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Abstract: Consider the nonlinear autoregressive model xt = φ(xt−1, . . . , xt−p) + εt

where εt are independent, identically distributed(i.i.d.) random variables with al-

most everywhere positive density and mean zero. In this paper we discuss the

conditions for the geometrical ergodicity of the above nonlinear AR model when

there are more than one attractors in the corresponding deterministic dynamical

systems, i.e., yt = φ(yt−1, . . . , yt−p), t ≥ 1. We give several kinds of sufficient

conditions for the geometrical ergodicity. By our result, illustrated by many ex-

amples, we show that many well-known nonlinear models such as the exponential

AR, threshold AR, semi-parametric AR, bounded AR, truncated AR and β-ARCH

models are geometrically ergodic under some mild conditions.
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1. Introduction

Consider the p-order nonlinear autoregressive (NLAR(p)) model

xt = φ(xt−1, . . . , xt−p) + εt, t ≥ 1, (1.1)

where εt, t ≥ 1 are i.i.d. random variables with a common almost everywhere
positive density and finite first moment, εt is independent of xt−s, s ≥ 1, and
Eεt = 0. φ is a measurable function from Rp to R1. We assume these conditions
throughout the paper. In the usual way, we define the corresponding first order
vector autoregressive process

Xt = (xt, xt−1, . . . , xt−p+1)τ ,

T (Xt) = (φ(Xt), xt, . . . , xt−p+2)τ , et = (εt, 0, . . . , 0)τ ,

where τ means transposition of matrix. Thus model (1.1) can be rewritten as

Xt = T (Xt−1) + et, t ≥ 1. (1.2)

Let the initial random variable X0 obey the F0(·) distribution, and the Xn gen-
erated from (1.2) obey the Fn(·) distribution. Model (1.2) or (1.1) is said to be
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geometrically ergodic if there exist a distribution F and a positive real number
ρ < 1 such that

ρ−n‖Fn − F‖ → 0 for any initial distribution F0. (1.3)

Here ‖ · ‖ means the total variation norm. If (1.3) holds with ρ = 1 then model
(1.2) is said to be ergodic.

The ergodicity and geometrical ergodicity are of importance in the statistical
inference of model (1.1). There are many papers in the literature to discuss
the geometrical ergodicity (for example Tjøstheim (1990), Tong (1990) and the
references therein).

When (1.1) is a linear autoregressive model, i.e., φ(x1, . . . , xp) = α0 +α1x1 +
· · · + αpxp, then (1.2) can be written as

Xt = C +GXt−1 + et, t ≥ 1, (1.4)

where

G =




α1 α2 · · · αp−1 αp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



, C =




α0

0
·
·
·
0



.

It is well-known that a sufficient and necessary condition for the stationarity of
(1.4) is that the coefficients α1, . . . , αp satisfy the condition

up − α1u
p−1 − · · · − αp−1u− αp �= 0 for all |u| ≥ 1. (1.5)

The model (1.4) is also geometrically ergodic under condition (1.5).
The ergodicity of the NLAR(p) models is closely related to the stability of the

corresponding deterministic dynamical system, i.e., the following deterministic
model

Yt = T (Yt−1), t ≥ 1. (1.6)

In the linear case, model (1.6) becomes

Yt = C +GYt−1, t ≥ 1, (1.7)

from which we can easily get the expression for Yt:

Yt = C +GC + · · · +Gt−1C +GtY0. (1.8)

But for the general nonlinear model, we can only get the following more complex
expression:

Yt = T (Yt−1) = T (T (Yt−1)) = T (T (· · ·T (Y0) · · ·)) ≡ Tt(Y0). (1.9)
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The study of model (1.6) is closely related to the study of chaos. For example,
the concepts of attractor and attracted domain are used to describe the structural
characteristics of model (1.6). From (1.8) we can easily see that (1.5) holds if
and only if the spectral radius of G is less than one. When (1.5) holds, (1.7) has
a unique attractor

C∗ = C +GC + · · · +GnC + · · · ,
where C∗ satisfies C∗ = C+GC∗, that is, C∗ is a fixed point of the linear function
F (X) = C +GX, and it is easy to see that

‖Yn − C∗‖ ≤Mρn‖Y0 − C∗‖, n ≥ 1, (1.10)

where M and ρ are some constants, and ρ < 1, ‖X‖ denotes the squares norm of
vector X. If Yn generated from (1.6) also satisfies (1.10), then it can be proved
that model (1.2) and thus model (1.1) is geometrically ergodic (see Chan and
Tong (1985)).

When (1.10) holds, model (1.6) has a unique attractor which is the fixed
point C∗. Clearly, this is a very special case of the nonlinear model (1.6), and
is intrinsically linear. When (1.10) does not hold, the model may exhibit rich
structural characteristics. As we know, it is very difficult to study the structure
of dynamical system (1.6) under general conditions (see the theory about chaos,
e.g., Rösler (1979)).

But, to study the stationarity and geometrical ergodicity of the correspond-
ing model (1.2), we may also look at the hard problem of whether or not model
(1.6) is chaotic, although they are not the same kind of problems. Thus, though
we may not know the concrete structure of model (1.6), we may still get the
result of stationarity and geometrical ergodicity, using some smart tools like
Tweedie’s drift criterion (see Tweedie (1975), Meyn and Tweedie (1994), etc.)
and Tjøstheim’s h-step criterion (see Tjøstheim (1990)).

The literature discussing the stationarity and ergodicity of the nonlinear
model (1.1) can be roughly divided into two categories: general cases and special
cases. For the general cases, Tweedie (1975), Nummelin (1984), Chan and Tong
(1985), Tong (1990), Tjøstheim (1990), Meyn and Tweedie (1993) and Meyn
and Tweedie (1994) have developed many good tools and criteria. Since they
are dealing with general cases, the conditions given in these articles are usually
very general. For a very special kind of threshold model, Chan, Petruccelli, Tong
and Woolford (1985), Guo and Petruccelli (1991) and Chen and Tsay (1991)
have given sufficient or sufficient and necessary conditions for the geometrical
ergodicity of the model. Chen and Tsay (1993) proposed the FAR model and
gave a condition to insure the geometrical ergodicity of the FAR model. In
these articles they need some conditions implying condition (1.10) of this paper.
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Ozaki (1985) presented a sufficient condition for the ergodicity of exponential AR
models. One recent result given by Chan and Tong (1994) is rather novel and
interesting. To insure the geometrical ergodicity of the nonlinear autoregressive
model they present a number of conditions that may not satisfy condition (1.10)
of this paper. They need the Lipschitz continuity of the nonlinear function.
Also, as pointed out by themselves in the paper, the verification of some other
conditions may not be easy.

In this paper, under some mild conditions rather than condition (1.10), we
give several kinds of sufficient conditions for the geometrical ergodicity of the
nonlinear model (1.2). From these results, we can see that the exponential AR
model, the threshold AR model, the semi-parametric AR model, β-ARCH model
and the bounded AR model are geometrically ergodic under some mild conditions.
The arguments used in the paper are chosely related to Markov chains in general
state space and the calculus of matrices, so in the next section we describe some
relevant lemmas on Markov chains and matrices used in this paper. In Section
3, we illustrate the main results of the paper and applications in various kinds of
nonlinear models.

2. Some Related Lemmas for Markov Chains and Matrices

First, it is clear that the sequence determined by (1.2) is a temporally ho-
mogeneous Markov chain with state space (Rp,B). The transition probability
is

π(x, A) = P (Xn ∈ A|Xn−1 = x) = P (T (Xn−1) + en ∈ A|Xn−1 = x)

= P (T (x) + e1 ∈ A), x ∈ Rp, A ∈ B. (2.1)

The concepts mentioned in the paper such as aperiodic, irreducible, small sets
and stationary distribution are usually defined for Markov chains and can be
found in books on Markov chains (e.g. Nummelin (1984)).

Lemma 2.1. (Chan and Tong (1985)) Suppose the nonlinear autoregressive
function φ in model (1.1) is bounded over bounded sets. Then {Xt} satisfying
(1.2) is aperiodic and µ-irreducible with µ the Lebesgue measure. Furthermore,
µ-non-null compact sets are small sets.

To determine the geometrical ergodicity of {Xt}, we use the following result.

Lemma 2.2. (Tweedie’s criterion) Let {Xt} be aperiodic irreducible. Suppose
that there exist a small set C, a nonnegative measurable function g, positive
constants c1, c2 and ρ < 1 such that

E{g(Xt+1)|Xt = x} ≤ ρg(x) − c1, for any x /∈ C, (2.2)
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and
E{g(Xt+1)|Xt = x} ≤ c2, for any x ∈ C. (2.3)

Then {Xt} is geometrically ergodic.

This is the so-called drift criterion for the geometrical ergodicity of Markov
chains, and the function g is called the test function in some of the literature.
For original articles, see Tweedie (1975), Nummelin (1984), Tong (1990), Meyn
and Tweedie (1993), Meyn and Tweedie (1994), etc.

In proving the geometrical ergodicity of Markov chains, another very useful
tool is the following

Lemma 2.3. (Tjøstheim’s h-step criterion) If there exists a positive integer h
such that {Xkh} is geometrically ergodic, then {Xt} is geometrically ergodic.

See Tjøstheim (1990) for details.
Combining Tweedie’s criterion of Lemma 2.1 and Tjøstheim’s h-step crite-

rion of Lemma 2.3, the following lemma, given by Tjøstheim (1990), may make
proving the geometrical ergodicity of NLAR models easier and clearer.

Lemma 2.4. Suppose Xt satisfies (1.2) and φ(·) satisfies the condition for
Lemma 2.1; then if there exist a positive integer q and positive constants c1,
c2 , ρ < 1, and a bounded set CK = {x : ‖x‖ ≤ K} such that (2.2) and (2.3) hold
when Xt is replaced by Xqt, it follows that {Xt} is geometrically ergodic.

Lemma 2.5. If G defined in (1.4) satisfies (1.5), then there must exist a matrix
norm ‖ · ‖m, which is induced by a vector norm ‖ · ‖v, and a positive real number
λ < 1 such that

‖Gx‖v ≤ ‖G‖m‖x‖v ≤ λ‖x‖v, for any x ∈ Rp. (2.4)

Proof. Since G satisfies (1.5), the spectral radius ofG is less than one: ρ(G) < 1.
For any λ ∈ (ρ(G), 1), the existence of a vector norm ‖·‖v and the induced matrix
norm ‖ · ‖m such that (2.4) holds can be seen in Ciarlet (1982), page 19.

3. The Geometrical Ergodicity of NLAR Models

3.1. First kind conditions: theorem and examples

First consider the case when the nonlinear autoregressive function φ(·) in
model (1.1) satisfies the following conditions

sup
‖x‖≤K

‖φ(x)‖ <∞ for each K > 0, (3.1)

lim
‖x‖→∞

|φ(x) − ατ x|
‖x‖ = 0, (3.2)
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where α = (α1, . . . , αp)τ satisfies (1.5), ‖ · ‖ denotes the Euclidean norm in Rp.

Theorem 3.1. If the nonlinear autoregressive function φ in model (1.1) satisfies
(3.1) and (3.2), then model (1.2), and thus model (1.1), is geometrically ergodic.

Proof. By (3.1), Lemma 2.1 and Lemma 2.2 it suffices to find a function g, a
bounded set CK , positive real numbers c1, c2 and ρ < 1 such that (2.2) and (2.3)
hold. For the α in (3.2) we define G as in (1.4). By Lemma 2.5 we know that
there exist a positive real number λ < 1, a vector norm ‖ · ‖v and a matrix norm
‖ · ‖m such that (2.4) holds. Define

g(x) = ‖x‖v, x ∈ Rp, (3.3)

to be the test function. Then the theorem can be proved easily by Tweedie’s
criterion. We omit the details.

Note that the norm ‖x‖v in (3.3) has been mentioned by Tjøstheim (1990),
and the first part of Theorem 4.1 in Tjøstheim (1990) is a special case of Theorem
3.1.

Clearly, all linear stationary AR models satisfy the conditions in Theorem
3.1, so they are geometrically ergodic. Furthermore, in the case of linear models,
it is not necessary to assume the distribution of εt has almost every positive den-
sity. However, in the case of nonlinear models, we assume that the distribution
of εt has almost every positive density in order to reduce restrictions on the non-
linear function φ. Generally speaking, our assumption on εt is not very strict. In
fact, many distributions with support in the whole space satisfy our assumption.

Example 3.1. (Bounded AR model) When the nonlinear autoregressive function
φ(·) in model (1.1) is uniformly bounded over the whole space Rp, it is obvious
that the conditions of Theorem 3.1 are satisfied with α = 0, thus the model is
geometrically ergodic. The same result appeared in Tjøstheim (1990), Theorem
4.1.

Example 3.2. (Exponential AR model, see Ozaki (1985)) The model is

xt = α0 +
p∑

i=1

αixt−i +
q∑

i=1

r∑
j=0

βijx
j
t−i exp(−γix

2
t−i) + εt, (3.4)

where α = (α1, . . . , αp)τ satisfies (1.5), γi > 0, i = 1, . . . , q. It is easy to see
that the conditions of Theorem 3.1 are satisfied, so model (3.4) is geometrically
ergodic. Here model (3.4) is not exactly an exponential AR(EXPAR) model, but
a more general one. Usually an EXPAR model uses the same lag variable in all
the exponential terms.
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Example 3.3. (Semi-parametric AR model) The model is

xt = α0 +
p∑

i=1

αixt−i + h(xt−1, . . . , xt−p) + εt, (3.5)

where α = (α1, . . . , αp)τ satisfies (1.5), h(·) is a measurable function. If h(·)
satisfies (3.1) and

h(x1, . . . , xp) = o
(
(

p∑
i=1

x2
i )

1
2

)
, as

p∑
i=1

x2
i → ∞,

then model (3.5) meets the conditions of Theorem 3.1, so model (3.5) is geo-
metrically ergodic. For references on semi-parametric AR model, see Robinson
(1983), Engle, Granger, Rice and Weiss (1986), Shumway, Azari and Pawitan
(1988), etc.

3.2. Second kind conditions: theorem and examples

We have already seen that the models of Example 3.1, Example 3.2 and
Example 3.3 are geometrically ergodic by using Theorem 3.1 under certain con-
ditions. In particular, (1.5) is also necessary for the geometrical ergodicity of
model (3.4), since linear models are special cases of (3.4). But, for another
well-known class of nonlinear model–the threshold autoregressive model, Theo-
rem 3.1 is inappropriate in proving geometrical ergodicity. To study geometrical
ergodicity of the threshold AR model, we have the following theorem.

Theorem 3.2. In model (1.1), if there exist a positive number λ < 1 and a
constant c such that

|φ(x1, . . . , xp)| ≤ λmax{|x1|, . . . , |xp|} + c, (3.6)

then model (1.1) is geometrically ergodic.

Proof. From (1.2) we have X0 = x, X1 = e1 + T (X0) = e1 + T (x), X2 =
e2 + T (X1) = e2 + T (e1 + T (x)), . . ., Xp = ep + T (Xp−1) = ep + T (· · · +
T (x) · · ·)). Denote Xt = (xt, . . . , xt−p+1)τ and define vector norm ‖ · ‖0 by
‖x‖0 = ‖(x1, . . . , xp)τ‖0 = max(|x1|, . . . , |xp|). Using (1.1) and (3.6) we get

|x1| ≤ |ε1| + c+ λmax{|x0|, . . . , |x−p+1|} ≤ |ε1| + c+ λ‖X0‖0,

|x2| ≤ |ε2| + c+ λmax{|x1|, . . . , |x−p+2|}
≤ |ε2| + c+ λmax{|ε1| + c+ λmax{|x0|, . . . , |x−p+1|}, |x0|, . . . , |x−p+2|}
≤ |ε2| + c+ λ(|ε1| + c) + λmax{λmax{|x0|, . . . , |x−p+1|}, |x0|, . . . , |x−p+2|}
≤ |ε2| + c+ λ(|ε1| + c) + λmax{|x0|, . . . , |x−p+2|, λ|x−p+1|}
≤ |ε2| + c+ λ(|ε1| + c) + λ‖X0‖0 ≤ |ε2| + c+ (|ε1| + c) + λ‖X0‖0,
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and similarly,

|xp| ≤ |εp| + c+ λ(|εp−1| + c) + λ2(|εp−2| + c) + · · · + λp−1(|ε1| + c)

+ λmax{|x0|, . . . , |x−p+2|, λ|x−p+1|}
≤ |εp| + c+ λ(|εp−1| + c) + · · · + λp−1(|ε1| + c) + λ‖X0‖0

≤ |εp| + c+ (|εp−1| + c) + · · · + (|ε1| + c) + λ‖X0‖0.

So from the above inequalities, (1.2) and E|εt| <∞ we can easily get

E‖Xp‖0 = Emax(|xp|, |xp−1|, . . . , |x1|)
≤ {E|εp| + c+ (E|εp−1| + c) + · · · + (E|ε1| + c)} + λ‖X0‖0

≤ λ‖X0‖0 + c′,

where c′ is a constant number. Thus by taking the test function g to be the norm
‖ · ‖0, the theorem is proved by Lemma 2.4.

Example 3.4. (β-ARCH model (see Guégan and Diebolt (1994))), The model
is

yt = ηt(a0 + a1y
2β
t−1 + · · · + apy

2β
t−p)

1/2, t ≥ 1, (3.7)

where β, a0, a1, . . . , ap are non-negative constant numbers, ηt’s are i.i.d. N(0, 1)
random variables, y2β

t−i ≡ (y2
t−i)

β ≥ 0. Define xt = log y2
t , εt = log η2

t , then from
(3.7)

xt = φ(xt−1, . . . , xt−p) + εt, (3.8)

where φ(x1, . . . , xp) = log(a0 +a1e
βx1 + · · ·+ape

βxp) and εt satisfy the conditions
of model (1.1). Now

|φ(x1, . . . , xp)| = | log(a0 + a1e
βx1 + · · · + ape

βxp)|

≤ βmax{|x1|, . . . , |xp|)} + log
( p∑

i=0

ai

)
, (3.9)

so if β < 1, model (3.8) is geometrically ergodic by Theorem 3.2. By making use
of the solution {xt} of (3.8), we have from (3.7)

yt = ηt(a0 + a1e
βxt−1 + · · · + ape

βxt−p)1/2

from which we know that {yt} is geometrically ergodic. If β > 1, note that (3.7)
is not ergodic (see Guégan and Diebolt (1994)). In case β = 1, we have proved
that if

∑p
i=1 ai < 1, then (3.7) is geometrically ergodic. Since the method of

proof is different from the one here, we will give the proof in another paper.

Example 3.5. (Generalized linear AR model) Consider the model

xt = φ(θ1xt−1 + θ2xt−2 + · · · + θpxt−p) + εt, (3.10)
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where φ(·) is a nonlinear function, θ = (θ1, . . . , θp)τ is a vector parameter, and
‖θ‖ = 1. If φ(·) satisfies

|φ(x)| ≤ ρ|x|/√p+ c, for any x ∈ R1, (3.11)

where c and ρ are some positive constants, and ρ < 1, then from (3.11) and
‖θ‖ = 1, it follows that

|φ(θ1xt−1 + · · · + θpxt−p)| ≤ ρ√
p
|θ1xt−1 + · · · + θpxt−p| + c

≤ ρmax{|xt−1|, . . . , |xt−p|}
p∑

i=1

|θi|/√p+ c ≤ ρmax{|xt−1|, . . . , |xt−p|} + c

which implies (3.6). Hence by Theorem 3.2 model (3.10) is geometrically ergodic.
If instead of (3.11) φ(·) satisfies |φ(x) − cx|/|x| → 0, |x| → ∞, where c is

a constant number and α ≡ c θ satisfies condition (1.5), and we assume φ(·)
is bounded over a bounded set, then φ(·) satisfies (3.1) and (3.2); thus, model
(3.10) is also geometrically ergodic by Theorem 3.1.

Model (3.10) is similar to the generalized linear model which has been studied
in regression analysis (e.g., see McCullagh and Nelder (1983)). When we study
the generalized linear AR model (3.10), the stationarity and ergodicity of the
model must be involed in the statistical analysis of the model. According to
Example 3.5, the theorems established in the paper are available for studying
the generalized linear AR models, more generally for studying the Projection
Pursuit Approaches (e.g., see Huber (1985) and Jones and Sibson (1987)) in
time series analysis.

Example 3.6. (Threshold autoregressive model (TAR) (see Tong (1990))). The
TAR model is

xt =
s∑

i=1

{
αi0 +

p∑
j=1

αijxt−j

}
I(xt−d ∈ Ii) + εt, t ≥ 1, (3.12)

where I1 = (−∞, r1), I2 = [r1, r2), . . . , Is = [rs−1,∞) and d is some positive
integer. We rewrite (3.12) in the form of (1.2):

Xt =
s∑

i=1

(αi0u +GiXt−1)I(xt−d ∈ Ii) + et, (3.13)

where u = (1, 0, . . . , 0)τ , and

Gi =



αi1 · · · · · · αip

1 0 0
. . .

...
0 1 0


 .
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When αij satisfies the condition

max
i

p∑
j=1

|αij | < 1, (3.14)

then take m = p in Theorem 3.2; hence, from (3.13) and (3.14) it is not difficult
to check that (3.6) holds. So model (3.12) is geometrically ergodic under the
condition of (3.14). This result can also be seen in Tong (1990), Example A1.2.

3.3. Third kind conditions: theorem and examples

Up to now, in the above theorems, we have not assumed the continuity of φ
or T . Now we consider the case when the nonlinear autoregressive function φ is
continuous. Introduce the following iterations with notation φk which is similar
to (1.9):

φ1(y0, y−1, . . . , y−p+1)≡φ(y0, y−1, . . . , y−p+1),

φk(y0, y−1, . . . , y−p+1)≡φk−1(φ(y0, y−1, . . . , y−p+1), y0, y−1, . . . , y−p+2), for k≥2.

Theorem 3.3. Assume the nonlinear autoregressive function φ in model (1.1)
satisfies I and II or I and II′ of the following conditions:

I. |φk(y0, y−1, . . . , y−p+1) − φk(y′0, y−1, . . . , y−p+1)|
≤ Kk|y0 − y′0|, for any y′0, y0, . . . , y−p+1, and k ≥ 1,

II. |φn(y0, y−1, . . . , y−p+1)|
≤Mρn(|y0|+|y−1|+· · ·+|y−p+1|)+c, for any y0, . . . , y−p+1, and n≥1,

II′.
p∑

k=1
|φm+k(y0, y−1, . . . , y−p+1)|

≤ λ(|y0|+ |y−1|+ · · ·+ |y−p+1|)+c, for any y0, . . . , y−p+1, and some m≥1,

where {Kk, k ≥ 1}; M , c, ρ and λ are positive constants and ρ < 1, λ < 1; then
model (1.1) is geometrically ergodic.

Proof. We only prove the case for condition II. From the proof we can see clearly
that the proof also applies to the case of condition II′. Let xt satisfy (1.1). By
(1.1) and conditions I and II of the theorem we have

|xt| ≤ |εt| + |φ(xt−1, . . . , xt−p)|
= |εt| + |φ(εt−1 + φ(xt−2, . . . , xt−p−1), xt−2, . . . , xt−p)|
≤ |εt| +K1|εt−1| + |φ2(xt−2, . . . , xt−p−1)|

· · · · · ·
≤ |εt| +K1|εt−1| + · · · +Kt−1|ε1| + |φt(x0, . . . , x−p+1)|
≤ |εt| +K1|εt−1| + · · · +Kt−1|ε1| +Mρt(|x0| + · · · + |x−p+1|) + c.
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Taking the test function g(x1, . . . , xp) =
∑p

i=1 |xi| and choosing m such that
pMρm−p = λ < 1, then from the above inequality and E|εt| <∞, it follows that

E{g(Xm)} ≤ c′ + λg(X0), where c′ = pc+
{
1 +

m∑
j=1

Kj

}
E(|ε1|),

and from Lemma 2.4 the theorem is proved as in proving Theorem 3.2.

Remark 3.1. If φ satisfies the condition |φ(x) − φ(y)| ≤ K‖x − y‖ for some
constant number K and any x, y, then clearly φ satisfies condition I of Theorem
3.3.

Remark 3.2. If c = 0 in Theorem 3.3, then this theorem is a special case of
Theorem A1.6 of Chan and Tong (1985).

Corollary 3.4. For the general nonlinear autoregressive function φ in model
(1.1), if there exist a function ψ satisfying the conditions I and II or I and II′ of
Theorem 3.3, and a positive constant B such that

|φ(x) − ψ(x)| ≤ B, for any x ∈ Rp, (3.15)

then model (1.1) is geometrically ergodic.

Proof. We only prove the case for condition II. From the proof we can see clearly
that the proof also applies to the case of condition II′. From (1.1) and (3.15) we
have

|xt − ψ(xt−1, . . . , xt−p)| ≤ |εt| +B. (3.16)

Let

ψ1(y0, y−1, ..., y−p+1) ≡ ψ(y0, y−1, ..., y−p+1),

ψk(y0, y−1, ..., y−p+1) ≡ ψk−1(ψ(y0, ..., y−p+1), y0, ..., y−p+2)

for k ≥ 2 and any y0, y−1, ..., y−p+1

be defined as φk above. So by the conditions assumed on ψ and (3.16), it follows
that

|xt| ≤ |εt| + |φ(xt−1, . . . , xt−p)|
≤ |εt| +B + |ψ(xt−1, . . . , xt−p)|
≤ |εt|+B+|ψ(xt−1, . . . , xt−p)−ψ2(xt−2, . . . , xt−p−1)|+|ψ2(xt−2, . . . , xt−p−1)|
≤ |εt| +B + |ψ(xt−1, . . . , xt−p) − ψ1(ψ(xt−2, . . . , xt−p−1), xt−2, . . . , xt−p)|

+ |ψ2(xt−2, . . . , xt−p−1)|
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≤ |εt| +B +K1(|εt−1| +B) + |ψ2(xt−2, . . . , xt−p−1)|
· · · · · ·

≤ |εt| +B +K1(|εt−1| +B) + · · · +Kt−1(|ε1| +B) + |ψt(x0, . . . , x−p+1)|
≤ |εt| +B +K1(|εt−1| +B) + · · · +Kt−1(|ε1| +B)

+Mρt(|x0| + |x1| + · · · + |x−p+1|) + c.

Then, using the same procedure as in proving Theorem 3.3, we can also get the
same conclusion. The details are omitted.

Example 3.7. Consider the TAR(1) model

xt =

{
α0 + α1xt−1 + εt, xt−1 ≥ 0,
β0 + β1xt−1 + εt, otherwise.

Then

φ(x) = α0I(x ≥ 0) + β0I(x < 0) + α1xI(x ≥ 0) + β1xI(x < 0).

Define B = |α0| + |α1| and ψ(x) = α1xI(x ≥ 0) + β1xI(x < 0); then it can
be easily seen that φ, ψ and B satisfy the conditions of Corollary 3.4 as long
as α1 < 1, β1 < 1, and α1β1 < 1. Thus under these conditions the model is
geometrically ergodic. When α0 = β0 = 0, the same result can be seen in Tong
(1990), Example A1.1.

Example 3.8. Consider the multi-threshold TAR(1) (see Tong (1990), Example
A1.2):

xt = α0j + α1jxt−1 + εt for xt−1 ∈ Ij, j = 1, . . . , s,

where the intervals I1, . . . , Is are defined as in Example 3.6. Define

B =
s∑

i=1

|α0i| + (rs−1 − r1)
s∑

i=1

|α1i|, φ(x) =
s∑

i=1

{α0i + α1ix}I(x ∈ Ii),

and
ψ(x) = α11xI(x < r1) + α1sxI(x ≥ r1);

then it can be similarly proved that φ, ψ and B satisfy the conditions of Corollary
3.4 as long as α11 < 1, α1s < 1, and α11α1s < 1. Thus under these conditions
the model is geometrically ergodic.

By making use of the theorems in the paper, we can investigate geometrically
ergodicity for some other nonlinear AR models under weaker conditions, such as
fractional AR model (see Tong (1990), Chapter 3.5, p. 108), separable nonlinear
AR model (see Tong (1990), Example A1.3, p. 465). We omit the details.
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4. Conclusion

In the paper, we propose three kinds of sufficient conditions for geometrical
ergodicity of the NLAR models with emphasis on the following two points. The
first one is to avoid a continuity condition on the function φ in NLAR model (1.1).
The second one is to allow the deterministic skeleton model (1.6) corresponding
to NLAR model (1.2) to have a bounded attractor, say A. In fact, it can be shown
that under the conditions mentioned in Section 3 the attractor A is exponentially
attracting, i.e., there exist constants K and c > 0 such that dist(Tt(x),A) ≤
dist(x,A)K exp(−ct) holds for any x ∈ Rp and t ≥ 1, where dist(x,A) denotes
the Euclidean distance from point x to set A.
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