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Abstract: Sequential procedures for constructing fixed size confidence regions for

regression parameters in generalized linear models using maximum likelihood esti-

mators are proposed in this paper. We consider the cases of natural link function

(l.f.) and nonnatural l.f., separately. Stopping times are proposed when the scale

parameter is known and unknown. In either case, the asymptotic consistency and

efficiency of the sequential procedures are established under regularity conditions

similar to those in Fahrmeir and Kaufmann (1985). Moreover, when the scale

parameter is known, we establish the asymptotic normality of the appropriately

standardized stopping time.
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1. Introduction

Generalized linear models (Nelder and Wedderburn (1972)) are regression
models for a number of cases where the classical assumptions are not met. Con-
sider data {(xi, yi), i = 1, . . . , n}, where a case consists of a response y accom-
panied a p × 1 vector x of observed explanatory variables. A generalized linear
model (McCullagh and Nelder (1989)) for these data has two parts: (a) the
random component, specifying a probability density function for y of the form

P (y|θ, φ) = exp
{ [yθ − b(θ)]

a(φ)
+ c(y, φ)

}
, (1.1)

where θ and φ are scale parameters, and a(·), b(·) and c(·) are known functions,
and (b) the systematic component, linking y to the explanatory variable, θ =
u(xT β), where β is a p×1 vector of regression coefficients. The function u(·) will
be called a θ-link to distinguish it from the conventional link function relating
x to the mean of y; the θ-link function is equivalent, and more convenient for
differentiating with respect to β. Assume Θ to be the natural parameter space;
then Θ is convex, and in the interior Θ0 of Θ, all derivatives of b(θ) and all
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moments of y exist (assume Θ0 �= ∅). In this case, (1.1) is an exponential-
family with natural parameter θ. The log-likelihood of regression coefficients for
a sample of size n is

ln(β) =
1

a(φ)

n∑
i=1

[yiu(xT
i β) − b(u(xT

i β))], (1.2)

omitting terms that do not involve β. The maximum likelihood estimate β̂n

is usually computed by iteratively reweighted least square. In Fahrmeir and
Kaufmann (1985, 1986), they proved that β̂n, the MLE, is strongly consistent
and asymptotically normal with asymptotic covariance matrix a · Σ−1, where

Σ(β) = E{b′′(u(xT β))[u′(xT β)]2xxT }, (1.3)

is usually a complicated function of β, with u′(·) and b′′(·) denoting the first and
the second derivatives of u(·) and b(·), respectively.

Based on the asymptotic normality of β̂n, we can construct a confidence set
for the regression coefficient β. For simplicity, we assume that the scale parameter
φ is known or can be estimated by φ̂n. Let ân ≡ a(φ̂n), and

Σ̂n =
1
n

n∑
i=1

b′′(u(xT
i β̂n))[u′(xT

i β̂n)]2xix
T
i . (1.4)

A large sample 100(1−α)% confidence ellipsoid for the p× 1 vector of regression
coefficients is given by

An = A(β̂n, α) = {β : n(β − β̂n)T â−1
n Σ̂n(β − β̂n) ≤ c2}, (1.5)

where c is a constant satisfying P{χ2
p ≥ c2} = α. The length of the maximum axis

of An is 2(c2ân/(nλ̂n))1/2, where λ̂n is the smallest eigenvalue of Σ̂n. Therefore,
whether the scale parameter φ is known or unknown, the length of the maximum
axis of An will still depend on λ̂n and, hence, be random.

For any confidence set (CS), there are at least two important requirements:
coverage probability and precision. That is, for a given α ∈ (0, 1), we wish to
have Pθ(θ ∈ CS) ≈ 1−α, for each θ ∈ Θ. On the other hand, it is undesirable to
make an imprecise statement, even if it can be made with great confidence (as an
extreme example, note that the entire parameter space Θ is a 100% confidence
set). Now, suppose we require further that the length of the maximum axis of
An is no greater than 2d, for some given d > 0; i.e. (c2ân/(nλ̂n)) ≤ d2. Assume
that the smallest eigenvalue of Σ, λp, and the scale parameter φ are known for
the moment. Then, the best fixed sample size is

nopt ≈
[c2a(φ)

d2λp

]
. (1.6)
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Since Σ depends on the unknown regression coefficients, λp is also unknown.
Hence, there is no fixed sample size that can be used to construct a confidence
ellipsoid for β with prescribed coverage probability (α ∈ (0, 1)) and precision
(d > 0), simultaneously. We will show that a sequential procedure can be used
to achieve our goals (asymptotically).

Suppose that φ is known for the moment. It follows from the strong consis-
tency of the MLE, that Σ̂n can also be proved to be a strongly consistent estimate
of Σ. This implies that λ̂n will converge to λp almost surely as n goes to infinity.
Hence, by replacing λp in (1.6) by its strongly consistent estimate λ̂n, we have
the following stopping rule:

Td,1 = inf
{
n ≥ 1 : nλ̂n ≥ c2a(φ)

d2

}
. (1.7)

When φ is known, we rewrite

An = {β : n(β − β̂n)T a−1(φ) Σ̂n(β − β̂n) ≤ c2}. (1.8)

When the sampling is stopped, ATd,1
will be used as a confidence ellipsoid for β.

Sufficient conditions to establish the asymptotic properties of the stopping rule
Td,1 will be based on the Taylor expansions Theorem.

Let b′(·), b′′(·) and u′(·), u′′(·) denote the first and the second derivatives of
b(·) and u(·), respectively. For each i, let’s θi = u(xT

i β) and

Si(β) = [yi − b′(θi)]u′(xT
i β)xi,

Ri(β) = [yi − b′(θi)]u′′(xT
i β)xix

T
i ,

Fi(β) = b′′(θi)[u′(xT
i β)]2xix

T
i . (1.9)

Then it follows from (1.2) that the first and the second derivatives of the log-
likelihood function are

∂

∂β
ln(β) = a−1(φ)

n∑
i=1

Si(β) (1.10)

and
∂2

∂β2
ln(β) = a−1(φ)

n∑
i=1

[Ri(β) − Fi(β)]. (1.11)

It is clear that if u(·) = identity , then Ri(β) = 0 for each i and ∂2ln(β)/∂β2 =
−a−1(φ)

∑n
i=1 Fi(β). This property of the natural link function is of great advan-

tage in proving the asymptotic properties of the MLE as well as in proving the
asymptotic properties of the sequential procedures proposed here. The conditions
give here are similar to those of Fahrmeir and Kaufmann (1985), for establishing
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the strong consistency and the asymptotic normality of ML estimates in general-
ized linear models. As in Fahrmeir and Kaufmann (1985), we also treat natural-
and nonnatural-link function cases separately.

Now turn to the unknown scale parameter case. By (1.6), we need a strongly
consistent estimator of a(φ) in order to have a useful stopping time that will be
finite almost surely under this circumstance. The most commonly used estimator
of a(φ) is ân = a(φ̂n) = n−1 ∑n

i=1[yi − b′(xT
i β̂n)]2/b′′(xT

i β̂n), which is usually
called a “generalized Pearson χ2” statistic (see McCullagh and Nelder (1989) or
Hinkley, Reid and Snell (1991)). Now, let

A′
n = {β : n(β − β̂n)T â−1

n Σ̂n(β − β̂n) ≤ c2}
and

Td,2 = inf
{
n ≥ nd : nλ̂n · â−1

n ≥ c2

d2

}
, (1.12)

where nd is some positive integer and depends on d. Then the asymptotic con-
sistency still holds.

Chow and Robbins (1965) gave a very useful method for constructing a con-
fidence interval for an unknown mean with prescribed coverage probability and
precision. They also proved that the sequential procedure which they presented in
their paper is asymptotically consistent (the coverage probability converges to the
prescribed probability) and asymptotically efficient (the ratio of the expected ran-
dom sample size to the unknown best fixed sample size converges to 1 as the width
of confidence interval approaches 0). Their ideas have been extended to many
different models (Gleser (1965), Albert (1966), Srivastava (1967), Mukhopadhyay
(1974) and Finster (1985)). Recently, Chang and Martinsek (1992) proposed a
sequential procedure for constructing fixed size confidence regions for logistic
regression models.

In this paper, we extend the idea of Chang and Martinsek (1992) and con-
sider a unifying approach for constructing fixed size confidence regions for the
regression coefficients in some generalized linear models under both natural link
function (u(·) ≡ identity) and non-natural link function (u(·) �= identity) se-
tups; and for either case, both known and unknown scale parameter cases are
considered. The stopping rules proposed here are shown to be “asymptotically
consistent and efficient.” Furthermore, we also show the asymptotic normality
of our stopping rule for the model with known scale parameter case.

This paper is organized in the following way. We state the results for gen-
eralized linear models with and without natural link functions in Section 2 and
Section 3, respectively. In Section 4, we discuss some commonly used general-
ized linear models as examples. Proofs of theorems and lemmas will be given in
Section 5.
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2. Natural Link Function

Suppose (xi, yi), i = 1, 2, . . ., are independent observations from a general-
ized linear model; that is, for each i, the conditional density of yi given xi has
the form (1.1) with θi = u(xT

i β0) = xT
i β0, where β0 denote the unknown true re-

gression coefficients of interest. (Note that when yi is a discrete random variable,
(1.1) denotes a conditional mass function. For convenience, we still call this a
density function throughout this paper.) Assume further that

(Rs) (i) EF1(β) exists and is positive definite,

(ii) E max
β∈N

‖F1(β)‖ exists for a compact neighborhood N of β0,

where F1(β) = b′′(xT
1 β)x1x

T
1 ;

(Ms) (i) for some δ ≥ 0, E sup
β∈N

‖F1(β)‖2+δ exists for a compact

neighborhood N of β0,

(ii) there exists a real-valued function b′′(·), which is symmetric about

0 and non-increasing in R+ such that 0<b′′(θ)≤b′′(θ), for all θ ∈ Θ.

Remark. If Θ = R1 or Θ is compact then we can construct a real-valued
function b′′(t) as follows: Extend the support of b′′(θ) to R1 by letting

b′′(s) =

{
b′′(s), if s ∈ Θ,
inf
θ∈Θ

b′′(θ), if s ∈ R1 − Θ. (2.1)

Define

b′′(t) = inf{b′′(s) : |s| ≤ |t|, t ∈ R′}; (2.2)

then, by definition, b′′(t) is symmetric about 0 and non-increasing in R+.

2.1. Known scale parameter

Theorem 2.1. Suppose (Rs) holds. Then, for a given α ∈ (0, 1), the stopping
rule Td,1 is finite almost surely for any d > 0, and
(i) limd→0[

Td,1

nopt
] = 1, almost surely,

(ii) limd→0 P{β0 ∈ ATd,1
} = 1 − α. (asymptotic consistency)

If, in addition, (Ms) is satisfied, then
(iii) limd→0 E[ Td,1

nopt
] = 1. (asymptotic efficiency)

The terms “asymptotic consistency” and “asymptotic efficiency” are due to
Chow and Robbins (1965).
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We now turn to the asymptotic normality of the stopping rule Td,1. Let
Σ0 = Σ(β0) and assume the scale parameter φ is known. Then the asymptotic
normality of Td,1 will follow from the asymptotic result of λ̂n (see Waternaux
(1976) and Davis (1977)). Without loss of generality, let us assume a(φ) = 1.
Suppose that λ1 > · · · > λp are eigenvalues of Σ0. By definition of Σ0, there
exists an orthonormal matrix Γ such that ΓT Σ0Γ = diag(λ1, . . . , λp). Let γi =
ΓT [u(xT

i β0)
1
2 xi], i = 1, 2, . . . Assume that γ1 has finite fourth cummulant and let

κ denote the fourth cummulant of the pth component of γ1. Then, we have

Theorem 2.2. Assume γ1 has finite fourth cummulant and all the eigenvalues
of Σ0 are distinct. Then, as d → 0,

n
− 1

2
opt (Td,1 − nopt)

d−→ N
(
0,

κ

λ2
p

+ 2
)
,

where κ is defined as above. Moreover, if the x′
is are normally distributed, then

n
− 1

2
opt (Td,1 − nopt)

d−→ N(0, 2),

as d → 0.

2.2. Unknown scale parameter

For the case with unknown scale parameter, suppose that there exists a real-
valued function h(θ), which is symmetric about 0 and non-decreasing in R+, such
that

(Ps) (i) b′′(θ) ≤ h(θ), ∀θ ∈ Θ, and

(ii) E sup
β∈N

h2(xT
1 β)‖x1‖2 exists for a compact neighborhood N of β0;

then we have asymptotic efficiency of the stopping rule Td,2.

Theorem 2.3. Under the assumptions of Theorem 2.1, the stopping rule Td,2 is
finite almost surely for any d > 0. Moreover,
(i) limd→0[

Td,2

nopt
] = 1, almost surely,

(ii) limd→0 P{β0 ∈ A′
Td,2

} = 1 − α.
If, in addition, (Ms) and (Ps) are satisfied, then
(iii) limd→∞ E[ Td,2

nopt
] = 1.

Remark. In the proof of asymptotic efficiency of the stopping rule here, we
use the “last time” technique. Unlike the last time considered in Chow and Lai
(1975), the last time we use here is the supremum of uncountably many last
times. The same idea has been used in Chang and Martinsek (1992) for logistic
regression models. Here we extend their idea to a more general setup.
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3. Non-Natural Link Function

In this section, we discuss generalized linear models for the non-natural link
function case. Although we only give theorems for the case when the scale pa-
rameter is known, these results can be extended to the case with unknown scale
parameter by similar arguments as in the proof of Theorem 2.3.

As in the previous section, the strong consistency and asymptotic normality
of the MLE of β0 will be sufficient for proving the “asymptotic consistency” of
the proposed sequential procedure here. But the proof of asymptotic property
of the sequential procedure under the non-natural link function setup will need
some extra conditions.

The strong consistency and asymptotic normality of the MLE of a generalized
linear model with non-natural link function can also be found in Fahrmeir and
Kaufmann (1985, 1986). They proved that, if

(R∗
s) (i) EF1(β) exists and is positive definite,

(ii) E max
β∈N

‖F1(β)‖ and E max
β∈N

‖R1(β)‖ exist for a compact

neighborhood N of β0,

then β̂n → β0, almost surely, as n → ∞ and Σ̂1/2
n (β̂n − β0)

d−→ N(0, a(φ)I), as
n → ∞, where Σ̂n is defined in (1.4). From (1.6), we know that the best fixed
sample size nopt will depend on both λp and φ (and together with some given
constants α ∈ (0, 1) and d > 0). The formulation of the stopping rule in the
non-natural link function case will have a similar form to that in the natural link
function case (but estimators λ̂n and ân are different). The proof of the Theorem
under the non-natural link function case can be done by similar arguments as
long as there exists an appropriate last time random variable which can be shown
to be integrable under the current setup.

Remark. By the strong consistency of β̂n, we have that n−1 ∑n
i=1 Ri(β̂n) → 0

almost surely as n → ∞. Hence, λ̂n = Λmin(n−1 ∑n
i=1 Fi(β̂n)) converges to λp

and ân converges to a(φ).

We assume that φ is known throughout this section. For a detailed discussion
about the cases with unknown scale parameter φ, see Chang (1992). Now, let
Td,1 be a stopping rule with a form (1.7) and An be a confidence ellipsoid with a
form (1.8). Then for any α ∈ (0, 1) and d > 0, we have

Theorem 3.1. Suppose (R∗
s) holds. Then Td,1 is finite almost surely for any

d > 0 and Td,1 will go to infinity as d approaches 0. Moreover,
(i) limd→0(Td,1/nopt) = 1, almost surely, and
(ii) limd→0 P{β0 ∈ ATd,1

} = 1 − α.
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Assume further that u(t) is three times continuously differentiable for all
t ∈ R and let u(i), i = 1, 2, 3, denote the first, the second and the third derivatives
of u, respectively. For any t ∈ R and i = 0, . . . , 3, let

ū(i)(t) = sup{u(i)(s) : |s| ≤ |t|, s ∈ R},
where u(0) = u. Then, ū(i)(t) is non-decreasing in t ∈ R+ and symmetric about
0. Suppose that

(M∗
s ) (i) E

(
|b′(xT

1 β0)u′′(xT
1 β0)| ‖x1‖2

)2+δ
< ∞,

(ii) E[h(η1)[ū(1)]2‖x1‖2]2+δ < ∞, and

(iii) E
(
|b′(xT

1 β)| |ū(3)(η1)| ‖x1‖3
)2+δ

< ∞,

(iv) E
[
h(ū(η1))|ū(1)(η1)ū(2)(η1)| ‖x1‖3

]2+δ
< ∞,

(v) there exists a real-valued function b′′(·),
which is sysmetric about 0 and non-increasing in R+

such that 0 < b′′(θ) ≤ b′′(θ), for all θ ∈ Θ,

where η1 = |xT
1 β0| + ‖x1‖ · ρ. Then, we have asymptotic efficiency of Td,1 under

the non-natural link function case; i.e.

Theorem 3.2. Let (R∗
s) hold and (M∗

s ) be satisfied for some δ ≥ 0. Then

lim
d→0

E[Td,1/nopt] = 1.

4. Examples

In this section, we give three commonly used generalized linear models (with
natural link function) and verify the conditions of the theorems stated in the
above sections. We will only concentrate on the conditions required for the
asymptotic efficiency of the stopping time for these models. (For strong con-
sistency and asymptotic normality of MLE, see Fahrmeir and Kaufmann (1985,
1986).)

Example 1. Poisson Regression Model.
Suppose {yn}n∈N are random variables having mass functions

P (yn = y) = exp(yθn − eθn)/y!, y = 0, 1, 2, . . . , n = 1, 2, . . . ,

where θn = xT
nβ0. Then b(θ) = eθ and Fn(β) = exp(xT

nβ)xnxT
n , n ∈ N . As-

sumption (Ms) becomes E maxβ∈N ‖ exp(xT
nβ)xnxT

n‖2+δ < ∞, for some δ ≥ 0.
Let h(θ) = e|θ|, for all θ ∈ R, and suppose that E supβ∈N h(xβ

1 )‖x1‖2 < ∞. Then
Assumption (Ps) is satisfied.
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Example 2. Gamma Model.
Consider a family of gamma densities

F (y|θ, γ) = Γ(γ)−1(−θ)γyγ−1 exp(θy), y ≥ 0,

for a fixed shape parameter γ > 0. The natural parameter space is Θ=(−∞, 0)
and b(θ)=−γln(−θ), b′(θ)=−γθ−1, b′′(θ)=γθ−2. Let {yn}n∈N be a sequence of
gamma distributed, independent random variables with natural parameter θn =
xT

nβ0 for each n ∈ N . Fn(β) = γ(xT
n β)−2xnxT

n . Then, by setting b′′(θ) = b′′(θ),
Assumption (Ms) will be satisfied provided that E maxβ∈N (|xT

nβ|−2‖xn‖2)2+δ <

∞, for some δ ≥ 0. Hence, Theorems 2.1 and 2.2 can be applied. (This re-
quirement restricts the possible sequence of regressors. For a detailed discussion
about this, see Fahrmeir and Kaufmann (1985, 1986).)

Example 3. Binomial Model.
Let {yn}n∈N be a random sample. For each n, yn has a binomial(m,πn) mass

function. Under the natural link setup, θn = log πn
1−πn

= xT
nβ0 and b(θn) = log(1+

eθn), b′(θn) = eθn/(1 + eθn), b′′(θn) = eθn/(1 + eθn)2. Fn(β) = xnxT
nexT

n β/(1 +
exT

nβ)2. Note that |b′′(θn)| < 1 ∀θn ∈ Θ = R1. Hence, for Assumption (Ms) to
hold, it suffices to have E‖x1‖4+δ < ∞, for some δ ≥ 0. This is consistent with
results obtained by Chang and Martinsek (1992).

5. Proofs

Proofs of the asymptotic consistency for both natural- and nonnatural-link
function cases are similar. Basically, both of them will follow from the strong
consistency of the MLE, β̂n, of β0 and by applying results of Gleser (1965), Chow
and Robbins (1965) and similar arguments which were used in Chang and Mar-
tinsek (1992). In this paper, we concentrate only on the asymptotic efficiency and
the asymptotic normality of the proposed sequential procedures. From theorems
about asymptotic consistency of both cases, we have limd→0 Td,i/nopt = 1, almost
surely, for i = 1, 2. Therefore, to prove the asymptotic efficiency of our stopping
rule Td,i, i = 1 or 2, it is sufficient to show that {d2Td,i : d ∈ (0, 1)}, i = 1 or 2,
is uniformly integrable.

Our stopping rules depend on the estimate of the smallest eigenvalue of the
unknown covariance matrix, which is also a function of the unknown regression
coefficients of interest. Because of this, the sufficient conditions for the nonlinear
renewal theorem (see Woodroofe (1982), Theorem 4.4) will be very difficult to
check. Thus, to find an appropriate integrable last time for each case becomes
an important part of this kind of method. Note that the integrability of such a
last time depends on the supremum of uncountable last times and it cannot be
shown to be integrable by applying Chow and Lai’s (1975) results directly.
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5.1. Known scale parameter

As mentioned above, we only prove Theorem 2.1 (iii) and Theorem 2.2 here.

Proof of Theorem 2.1 (iii)
For natural-link function case with known scale parameter φ, and for some

fixed ρ > 0, define a last time random variable

Lρ = sup{n ≥ 1 : ln(β) − ln(β0) ≥ 0, ∃β ∈ ∂Bρ},

where Bρ = {β : ‖β−β0‖ ≤ ρ} and ∂Bρ denote the boundary of Bρ. Then, under
Assumption (Rs) and the concavity of the log-likelihood function, we have the
following relationship between the MLE, β̂n, and the last time, Lρ; i.e.

{n > Lρ} ⊂ {β̂n ∈ Bρ}, ∀n ≥ 1. (5.1)

Write

Td,1 = Td,1I{Td,1>Lρ} + Td,1I{Td,1≤Lρ}, (5.2)

≤ Td,1I{Td,1>Lρ} + Lρ,

where I is the indicator function. It follows from (5.1) that β̂Td,1
∈ Bρ, when

Td,1 > Lρ. Let b′′(θ) be a real-valued function that satisfies (Ms) (ii), then

b′′(θ) ≤ b′′(θ), ∀θ ∈ Θ. (5.3)

For any ρ > 0, if β ∈ Bρ then ηi ≡ |xT
i β0| + ‖xi‖ · ρ ≥ |xT

i β|, for each i ≥ 1.
Hence, by (5.3) and by applying an eigenvalue inequality (see Wilkinson (1988)),
it is easy to see that

λ∗
n ≡ Λmin(Σ∗

n) ≤ λ̂n, (5.4)

where Σ∗
n = n−1 ∑n

i=1 b′′(ηi)xix
T
i and λ∗

n denotes the smallest eigenvalue of Σ∗
n.

Note that Σ∗
n is now a sample mean of i.i.d. random matrices. Let

F i = b′′(ηi)xix
T
i (5.5)

and

LF = sup
{
n ≥ 1 : ZT

n∑
i=1

(F i − F )Z ≤ −nλF

2
, ∃Z ∈ Rp, ‖Z‖ = 1

}
, (5.6)

where F = E{F 1} and λF = Λmin(F ). By Wilkinson (1988), for n ≥ 1,

λ∗
n ≥ Λmin

(
n−1

n∑
i=1

(F i − F )
)

+ λF .
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Then, by the definition of LF , it follows that

{n > LF } ⊂
{
λ∗

n >
λF

2

}
.

Therefore, by definition of last times Lρ and LF , if n > max(Lρ, LF ) then β̂n ∈ B
and λ̂n ≥ λF /2. This implies that for any d ∈ (0, 1),

d2Td,1 ≤ 2c2a

λF
+ 1 + max(Lρ, LF ) (5.7)

(See also Chang and Martinsek (1992)). Now, by Lemmas 5.1 and 5.2 below, it
can be shown that both Lρ and LF are integrable, as well as {d2Td,1 : d ∈ (0, 1)}.
This implies that limd→0 E[Td,1/nopt] = 1.

Lemma 5.1. Assume that for some ρ ≥ 0, both (Rs) and (Ms) are satisfied.
Then EL

1+δ/2
F < ∞, for some δ ≥ 0.

Lemma 5.2. Under the same assumptions of Lemma 5.1, EL
1+δ/2
F < ∞, for

some δ ≥ 0.

(Proofs of Lemma 5.1 and 5.2 will be given at the end of Section 5.)

Proof of Theorem 2.2.
By Waternaux (1976) and Davis (1977), we know that

√
n(λ̂n − λp)

d→
N(0, κ + 2λ2

p), as n → ∞, where κ is defined as in Section 2. Moreover, by
equation (3) of Lawley (1956), example 1.8 of Woodroofe (1982) and the strong
consistency of β̂n, it can be shown that {√n(λ̂n−λp) : n ∈ N} is uniformly contin-
uous in probability. Hence, it follows from Anscombe’s Theorem (see Woodroofe
(1982)) that √

Td,1(λ̂Td,1
− λp)

d−→ N(0, κ + 2λ2
p), (5.8)

as d → 0. Then, the asymptotic normality of Td,1 follows from the inequalities
below.

By definition of Td,1, Td,1λ̂Td,1
≥ c2

d2 . This implies that√
Td,1(λ̂Td,1

− λp) ≥ T
− 1

2
d,1 λp(nopt − Td,1). (5.9)

Note that nopt = c2/(d2λp). On the other hand,

(Td,1 − 1)λ̂Td,1−1 <
c2

d2
. (5.10)

Therefore,

√
Td,1(λ̂Td,1−1 − λp) −

λ̂Td,1−1√
Td,1

≤ T
− 1

2
d,1 λp(nopt − Td,1). (5.11)
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Note that the second term of the LHS converges to 0 almost surely as d → 0.
Putting (5.9) and (5.11) together, and by (5.8), we have, as d → 0,

T
− 1

2
d,1 λp(Td,1 − nopt)

d−→ N(0, κ + 2λ2
p); (5.12)

or equivalently, it can be rewritten as

n
− 1

2
opt (Td,1 − nopt)

d−→ N
(
0,

κ

λ2
p

+ 2
)
. (5.13)

Moreover, if the x′
is are normally distributed then κ = 0, and (5.13) becomes

n
− 1

2
opt (Td,1 − nopt)

d−→ N(0, 2), (5.14)

as d → 0.

5.2. Unknown scale parameter

Now, let us turn to the proof of Theorem 2.3; i.e. for models with unknown
scale parameter φ. By replacing the unknown φ by its estimator, we can have
the stopping rule Td,2, which depends on the estimate of the smallest eigenvalue
of covariance matrix as well as ân, where Td,2 and ân are defined in Section 2. It
follows from the SLLN, that ân → a almost surely as n → ∞. Hence, (i) and (ii)
of Theorem 2.3 can be proved easily by usual techniques. So, only the proof of
Theorem 2.3 (iii) will be given below.

Proof of Theorem 2.3 (iii)
Both last times random variables Lρ and LF do not depend on the unknown

scale parameter φ, so we still have following inequality:

Td,2 = Td,2I{Td,2>max(Lρ,LF )} + Td,2I{Td,2≤max(Lρ,LF )}
≤ Td,2I{Td,2>max(Lρ,LF )} + max(Lρ, LF ). (5.15)

It is easy to see that if n > max(Lρ, LF ), then β̂n ∈ Bρ and λ̂n ≥ λF
2 . Define a

new stopping time

T ∗
d,2 = inf

{
n ≥ nd : n

λF

2
â−1

n ≥ c2

d2

}
= inf

{
n ≥ nd : nâ−1

n ≥ 2c2

d2 · λF

}
. (5.16)

Hence
{Td,2 > max(Lρ, LF )} ⊂ {Td,2 ≤ T ∗

d,2}.
For a > 0, b > 0 and p > 0, (a + b)p ≤ (ap + bp)max(1, 2p−1). Hence, under
Assumption (Ps), and by the Taylor expansion Theorem, if n > Lρ, then for
i = 1, . . . , n,

[yi − b′(xT
i β̂n)]2 ≤ [yi − b′(xT

i β0)]2 + h2(xT
i β∗

n)‖x‖2 · ρ2

≤ [yi − b′(xT
i β0)]2 + h2(ηi)‖xi‖2 · ρ, (5.17)
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where ηi is the same as before. To simplify the notation, let vi = b′′i (ηi) and
wi =RHS of (5.17), then

ân = a(φ̂n) ≤ n−1
n∑

i=1

wi

vi
, (5.18)

for n > Lρ. Note that {wi/vi : i ∈ N} is a sequence of i.i.d. random variables
with E[wi/vi] < ∞, under Assumption (Ps). Now, let

T ∗∗
d,2 = inf

{
n ≥ nd :

[
n−1

n∑
i=1

wi

vi

]−1 ≤ nλF · d2

2c2

}
.

It follows from the definition that {n > max(Lρ, LF )} ⊂ {T ∗
d ≤ T ∗∗

d }. By
applying Chow and Yu (1981) Lemma 2 (by setting parameters in their lemma
as follows: α = 1, p = 1, λ = d2, an = n, and bn = 0 ), it can be proved that
{d2T ∗∗

d,2 : d ∈ (0, 1)} is uniformly integrable, provided that nd = O(d−1). By the
definitions of T ∗

d,2 and T ∗∗
d,2, we have

Td,2I{Td,2>max(LF ,Lλ)} ≤ T ∗∗
d,2I{Td,2>max(LF ,Lλ)}. (5.19)

From (5.15) and (5.19) and for d ∈ (0, 1), d2Td,2 ≤ d2T ∗∗
d,2 + max(LF , Lλ). This

implies the uniform integrability of {d2Td,2 : d ∈ (0, 1)} and completes the proof
of the asymptotic efficiency part of Theorem 2.3.

5.3. Non-natural link function

We now prove Theorem 3.2. In Section 3, we have already mentioned that
to show the integrability of the last time is a crucial step. In order to prove it
for the non-natural link function case, we need the following lemma.

Lemma 5.3. Suppose that (Ps), (R∗
s), and (M∗

s ) are true for some δ ≥ 0; then
EL

1+δ/2
ρ < ∞.

( Proof of Lemma 5.3 will be given at the end of Section 5.)

Proof of Theorem 3.2.
Assume that φ is known. Let B and ∂B be defined as before. By assumption

−∂2�n(β)/∂β2 will converge to a positive definite matrix for all β ∈ N ⊂ Rp,
where N is some compact neighborhood of β0. Hence, {n > Lρ} ⊂ {β̂n ∈ Bρ}.
Recall that the stopping rule

Td,1 = inf
{
n ≥ 1 : nλ̂n ≥ c2a(φ)

d2

}
and

λ̂n = Λmin
(
n−1

n∑
i=1

Fi(β̂n)
)
.



912 YUAN-CHIN IVAN CHANG

Then, by definition of F i and the eigenvalue inequality,

Λmin(Σ̂n) ≥ Λmin
( 1
n

n∑
i=1

F i

)
, (5.20)

provided that β̂n ∈ Bρ. Note that {F i : i ∈ N} is again a sequence of i.i.d.
random matrices. Then, the rest of the proof will follow by applying Lemma 5.3
and by similar arguments used in the proof of Theorem 2.1 (iii).

Remark. Since the last time is unchanged when φ is unknown, similar results for
the non-natural link function case with unknown scale parameter can be easily
obtained by slightly modifying the proof of Theorem 2.3.

The following are the proofs of Lemma 5.1 and 5.3. Proof of Lemma 5.2 is
similar to that of Lemma 5.1, so it will omitted.

Proof of Lemma 5.1.
By definition, a(φ) > 0. Hence, we can redefine Lρ as below:

Lρ = sup{n ≥ 1 : en(β) − en(β0) ≥ 0, ∃β ∈ ∂Bρ}, (5.21)

where en(β) =
∑n

i=1[yiu(xT
i β)−b(u(xT

i β))]. That is Lρ does not depend on scale
parameter φ. By the Mean-value Theorem,

en(β) − en(β0) =
n∑

i=1

Si(β0)T (β − β0) − 1
2
(β − β0)T

n∑
i=1

Fi(β∗
n)(β − β0), (5.22)

where β∗
n ∈ Bρ is between β and β0. By (5.5), Condition (Rs) and the concavity

of the log-likelihood function, it follows that

Fi(β∗
n) ≥ F i(ηi), ∀ i = 1, . . . , n, (5.23)

where ηi is defined as before. Notation “A ≥ B” for any two square matrices A,
B means that A − B is positive semi-definite. Thus,

�n(β) − �n(β0) ≤
n∑

i=1

Si(β0)T (β − β0) − 1
2
(β − β0)T

n∑
i=1

F i(ηi)(β − β0). (5.24)

Note that for each fixed β, the RHS of (5.24) is a sum of i.i.d. random variables.
Let

L∗
ρ = sup{n ≥ 1 : RHS of (5.24) ≥ 0, ∃β ∈ ∂Bρ};

then Lρ ≤ L∗
ρ almost surely (by definition of Lρ and L∗

ρ). Under Assumption
(Ms), it can be shown that EL∗

ρ
1+δ/2 < ∞, for some δ > 0, by similar arguments

used in Chang and Martinsek (1992). This implies that EL
1+δ/2
ρ < ∞, for some

δ > 0.
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Proof of Lemma 5.3.
Let en(β) =

∑n
i=1[u(xT

i β)yi − b(u(xT
i β))]. By assumption, a(φ) is positive

and
�n(β) − �n(β0) = a(φ)−1[en(β) − en(β0)];

therefore, the last time

Lρ = sup{n ≥ 1 : �n(β) − �n(β0) ≥ 0}
= sup{n ≥ 1 : en(β) − en(β0) ≥ 0}. (5.25)

Recall that u = (g ◦ µ)−1, where g(·) is the conventional link function which
is defined in McCullagh and Nelder (1989). Usually, g(·) is assumed to be a
monotone function. In addition, by the properties of exponential family, µ(·) is
also a monotone function, so is u(·). By Taylor’s Expansion Theorem, we have

en(β) − en(β0) =
n∑

i=1

Si(β0)T (β − β0) +
1
2
(β − β0)T

n∑
i=1

Ri(β∗
n)(β − β0)

−1
2
(β − β0)T

n∑
i=1

Fi(β∗
n)(β − β0),

where Si, Ri and Fi are defined as in (1.9), and β∗
n is in the line segment of β

and β0. For any t ∈ R, let

u(t) = inf{u(s) : |s| ≤ |t|, s ∈ R} (5.26)

and
u(1)(t) = inf{u(1)(s) : |s| ≤ |t|, s ∈ R}. (5.27)

Let ηi = |xiβ0| + ‖xi‖ · ρ and F i = b′′(u(ηi))
[
u(1)(ηi)

]2
xix

T
i , i ≥ 1. Hence, for

any β ∈ Bρ and for all i, |xiβ| ≤ ηi. By Assumption (Ms), for any β ∈ Bρ, we
have, for i = 1, . . . , n,

Fi(β∗
n) ≥ F i(ηi).

Then, it follows from (Ps), (M∗
s ) and by the Taylor expansion theorem,[

yi − b′
(
u(xT

i β∗
n)

)]
u(2)(xT

i β∗
n)

=
[
yi − b′

(
u(xT

i β0)
)]

u(2)(xT
i β0) + b′

(
u(xT

i β0)
)
|u(2)(xT

i β0) − u(2)(xiβ
∗
n)|

+
[
b′

(
u(xT

i β0)
)
− b′

(
(xT

i β∗
n)

)]
u(2)(xT

i β∗
n)

≤
[
yi − b′

(
u(xT

i β0)
)]

u(2)(xT
i β0) + |b′

(
u(xT

i β0)
)
ū(3)(ηi)| ‖xi‖ · ρ

+ h(ū(ηi))ū(1)(ηi)|ū(2)(ηi)| ‖xi‖ · ρ.
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Let

Ri,1 =
[
yi − b′

(
u(xT

i β0)
)]

u(2)(xT
i β0),

Ri,2 = |b′
(
u(xT

i β0)
)

ū(3)(ηi)| ‖xi‖ · ρ

and
Ri,3 = h (ū(ηi)) ū(1)(ηi)|ū′′(ηi)| ‖xi‖ · ρ. (5.28)

Then, for all i = 1, . . . , n,

Ri(β) ≤ Ri,1 + Ri,2 + Ri,3.

Hence,

en(β) − en(β0) ≤
n∑

i=1

Si(β0)(β − β0) − 1
2
(β − β0)T

[ n∑
i=1

Di

]
(β − β0), (5.29)

where Di = F i(ηi) − (Ri,1 + Ri,2 + Ri,3) for all i = 1, . . . , n. Note that {Di :
i = 1, . . . , n} is a sequence of i.i.d. random matrices. Moreover, for all i ≥ 1,
ERi,1 = 0p×p and limρ→0 ERi,2 = limρ→0 ERi,3 = 0p×p. By assumption, we
know that EF 1(η1) is positive definite for any ρ > 0. Hence we can choose a
small enough ρ such that D = ED1 is positive definite. This implies that, for
such a small ρ > 0, we have λD = Λmin(D) > 0. Let ρ be fixed throughout this
section. Then, by an eigenvalue inequality, it is easy to see that

(β − β0)T D(β − β0) ≥ ρ2 · λD.

Define a last time

LD = sup
{
n ≥ 1 :

n∑
i=1

Si(β − β0) − 1
2
(β − β0)T

n∑
i=1

[Di − D](β − β0) ≥ nρ2λD

2
,

∃ β ∈∂Bρ

}
.

It can be shown that EL
1+δ/2
D < ∞ for some δ ≥ 0, by similar arguments used

in Chang and Martinsek (1992) and by applying a theorem in Chow and Lai
(1975). By definition, Lρ ≤ LD almost surely. This implies that there exists a
ρ > 0 such that EL

1+δ/2
ρ < ∞ for some δ ≥ 0.
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