Corresponding author* |
General |
¡@ |
Slicing-Free Inverse Regression in High-Dimensional Sufficient Dimension Reduction
Qing Mai*, Xiaofeng Shao, Runmin Wang and Xin Zhang |
Supp |
doi:10.5705/ss.202022.0112
1 |
¡@ |
Regression Analysis of Randomized Response Event Time Data
Chi-Chung Wen* and Yi-Hau Chen |
Supp |
doi:10.5705/ss.202022.0320
25 |
¡@ |
Hypotheses Testing of Functional Principal Components
Zening Song, Lijian Yang* and Yuanyuan Zhang |
|
doi:10.5705/ss.202022.0309
49 |
¡@ |
State Space Emulation and Annealed Sequential Monte Carlo for High Dimensional Optimization
Chencheng Cai* and Rong Chen |
Supp |
doi:10.5705/ss.202022.0120
67 |
¡@ |
An Adaptively Resized Parametric Bootstrap for Inference in High-Dimensional Generalized Linear Models
Qian Zhao* and Emmanuel J. Candes |
Supp |
doi:10.5705/ss.202022.0296
91 |
¡@ |
Distributed Mean Dimension Reduction Through Semi-Parametric Approaches
Zhengtian Zhu, Wangli Xu and Liping Zhu* |
Supp |
doi:10.5705/ss.202022.0157
111 |
¡@ |
Semiparametric Estimation of Non-Ignorable Missingness With Refreshment Sample
Jianfei Zheng, Jing Wang, Lan Xue* and Annie Qu |
Supp |
doi:10.5705/ss.202022.0214
131 |
¡@ |
A Bernstein-Type Inequality for High Dimensional Linear Processes With Applications to Robust Estimation of Time Series Regressions
Linbo Liu and Danna Zhang* |
Supp |
doi:10.5705/ss.202022.0249
151 |
¡@ |
Mean Tests for High-dimensional Time Series
Shuyi Zhang, Song Chen and Yumou Qiu |
Supp |
doi:10.5705/ss.202022.0147
171 |
¡@ |
Necessary and Sufficient Conditions for Multiple Objective Optimal Regression Designs
Lucy L. Gao*, Jane J. Ye, Shangzhi Zeng and Julie Zhou
|
|
doi:10.5705/ss.202022.0328
203 |
¡@ |
Empirical Priors and Posterior Concentration in a Piecewise Polynomial Sequence Model
Chang Liu, Ryan Martin and Weining Shen* |
Supp |
doi:10.5705/ss.202021.0335
225 |
¡@ |
A Construction Method for Maximin L1-Distance Latin Hypercube Designs
Ru Yuan, Yuhao Yin, Hongquan Xu and Min-Qian Liu* |
|
doi:10.5705/ss.202022.0263
249 |
¡@ |
Testing for Zero Skill in Stock Picking or Market Timing
Qingsong Shan, Lei Jiang, Liang Peng and Zhongling Qin* |
Supp |
doi:10.5705/ss.202022.0416
273 |
¡@ |
Power Boosting: Fusion of Multiple Test Statistics via Resampling
Efang Kong*, Yu Liu and Yingcun Xia |
|
doi:10.5705/ss.202022.0348
293 |
¡@ |
Bandwidth Selection for Large Covariance and Precision Matrices
Xuehu Zhu, Jian Guo, Xu Guo, Lixing Zhu* and Jiasen Zheng |
Supp |
doi:10.5705/ss.202022.0337
321 |
¡@ |
Linear Discriminant Analysis with Sparse and Dense Signals
Ning Wang, Shaokang Ren and Qing Mai* |
Supp |
doi:10.5705/ss.202022.0260
343 |
¡@ |
Directional Tests in Gaussian Graphical Models
Claudia Di Caterina*, Nancy Reid and Nicola Sartori |
|
doi:10.5705/ss.202022.0394
361 |
|
A New Preferential Model With Homophily for Recommender Systems
Hanyang Tian, Bo Zhang*, Ruixue Jiang and Xiao Han |
Supp |
doi:10.5705/ss.202022.0136
389 |
|
Identifying the Most Appropriate Order for Categorical Responses
Tianmeng Wang and Jie Yang* |
Supp |
doi:10.5705/ss.202020.0322
411 |
|
Statistical Inference for High-Dimensional Linear Regression With Blockwise Missing Data
Fei Xue, Rong Ma and Hongzhe Li* |
Supp |
doi:10.5705/ss.202022.0104
431 |
|
Parametric Modal Regression With Autocorrelated Error Process
Tao Wang* |
Supp |
doi:10.5705/ss.202021.0405
457 |
|
Efficient Learning of Nonparametric Directed Acyclic Graph With Statistical Guarantee
Yibo Deng, Xin He and Shaogao Lv* |
Supp |
doi:10.5705/ss.202022.0272
479 |
|
Long-Memory Log-Linear Zero-Inflated Generalized Poisson Autoregression for COVID-19 Pandemic Modeling
Xiaofei Xu*, Yijiong Zhang, Yan Liu, Yuichi Goto, Masanobu Taniguchi and Ying Chen |
Supp |
doi:10.5705/ss.202022.0148
505 |
Volume 35, Online Special Issue I, Januray 2025 |
Corresponding author* |
Data Privacy |
Guest editors: Jin Lei, Aleksandra Slavković and Linjun Zhang (in alphabetical order) |
|
¡iForeword¡jData Privacy: Overview
Jin Lei, Aleksandra Slavković and Linjun Zhang* |
|
533 |
|
One Step to Efficient Synthetic Data
Jordan Awan* and Zhanrui Cai |
Supp |
doi:10.5705/ss.202022.0274
539 |
|
Mechanisms for Global Differential Privacy Under Bayesian Data Synthesis
Jingchen Hu*, Matthew R. Williams and Terrance D. Savitsky |
Supp |
doi:10.5705/ss.202022.0162
563 |
|
Inference With Combining Rules From Multiple Differentially Private Synthetic Datasets
Leila Nombo* and Anne-Sophie Charest |
Supp |
doi:10.5705/ss.202020.0299
585 |
|
On Rate Optimal Private Regression Under Local Differential Privacy
László Györfi and Martin Kroll* |
|
doi:10.5705/ss.202022.0186
613 |
|
Assessing Statistical Disclosure Risk for Differentially Private, Hierarchical Count Data, With Application to the 2020 U.S. Decennial Census
Zeki Kazan* and Jerome P. Reiter |
Supp |
doi:10.5705/ss.202022.0187
629 |
|
Unbiased Statistical Estimation and Valid Confidence Intervals Under Differential Privacy
Christian Covington*, Xi He, James Honaker and Gautam Kamath |
Supp |
doi:10.5705/ss.202022.0276
651 |
|
Differentially Private Hypothesis Testing With the Subsampled and Aggregated Randomized Response Mechanism
Victor Peña* and Andrés Barrientos |
Supp |
doi:10.5705/ss.202022.0279
671 |
|
Differentially Private Regularized Stochastic Convex Optimization With Heavy-Tailed Data
Haihan Xie, Matthew Pietrosanu, Yi Liu, Wei Tu, Bei Jiang and Linglong Kong* |
Supp |
doi:10.5705/ss.202022.0282
693 |