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Abstract: The problem is to estimate a smooth regression function for the case

of heteroscedastic nonparametric regression. Fixed and random design models are

studied simultaneously. Neither smoothness of the estimated regression function

nor nuisance functions, that is variance of errors and design density of predictors, are

supposed to be known. For this setting we suggest an asymptotically sharp data

driven estimate which has minimal constant and maximal rate of local minimax

Mean Integrated Squared Error convergence as sample size tends to infinity. The

analysis is based on recent results on nonparametric local asymptotic normality and

equivalence, in the sense of Le Cam’s deficiency distance, between a heteroscedastic

regression and corresponding signal-in-noise model. A simplified adaptive estimator

is suggested for the case of small sample sizes. This estimator is analyzed via Monte

Carlo simulations and compared with an optimal pseudo local linear estimator

whose variable bandwidth is based on both underlying regression function and

nuisance functions.

Key words and phrases: Heteroscedastic nonparametric regression, adaptation,

sharp optimality, small samples.

1. Introduction

We consider simultaneously two models of heteroscedastic nonparametric
regression: (i) the fixed design model,

Yni = f(xni) + σ(xni)ξni,

∫ xni

xn(i−1)

h(x)dx = (n+ 1)−1, xn0 = 0, i = 1, . . . , n,

(1.1)
where observations are the pairs {(Yni, xni), i = 1, . . . , n}, (ii) the random design
model,

Yni = f(Xni) + σ(Xni)ξni, i = 1, . . . , n, (1.2)

where Xni are i.i.d. according to design density h(x) and observations are the
pairs {(Yni,Xni), i = 1, . . . , n}. We refer to Yni as response and to xni or Xni

as predictor. Hereafter h(x) is a positive design density supported on [0, 1] and
ξn1, . . . , ξnn are i.i.d. standard normal random variables (errors) which are inde-
pendent of the predictors.
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Brown and Low (1992) show that each of these rather complicated statisti-
cal models is asymptotically equivalent to a corresponding signal-in-white noise
model. In particular, if we assume that:

A. An estimated function f belongs to a Sobolev space of periodic functions
F(m,Q) = {f :

∫ 1
0 ([f(x)]2 + [f (m)(x)]2)dx ≤ Q < ∞, f (s)(0) = f (s)(1) for

s = 0, . . . ,m − 1} where f (s) denotes the sth derivative and m is a positive
integer,

B. Both σ(x) and h(x) are positive and have bounded first derivatives on
[0, 1], and λ2(t) = σ2(t)/h(t),
then due to Brown and Low (1992) the fixed design regression (1.1) is asymptot-
ically equivalent to the following signal-in-noise model,

dYn(t) = f(t)dt+ n−1/2λ(t)dw(t) , 0 ≤ t < 1, (1.3)

where w(t) denotes Brownian motion. We shall use this equivalence to assess both
sharp lower bound for local minimax Mean Integrated Squared Error (MISE)
convergence and adaptive estimation. More complicated equivalence holds for
the case of the random design regression.

To this point the results on asymptotic sharp adaptive estimation, that is,
the results on convergence of MISE with minimal constant and maximal rate,
have been known only for normal noise with constant variance and equidistant
fixed design model (see Nussbaum (1985), Speckman (1985), Efromovich (1986),
Golubev and Nussbaum (1990, 1992)).

For the setting under consideration Fan (1992, 1993) shows that a local linear
estimator, which is one of the most promising kernel type estimators, is asymp-
totically optimal over all linear estimators. We show in this paper that under
some mild assumptions linear estimates are optimal among all possible proce-
dures of estimation. Therefore, a pseudo local linear estimator whose variable
bandwidth is based on underlying regression function and nuisance functions h
and σ, may serve as an oracle for any adaptive estimate. We use this approach
to explore our adaptive estimator for the case of small sample sizes.

In Section 2 a lower bound for local minimax MISE convergence is obtained.
Section 3 is devoted to asymptotically sharp adaptive estimation. The case of
small samples is considered in Section 4.

2. Lower Bound

In this section under assumptions A and B we investigate the asymptotics
of a local minimax lower bound for MISE when n → ∞. Let f0 be a fixed
function from F(m,Q) and restrict our attention to functions f such that the
difference f − f0 belongs to the intersection of F(m,Q) with shrinking L2-balls
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Bn = {g :
∫ 1
0 g

2(t)dt ≤ (Dn/4)δ2n} where δn = n−m/(2m+1) and Dn → ∞
arbitrarily slowly as n→ ∞.

Due to Le Cam and Yang (1990), the Brown and Low’s (1992) equivalence
yields similar behavior of risks with bounded loss functions for the models (1.1)
and (1.3). Therefore, in the discussion to follow, we use a sequence of bounded
loss functions ρn(f̂ − f) = min(δ−2

n

∫ 1
0 (f̂(t) − f(t))2dt,Dn). We also denote the

expectation given an underlying function f as Ef{·}, o(1) and O(1) as generic
sequences in n which tend to zero as n → ∞ and bounded, respectively, C’s as
positive constants, and P (m) = [2m/(2π(m + 1))]2m/(2m+1)(2m + 1)1/(2m+1) as
the Pinsker constant.

The following result is a generalization of the well known lower bound of
Pinsker (1980) where the particular case of λ(t) = σ, squared loss function and
global minimax was explored.

Theorem 2.1. Let assumptions A and B hold for the signal-in-noise model (1.3).
Then

inf sup
f−f0∈F(m,Q)∩Bn

E{ρn(f̃ − f)}≥P (m)Q1/(2m+1)
[ ∫ 1

0
λ2(t)dt

]2m/(2m+1)
(1+o(1)),

(2.1)
where the infimum is over all possible estimates f̃ = f̃n(t, f0,Dn,m,Q, λ) based
on parameters of smoothness m and Q, function λ(t), the center of localization
f0(t) and sequence Dn.

Note that the lower bound (2.1) yields the same lower bound for traditional
minimax MISE.

Due to the equivalence result of Brown and Low (1992) the same lower bound
holds for the fixed design regression (1.1). The same lower bound also holds for
the case of the random design regression (1.2); the latter can be proved similarly
to Efromovich (1992). Thus, for heteroscedastic nonparametric regression we ob-
tain the following asymptotic lower bound for local minimax MISE convergence.

Corollary 2.1. Let assumptions A and B hold. Then the lower bound (2.1) holds
for the fixed (1.1) and the random (1.2) models of heteroscedastic nonparametric
regression.

Proof of Theorem 2.1. Following along the lines of proof in Pinsker (1980)
one can easily check that if λ(t) is constant and Dn = ∞ then the lower bound
(2.1) holds for the considered local minimax approach.

To relax the latter assumption Dn = ∞ one can apply a projection operator
P to an estimate f̃ where the operator P projects this estimate onto the class
of considered functions f . Note that due to definitions of the truncated squared
loss function and shrinking balls Bn this projection may only decrease the risk.
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Moreover, the inequality δ−2
n

∫ 1
0 (P f̃(t) − f(t))2dt ≤ Dn holds uniformly over all

considered functions f .
Thus, the only essential difference between the considered model and

Pinsker’s (1980) setting is that the function λ(t) is not constant. To explore this
case we partition the unit interval [0, 1) into q subintervals and then approximate
λ(t) from below by a step function.

Let Ti(q) = [(i−1)/q, i/q), i = 1, . . . , q be a partition of the unit interval into
q subintervals and define the step function λq(t) = min(z∈Ti) λ(z), t ∈ Ti(q). Note
that due to the definition of Brownian motion the stochastic differential Equa-
tion (1.3) can be written as dYn(t) = f(t)dt+ n−1/2λq(t)dw1(t) + n−1/2(λ2(t) −
λ2

q(t))
1/2dw2(t) where w1(t) and w2(t) are two independent standard Brownian

motions. Therefore, every estimate based on observation (1.3) is dominated by
an estimate based on observation (1.3) with the step function λq(t) in place of
λ(t).

Set λqi = λq((i− 1)/q). Then

inf sup
f−f0∈F(m,Q)∩Bn

Ef{ρn(f̃ − f)}

≥
q∑

i=1

inf sup
f∈Fni

Ef

{
min(δ−2

n

∫
Ti

(f̃n(t, f0,Dn,m,Q, λq) − f(t))2dt;Dn/q)
}
. (2.2)

Here Fni is a class of functions f0 + g supported on Ti where g(s)((i − 1)/q) =
g(s)(i/q) = 0 for s = 0, 1, . . . ,m − 1,

∫
Ti

[g(m)(t)]2dt ≤ Qi = Qλ2
qi/

∑q
s=1 λ

2
qs and∫

Ti
g2(t)dt ≤ Dnδ

2
n/4q. The estimate f̃n(t, f0,Dn,m,Q, λq) on the right-hand

side of (2.2) is based on observation (1.3) with the function λq(t) in place of λ(t).
We have converted the original problem into q subproblems of filtering a

function in white noise. The only difference between these subproblems and
Pinsker’s (1980) setting is that the subproblems consider a class of functions
that vanish together with their m− 1 derivatives at boundary points. Golubev
and Nussbaum (1990) show that Pinsker’s lower bound holds for this class of
functions. Moreover, straightforward algebra shows that this lower bound holds
for the considered shrinking neighborhoods Fni as well. Therefore we can apply
this lower bound to every term on the right-hand side of (2.2). We write for a
fixed q,

q∑
i=1

inf sup
f∈Fni

Ef

{
min(δ−2

n

∫
Ti

(f̃n(t, f0,Dn,m,Q, λq) − f(t))2dt;Dn/q)
}

≥
q∑

i=1

P (m)
[
q−2mQλ2

qi/
q∑

s=1

λ2
qs

]1/(2m+1)
[λ2

qi]
2m/(2m+1)(1 + o(1))



HETEROSCEDASTIC REGRESSION 929

≥
q∑

i=1

P (m)Q1/(2m+1)q−2m/(2m+1)λ2
qi

[ q∑
s=1

λ2
qs

]−1/(2m+1)
(1 + o(1))

= P (m)Q1/(2m+1)
[
q−1

q∑
i=1

λ2
qi

]2m/(2m+1)
(1 + o(1)). (2.3)

Assumption B yields q−1 ∑q
i=1 λ

2
qi ≥ ∫ 1

0 λ
2(t)dt(1 − γ(q)) where γ(q) tends

to zero as q → ∞. Because q may be arbitrarily large, this proves the assertion
of Theorem 2.1.

Remark 2.1. The Cauchy-Schwarz inequality implies
∫ 1
0 σ

2(x)h−1(x)dx ≥
[
∫ 1
0 σ(x)dx]2 with the equality iff the design density h is equal to

h∗(x) = σ(x)/
∫ 1

0
σ(x)dx. (2.4)

Thus, h∗ defines the optimal design of an experiment which minimizes asymptotic
MISE for the heteroscedastic nonparametric regressions (1.1) and (1.2).

In the next section we show that the lower bound (2.1) is sharp, that is,
there exists a data-driven estimator whose MISE attains this lower bound.

3. Asymptotically Sharp Adaptive Estimation

It is easy to check that for the signal-in-noise model (1.3) the estimates
θ̂j =

∫ 1
0 ϕj(t)dYn(t) of the Fourier coefficients θj =

∫ 1
0 ϕj(t)f(t)dt satisfy the

equality
0∑

i=−1

Ef{(θ̂2j+i − θ2j+i)2} = 2n−1σ2,

where σ2 =
∫ 1
0 λ

2(t)dt, j = 1, 2, . . . , and {ϕs(t)} is the classical trigonometric
Fourier basis over the unit interval [0, 1], i.e., ϕ0(t) = 1, ϕ2j−1(t) =

√
2 sin(2πjt)

and ϕ2j(t) =
√

2 cos(2πjt), j = 1, 2, . . . If the parameter σ2 is known, then an
adaptive estimator of Efromovich and Pinsker (1984), which is based only on
observation Yn(t), is asymptotically sharp minimax. For the case of unknown
parameter σ2 we note that E{θ̂2

2j−1 + θ̂2
2j} = θ2

2j−1 + θ2
2j + 2n−1σ2. Thus, one

may estimate the nuisance parameter σ2 via statistics θ̂2
j where j are sufficiently

large.
We shall use this promising idea, which is rather straightforward for the

signal-in-noise model, to estimate a regression function for the heteroscedastic
nonparametric regression models (1.1) and (1.2) when neither smoothness of
estimated regression function nor noise variance σ2(x) nor design density h(x)
are known.
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Set S = �n1/6 ln(n)�, L = 2�n4/9 ln6(n)� and M = L + 1. Here �x� is the
integer part of x. Set sn = 2 for the fixed design model, sn = 2�ln(ln(n+3)+3)�
for the random design model, and define the following sequence of subintervals
of the unit interval, Ani = [xnmax(0,i−(1/2)sn), xnmin(i+(1/2)sn,n+1)). Recall that
xn0 = 0 and xn(n+1) = 1.

To analyze simultaneously the fixed and random design models we denote for
the random design model (1.2) the ordered (according to ascending predictors)
observations as {(Yni, xni), i = 1, . . . , n}. From now on we use only these ordered
observations.

First, we define the estimator for the Fourier coefficients θj ,

θ̂j =
n∑

i=1

Ynis
−1
n

∫
Ani

ϕj(x)dx. (3.1)

The reader might notice that (3.1) resembles the trapezoidal method of numeri-
cally computing the integral

∫ 1
0 f(x)ϕj(x)dx.

For the case when the parameter σ2 =
∫ 1
0 σ

2(x)h−1(x)dx is unknown, we use
the estimate

σ̂2 = nL−1
M+L−1∑

j=M

θ̃2
j , (3.2)

where θ̃j is equal to θ̂j for the case of the fixed design model and it is defined
by (3.1) with sn = s′n = 2�n1/3 ln6(n) + 1� for the random design model. From
now on we set σ̂2 = σ2 if the parameter σ2 is known and σ̂2 is defined by (3.2)
otherwise.

Finally we introduce the following statistics:

Θ̂(k, n) = (2k)−1
k(k+1)∑

j=(k−1)k+1

(θ̂2
j − σ̂2n−1), (3.3)

Λ̂(k, n) = Θ̂(k, n)[Θ̂(k, n) + σ̂2n−1]−1(Θ̂(k, n) − ln−1(k + 3)σ̂2n−1)+, (3.4)

where k = 1, . . . , S and (x)+ = max(0, x).
The following statement is the main result of this section.

Theorem 3.1. Let assumptions A and B hold. Then, the adaptive estimator

f̂n(x) = θ̂0 +
S∑

k=1

Λ̂(k, n)
k(k+1)∑

j=(k−1)k+1

θ̂jϕj(x) (3.5)

is asymptotically sharp minimax, that is,

sup
f∈F(m,Q)

Ef

{ ∫ 1

0
(f̂n(t) − f(t))2dt

}

= P (m)Q1/(2m+1)
[
n−1

∫ 1

0
σ2(x)h−1(x)dx

]2m/(2m+1)
(1 + o(1)). (3.6)



HETEROSCEDASTIC REGRESSION 931

Remark 3.1. The estimator (3.5) with increasing sn, chosen for the case of
the random design model, is also asymptotically sharp optimal for the fixed
design model. The inverse assertion does not hold, that is, the estimator (3.5)
with sn = 2 is not asymptotically sharp optimal for the random design model.
However, this relatively simple estimator is rate optimal for the random design
model.

Remark 3.2. There is a wide variety of groupings and shrinkings of the Fourier
coefficients that yields sharp optimality (see Efromovich (1985)). In particular,
one may set the cardinality of the first Jn = O(1) lnβ(n) groups to be equal
to one. Here β is a positive real. We shall use such grouping in the following
section. Also note that many promising adaptive estimators have been motivated
by these smoothing procedures. The interested reader can find a comprehensive
discussion of this issue and speculations on the future use in Birgé and Massart
(1994) and Barron, Birgé and Massart (1995).

Remark 3.3. The assumption on Gaussian error in models (1.1) and (1.2) is
not crucial for the validity of the upper bound. The interested reader can verify
that this upper bound holds whenever E{ξ2ni} = 1 and E{ξ8ni} <∞.

Proof of Theorem 3.1. Let f̃n(x) =
∑∞

j=0 λj θ̂jϕj(x) be an orthogonal series
estimator. Then Parseval’s identity yields

∫ 1
0 (f̃n(t)−f(t))2dt =

∑∞
j=0(λj θ̂j−θj)2.

Thus, MISE of this estimator depends only on properties of λj and θ̂j but not on
an underlying statistical model. Keeping this in mind, we see that Lemmas 1-3
in Efromovich (1985) yield the upper bound (3.6) whenever the following four
relations hold,

Ef{θ̂j} = θj+rnj where
J∑

j=0

(1 + j)−2r2nj =o(1)(Jn−1)2 and
J∑

j=0

r2nj =o(1)Jn−1,

(3.7)

Ef{θ̂2
j} = θ2

j +n−1
∫ 1

0
σ2(x)h−1(x)ϕ2

j (x)dx+Rnj where
J∑

j=0

|Rnj|=o(1)Jn−1, (3.8)

Ef{(σ̂2 − σ2)2} ≤ (S ln(n))−2, (3.9)

and
Ef{(Θ̂(k, n) − Θ(k, n))4} ≤ Ck−2n−2(Θ(k) + n−1)2. (3.10)

The relations (3.7) and (3.8) are to be held for all natural J ∈ {�ln(n + 3)�, . . .,
S(S + 1)}. Hereafter Θ(k) = (2k)−1 ∑k(k+1)

j=(k−1)k+1 θ
2
j , 0 < k ≤ S and 0 ≤ j ≤

S(S + 1).
Thus, it remains to verify (3.7)-(3.10).
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Proof of (3.7). Assume that the following two inequalities hold,

Ef

{ n∑
i=1

s−1
n

∫
Ani

|(f(xni) − f(x))ϕj(x)|dx
}
≤ Csnn

−1 (3.11)

and ∣∣∣Ef

{ n∑
i=1

s−1
n

∫
Ani

f(x)ϕj(x)dx
}
− θj

∣∣∣ ≤ Csnn
−1. (3.12)

Then we may write

Ef{θ̂j} = Ef

{ n∑
i=1

f(xni)s−1
n

∫
Ani

ϕj(x)dx
}

= Ef

{ n∑
i=1

s−1
n

∫
Ani

f(x)ϕj(x)dx
}

+
n∑

i=1

Ef

{
s−1
n

∫
Ani

(f(xni) − f(x))ϕj(x)dx
}

∆= θj + rnj .

Note that (3.11)-(3.12) yield the inequality

|rnj| ≤ Csnn
−1 (3.13)

which implies (3.7).
Now we are in a position to verify (3.11) and (3.12). Using assumption A

and the Cauchy-Schwarz inequality we obtain
∫
Ani

|(f(xni) − f(x))ϕj(x)|dx ≤
C

∫
Ani

[
∫
Ani

|f (1)(u)|du]dx ≤ Cl
3/2
ni [

∫
Ani

|f (1)(u)|2du]1/2. Hereafter lni =
∫
Ani

dx

denotes the length of the corresponding subinterval Ani. Then, again using the
Cauchy-Schwarz inequality we write

Ef

{ n∑
i=1

s−1
n

∫
Ani

|(f(xni) − f(x))ϕj(x)|dx
}

≤ CEf

{ n∑
i=1

s−1
n l

3/2
ni [

∫
Ani

|f (1)(u)|2du]1/2
}

≤ Cs−1
n Ef

{
[

n∑
i=1

l3ni]
1/2[

n∑
i=1

∫
Ani

|f (1)(u)|2du]1/2
}
.

Note that
∑n

i=1

∫
Ani

|f (1)(u)|2du ≤ sn
∫ 1
0 |f (1)(u)|2du ≤ Csn where the for-

mer inequality follows at once from definition of the subintervals Ani and the
latter from assumption A for the case m = 1 and from assumption A and Parse-
val’s identity for m > 1. On the other hand, the inequality

E{lkni} ≤ C(snn
−1)k (3.14)
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holds for any natural k. Indeed, for the case of the fixed design predictors this
inequality follows at once from the fact that due to assumption B the design
density h(x) is bounded below from zero. For the case of the random design
predictors with a design density h(x) bounded from below the inequality (3.14)
is a well known property of ordered statistics (see, e.g., Wilks (1962)).

Combining the obtained inequalities, we get

Ef

{ n∑
i=1

s−1
n

∫
Ani

|(f(xni) − f(x))ϕj(x)|dx
}
≤ Cs−1

n

[
Ef

n∑
i=1

l3ni

]1/2
s1/2
n ≤ Csnn

−1.

Thus, the inequality (3.11) is proved.
The inequality (3.12) is proved similarly. First, it is easy to see that

∣∣∣
n∑

i=1

s−1
n

∫
Ani

f(x)ϕj(x)dx−
∫ 1

0
f(x)ϕj(x)dx

∣∣∣

< s−1
n

[
sn

∫
An(sn/2)∪An(n−sn/2)

|f(x)ϕj(x)|dx
]
.

Note that due to assumption A the considered regression functions f are
uniformly bounded, that is, supf∈F(m,Q) maxx |f(x)| < C. Also recalling that
θj =

∫ 1
0 f(x)ϕj(x)dx we get the inequality |∑n

i=1 s
−1
n

∫
Ani

f(x)ϕj(x)dx − θj| <
C(ln(sn/2) + ln(n−sn/2)). This inequality at once implies (3.12) for the case of fixed
design regression; for the random design regression the right-hand side of the last
inequality may be estimated via the inequality (3.14) and this immediately yields
(3.12).

Thus, line (3.7) is proved.

Proof of (3.8). First we verify (3.8) for the fixed design model. At the same
time, we shall derive general assertions whenever this is possible.

Assumption B, definition (1.1) of the design density h(x) and the Taylor
expansion give the following asymptotic equality:

ns−1
n lni = h−1(xni) +O(1)n−1. (3.15)

Also note that s−1
n

∫
Ani

ϕj(x)dx = s−1
n lniϕj(xni)+s−1

n

∫
Ani

(ϕj(x)−ϕj(xni))dx.
This equality together with assumption B and (3.15) yields

n∑
i=1

σ2(xni)
[
s−1
n

∫
Ani

ϕj(x)dx
]2

= n−1
∫ 1

0
σ2(x)h−1(x)ϕ2

j (x)dx+O(1)jsnn
−2 .

(3.16)
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Now we may write, using our assumption that ξn1, . . . , ξnn are i.i.d. standard
normal random variables, that

Ef{θ̂2
j} = Ef

{ n∑
i,l=1

YniYnls
−2
n

∫
Ani

ϕj(x)dx
∫

Anl

ϕj(x)dx
}

= Ef

{ n∑
i,l=1

f(xni)f(xnl)s−2
n

∫
Ani

ϕj(x)dx
∫

Anl

ϕj(x)dx

+
n∑

i=1

σ2(xni)[s−1
n

∫
Ani

ϕj(x)dx]2
}

(3.17)

and using (3.11)-(3.16) we obtain

Ef{θ̂2
j} = θ2

j + n−1
∫ 1

0
σ2(x)h−1(x)ϕ2

j (x)dx +Rnj ,

where it is easy to see that |Rnj| ≤ C[jsnn
−2+ |θj ||rnj|+r2nj ]. This together with

(3.13) and the Cauchy-Schwarz inequality
∑J

j=0 |θj||rnj | ≤ [
∑J

j=0(1 + j)2θ2
j ]

1/2

[
∑J

j=0(1 + j)−2r2nj ]
1/2 yields (3.8) for the fixed design model.

To prove (3.8) for the random design model, we use, instead of (3.15), the
well known expansion,

ns−1
n lni = h−1(xni) + ηni, (3.18)

where, under assumption B, the random variables ηni satisfy the inequality
E{η4

ni} ≤ Cs−2
n (see Wilks (1962)). This expansion explains why we should

use an increasing sequence sn for sharp optimal estimating whenever predictors
are random.

Using (3.18) we write

s−1
n

∫
Ani

ϕj(x)dx = s−1
n lniϕj(xni) + s−1

n

∫
Ani

(ϕj(x) − ϕj(xni))dx

= n−1h−1(xni)ϕj(xni) + n−1ηniϕj(xni)

+ snn
−2j

[
s−1
n

∫
Ani

(ϕj(x) − ϕj(xni))dx/(snn
−2j)

]
. (3.19)

Then, using (3.19), the inequality E{η4
ni} ≤ Cs−2

n mentioned above, assump-
tion B and the Cauchy-Schwarz inequality, similarly to (3.16) we get

Ef

{ n∑
i=1

σ2(xni)[s−1
n

∫
Ani

ϕj(x)dx]2
}

= Ef

{ n∑
i=1

σ2(xni)s−1
n

∫
Ani

ϕj(x)dx[n−1h−1(xni)ϕj(xni)
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+n−1ηniϕj(xni) + snn
−2j[s−1

n

∫
Ani

(ϕj(x) − ϕj(xni))dx/(snn
−2j)]]

}

= n−1
∫ 1

0
σ2(x)h−1(x)ϕ2

j (x)dx+O(1)n−2
n∑

i=1

E1/2{η2
ni} +O(1)jsnn

−2. (3.20)

Thus, using (3.20) for estimating the right-hand side of (3.17), we can easily
see that for all natural j the following inequality holds,

|Rnj | ≤ C[n−1s−1/2
n + jsnn

−2 + |θj|snn
−1 + s2nn

−2]. (3.21)

The validity of (3.8) follows immediately from (3.21). Note that the inequal-
ity (3.21) holds for the fixed design model as well, so we can always use it.

Proof of (3.9). We restrict our attention to the more complex case of the
random design model. The fixed design model is analyzed similarly and yet
simpler, so we leave this case to the interested reader.

First of all, we recall that here we use sn = s′n = 2�n1/3 ln6(n) + 1�. Using
(3.8) we write

Ef{σ̂2} = nL−1
M+L−1∑

j=M

Ef{θ̂2
j} = nL−1

M+L−1∑
j=M

θ2
j + σ2 + nL−1

M+L−1∑
j=M

Rnj .

Recall that estimated regression functions belong to F(m,Q) with m ≥ 1
and therefore ∑

j≥M

θ2
j ≤ QM−2. (3.22)

Also, using (3.21) and the Cauchy-Schwarz inequality we see that

nL−1
M+L−1∑

j=M

|Rnj | ≤ C
[
s−1/2
n + snn

−1(L+M) + nL−1
M+L−1∑

j=M

θ2
j + s2nn

−1
]
.

Thus, we obtain the following estimate for the squared bias,

(Ef{σ̂2}−σ2)2 ≤ C[n2L−2M−4+s−1
n +s2nn

−2(L+M)2+s4nn
−2] = o(1)(S ln(n))−2.

(3.23)
Now we estimate the variance of σ̂2. Write

σ̂2 = nL−1
M+L−1∑

j=M

[ n∑
i=1

Ynis
−1
n

∫
Ani

ϕj(x)dx
]2

= nL−1
M+L−1∑

j=M

[ n∑
i=1

f(xni)s−1
n

∫
Ani

ϕj(x)dx
]2
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+ 2nL−1
M+L−1∑

j=M

[ n∑
i=1

f(xni)s−1
n

∫
Ani

ϕj(x)dx
][ n∑

l=1

σ(xnl)ξnls
−1
n

∫
Anl

ϕj(x)dx
]

+nL−1
M+L−1∑

j=M

n∑
i=1

σ2(xni)ξ2ni

[
s−1
n

∫
Ani

ϕj(x)dx
]2

+nL−1
∑

1≤i,l≤n;i	=l

σ(xni)σ(xnl)ξniξnl

M+L−1∑
j=M

[
s−1
n

∫
Ani

ϕj(x)dx
][
s−1
n

∫
Anl

ϕj(x)dx
]

∆=D1 +D2 +D3 +D4. (3.24)

Obviously

Ef{(σ̂2 − Ef{σ̂2})2} ≤ C
4∑

r=1

Ef{(Dr − Ef{Dr})2} (3.25)

and therefore it suffices to estimate the variances of D1-D4.
To estimate the variance of D1 we first deduce similarly to (3.11)-(3.12) the

following expansion,

n∑
i=1

f(xni)s−1
n

∫
Ani

ϕj(x)dx = θj + κnj , where Ef{κ4
nj} ≤ C(snn

−1)4. (3.26)

Using (3.26) write

D1 − Ef{D1} = nL−1
M+L−1∑

j=M

[(θj + κi)2 − (θ2
j + 2θjEf{κnj} + Ef{κ̂2

nj})]

= nL−1
M+L−1∑

j=M

[2θj(κnj − Ef{κnj}) + (κ2
nj − Ef{κ2

nj})].

Using the Cauchy-Schwarz inequality we get

Ef{(D1 − Ef{D1})2}

≤ Cn2L−2
[ M+L−1∑

j=M

θ2
j

M+L−1∑
r=M

Ef{(κ̂nr − Ef{κ̂nr})2} + (M + L)
M+L−1∑

j=M

Ef{κ4
nj}

]
.

Finally, applying (3.22) and (3.26) to the right-hand side of the last inequal-
ity, we see that

Ef{(D1 −Ef{D1})2} ≤ Cn2L−2[M−2(M + L)s2nn
−2 + (M + L)2s4nn

−4]

= o(1)(S ln(n))−2. (3.27)
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To analyze D2 we note that its expectation is zero and that via (3.26)

D2 = 2nL−1
M+L−1∑

j=M

[
(θj + κnj)

n∑
i=1

σ(xni)ξnis
−1
n

∫
Ani

ϕj(x)dx
]
.

Then, applying the Cauchy-Schwarz inequality we get

Ef{D2
2} ≤ Cn2L−2

[ M+L−1∑
j=M

θ2
j

M+L−1∑
r=M

Ef{(
n∑

i=1

σ(xni)ξnis
−1
n

∫
Ani

ϕr(x)dx)2}

+Ef{(
M+L−1∑

j=M

κnj

n∑
i=1

σ(xni)ξnis
−1
n

∫
Ani

ϕj(x)dx)2}
]
.

Using our assumption that the errors ξn1, . . . , ξnn are i.i.d. standard normal
random variables which are independent of predictors, (3.22) and then applying
the Cauchy-Schwarz inequality we write

Ef{D2
2} ≤ Cn2L−2

[
M−2(M + L)n−1 + E

1/2
f {

M+L−1∑
j,r=M

κ2
njκ

2
nr}

×E1/2
f {

M+L−1∑
j,r=M

(
n∑

i=1

σ2(xni)[s−1
n

∫
Ani

ϕj(x)dx][s−1
n

∫
Ani

ϕr(x)dx])2}
]
.

Now, using (3.19), write
∑n

i=1 σ
2(xni)[s−1

n

∫
Ani

ϕj(x)dx][s−1
n

∫
Ani

ϕr(x)dx] as
n−1

∫ 1
0 σ

2(x)h−1(x)ϕj(x)ϕr(x)dx plus some smaller terms. Then via (3.26) we
obtain

Ef{D2
2} ≤ o(1)(S ln(n))−2 + Cn2L−2[(M + L)(snn

−1)2]

×
[
{

M+L−1∑
j,r=M

[n−1
∫ 1

0
σ2(x)h−1(x)ϕj(x)ϕr(x)dx]2}1/2

+(M + L)n−1s−1/2
n + (M + L)3/2snn

−2
]
.

Note that the Bessel inequality and assumption B yield

M+L−1∑
j=M

[ ∫ 1

0
σ2(x)h−1ϕj(x)ϕr(x)dx

]2 ≤
∫ 1

0
σ4(x)h−2ϕ2

r(x)dx ≤ C (3.28)

and therefore, after some straightforward simplifications, we obtain the desired
asymptotic bound

Ef{D2
2} ≤ o(1)(S ln(n))−2 + Cs2nL

−2(M+L)[(M+L)1/2n−1 + (M+L)n−1s−1/2
n

+(M + L)3/2snn
−2] = o(1)(S ln(n))−2. (3.29)
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Estimating the variance of D3 is rather simple. Using the easy verified
inequality Varf{σ2(xni)ξ2ni[s

−1
n lni]2} ≤ Cn−4 we obtain

Varf{D3} ≤ C(nL−1)2(M + L)2
n∑

i=1

Varf

{
σ2(xni)ξ2ni[s

−1
n

∫
Ani

ϕj(x)dx]2
}

= o(1)(S ln(n))−2. (3.30)

Now we estimate the variance of D4. The expectation of D4 is equal to
zero and therefore we are studying the second moment of D4. We can write
D2

4 = n2L−2 ∑M+L−1
j,r=M ajar where

aj =
∑

σ(xni)σ(xnl)ξniξnl

[
s−1
n

∫
Ani

ϕj(x)dx
][
s−1
n

∫
Anl

ϕj(x)dx
]

and hereafter the summation is over 1 ≤ i, l ≤ n except for i = l. Denote
E′{·} as the expectation with respect to the distribution of errors given the
predictors. Recall that ξn1, . . . , ξnn are i.i.d. standard normal random variables
and therefore E′{ajar} = 2

∑
σ2(xni)σ2(xnl)[s−1

n

∫
Ani

ϕj(x)dx] [s−1
n

∫
Ani

ϕr(x)dx]
[s−1

n

∫
Anl

ϕj(x)dx][s−1
n

∫
Anl

ϕr(x)dx]. The last equation shows that

Ef{D2
4} = n2L−2

M+L−1∑
j,r=M

Ef{E′{ajar}} ≤ Cn2L−2
M+L−1∑
j,r=M

Ef{ajr},

where ajr = (
∑n

i=1 σ
2(xni)[s−1

n

∫
Ani

ϕj(x)dx][s−1
n

∫
Ani

ϕr(x)dx])2.
Now we repeat the same technical step which was used for estimating the sec-

ond moment of D2. Namely, using (3.19) we are writing Ef{ajr} as (n−1
∫ 1
0 σ

2(x)
h−1(x)ϕj(x)ϕr(x)dx)2 plus some smaller terms. We get

Ef{ajr} = Ef

{
(

n∑
i=1

σ2(xni)[s−1
n

∫
Ani

ϕj(x)dx][n−1h−1(xni)ϕr(xni)+n−1ηniϕr(xni)

+ snn
−2r[s−1

n

∫
Ani

(ϕr(x) − ϕr(xni)dx/(snn
−2r)]])2

}

≤ C
[
Ef{[n−1

n∑
i=1

σ2(xni)h−1(xni)ϕr(xni)s−1
n

∫
Ani

ϕj(x)dx]2}

+Ef{[n−1
n∑

i=1

|ηni|s−1
n lni]2} + (snn

−2r)2
]
.

The first term in the right hand side of the last inequality is not greater than
C[n−1

∫ 1
0 σ

2(x)h−1(x)ϕj(x)ϕr(x)dx]2 + Cn−2(snn
−1r)2; the second one is not

greater than Cn−2s−1
n . Then, using (3.28) we finally obtain

Ef{D2
4} ≤ Cn2L−2

M+L−1∑
j,r=M

Ef{ajr} ≤ C[L−2L+ L−2n−2s2n(M + L)4 + s−1
n ]

= o(1)(S ln(n))−2.
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Using the last inequality, (3.27), (3.29) and (3.30) to estimate the right-hand
side of (3.25) and then combining the result with (3.23) we establish (3.9).

Proof of (3.10). This proof follows straightforwardly along the lines of the
proof of Lemma 1 in Efromovich (1985) and we leave it to the interested reader.

Theorem 3.1 is now proved.

4. Adaptive Estimation for Small Samples

In this section we discuss a modified (for small sample sizes) adaptive esti-
mator which mimics the proposed asymptotically sharp adaptive estimator.

Below we give a step-by-step explanation of the recommended procedure
and then illustrate it via comparison with a pseudo local linear estimator of
Fan (1992). This local linear estimator is one of the most promising kernel
type estimators whose variable bandwidth is based on both underlying regression
function and nuisance functions σ(x) and h(x). We employ this estimator as an
oracle whose MISE is used as lower bound for MISE of an adaptive estimator.
We also would like to note that a promising procedure of data-driven bandwidth
selection in local polynomial fitting is suggested by Fan and Gijbels (1995).

4.1. Procedure for estimation

There are three steps in the procedure which we recommend for use when the
sample size is in the range from twenty to several hundred observations. Hereafter
we use the basis ψ1(x) = 1 and ψj(x) =

√
2 cos((j − 1)πx) for j = 2, 3, . . . , J

which allows us to approximate aperiodic functions.
Step 1. Let J be the minimal integer which is greater than 2 + ln(n). For

j = 1, . . . , J, estimate the Fourier coefficients θj by the estimator

θ̂j =
n∑

i=1

wi(j)Yi, (4.1)

where w1(j) = xn2ϕj(xn1)/2, wn(j) = (1 − xn(n−1))ϕj(xnn)/2 and wi(j) =
(xn(i+1) − xn(i−1))ϕj(xi)/2 for i = 2, 3, . . . , n − 1. The reader might realize that
θ̂j mimics the estimator (3.1) with sn = 2.

Step 2. Calculate for 1 ≤ j ≤ J the statistics Θ̂j = max((θ̂2
j − σ̂2), 0).

Here σ̂2 = (2J)−1 ∑3J
j=J+1 θ̂

2
j is an estimator for the integrated squared error

n−1
∫ 1
0 σ

2(x) h−1(x)dx.
Step 3. Find the optimal cutoff Ĵ which minimizes the empirical risk, Ĵ σ̂2 +∑J

j=Ĵ+1
Θ̂j, over 1 ≤ Ĵ ≤ J and then compute the modified adaptive estimator,

f̃n(x) =
Ĵ∑

j=1

[Θ̂j/(Θ̂j + σ̂2)]θ̂jψj(x). (4.2)
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4.2. Comparison with a local linear estimator via Monte Carlo simu-
lations

So far we have discussed an orthogonal series approach. It is of interest to
compare the suggested adaptive orthogonal series estimator with a kernel type
estimator. One of the most promising kernel estimators is a local linear estimator
(see e.g., Fan (1992, 1993)). Here we compare our adaptive estimator with the
pseudo local linear estimator of Fan (1992) which utilizes a variable bandwidth
based on the underlying regression function, design density and variance of errors.
The latter allows us to compare our data driven estimator with this ideal kernel
type estimator.

We compare these estimators using Monte Carlo simulations for the fol-
lowing two families of underlying regression functions: F1 = {f : f(x) =
.5 + π−1 arctan(a(x − b)), .5 ≤ a ≤ 10, .2 ≤ b ≤ .7} and F2 = {f : f(x) =
.5(1 + sin(cx)), .5 ≤ c ≤ 5}. The first family mimics a wide variety of monotone
functions, the second is suggested by Fan (1992) and mimics differently oscil-
lated functions. The predictors are i.i.d. normal (µ, d2) random variables, where
0 ≤ µ ≤ 1 and .1 ≤ d2 ≤ 4, which have been truncated on the interval [0, 1].

The variance σ2(x) of errors is assumed to belong to the family {σ2 : σ2(x) =
1 + kx2, −.8 ≤ k ≤ .8}. For each Monte Carlo simulation the parameters
a, b, c, µ, d and k are chosen uniformly and independently from their ranges.

For each family of regression functions and for sample sizes 25, 50, 100, 250
and 500, ten thousand independent Monte Carlo simulations were performed.
Recall that each simulation is based on randomly chosen functions f(x), h(x)
and σ2(x). The basis for comparison of the adaptive estimator (4.2) with the
pseudo local linear estimator is the integrated squared error of an estimate fn,
that is,

∫ 1
0 (fn(x) − f(x))2dx. For each set of 10000 simulations, the sample

mean and sample median of integrated squared errors were computed for each
estimator. Table 1 displays the ratios of the sample mean and sample median of
integrated squared errors of the adaptive estimate (4.2) with those of the pseudo
local linear estimator.

Table 1. Ratios of sample means and sample medians

Sample Ratios
F1 F2

Size Mean Median Mean Median
25 3.7 1.8 2.5 1.3
50 3.9 2.0 2.7 1.5
100 4.0 2.0 2.9 1.7
250 3.6 1.8 2.8 1.7
500 3.6 1.7 2.5 1.6
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Table 1 shows that even in comparison with the pseudo local linear estima-
tor, that is one of the best kernel type estimator whose variable bandwidth is
based on both underlying regression function and nuisance functions, our adap-
tive estimator performs reasonably well for the small sample sizes. It is not
surprising that the orthogonal series estimator performs better for the family F2

of oscillated functions.
The fact that the sample means of the studied ratios are greater than the

corresponding sample medians is due to extreme Monte Carlo samples. In par-
ticular, we observed samples, that is combination of an underlying regression
function, nuisance functions, random predictors and errors, when the ratios ex-
ceeded twelve hundred. That is, some samples are extremely favorable to the
pseudo estimator which is based on underlying regression function and nuisance
functions. However, it follows from Table 1 that the probability of the extreme
samples is extremely low and overall our data-driven estimator performs rela-
tively well in comparison with the pseudo local linear estimator.
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Barron, A., Birgé, L. and Massart, P. (1995). Risk bounds for model selection via penalization.

Technical Report 95.54, Universite de Paris-Sud.
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