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Though introduced nearly 50 years ago, the infinitesimal jackknife (IJ) remains

a popular modern tool for quantifying predictive uncertainty in complex estimation

settings. In particular, when supervised learning ensembles are constructed via

bootstrap samples, recent work demonstrated that the IJ estimate of variance is

particularly convenient and useful. However, despite the algebraic simplicity of

its final form, its derivation is rather complex. As a result, studies clarifying

the intuition behind the estimator or rigorously investigating its properties have

been severely lacking. This work aims to take a step forward on both fronts. We

demonstrate that surprisingly, the exact form of the IJ estimator can be obtained

via a straightforward linear regression of the individual bootstrap estimates on their

respective weights or via the classical jackknife. The latter realization allows us to

formally investigate the bias of the IJ variance estimator and better characterize

the settings in which its use is appropriate. Finally, we extend these results to the

case of U-statistics where base models are constructed via subsampling rather than

bootstrapping and provide a consistent estimate of the resulting variance.
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1. Introduction

Given a sample X1, . . . , Xn ∼ P, a parameter of interest θ, and an estimator

θ̂ = s(X1, . . . , Xn), it is often of interest to estimate Var(θ̂). Given data

x = (x1, . . . , xn) and an estimate θ̂ = s(x), to provide a bootstrap estimate

of variance, we draw B (re)samples of size n with replacement to form bootstrap

samples x∗
1, . . . ,x

∗
B from which we calculate bootstrap estimates θ̂1, . . . , θ̂B. The

nonparametric bootstrap variance estimate of θ̂ is then taken as the empirical

variance of θ̂1, . . . , θ̂B (Efron, 1979, 2014). Within this context, given the

necessity of calculating θ̂1, . . . , θ̂B, it is natural to consider the estimator θ̃B =

(1/B)
∑B

b=1 θ̂b as a “bootstrap smoothed” or “bagged” alternative of θ̂ (Efron

and Tibshirani, 1994; Breiman, 1996).

The standard bootstrap approach to assess the variability of θ̃B is compu-

tationally burdensome, requiring bootstrap replicates of not only the original

data, but of the bootstrap samples as well. This double bootstrap (Beran, 1988)
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