
Statistica Sinica 35 (2025), 1-21
doi:https://doi.org/10.5705/ss.202022.0331

A LINEAR ERRORS-IN-VARIABLES

MODEL WITH UNKNOWN

HETEROSCEDASTIC MEASUREMENT ERRORS

Linh H. Nghiem∗1 and Cornelis J. Potgieter2,3

1University of Sydney, 2Texas Christian University

and 3University of Johannesburg

Abstract: In the classic measurement error framework, covariates are contaminated

by independent additive noise. This paper considers parameter estimation in such a

linear errors-in-variables model where the unknown measurement error distribution

is heteroscedastic across observations. We propose a new generalized method of

moment (GMM) estimator that combines a moment correction approach and a

phase function-based approach. The former requires distributions to have four finite

moments, while the latter relies on covariates having asymmetric distributions.

The new estimator is shown to be consistent and asymptotically normal under

appropriate regularity conditions. The asymptotic covariance of the estimator

is derived, and the estimated standard error is computed using a fast bootstrap

procedure. The GMM estimator is demonstrated to have strong finite sample

performance in numerical studies, especially when the measurement errors follow

non-Gaussian distributions.
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1. Introduction

The errors-in-variables linear model arises when certain covariates suffer from

measurement error contamination. This can stem from sources like instrumen-

tation and self-reporting errors, as well as the inadequate use of short-term

measurements as proxies for long-term variables. Ignoring measurement error

can result in biased estimators, see Carroll et al. (2006) regarding the importance

of measurement error correction in understanding the effects of the covariates on

the outcome. This paper considers a heteroscedastic measurement error setting,

allowing the measurement error covariance to vary across observations. This

observation-specific measurement error variance structure, treated as unknown,

requires estimation from replicate data. We adopt the classic additive measure-

ment error model wherein the contaminated covariates, i.e. the surrogates, are

treated as the sum of the true covariates and independent measurement errors,

so surrogate variances exceed true covariate variances.

*Corresponding author. E-mail: linh.nghiem@sydney.edu.au

https://doi.org/10.5705/ss.202022.0331
mailto:linh.nghiem@sydney.edu.au

