with mean zero and an unknown covariance func-

tion ΣX(s, s
′) = cov{U(s), U(s′)|X}. To speed up theoretical exploration
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and facilitate fast computation, this paper mainly focuses on S in a one-

dimensional domain. The extension to a multivariate domain S is provided

in Section S2 of the supplemental file.

The model (1.1) allows heteroskedasticity in the covariance function so

that Σx(s, s
′) depends on X. There exists limited research on heteroskedastic

functional data. For example, Chiou et al. (2003); Jiang and Wang (2011);

Ding et al. (2021) considered covariates-dependent functional principal com-

ponent analysis. However, to the best of our knowledge, no existing inference

for the varying coefficient model (VCM) with heteroskedastic functional data

has been developed so far. The aim of this paper is to develop an efficient esti-

mator for VCM with heteroskedastic functional data. The model in Equation

(1.1) allows its regression coefficient to vary over some predictors of interest.

It was introduced in the literature by Hastie and Tibshirani (1993). Because

of the wide applicability of VCM, there exists abundant literature on the

same, for example, to name a few of them, Fan and Zhang (1999); Wu and

Chiang (2000); Fan et al. (2003); Chiou et al. (2004); Ramsay and Silver-

man (2005); Wang et al. (2008); Zhu et al. (2014). There is a long list of

literature on VCM and the aforementioned list is by no means to be exhaus-

tive. A more comprehensive literature review on VCM can be found in Fan

et al. (2008). The main difference between a standard VCM and functional
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VCM is in the error process U(s). The standard VCM typically assumes

that U(s) are independent errors so that U(s) and U(s′) are independent

for s ̸= s′, while U(s) is a dependent stochastic process in the functional

VCM. One important challenge is to consider dependence in the functional

VCM. As noted by Lin and Carroll (2001), commonly-used kernel methods

are not able to make use of the dependence. Various progress has been

made in incorporating dependence into estimation and statistical inference

for sparse longitudinal data. For example, Wang (2003) developed an inno-

vative marginal kernel method to incorporate correlation and control bias.

Further study in Wang et al. (2005) showed that the method in Wang (2003)

achieves the semi-parametric efficient bound. Li (2011) further extended the

method to include non-parametric covariance estimation. Qu and Li (2006)

developed an estimation method based on penalized spline and quadratic

inference. However, these above-mentioned methods are mostly designed for

sparse functional data with a small number of repeated measurements. The

focus of the current paper is to develop a method to incorporate dependence

for dense functional data with heteroskedastic dependence.

In this paper, we develop a functional generalized method of moments

(GMM) estimation procedure for such VCM, which does not require distri-

butional assumption and can accommodate heteroskedasticity of unknown
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form. There exists rich literature on applying GMM to varying coefficient

models without functional data and heteroskedasticity. For example, Cai and

Li (2008) proposed a one-step local-linear GMM estimator that corresponds

to the local-linear GMM discussed in Su et al. (2013) with an identity weight

matrix. Tran and Tsionas (2009) provided a local constant two-step GMM

estimator with a specified weight matrix by minimizing the asymptotic vari-

ance. Su et al. (2013) developed a local-linear GMM estimator procedure of

functional-coefficient instrument variable (IV) models with a general weight

matrix under exogenous conditions. Cai et al. (2006) proposed a two-step

local-linear estimation procedure to estimate the functional coefficient which

includes the estimation of high-dimensional non-parametric model in the first

step and later estimates the functional coefficients using the first-step non-

parametric estimates as a generated regressor. As opposed to the classical

GMM, for non-parametric local-linear GMM estimator, the integrated mean

square error increases as the number of IVs increases for its arbitrary choice

(Bravo, 2021).

The current work is motivated by the problem encountered in diffusion

tensor imaging (DTI) where multiple diffusion properties are measured along

common major white matter fiber tracts across multiple individuals to char-

acterize the structure and orientation of white matter in the human brain.
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Recently a study has been performed to understand white matter structural

alternation using DTI for obstructive sleep apnea patients (Xiong et al.,

2017). As an illustration, we present smoothed functional data to analyze

the efficiency properties of the network generated by the diffusion properties

of the water molecules. In Figure 1, we plot the graphical characteristics of

one of the diffusion properties called fractional anisotropy (FA) over differ-

ent significant levels to obtain the graphical connectivity from 29 patients.

Scientists are often interested to know the individual association of average

path length (APL) of the network generated from FA with a set of covari-

ates of interests such as age and lapses score. Moreover, in this data, there

is sufficient evidence of heteroskedasticity in the covariates. Details about

the data-set and associated variables are described in Section 6. We there-

fore need an estimation procedure which (1) does not need knowledge of

the distribution, (2) can handle the heteroskedasticity of covariates, (3) can

estimate the non-parametric coefficient functions from VCM, and (4) has a

systematic technique for computing an efficient estimator.

In this article, we develop a local-linear GMM estimation procedure for

VCM. For given IVs, we propose an optimal local-linear GMM estimator

motivated by Lu and Wooldridge (2020). However, the key difference in our

approach from the later is that we model the variance of integrated squared
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error using a non-parametric function of covariates whereas they assume a

parametric form in case of classical regression. Therefore, we can ensure that

the proposed estimator is at least as efficient as local-linear estimates (initial

estimator) and more efficient than that under the presence of heteroskedas-

ticity.
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Figure 1: Apnea-data: Smoothed average path length (APL) from 29 patients

over different thresholds(s). The black solid line indicates the mean of APL

over thresholds.

This paper is organized as follows. In Section 2, we introduce our varying-

coefficient model and propose a local-linear GMM estimator. In Section 3, we

present a multi-step estimation procedure. We establish asymptotic results

in Section 4. We perform a set of simulations studied to understand the finite
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sample performance of the proposed estimator and present those in Section

5. In Section 6, we apply the proposed method in a real imaging data-set

on obstructive sleep apnea (OSA). In Section 7, we conclude this article

with some discussion. The extension of the proposed method, additional

simulation results, and all technical details are provided in the supplementary

material.

2. Varying-coefficient functional model and moment conditions

In this section, we first introduce heteroskedastic conditions for SVC model

and thereafter, propose a mean-zero function for constructing the GMM es-

timator.

2.1 Model

Let {Yi(s),Xi} for i = 1, · · · , n be independent copies of {Y (s),X}. Instead

of observing the entire functional trajectory, one can observe Y (s) only on

the discrete spatial grid {s1, · · · , sr} on the functional domain S. Data can

be Gaussian or non-Gaussian and homoskedastic or heteroskedastic depend-

ing upon the real applications. Therefore, the observed data for the i-th

individual are {sj, Yi(sj),Xi : j = 1, · · · , r}. For simplifying the notation,

define Yij = Yi(sj) and Uij = Ui(sj). Considering the functional principal
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component analysis (FPCA) model for Ui(s), we assume that Ui(s) is square-

integrable and admits the Karhunen-Loève expansion (?Loève, 1946). Let

ω1(X) ≥ ω2(X) ≥ · · · ≥ 0 be ordered eigen-values of the linear operator de-

termined by Σx with
∞∑
k=1

ωk(X) being finite and ψk(s)’s being the correspond-

ing orthonormal eigen-functions or principal components. Thus, the spectral

decomposition (J Mercer, 1909) is given by Σx(s, s
′) =

∞∑
k=1

ωk(X)ψk(s)ψk(s
′).

Therefore, Ui(s) admits the Karhunen-Loève expansion as follows.

Ui(s) =
∞∑
k=1

ξk(Xi)ψk(s), (2.1)

where ξk(Xi) =
∫
S Ui(s)ψi(s)ds, which is termed as the k-th functional prin-

cipal score for i-th individual. The ξk(Xi) are uncorrelated over k with

E{ξk(Xi)|Xi} = 0 and Var{ξk(Xi)|Xi} = ωk(Xi), k ≥ 1. Furthermore, as-

sume that the eigen-values vary with Xi such that ωk(Xi) = θkσ
2(Xi) for

some unknown function σ(X) ≥ 0 and θ1 ≥ θ2 ≥ · · · ≥ 0. For identifiability,

we need some restrictions on θks, such as known or fixed θ1. Therefore, the

above assumption on eigen-values for spectral decomposition allows us to in-

corporate heteroskedasticity into the model. To the best of our knowledge,

this is the first attempt to model SVC with unknown heteroskedasticity.
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2.2 Local-linear mean-zero function

Let us reiterate our main objective: we want to efficiently estimate the

varying-coefficient functions based on GMM for the case of continuum mo-

ment conditions together with infinite-dimensional parameters. Therefore,

we need to construct a mean-zero function which will be described in this

sub-section.

Since β(·) in model (1.1) is twice continuously differentiable, we can

apply the Taylor series expansion to β(sj) around an interior point s0 and

get β(sj) = β(s) + β̇(s0)(sj − s0) + β̈(s∗)(sj − s0)
2/2, where s∗ lies between

sj and s0 for all j = 1, · · · , r and β̇ and β̈ denote the gradients of β and

β̇ with respect to s. Thus, β(sj) can be approximated as βk(sj) ≈ β(s0) +

∂βk(s0)/∂s × (sj − s0). So in matrix notation, the first-order Taylor series

expansion of the coefficient functions becomes

β(sj) ≈ A(s0)zh(sj − s0), (2.2)

where zh(sj − s0) = (1, (sj − s0)/h)
T and A(s0) = [β(s0), hβ̇(s0)] which is

a p × 2 matrix. Hence, applying the approximation procedure in Equation

(2.2), we can rewrite model (1.1) as

Yij ≈ XT
i {A(s0)zh(sj − s0)}+ Uir = Wij(s0)

Tγ(s0) + Uij, (2.3)
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such that sj are sufficiently close to s0, where Wij(s0) = [zh(sj − s0) ⊗Xi]

and γ(s0) = (β(s0)
T, hβ̇(s0)

T)T, both of which are vectors of length 2p× 1.

Let K(·) be a symmetric probability density function which is used as

kernel and h > 0 be the bandwidth; thus, the re-scaled kernel function

is defined as Kh(·) = h−1K(·). It is easy to see that for a given loca-

tion s0 ∈ S, we can construct a least squares estimator of γ(s) defined in

Equation (2.3) by minimizing the sample version of the mean squared error

E{[Yij−WT
ij(s0)γ(s0)]

2|Xi}. LetM(X) be a q-dimensional IV with q ≥ p; the

moment condition can be written as E

{
r−1

r∑
j=1

Kh(sj − s0)∆ij(s0)

}
= 0q

where ∆ij(s0) = M(Xi)
{
Yij −Wij(s0)

Tγ(s0)
}

is a zero mean stochastic

process with dimension q. There exist abundance of literature on construct-

ing IVs for optimizing parameter estimations in semi-parametric models with

homoskedastic or heteroscedastic (known or unknown) error distributions

(e.g., Newey (1994); Amemiya (1977); Ai (1997); Ma et al. (2006); Ghosh

et al. (2023)) or parameters defined by moment conditions with or with-

out nuisance unknown non-parametric functions (e.g., Newey (1990); Ai and

Chen (2003); Chen and Pouzo (2009)). However, due to the focus of the paper

being on estimating non-parametric functions, and the existence of functional

dependence and heteroskedasticity of an unknown form, these existing ap-

proaches can not be directly undertaken for the model we considered. There
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are also some papers discussing choosing IVs for optimizing non-parametric

function estimators for independent errors (e.g., Cai and Li (2008); Su et al.

(2013)). We take this opportunity to investigate the choice of IVs in our

framework. For details, please refer to the Remark below Theorem 2.

Motivated by the idea of local-linear estimator and local GMM methods

in Cai and Li (2008) and Su et al. (2013), we consider the local-linear IVs

Qij(s0) = (M(Xi),M(Xi)(sj − s0)/h)
T. Therefore, consider the following

non-parametrically localizing augmented orthogonal moment conditions for

estimating β(s).

gi{γ(s0)} = r−1

r∑
j=1

Kh(sj − s0)zh(sj − s0)⊗∆ij(s0), (2.4)

and note that {gi(γ(s))} : i = 1, · · · , n} are independent and E{gi(γ(s))} =

02q×1 for s ∈ S.

Most of the VCMs that exist in the literature assume homoskedasticity

in covariates and are limited to weakly dependent non-parametric models

(Su et al., 2013; Sun, 2016), which differs significantly from our model as-

sumptions. In contrast, we assume a spatially VCM under heteroskedasticity

of unknown form.
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3. Multi-step estimation procedure

This section develops a multi-step estimation procedure to estimate β(s)

simultaneously across all s ∈ S. Essentially, the multi-step procedure can

be broken down as, Step-I: an initial estimation; Step-II: estimation of the

variance function, mean zero function, and eigen-components and Step-III:

GMM estimation. The key ideas of each step are described below.

Step-I. Calculate the least squares estimates of β(s) as initial estimates, de-

noted by β̆(s) across all s ∈ S.

Step-II. Estimate the conditional variance of integrated square residuals non-

parametrically and subsequently estimate the covariance of mean-zero

function. Estimate the eigen-components using multivariate FPCA.

Step-III. Project the continuous moment conditions onto eigen-functions and

then combine them by weighted eigenvalues to incorporate spatial de-

pendence and thus obtain the updated estimate of β(s), denoted by

β̂(s) across all s ∈ S.

3.1 Step-I: Initial least squares estimates

We consider a local-linear smoother (Fan and Gijbels, 1996) to obtain an

initial estimator of β(·) ignoring functional dependencies. In this case, the
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non-linear least squares function of the model 1.1 can be defined as an ob-

jective function given by Jinit{β(·)} = (nr)−1
n∑

i=1

r∑
j=1

{Yij − XT
i β(sj)}2. By

the local-linear smoothing method we estimate γ at functional point s0, by

minimizing

Jinit{γ(s0)} = (nr)−1

n∑
i=1

r∑
j=1

Kh(sj − s0)
{
Yij −Wij(s0)

Tγ(s0)
}2
. (3.1)

The solution of the above least-squares problem can be expressed as

γ̆(s0) =

{
(nr)−1

n∑
i=1

r∑
j=1

Kh(sj − s0)Wij(s0)Wij(s0)
T

}−1

×

{
(nr)−1

n∑
i=1

r∑
j=1

Kh(sj − s0)Wij(s0)Yij

}
. (3.2)

Consequently, the estimator of the coefficient function vector β(s) at s0 is

β̆(s0) = [(1, 0) ⊗ Ip]γ̆(s0). We determine the tuning parameter h by using

some data-driven techniques such as cross-validation and generalized cross-

validation.

3.2 Step-II: Intermediate steps

Step-II consists of two important steps in determining the class of GMM

estimator. First, in Step-II.A, we propose a method to obtain optimal IVs

and therefore estimate the eigen-components which are used in the local-

linear GMM objective function in Step-III. To estimate eigen-components,
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we essentially need to use a multivariate version of FPCA which is quite

uncommon in the literature. We borrow the method proposed by Wang

(2008).

Step-II.A: Choice of instrument variables (IVs)

Choosing IVs is critical, and the required identification condition is q ≥ p,

which ensures that the dimension of Qij(s0) is at least equal to the dimension

of γ(s0).In our model as discussed in Section 2, the error term has a potential

heteroskedasticity of unknown form. We define a set of independent and iden-

tically distributed random variables R1, R2, · · · , Rn for n individuals where

Ri =
∫
U2
i (s)ds for each i, termed as the integrated square of residuals, and

E{Ri|Xi} = σ2(Xi)
∞∑
k=1

θk. Therefore, consider the following non-parametric

regression problem.

logRi = log σ2(Xi) + ϵi, (3.3)

where ϵi is the mean zero random variable with constant variance. The above

model in Equation (3.3) boils down to the problem of estimation of log σ2(Xi)

by regressing the logarithmic value of the integrated squared residuals vari-

able on the covariates Xi. This approach is along the lines of Yu and Jones

(2004); Wasserman (2006), although used in a different context. Since Uis

are not observable, we replace Ui by an efficient estimate that is obtained
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from Step-I, viz., Ŭi(s) = Yi(s)−XT
i β̆(s) for all s ∈ S. For application, this

step can easily be implemented using “gam” function available in mgcv pack-

age in R to get an estimate of the non-parametric mean function, denoted

by µ̂(X) and therefore σ̂2(X) = exp{µ̂(X)}. Given the estimate of σ(·), we

can, therefore, choose IVs as M(Xi) = (Xi,Xi/σ̂
2(Xi))

T
.

Step-II.B: Estimation of eigen-components

Without loss of generality, assume for simplicity that the spectrum of func-

tional domain S = [0, 1], and the dimension of mean-zero function g{γ(s)} =

(g1{γ(s)}, · · · , g2q{γ(s)})T is 2q. Note that g{γ(s)} in (2.4) is defined on

an interval [0, 1] such that
2q∑
l=1

∫
E{g2l {γ(s)}}ds is finite and the covariance

function C(s, s′) = E
[
g{γ(s)}g{γ(s)}T

]
. Under condition (C6) mentioned

in Section 4, using the lining-up method in (Wang, 2008, Chapter 5) and

Ramsay and Silverman (2005), define a new stochastic process e(s∗) on the

interval [0, 2q] with eigen-function ϕe such that, e(s∗) = gl{γ(s∗ − (l − 1))}

and ϕe(s∗) = ϕl{γ(s∗ − (l − 1))} for l − 1 ≤ s∗ < l, l = 1, · · · 2q, where we

define the eigen-function for each gl as ϕl for l = 1, · · · , 2q. Therefore, the

covariance function between e(s∗) and e(s
′
∗) can be expressed as Cl,l′(s∗, s

′
∗) =

cov{e(s∗), e(s′∗)} for l−1 ≤ s∗ < l and l′−1 ≤ s′∗ < l′; l, l′ = 1, · · · , 2q. Note

that, for 2q-dimensional processes, the Fredholm integral equation is equiv-
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alent to 2q-simultaneous integral equations, where each of them corresponds

to a specific functional interval of e(s∗). For l−1 ≤ s∗ < l; l = 1, · · · , 2q, the

Fredholm integral equation yields
∫ 2q

0
cov{e(s∗), e(s′∗)}ϕe(s∗)ds∗ = λϕe(s∗).

Now, for 0 < s < 1, the above relation is equivalent to the following.

2q∑
l′=1

∫ 1

0

cov{gl{γ(s)}, gl′{γ(s′)}}ϕl′(s
′)ds′ = λϕl(s). (3.4)

In a multivariate setting, the orthogonality condition becomes

1(l = l′) =

∫ 2q

0

ϕe,l(s∗)ϕe,l′(s∗)ds∗ =

2q∑
k=1

∫ 1

0

ϕk,l(s)ϕk,l′(s)ds. (3.5)

Using the generalized Mercer’s theorem (J Mercer, 1909), the results for the

covariance function can be briefly shown using the lining-up method. Assume

that the covariance function is continuous after the lining up processes, so

for (l − 1) ≤ s∗ < l and (l′ − 1) ≤ s′∗ < l′; l, l′ = 1, · · · , 2q, the covariance

function between gl(s) and gl′(s
′) can be expressed as

Cl,l′(s, s
′) =

∞∑
k=1

λkϕk,l{s∗ − (l − 1)}ϕk,l′{s′∗ − (l′ − 1)}. (3.6)

Therefore, using the above argument, we can define the multivariate spec-

tral decomposition C(s, s′) =
∞∑
k=1

λkϕk(s)ϕk(s
′)T for s, s′ ∈ [0, 1] with the

orthogonality condition (3.5). After the lining-up process, data are univari-

ate and hence we can adapt the existing techniques of estimating functional

eigen-values and eigen-functions in the literature (Yao et al., 2005; Müller
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and Yao, 2010; Li and Hsing, 2010) to estimate λ and ϕe(s), and hence can

estimate ϕ(s) by stacking all components for aligned eigen-functions ϕe(s).

3.3 Step-III: Final estimates

Finally, we demonstrate our proposed estimator based on local-linear GMM

where the proposed mean-zero function can be projected onto eigen-function

and then combined by the weighted eigen-values. For any positive α, the

objective function is given by

J {γ(s0)} =
∞∑
k=1

λ̂k

λ̂2k + α

{
g(γ(s0))

Tϕ̂k(s0)
}2

=
∞∑
k=1

λ̂k

λ̂2k + α

{
(nr)−1

n∑
i=1

r∑
j=1

Kh(sj − s0)ϕ̂k(s0)
TQij(s0)

[
Yij −Wij(s0)

Tγ(s0)
]}2

.

(3.7)

By minimizing the above objective function, we obtain

∞∑
k=1

λ̂k

λ̂2k + α

{
(nr)−1

n∑
i=1

r∑
j=1

Kh(sj − s0)ϕ̂k(s0)
TQij(s0)Wij(s0)

}

×

{
(nr)−1

n∑
i=1

r∑
j=1

Kh(sj − s0)ϕ̂k(s0)
TQij(s0)

[
Yij −Wij(s0)

Tγ(s0)
]}

:=
∞∑
k=1

λ̂k

λ̂2k + α
Xk(s0)

{
Yk(s0)−Xk(s0)

Tγ(s0)
}
, (3.8)

where Xk(s0) = (nr)−1
n∑

i=1

r∑
j=1

Kh(sj−s0)Wij(s0)Qij(s0)
Tϕ̂k(s0) and Yk(s0) =

(nr)−1
n∑

i=1

r∑
j=1

Kh(sj − s0)Qij(s0)
Tϕ̂k(s0)Yij. Therefore, the final estimate of
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the coherent function is β̂(s0) = [(1, 0)⊗ Ip]γ̂(s0) where

γ̂(s0) =

{
∞∑
k=1

λ̂k

λ̂2k + α
Xk(s0)Xk(s0)

T

}−1 { ∞∑
k=1

λ̂k

λ̂2k + α
Xk(s0)Yk(s0)

}
. (3.9)

The Algorithm 1 in the supplementary material summarizes the proposed

method. For demonstration purposes, we choose the tuning parameters using

cross-validation as discussed in the algorithm. In the proposed algorithm, α

controls the number of eigen-values, and can be chosen so that condition

(C8) defined in Section 4 is valid. Furthermore, it is essential to establish

a continuity criterion for alignment to provide theoretical validation. Even

when there is a lack of continuity in ϕe, empirical studies suggest that the

final outcomes remain suitable for practical application. We also discuss the

extension of the proposed method to the multivariate domain with s ∈ [0, 1]d

in Section S2 of the supplementary material.

4. Asymptotic results

In this section, we provide some assumptions and then study the asymptotic

properties of the local-linear GMM estimator. Here, we allow the sample

size n and the number of functional domains r to grow to infinity. Detailed

technical proofs are provided in the online Supplementary Material.

Let β0(s0) be the true value of β(s0) at location s0. Consider the follow-
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ing conditions that will be useful in asymptotic results.

(C1) Kernel function K(·) is a symmetric density function defined on the

bounded support [−1, 1] and is Lipschitz continuous.

(C2) Density function fT of T is bounded above and away from infinity, and

also below and away from zero. Moreover, f is differentiable and the

derivative is continuous.

(C3) E{∥X∥a} < ∞ and E{sups∈S |U(s)|a} < ∞ for some positive a > 1.

Define, E{M(X)XT} = Ω with rank p.

(C4) The true coefficient function β0(s) is three-times continuously differen-

tiable and Σx(s, s
′) are twice continuously differentiable.

(C5) {U(s) : s ∈ [0, 1]} and {M(X)U(s) : s ∈ [0, 1]} are Donsker class,

where X ⊂ M(X).

(C6) (a) lims↘1 E{|gl{γ(s− 1)} − gl{γ(0)}|2} = 0 for l = 1, · · · , 2q

(b) lims↗1 E{|gl−1{γ(s)} − gl{γ(0)}|2} = 0 for l = 2, · · · , 2q.

(C7) All second-order partial derivatives of C(s, s′) exist and are bounded

on the support of the functional domain.

(C8) For some κ0 ≥ 1 and α−1 = o

(
κ0∑
k=1

λ−1
k /

∞∑
k=κ0+1

λk

)
.
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(C9) The numbers of individuals and functional grid-points are growing to

infinity such that h → 0 and rh → ∞ as n → ∞. For a > 2,

h−4(log n/n)1−2/a → 0 and | log h|1−2/a/h ≤ r1−2/a for a ∈ (2, 4).

Remark 1. Conditions (C1) and (C2) are commonly used in the literature of

non-parametric regression. The bound condition for the density function in

(C2) of functional points is standard for random design. Similar results can

be obtained for fixed design where the grid-points are pre-fixed according to

the design density
∫ sj
0
f(s)dt = j/r for j = 1, · · · , r, for r ≥ 1. The condition

(C3) is similar to that in Li and Hsing (2010) which requires the bound on

the higher order moment of X. Moreover, the condition on the rank of Ω is

required for the identification of the functional coefficient and its first-order

derivatives (Su et al., 2013).

To obtain the asymptotic expression of β̂(s), observed for fixed sample

size, there exists κ0 such that k ≤ κ0, λ
2
k is much larger than α, thus, the

ratio λk/(λ
2
k +α) ≈ λ−1

k . On the other hand, if k > κ0, λ
2
k << α, as a result,

the fraction λk/(λ
2
k + α) can be approximately written as λk/α. Therefore,

by the assumption (C8), we can write, for s ∈ S,
κ0∑
k=1

λ−1
k ϕk(s)ϕk(s

′)T +

α−1
∞∑

k=κ0+1

λkϕk(s)ϕk(s
′)T =

κ0∑
k=1

λ−1
k ϕk(s)ϕk(s

′)T {1 + o(1)} . Condition (C9)

provides the range of bandwidth. Under the fixed sampling design, this

condition can be weakened, see Zhu et al. (2012). Due to the limited space,
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detailed remarks on conditions (C4) and (C6) are included in Section S3 of

the supplemental file.

The following Theorem provides weak convergence of the initial estimates

in the above Step-I. Define Σ∗
x(s0, s0) = lim

n→∞
1
n

n∑
i=1

E{XiX
T
i Σxi

(s0, s0)}.

Theorem 1. Let νa,b =
∫
taKb(t)dt. Under conditions (C1)-(C5), and (C9),

{√
n
(
β̆(s0)− β0(s0)− 0.5h2ν21β̈0(s0)

)
: s0 ∈ S

}
weakly converges to a mean zero Gaussian process with a covariance matrix

Ω−1
x Σ∗

x(s0, s0)Ω
−1
x where Ωx = E{XXT}.

Next, we study the convergence rates of the estimated eigen-components

based on the proposed lining-up method. For simplicity, define, δn1(h) =

{(1 + (hr)−1) log n/n}1/2 and δn2(h) = {(1 + (hr)−1 + (hr)−2) log n/n}1/2.

The following lemma is the output of the asymptotic expansion of eigen-

components of an estimated covariance function.

Lemma 1. Under assumptions (C1)-(C3), (C6)-(C9), the following conver-

gence holds almost surely for any finite-dimensional mean-zero function g(s).

1.
∣∣∣λ̂k − λk

∣∣∣ = O{h2 + δn1(h) + δn2(h)}

2. sups0∈S

∣∣∣ϕ̂k(s0)− ϕk(s0)
∣∣∣ = O{h2 + δn1(h) + δ2n2(h)}
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for all k = 1, · · · , κ0.

We skip the proof of the above lemma as it is well-developed in the lit-

erature of functional data analysis including Hall (2004); Hall and Hosseini-

Nasab (2006); Li and Hsing (2010). If r−1 = O({n/ log n}1/4) and h =

O({n/ log n}−1/4), then Lemma 1 implies that both eigenvalues λ̂k and eigen-

functions ϕ̂k(s0) converge at the order of O{(log n/n)1/2}. Next, we show

the asymptotic results of the proposed estimation.

Theorem 2. Let νa,b =
∫
taKb(t)dt. Under the conditions (C1)-(C9), for

the proposed local-linear GMM estimator β̂(s), the following results hold.

{√
n
(
β̂(s)− β0(s)− 0.5h2ν21β̈(s))

)
: s ∈ S

}
weakly converges to a mean zero Gaussian process with a covariance function

A(s0, s0) = B−1(s0, s0)Ω
TC−1

κ0,11
(s0, s0)Σ

∗
M(s0, s0)C

−1
κ0,11

(s0, s0)ΩB−1(s0, s0),

where B(s0, s0) = ΩTC−1
κ0,11

(s0, s0)Ω, Ω is defined in condition (C3), C−1
κ0,11

is given by

C−1
κ0
(s, s′) =

κ0∑
k=1

λ−1
k ϕk(s)ϕk(s

′)T =

(
C−1

κ0,1,1
(s, s′) 0
0 C−1

κ0,2,2
(s, s′)

)
, (4.1)

and

Σ∗
M(s0, s0) = lim

n→∞

1

n

n∑
i=1

E{M(Xi)M(Xi)
TΣxi

(s0, s0)}. (4.2)
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Remark 2. The asymptotic variance-covariance of β̂(s) depends on the

choices of IVs in Ω. The suggested choice of IVs in Step-II.A of Section

3.2 may be optimal in the sense that it minimizes the variance-covariance

matrix of β̂(s) among the class of all local-linear GMM estimators. Please

refer to the supplemental file for a detailed discussion.

5. Simulation studies

We conduct numerical studies to compare finite sample performance un-

der different correlation structures and heterogeneity conditions. Data are

generated from the model Yi(s) = Xiβ(s) + Ui(s), where we generate tra-

jectories observed at r spatial locations for the i-th curve, i = 1, · · · , n.

Assume that the functional fixed effect is β(s) = cos(2πs) and the cor-

responding fixed effect covariate is generated from a normal distribution

with unit mean and variance. The error process is generated as Ui(s) =

ξ1(Xi)ψ1(s) + ξ2(Xi)ψ2(s), where ξ1(Xi) and ξ2(Xi) are independent central

normal random variables with variance 3σ2(Xi)θ
2
0 and 1.5σ2(Xi)θ

2
0. Here, θ0

is determined by the relative importance of the random error signal-to-noise

ratio, denoted as SNRθ which is interpreted as the ratio of the standard

deviation of the additive prediction without noise divided by the standard

error of the random noise function. For example, SNRθ = 0.5 means that
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the contribution of each functional random noise to the variability in Y (s)

is about twice of that of the fixed effect (Scheipl et al., 2015). Here, we

use scaled orthonormal functions ψ1(s) ∝ (1.5 − sin(2πs) − cos(2πs)) and

ψ2(s) ∝ sin(4πs); due to orthonormality, the proportionality constants can

easily be determined. Contributions to the conditional variances in ξk(X)

are specified as (S.0) σ2(x) = 1 (homoskedastic), (S.1) σ2(x) = (1 + x2/2)2,

(S.2) σ2(x) = exp(1 + x2/2), (S.3) σ2(x) = exp(1 + |x| + x2) and (S.4)

σ2(x) = (1 + |x|/2)2. We sample the trajectories at r equidistant spatial

points {s1, · · · , sr} on [0, 1]. Let si = (j − 0.5)/r for j = 1, · · · , r for i-th

curve. The number of spatial points is assumed to be r = 200 for each

case. We set number of trajectories n ∈ {30, 50, 100, 200, 500} and the con-

trolling parameter θ0 is determined using signal-to-noise ratio, SNRθ which

is assumed to be either 0.5 or 1. Here, we perform 500 simulation repli-

cates. To make it consistent with theoretical results and numerical exam-

ples, we use “FPCA” function in R which is available in fdapace package

(Gajardo et al., 2021) to estimate the eigen-functions. Bandwidths are se-

lected using five-fold generalized cross-validation in all situations and for

estimation, the Epanechnikov kernel K(x) = 0.75(1 − x2)+ is used; where

(a)+ = max(a, 0). Accuracy of the parameter estimation is assessed using

integrated mean square error and integrated mean absolute error, which for
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the b-th replication is defined as IMSEb =

[
r∑

j=1

(
β̂b(sj)− β(sj)

)2

∆(sr)

]
and

IMAEb =

[
r∑

j=1

|β̂b(sj)− β(sj)|∆(sr)

]
respectively, with ∆(sj) = sj − sj−1

where s0 = 0 and s1 < · · · < sr are the observed points over the support set

of observational points. Let h∗ be the optimal bandwidth obtained from five-

fold cross-validation, which when multiplied by a constant within a certain

range provides improved results. According to the comments under Lemma

1, undersmoothing is needed, so we use β̂ corresponding to bandwidth 0.75h∗

for our numerical studies. Similar strategies have also been applied in Cai

et al. (2006); Wei and Sun (2017); Wang et al. (2017). The constant 0.75

is not an optimal choice but it was recommended based on our numerical

experiments.

We present Tables 1 here and S1 in the supplementary document where

IMSEs and IMAEs are averaged over 500 replications for each situation. In

parentheses, the corresponding standard deviations are reported. We denote

by LLE and LLGMM the local-linear smoothing estimator described in Step-I

and local-linear GMM with weight matrix proposed in Step-III in Section 3

respectively. In addition, we have compared the proposed method with that

of Wei and Sun (2017), setting the spatial autoregressive parameter to zero.

This approach is referred to as LLWS in Tables 1 and S1. As expected, for

26

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0366



all situations, the IMSE and IMAE are significantly reduced if we increase

sample size and/or SNRθ. For the homoskedastic case, the error rates of

LLE are similar for LLGMM but under the presence of heteroskedasticity of

unknown form, our proposed method outperforms. More simulation results

with multiple covariates are included in Section S4.2 of the supplementary

material.

6. Real data analysis

For illustrating the application of our proposed method and the estimation

procedure therein, we use Apnea-data to understand white matter structural

alterations using diffusion tensor imaging (DTI) in obstructive sleep apnea

(OSA) patients (Xiong et al., 2017). The data consists of 29 male patients

(age range: 30-55 years) who underwent the study for the diagnosis of con-

tinuous positive airway pressure (CPAP) therapy. DTI was performed at

3T, followed by the analysis using tract-based spatial statistics to investigate

the difference in fractional anisotropy (FA) and other diffusion properties be-

tween the groups based on lapses. FA measures the degree of anisotropy of

a diffusion process. The image acquisition is as follows: Images are recorded

on a 3T MRI scanner using a commercial 32-channel head coil. An axial T1-

weighted image of the brain (3D-BRAVO) is collected with repetition time
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Table 1: Comparison among the proposed LLGMM with the local linear

estimator (LLE) andWei and Sun (2017)’s approach (LLWS) for SNRθ = 0.5.

n = 30 n = 50 n = 100 n = 200 n = 500

Method IMSE IMAE IMSE IMAE IMSE IMAE IMSE IMAE IMSE IMAE

Case: S.0
LLE 0.0626 0.1864 0.0372 0.1429 0.0189 0.1016 0.0099 0.0737 0.0041 0.0472

(0.0619) (0.0951) (0.0398) (0.0757) (0.0200) (0.0540) (0.0108) (0.0391) (0.0044) (0.0256)

LLWS 0.0630 0.1865 0.0375 0.1435 0.0191 0.1022 0.0099 0.0737 0.0041 0.0471
(0.0621) (0.1168) (0.0399) (0.1435) (0.0205) (0.1022) (0.0109) (0.0737) (0.0044) (0.0471)

LLGMM 0.0630 0.1865 0.0388 0.1460 0.0198 0.1038 0.0100 0.0740 0.0042 0.0474
(0.0627) (0.1865) (0.0408) (0.1460) (0.0208) (0.1038) (0.0109) (0.0740) (0.0046) (0.0474)

Case: S.1
LLE 0.1513 0.2909 0.0939 0.2271 0.0516 0.1679 0.0261 0.1189 0.0106 0.0766

(0.1509) (0.1528) (0.1019) (0.1225) (0.0541) (0.0906) (0.0288) (0.0647) (0.0109) (0.0402)

LLWS 0.1366 0.2754 0.0816 0.2123 0.0443 0.1556 0.0227 0.1109 0.0091 0.0708
(0.1223) (0.2033) (0.0848) (0.2123) (0.0461) (0.1556) (0.0249) (0.1109) (0.0094) (0.0708)

LLGMM 0.1187 0.2579 0.0585 0.1820 0.0292 0.1262 0.0135 0.0867 0.0050 0.0517
(0.1107) (0.2579) (0.0574) (0.1820) (0.0308) (0.1262) (0.0143) (0.0867) (0.0053) (0.0517)

Case: S.2
LLE 0.2026 0.3407 0.1381 0.2810 0.0812 0.2169 0.0468 0.1632 0.0209 0.1094

(0.1854) (0.1732) (0.1308) (0.1423) (0.0727) (0.1047) (0.0420) (0.0787) (0.0174) (0.0516)

LLWS 0.3817 0.3520 0.0804 0.2105 0.0372 0.1409 0.0164 0.0902 0.0048 0.0486
(0.1551) (0.2373) (0.0792) (0.2105) (0.0397) (0.1409) (0.0202) (0.0902) (0.0059) (0.0486)

LLGMM 0.1427 0.2812 0.0557 0.1462 0.0134 0.0817 0.0045 0.0471 0.0015 0.0262
(0.1407) (0.2812) (0.3642) (0.1462) (0.0169) (0.0817) (0.0061) (0.0471) (0.0031) (0.0262)

Case: S.3
LLE 0.2569 0.3996 0.1762 0.3330 0.1018 0.2538 0.0581 0.1913 0.0265 0.1291

(0.1933) (0.1679) (0.1240) (0.1299) (0.0688) (0.0950) (0.0365) (0.0644) (0.0163) (0.0458)

LLWS 0.0781 0.1763 0.0328 0.1069 0.0126 0.0619 0.0055 0.0376 0.0023 0.0243
(0.0738) (0.1860) (0.0506) (0.1069) (0.0211) (0.0619) (0.0100) (0.0376) (0.0039) (0.0243)

LLGMM 0.0746 0.1275 0.1067 0.0600 0.0021 0.0201 0.0004 0.0093 0.0003 0.0064
(0.1178) (0.1275) (0.2031) (0.0600) (0.0125) (0.0201) (0.0019) (0.0093) (0.0018) (0.0064)

Case: S.4
LLE 0.0971 0.2330 0.0588 0.1798 0.0309 0.1298 0.0158 0.0928 0.0065 0.0596

(0.0962) (0.1198) (0.0633) (0.0953) (0.0332) (0.0694) (0.0176) (0.0500) (0.0068) (0.0317)

LLWS 0.0958 0.2306 0.0577 0.1782 0.0303 0.1285 0.0155 0.0920 0.0063 0.0589
(0.0951) (0.2231) (0.0614) (0.1782) (0.0327) (0.1285) (0.0172) (0.0920) (0.0067) (0.0589)

LLGMM 0.0958 0.2306 0.0576 0.1792 0.0303 0.1287 0.0153 0.0914 0.0063 0.0585
(0.0960) (0.2306) (0.0584) (0.1792) (0.0319) (0.1287) (0.0170) (0.0914) (0.0066) (0.0585)
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(TR) = 12ms, echo time (TE) = 5.2ms, flip angle = 13◦, inversion time =

450 ms, matrix = 384× 256, voxel size = 1.2× 0.57× 0.69mm and scan time

= 2 min 54 sec. DTI are obtained in the axial plane using a spin-echo echo

planner imaging sequence with TR = 4500ms, TE = 89.4ms, field of view =

20× 20cm2, matrix size = 160× 132, slice thickness = 3mm, slice spacing =

1mm, b-values = 0, 1000 s/mm2.

FA varies systematically along the trajectory of each white matter fas-

cicle. Several pre- and post-processing steps were performed by the FSL

software. The brain was extracted using brain segmentation tools. After gen-

erating FA maps using FMRIB diffusion toolbox, images from all individuals

were aligned to an FA standard template through non-linear co-registration.

The Johns Hopkins University (JHU) white matter tractography atlas was

used as a standard template for white matter parcellation with 50 regions

of interest (ROIs). All imaging parameters were calculated by averaging the

voxel values in each ROI. See Xiong et al. (2017) for more details on the data

and the preprocessing steps.

For each subject, we calculate the similarity matrix C with dimension

50×50. The (k, l)-th element of the matrixC is defined as ckl = |yk−yl| where

yk is the measure of FA associated with k-th ROI. For simplicity, we scale the

similarity matrix such that the range of the elements of the matrix is [0, 1]. To
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create the network, we threshold each similarity matrix to build an adjacency

matrix G with elements {1, 0} depending on whether the similarity values

exceed the threshold or not. Since this threshold controls the topology of

the data, we contract the adjacent matrix over a set of threshold parameters

from 0.01 to 0.99, and this set is denoted as S with cardinality 99. The role

of the threshold is to investigate the graph networks formed by the ROIs

with different degrees of anisotropy. When the threshold value is small, most

ROIs are connected with edges in the graph. In this case, the focus is more

on global and entire brain regions. When the threshold value is high, there

will be fewer ROIs connected with edges. In this case, the focus is more on a

few brain regions whose degrees of anisotropy are more dissimilar from each

other. In summary, the threshold allows us to tune our focus on different

collections of connected ROIs, and it allows one to zoom in and zoom out.

A popular measure of connectivity in a given graph is average path length

(APL) which is defined as the average number of steps along the shortest path

for all possible pairs of the network nodes. Therefore it measures the efficacy

of the information on a network (Albert and Barabási, 2002). For a series

of threshold parameters (s), we observe APL for FA as shown in Figure 1.

Scientists are often interested to know the association of APL of the network

generated from FA with a set of covariates of interests such as age and lapses
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score.

We fit the model (1.1) to APL that is collected over continuous spatial do-

mains (viz, thresholds) from all individuals in which Xi included the clinical

variables such as lapses, and age. We discard the subjects from the analysis

with missing clinical variables and therefore the sample size n = 27. Here

we used three-fold cross-validation to obtain the tuning parameters and the

fraction of variance explained (FVE) is set at 0.99. In Figure 2, we present

the estimated coefficient functions corresponding to age and number of lapses

associated with APL where it can be observed that the coefficient of network

property is negative with age but positive with lapses counts. Moreover, the

effect of the APL is found to be increasing when the threshold is small to

moderate and decreasing at moderate to large threshold; whereas, the effect

of APL is more-or-less similar up to the larger values of threshold, and after

that, it significantly decreases.

In Xiong et al. (2017), the authors firstly divided patients into a nonsleepy

group (lapses ≤ 5) and a sleepy group (lapses > 5), and then compared FA

values between the sleepy and nonsleepy group using two sample tests for

all the ROIs. The authors found that “the alterations in FA of individual

fiber tracts occurred mainly in the internal/external capsule, corona radiata,

corpus callosum, and sagittal stratum regions”. Our finding in this paper is
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Figure 2: Apnea-data analysis: Plots of estimated intercept (left), coefficient

functions of age (middle) and number of lapses (right) for average path length

associated with Fractional Anisotropy (FA) in DTI analysis. The solid lines

are the estimates of the functions, and the dotted lines are point-wise 95%

confidence intervals.

consistent with that in Xiong et al. (2017). First, the coefficient function for

the number of lapses is significant for all the threshold values. This indicates

the association between the number of lapses and FA values. Second, we

observe that the coefficient function for the number of lapses achieves its

maximum when the threshold is around 0.65. The brain regions contributing

most to the APL for the brain network when the threshold is 0.65, including

the corpus callosum, cerebral peduncle, internal/external capsule, corona

radiata, cingulum hippocampus, and tapetum, have the largest correlation

with the number of lapses. These brain regions found by the proposed method

include those found in Xiong et al. (2017).
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7. Discussion

In this article, we propose an efficient estimation procedure for varying-

coefficient model which is commonly used in neuroimaging and econometrics.

Our procedure stands out for its efficiency in handling the integration of het-

eroskedasticity within the realm of functional data analysis. To the best

of our knowledge, this is the first attempt to incorporate such conditions

into the model. Such a model is therefore equipped with a more complex

relationship between the functional response and real-valued covariates. Ad-

ditionally, our method is easy to implement in a wide range of applications

due to the multi-stage structure of the algorithm. The applicability of the

proposed method is illustrated by numerical studies.

Supplementary material

The online supplementary material contains the proposed algorithm, the ex-

tension of the proposed method for the multivariate functional domain, com-

ments on assumptions, additional simulation results, proofs of the theorems

presented in Section 4, and a discussion on the choice of IVs.
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