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Abstract: Foutz (1977) uses the Inverse Function Theorem to prove the existence of

a unique and consistent solution to the likelihood equations. This note extends his

results in three useful directions. The first is to remark that with minor modification

the same proof may be used to show that the solution to the likelihood equations

converges asymptotically to the least-false parameter (Hjort (1986, 1992)) when

the true probability distribution of the data differs from the parametric family of

models under consideration. The second is to extend his results to certain situations

in which the dimension of the parameter space is not fixed but expanding at some

rate less than the sample size. Lastly, we indicate how this result may be applied

in more general M -estimation problems. An application of these results to proving

consistency in problems involving splines is discussed.
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1. Introduction

The Inverse Function Theorem (IFT; see Rudin (1964)) specifies conditions
under which (i) a function f(u) is one-to-one for u in an open ε-neighborhood
about a point u0, say Uε; and, (ii) f−1(·) is well-defined on the image of Uε under
f(·). This result provides a simple and useful way to prove the existence and
uniqueness of a consistent root to the likelihood equations. Let ln(β) denote the
likelihood for a sample of n observations under a parametric family of models
{Pβ, β ∈ B} , where β is a finite-dimensional parameter. Let Sn(β) be the associ-
ated score function, and define β0 as the unique solution to E (Sn(β)) = 0; that
is, β0 denotes the underlying parameter being estimated. Here, dim(0)=dim(β)
and is a convention which is used throughout this paper. Under sufficient reg-
ularity, Foutz (1977) uses the IFT to prove that with probability going to one
a unique sequence of solutions {β̂ : S−1

n (0) = β̂} exists in an ε-neighborhood of
β0 such that β̂

p→β0. This method for proving the consistency of β̂ is particularly
useful when β̂ only has an implicit representation as the solution to the likelihood
equations i.e. Sn(β) = 0.
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Foutz (1977) assumes that β̂ is the maximum likelihood estimate, that the
underlying probability distribution of the data is a member of the parametric
family {Pβ, β ∈ B} , and that the dimension of β is fixed. The intent of this
paper is to generalize his results with respect to these assumptions. Suppose
that the true probability distribution of the data is given by P, where P is
not necessarily a member of {Pβ, β ∈ B} , and define the “least-false parameter”
β� as the solution to EP (Sn(β)) = 0. The value β� minimizes the Kullback-
Leibler distance between {Pβ , β ∈ B} and P (see Hjort (1986, 1992) for additional
results). Assuming β� exists, a proof that the maximum likelihood estimator β̂n

exists, is locally unique, and consistent for β� can be obtained via the IFT. The
proof is essentially identical to that of Foutz (1977), except that all expectations
are taken over P instead of Pβ� .

In understanding the importance of generalizing the fixed dimension assump-
tion, it is useful to consider an example in which the dimension of the parameter
space grows with the sample size. Many problems in statistics involve model-
ing an unknown continuous real-valued function h(t) (e.g. a density or hazard
function). A common approach is to use polynomial splines, which induce para-
metric models that generally take the form g(t;βn, τn), where βn are parameters
to be estimated and τn is a vector of knots, or breakpoints. Spline functions
can be made more flexible by increasing the number of knots. One trade-off,
however, is that the dimension of βn also gets larger. Determining the theoret-
ical behavior of the sequence of parametric families generated by g(t;βn, τn) as
n → ∞ is often of interest when the number of knots (and hence the dimension
of βn) is allowed to grow larger with n, but at some lesser rate. Murphy and
Sen (1991) investigate the consistency of time-dependent coefficients (modeled
by step functions) in the Cox model. Stone (1994), unifying much of his work
over the last 15 years, provides a general framework for proving consistency in
flexible exponential family-type models for density estimation and generalized
regression problems. Strawderman and Tsiatis (1996) model the dependence of
a hazard function on a stochastic process using B-splines, and investigate the
consistency and asymptotic normality of the resulting hazard estimator. Exam-
ples of other problems where the parameter space expands with the sample size
can be found in the literature on contingency tables. Portnoy (1988) discusses
the general problem of expanding parameter spaces in the context of exponential
families. Several other examples can be found in Bickel et al. (1993).

The main result of this paper is given in Section 2 as Theorem 1, and con-
stitutes a stochastic reformulation of the IFT in terms of the supremum norm
‖ · ‖∞. Theorem 1 provides a systematic method for verifying consistency in a
wide variety of problems, and reduces the general problem to demonstrating the
validity of three conditions. In Section 3, we describe how these results may be
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used to prove consistency in problems involving polynomial spline approxima-
tions, and close the paper with a few remarks on the application of Theorem 1
to more general estimating functions.

2. Main Result

Let X be a random vector defined on a probability space {Ω,F ,P}, and let
X1,X2, . . . denote independent and identically distributed copies of X. For each
n, let Bn ⊂ R

kn be open, and let {Pn,βn , βn ∈ Bn} denote a family of parametric
probability distributions indexed by a kn × 1 parameter vector βn. It is assumed
that dim(βn) = kn grows with n at some slower rate nθ, where 0 ≤ θ < 1 and
θ = 0 corresponds to a fixed dimensional parameter. Unless otherwise specified,
all probabilities and expectations to follow are with respect to P.

Let ln(βn) denote the log-likelihood for the observations X1, . . . ,Xn under
Pn,βn . Define

Sn(βn) =
kn

n

∂ln(βn)
∂βn

as the corresponding kn × 1 normalized score vector. If A ⊆ R
kn , then the

notation Sn(A) is understood to mean the image of A under the transformation
Sn(·). Let −In(βn) be the first derivative of Sn(βn). Define β�

n as the solution to
E (Sn(βn)) = 0 and let In(βn) = E (In(βn)) . It is assumed that β�

n exists and is
unique for n ≥ Nb, where Nb < ∞.

Theorem 1. For n ≥ Nb, suppose that Sn(βn) is a continuously differentiable
mapping from R

kn to R
kn in a neighborhood of β�

n. In addition, suppose that

(a) there exists a constant 0 < c < ∞ such that ‖I−1
n (β�

n)‖∞ ≤ c for n ≥ Nb;

(b) there exists an ε > 0 that may depend only on c such that for all δ > 0 there
exists an Nδ ≥ Nb such that for all n > Nδ,

Pr
{

sup
‖βn−β�

n‖∞<ε
‖In(βn) − In(β�

n)‖∞ >
1
2c

}
< δ;

(c) ‖Sn(β�
n)‖∞ p→0.

Then, as n → ∞, a unique solution {β̂n : Sn(β̂n) = 0} exists in a neighborhood
about β�

n with probability going to one, and ‖β̂n − β�
n‖∞ = Op(‖Sn(β�

n)‖∞).

The reader may recognize that conditions (a) and (b) given in the statement
of the theorem are essentially those needed to invoke the IFT. Taken together,
these two conditions simply require that Sn(βn) satisfies the conditions of the IFT
with probability going to one for βn in an ε-neighborhood about β�

n. Condition
(c) guarantees that 0 ∈ Sn({βn : ‖βn − β�

n‖∞ < ε}) with probability going to
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one, and is necessary for proving existence and consistency of β̂n using the IFT.
The proof of Theorem 1 is straightforward and is given below.

Proof of Theorem 1. Let Yn = (X1, . . . ,Xn)′ ∈ Ωn, and consider the sets
A(n) ⊂ Ωn and B(n) ⊂ Ωn, where

A(n) =
{
Yn : sup

‖βn−β�
n‖∞<ε

‖In(βn) − In(β�
n)‖∞ ≤ 1

2c

}

and
B(n) =

{
Yn : ‖Sn(β�

n)‖∞ <
ε

4c

}
.

Let Nb, c, and ε be chosen to satisfy suppositions (a) and (b) of the theorem.
In conjunction with supposition (c), this implies that we may fix any δ > 0 and
δ� > 0 and find Nδ and Nδ� such that for n > max{Nb, Nδ , Nδ�}, P{A(n)∩B(n)} >

1− 2max{δ, δ�}. Since max{δ, δ�} may be made arbitrarily small, it follows that
limn→∞ P{Yn ∈ A(n) ∩ B(n)} = 1.

Define the sets Cε,n = {βn : ‖βn − β�
n‖∞ ≤ ε}, and Dε,n = {y : ‖y −

Sn(β�
n)‖∞ < ε/(4c)}. Then, for n > Nb, it can be shown that Sn(βn) is one-to-

one from Cε,n onto Dε,n ⊆ Sn(Cε,n) and 0 ∈ Dε,n whenever Yn ∈ A(n) ∩ B(n).

The proof that this is so is straightforward, and entails a simple modification of
the proof of the IFT found in Rudin (1964).

Together, these results imply that with probability going to one a (locally)
unique solution β̂n ∈ Co

ε,n (the interior of Cε,n) exists such that Sn(β̂n) = 0 and
S−1

n (0) = β̂n. The fact that ε may be chosen independently of n > Nb further
implies that ‖β̂n − β�

n‖∞ = Op(‖Sn(β�
n)‖∞), completing the proof.

3. An Application to Problems Involving Splines

Consider the problem in which an unknown continuous real-valued function
h(t) is modeled using B-splines. An introduction to B-splines and their prop-
erties can be found in de Boor (1978). Stone (1994) develops a rather general
framework in which the consistency of B-spline-based estimators in certain den-
sity estimation, regression, and generalized regression problems (e.g. generalized
linear models with flexible link functions) can be investigated for uncensored
data. Strawderman and Tsiatis (1996) consider the questions of consistency
and asymptotic normality when the dependence of the log-hazard function on a
stochastic time-dependent covariate is modeled via B-splines. Many other ex-
amples can be found in the statistical literature. Often, the general parametric
model takes the form g(t;βn, τn), where for each n the deterministic set of knots
τn is such that dim(τn) = O(nθ) for θ ∈ [0, 1) and βn are parameters to be
estimated, with dim(βn) = O(dim(τn)) = kn.
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For a suitably chosen sequence of knots τn, we assume that one can find a
deterministic sequence of solutions, say β��

n , such that ‖g(·;β��
n , τn) − h‖∞ → 0

as n→ ∞. Such a sequence is assumed to exist, for establishing the consistency
of the estimator g(·; β̂n, τn) is futile otherwise. In the case of polynomial splines,
the fact that ‖g(·;β��

n , τn) − h‖∞ → 0 can be established using the analytical
properties of spline functions. Such results may be found, for example, in de
Boor (1978) or Schumaker (1981).

Let β̂n denote the maximum likelihood estimator of βn based on a sample
of size n. To verify that ‖g(·; β̂n, τn) − h‖∞ p→0 as n → ∞, we must show that
‖g(·; β̂n, τn) − g(·;β��

n , τn)‖∞ p→0. However, it may be quite difficult to establish
a direct link between β̂n, the stochastic solution to the likelihood equation, and
β��

n , a deterministic vector with properties that are primarily governed by the
relevant function approximation theory and that ostensibly has little to do with
the estimating function which defines β̂n. Therefore, it may be necessary to
introduce an intermediate quantity, say β�

n, in order to establish a link between
β̂n and β��

n . In view of Theorem 1, a natural choice is the sequence of least-false
parameters {β�

n : EP (Sn(β�
n)) = 0}.

To see this, we first apply the triangle inequality to further reduce the prob-
lem to demonstrating that ‖g(·; β̂n, τn) − g(·;β�

n, τn)‖∞ p→0 and ‖g(·;β�
n, τn) −

g(·;β��
n , τn)‖∞→ 0 for the two deterministic sequences β�

n and β��
n . Under mild

conditions on g (e.g. bounded and continuous), it is then sufficient to prove that
‖β̂n − β�

n‖∞ p→0 and ‖β�
n − β��

n ‖∞→ 0. These results will follow if the conditions
of Theorem 1 (and an appropriately modified deterministic version thereof) are
respectively satisfied by β�

n and β��
n . More specifically, the existence of β�

n and
the fact that ‖β�

n − β��
n ‖∞→ 0 will be established if it can be demonstrated that

there exists an N such that for n > N,

• ‖I−1
n (β��

n )‖∞ ≤ M1, where M1 < ∞;
• there exists an ε > 0 that may depend on M1 such that

sup
‖βn−β��

n ‖∞<ε
‖In(βn) − In(β��

n )‖∞ ≤ 1
2M1

;

and
• limn→∞ ‖E (Sn(β��

n )) ‖∞ = 0.

If these conditions hold, Theorem 1 may then be applied directly in order
to prove that ‖β̂n − β�

n‖∞ p→0. Strawderman and Tsiatis (1996) and Rossini and
Tsiatis (1996) have obtained convergence results for specific problems using this
general approach.

There is some overlap here with the elegant results of Stone (1994). In
particular, under suitable regularity, Theorem 1 may be sufficient to guarantee
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many of the results Stone must prove. For this reason, we suspect that the
conditions which must be verified in order to use the IFT may be moderately
more restrictive. It would be interesting and useful to further identify the extent
to which the two approaches are similar. The proof of consistency found in
Murphy and Sen (1991) shares some similarities with both the method described
here and that found in Stone (1994), and may help to further connect the two.

We remark that Theorem 1 has broad applicability, and is not specific to
a particular application (e.g. splines). The most common use of this result is
likely to be the case where β̂n is the maximum likelihood estimator. However, it
is important to note that all that we really require, subject to regularity, is an
estimating function for β̂n. Thus, Theorem 1 may be used to prove consistency
in the general M -estimation problem as long as the estimating function behaves
nicely (i.e. as defined through the conditions of Theorem 1) as a function of βn.
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