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PENALIZED LIKELIHOOD HAZARD ESTIMATION:

A GENERAL PROCEDURE
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Abstract: A general penalized likelihood hazard estimation procedure is formulated

and an asymptotic theory developed. The life time data may be left-truncated,

partly right-censored, and may come with a covariate. In the presence of a co-

variate, the modular model construction via tensor-product splines provides rich

collections of hazard models, of which the proportional hazard model and a model

of Zucker and Karr (1990) are special cases. The counting process interpretation of

life time data and the associated martingale structure are employed in the analysis.

Asymptotic convergence rates in a certain symmetrized Kullback-Leibler divergence

and in a related mean square error are obtained. A computable adaptive estimate

is proposed and is shown to share the same asymptotic convergence rates. A few

examples are presented in some detail.
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1. Introduction

Censored life time data are common in life testing, medical follow up and
other studies. Let Ti be the life time of an item, Zi be the (left) truncation
time at which the item enters the study, and Ci be the (right) censoring time
beyond which the item is dropped from the study, independent of each other.
One observes (Zi,Xi, δi, Ui), i = 1, . . . , n, where Xi = min(Ti, Ci), δi = I[Ti≤Ci],
Zi < Xi, and Ui is a covariate. Assume that Ti|Ui follow a survival function
S(t, u) = Prob(T > t|U = u). Of interest is the estimation of the hazard function
λ(t, u) = −∂ log S(t, u)/∂t.

When the covariate U is absent, conventional estimates of λ(t) include var-
ious parametric maximum likelihood estimates and the constraint-free nonpara-
metric maximum likelihood delta sum corresponding to the Kaplan-Meier esti-
mate of the survival function (see, e.g., Kalbfleisch and Prentice (1980)). Para-
metric estimates are restrictive, while the delta sum is “unreal”. In between
the two extremes, estimates with nonrestrictive constraints such as the penalized
likelihood estimates provide a proper balance between regularity and adaptive-
ness in the estimation. As a general method, the penalized likelihood method
estimates a function of interest η via the minimizer of L(η|data) + λJ(η), where
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L, usually a minus log likelihood, measures the lack of fit of η to the data, J , usu-
ally a quadratic functional, measures the roughness or irregularity of η, and the
smoothing parameter λ, a positive constant (not to be confused with the hazard
function), controls the tradeoff between the smoothness and the goodness-of-fit
of the estimate. The penalized likelihood method was introduced by Good and
Gaskins (1971) in the context of nonparametric probability density estimation.
Its use in hazard estimation was proposed by Anderson and Senthilselvan (1980),
Bartoszynski, Brown, McBride and Thompson (1981), O’Sullivan (1988a), and
Antoniadis (1989). Cox and O’Sullivan (1990) conducted a general asymptotic
analysis of penalized likelihood estimates, of which O’Sullivan’s (1988a) hazard
estimate is a special case.

When the covariate U is present, a popular model is Cox’s (1972) propor-
tional hazard model, which assumes that λ(t, u) = λ0(t)λ1(u). Cox’s (1972) par-
tial likelihood method treats λ0(t) as a nuisance, free of constraint, and imposes
parametric models for λ1(u). O’Sullivan (1988b) substitutes splines for λ1(u)
via penalized partial likelihood. Zucker and Karr (1990) considered a model of
the form λ(t, u) = λ0(t)λ1(β(t), u), where λ1(β(t), u) is parametric in u with a
time-varying parameter β(t), and estimated β(t) via penalized partial likelihood.

In this article, smooth function models for λ(t, u) on the product domain
T × U of time and covariate are proposed via penalized full likelihood. By
introducing a function decomposition of log λ(t, u), the models are made more
general than but reducible to proportional hazard models and the model of Zucker
and Karr (1990). When U is absent, the estimate reduces to that of O’Sullivan
(1988a). The asymptotic convergence of the estimate and that of a computable
adaptive estimate are studied via the approach of Gu and Qiu (1993) under
the counting process interpretation of censored life time data and the associated
martingale structure (cf. Fleming and Harrington (1991), Chapters 1-2). The
computation of the adaptive estimate in the absence of U was studied in Gu
(1994). An automatic algorithm for computing the adaptive estimate in the
general setup, with data examples, was explored in Gu (1995).

The remainder of the article is organized as follows. Section 2 defines the
estimate and conducts preliminary analysis: In §2.1, the estimate to be analyzed
is formally formulated and its existence is discussed; in §2.2, a symmetrized
Kullback-Leibler divergence is derived under the counting process framework to
assess the estimation precision, and the martingale structure of the data is re-
viewed for later reference; in §2.3, the smoothness conditions characterizing the
roughness penalty are discussed. Section 3 presents a few examples. Section 4
calculates the asymptotic convergence rates of the estimates in the symmetrized
Kullback-Leibler and the related mean square error: In §4.1, a linear approxima-
tion of the estimate is analyzed; in §4.2, the distance between the estimate and the
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linear approximation is calculated, and the convergence rates of the estimate are
obtained; in §4.3, a numerically computable semiparametric adaptive estimate is
proposed and analyzed. Section 5 adds a few more details to the examples of
Section 3 in the light of the theory. Section 6 contains a few remarks.

2. Formulation and Preliminaries

2.1. Penalized likelihood estimation

Consider independent observations (Zi,Xi, δi, Ui), i = 1, . . . , n, and assume
independent censorship. Assume that U has a density m(u) > 0 on U and
that λ(t, u) > 0 whenever S̃(t, u) = Prob(Z < t ≤ X|U = u) > 0, and let
η(t, u) = log λ(t, u). In the remainder of the article, I only use eη to indicate the
hazard and reserve the symbol λ exclusively for the smoothing parameter. Let
f(t, u) = eη(t,u)S(t, u) be the probability density of T |U = u. The likelihood of
the data is

n∏
i=1

{S(Xi, Ui)1−δif(Xi, Ui)δi/S(Zi, Ui)} =
n∏

i=1

{S(Xi, Ui)eδiη(Xi,Ui)/S(Zi, Ui)}.

Note that S(t, u) = exp(−
∫ t
0 e

η(s,u)ds). A penalized likelihood estimate of η is
defined as a minimizer of the functional

− 1
n

n∑
i=1

{
δiη(Xi, Ui) −

∫ Xi

Zi

eη(t,Ui)dt
}

+
λ

2
J(η) (2.1)

in a Hilbert space H on T × U , where the first term is the minus log likelihood.
J is taken as a square norm in H or a square seminorm with a finite dimensional
null space J⊥ ⊂ H, where a finite dimensional J⊥ prevents interpolation, the
conceptual equivalent of a delta sum. Evaluation [t, u]η = η(t, u) is assumed to
be continuous in η ∈ H, ∀(t, u) ∈ {(t, u) : S̃(t, u) > 0}, which is necessary for
(2.1) to be continuous in its argument η. When U is a singleton, the formulation
reduces to a slightly more general version of that of O’Sullivan (1988a). Examples
will be given in Section 3.

Assume that η(t, u) is continuous in t, ∀u ∈ U , ∀η ∈ H. By the Riemann
sum approximations of

∫ X
Z eη(t,U)dt and the continuity of evaluation, (2.1) is

continuous in η. Now
∫
eαη1+βη2dt ≤

{ ∫
eη1dt

}α{ ∫
eη2dt

}β
= exp

{
α log

∫
eη1dt + β log

∫
eη2dt

}

≤ α

∫
eη1dt + β

∫
eη2dt

for α, β ∈ (0, 1), α + β = 1, where the first (Holder’s) inequality is strict unless
eη1 ∝ eη2 on (Z,X]×{U} and the second is strict unless

∫
eη1dt =

∫
eη2dt on {U},
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so the likelihood part L(η) of (2.1) is convex in η and the convexity is strict in any
function space which keeps its dimension when restricted to ∪n

i=1{(Zi,Xi]×{Ui}}.

Theorem 2.1. A minimizer η̂ of (2.1) exists in H whenever it uniquely exists
in J⊥.

The theorem is simply a corollary of Theorem 4.1 of Gu and Qiu (1993).
Note that although in the statement of Theorem 4.1 of Gu and Qiu (1993) L(η)
is assumed to be strictly convex, the proof essentially holds when the convexity
is strict only in J⊥.

The space H is infinite dimensional and the estimate η̂ is in general not
computable. To make the procedure practically applicable, appropriate finite
dimensional approximation of H is needed. Below I propose a data-adaptive
semiparametric estimate η̂n in a certain finite dimensional space Hn ⊂ H, to be
computed in practical applications. In Section 4, it will be shown that η̂ and η̂n

share the same asymptotic convergence rates under appropriate conditions.
Given a square norm in J⊥, H has a tensor sum decomposition such that

J is a square norm in H � J⊥. A Hilbert space in which evaluation is con-
tinuous is known as a reproducing kernel Hilbert space possessing a reproduc-
ing kernel, a positive-definite bivariate function R with the reproducing prop-
erty that 〈R((t, u), ·), η〉 = η(t, u), where 〈·, ·〉 is the inner product in the space
(see, e.g., Aronszajn (1950) and Wahba (1990), Chapter 1). Let RJ be the
reproducing kernel in the space H � J⊥ with J as the inner product. Take
Hn = J⊥ ⊕ {RJ ((Xi, Ui), ·), δi = 1}; η̂n is defined as a minimizer of (2.1) in Hn.
Theorem 2.1 remains valid when H is replaced by Hn.

The specifications of RJ in the examples of Section 3 will be discussed in
Section 5. The numerical calculation of η̂n with automatic smoothing parameters
can be found in a further work Gu (1995).

2.2. Martingale structure

Let N(t) = I[X≤t,δ=1]. Under independent censorship, the quantity eη(t,u)dt

is the conditional probability that N(t) makes a jump in [t, t + dt) given that
t ≤ X and U = u. Letting η0 be the true hazard and η̂ the estimate, it is
easy to show that the symmetrized Kullback-Leibler divergence between two
Bernoulli distributions with failure probabilities eη0(t,u)dt and eη̂(t,u)dt is (eη̂(t,u)−
eη0(t,u))(η̂(t, u) − η0(t, u))dt + O((dt)2). Weighting by the at-risk probability
S̃(t, u) = Prob(Z < t ≤ X|U = u) and accumulating over T ,

∫
T (eη̂−eη0)(η̂−η0)S̃

defines a natural discrepancy measure conditional on U = u, and in turn

SKL(η0, η̂) =
∫
U

∫
T

(eη̂ − eη0)(η̂ − η0)S̃m (2.2)
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makes an appropriate measure for assessing the estimation precision, where
m(u) > 0 is the density of U . Note that SKL is not a normed distance. Nev-
ertheless, a quadratic norm V (η) =

∫
U

∫
T η

2eη0 S̃m defines a distance V (η̂ − η0)
which approximates SKL(η0, η̂). Note that eη0(t,u)S̃(t, u)dt is the probability that
an item fails in [t, t+dt) conditional on U = u, so V (η̂−η0) is actually a properly
weighted mean square error.

Let Y (t) = I[Z<t≤X] be the at-risk process and A(t) =
∫ t
0 Y (s)eη0(s,U)ds. Un-

der independent censorship, M(t) = N(t)−A(t) is a martingale conditional on U
and Z. E[M(t)|U,Z] = 0 and E[M2(t)|U,Z] = E[A(t)|U,Z] =

∫ t
0 e

η0E[Y |U,Z].
Given any deterministic function h(t, u) continuous in t on T ×U (so it is locally
bounded predictable), the Stieltjes integral

∫ t
0 h(s, U)dM(s) is also a martin-

gale (conditional on U and Z) so long as
∫
T h

2eη0E[Y |U,Z] < ∞, and in turn
E[

∫ t
0 hdM |U,Z] = 0 and E[{

∫ t
0 hdM}2|U,Z] =

∫ t
0 h

2eη0E[Y |U,Z]. It follows that

E

∫ t

0
hdN −

∫
U

∫ t

0
h eη0 S̃m = E

∫ t

0
hdM = 0 (2.3)

and
E

{ ∫ t

0
hdM

}2
= E

∫ t

0
h2dA =

∫
U

∫ t

0
h2eη0 S̃m. (2.4)

Further,

E
{ ∫ t

0
hdN −

∫
U

∫ t

0
h eη0 S̃m

}2

= E
{ ∫ t

0
hd(N −A) +

∫ t

0
h eη0Y −

∫
U

∫ t

0
h eη0 S̃m

}2

= E
{ ∫ t

0
hdM

}2
+ E

{ ∫ t

0
h eη0Y −

∫
U

∫ t

0
h eη0 S̃m

}2
, (2.5)

where E[
∫ t
0 hdM{

∫ t
0 he

η0Y−
∫
U

∫ t
0 he

η0 S̃m}|U,Z]=0 because
∫ t
0 he

η0Y −
∫
U

∫ t
0 he

η0

S̃m is predictable. Note that δη(X,U) =
∫
T η(t, U)dN(t) and

∫ X
Z eη =

∫
T Y e

η.
The functional (2.1) shall be written as

− 1
n

n∑
i=1

{ ∫
T
ηidNi −

∫
T
Yie

ηi

}
+
λ

2
J(η) (2.6)

for later reference, where ηi(t) = η(t, Ui).
The results quoted in this subsection are mainly taken from Fleming and

Harrington (1991, §2.7). See also Gill (1984).

2.3. Smoothness assumptions

Assume V (η) =
∫
U

∫
T η

2eη0 S̃m < ∞ for η ∈ H. V (η) defines a statistically
interpretable metric in H as discussed in §2.2. The nonrestrictive constraints
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imposed by λJ(η), or the smoothness of functions in H, shall be characterized
via an eigenvalue analysis of J with respect to V .

A bilinear form B is said to be completely continuous with respect to another
bilinear form A, if for any ε > 0, there exist finite number of linear functionals
l1, . . . , lk such that lj(η) = 0, j = 1, . . . , k, implies that B(η) ≤ εA(η) (see
Weinberger (1974), §3.3). To possibly achieve noise reduction in estimation, the
effective model space dimension has to be kept finite, while to make the estima-
tion nonrestrictive, the effective model space dimension should be expandable
as more data become available. The penalized likelihood method just tries to
implement this, where for fixed λ the dimension may be kept down via keeping
λJ bounded and the dimension expansion may be achieved by letting λ → 0 as
n→ ∞. To make this possible the following assumption must be made.

Assumption A.1. V is completely continuous with respect to J .

A.1 is equivalent to assuming that V is completely continuous with respect
to (V + J). Under A.1, using Theorem 3.1 of Weinberger (1974, p.52), it can
be shown that there exist φν ∈ H and 0 ≤ ρν ↑ ∞, ν = 1, 2, . . ., such that
V (φν , φµ) = δν,µ and J(φν , φµ) = ρνδν,µ, where δν,µ is the Kronecker delta (see
Gu and Qiu (1993), §5). The notion of smoothness is characterized by the rate
of growth of ρν .

Assumption A.2. ρν = cνν
r, where r > 1, cν ∈ (β1, β2), and 0 < β1 < β2 ≤ ∞.

The asymptotic convergence rates of the estimates directly depend on r.
Technically, only a lower bound β1 > 0 is required in the asymptotic analysis,
but a nil upper bound β2 = ∞ may imply nominal rates which are slower than
the actual ones.

3. Examples

I present a few examples in this section and discuss assumptions A.1 and A.2.
Assumptions A.3, A.4, and the specifications of RJ necessary for the calculation
of η̂n will be deferred to Section 5. These technically elementary examples are
meant to illustrate the practical applicability of the method, complementing the
rather abstract setting in which the theory is developed. Algorithms and data
examples are to be found in Gu (1994, 1995).

Let [T0, T1] = ∪u∈U{S̃(t, u) > 0}, where T0 and T1 indicate the start and
close time of the study. A type I censoring at some tc < ∞ is almost always
present in practical situations, explicitly or implicitly, so it appears reasonable
to assume that T1 < ∞. Without loss of generality, I shall take T0 = 0, T1 = 1,
and T = [0, 1].
Example 1. Singleton U . A singleton U characterizes the absence of a covariate.
Take J(η) =

∫ 1
0 η̈

2 and H = {η : J(η) < ∞}. It follows that J⊥ = {1, (·)}. A
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minimizer of (2.1) exists whenever the maximum likelihood estimate of a para-
metric form η(t) = β0 + β1t uniquely exists. When eη0 S̃ is bounded from zero
and infinity on [0, 1] so V (η) =

∫ 1
0 η

2eη0 S̃ is equivalent to the L2 norm, standard
results (cf. Utreras (1981), Silverman (1982)) imply that A.1 and A.2 are sat-
isfied, and r = 4 in A.2. This configuration was first considered by O’Sullivan
(1988a). (See also Antoniadis (1989).)

I denote by {ψν} the function sequence on [0, 1] satisfying
∫ 1
0 ψνψµ = δν,µ

and
∫ 1
0 ψ̈ν ψ̈µ = σνδν,µ, where O(ν4) = σν ↑. The first two entries are ψ1 = 1 and

ψ2 = 121/2(· − .5) with σ1 = σ2 = 0.

Example 2. Doubleton U . A doubleton U , say U = {1, 2}, provides the simplest
possible example of a categorical covariate. Functions on U are actually vectors
in R2. Define ω1(u) = 2−1/2 and ω2(u) = 2−1/2(−1)u. ω1 and ω2 are orthonormal
under the standard Euclidean norm. Let Ṽ (η) =

∑
u

∫ 1
0 η

2 and

J̃(η)=
∑
u

∫ 1

0
η̈2 =

∫ 1

0
(η̈(t, 1)+η̈(t, 2))2/2+

∫ 1

0
(η̈(t, 1)−η̈(t, 2))2/2=J1(η)+J2(η).

Set {ψν(t)ωj(u)} as {φ̃ν} with ρ̃ν = J̃(φ̃ν) increasing. It is easy to verify that
Ṽ (φ̃ν , φ̃µ) = δν,µ, J̃(φ̃ν , φ̃µ) = ρ̃νδν,µ, and ρ̃ν = O(ν4). As a matter of fact,
J̃⊥ = {ψ1ω1, ψ1ω2, ψ2ω1, ψ2ω2}, J1 defines a square norm in H1 = {ψνω1}ν≥2,
and J2 defines a square norm in H1 = {ψνω2}ν≥2. Now assume that eη0 S̃ is
bounded from zero and infinity on [0, 1] × {1, 2} and that m(1),m(2) > 0 so
V (η) =

∫
U

∫
T η

2eη0 S̃m is equivalent to Ṽ (η). Also let J(η) = θ−1
1 J1(η)+θ−1

2 J2(η),
θ1, θ2 > 0, which is equivalent to J̃(η). A.1 and A.2 are satisfied with r = 4 via
standard arguments. A minimizer of (2.1) exists when the maximum likelihood
estimate of the form η(t, u) = αu + βut uniquely exists.

Note that J1 penalizes the roughness of the average (over U) log hazard, or
the (time-axis) main effect, whereas J2 penalizes the the roughness of the contrast
log hazard, or the interaction. Setting θ2 = 0+ to effectively eliminate H2 and
removing {ψ2ω2} from J̃⊥, one obtains a proportional hazard model, which can be
estimated by using J = J1 in (2.1) and restricting H to {ψ1ω1, ψ1ω2, ψ2ω1}⊕H1,
a subspace of J̃⊥ ⊕H1 ⊕H2 which characterizes functions of the form η(t, u) =
C + ft + fu. When Ṽ and V are equivalent, A.1 and A.2 (with r = 4) are
satisfied in the proportional hazard model. A minimizer of (2.1) exists whenever
the maximum likelihood estimate of the form η(t, u) = αu + βt uniquely exists.

Example 3. U = [0, 1]. This describes a univariate continuous covariate. Let
Ṽ (η) =

∫ 1
0

∫ 1
0 η

2 and J̃(η) = J1(η) + J2(η) + J3(η) + J4(η) + J5(η), where J1 =∫ 1
0 (

∫ 1
0 η̈ttdu)2dt, J2 =

∫ 1
0 (

∫ 1
0 η̈uudt)2du, J3 =

∫ 1
0 (

∫ 1
0 η

(3)
ttudu)

2dt, J4 =
∫ 1
0 (

∫ 1
0 η

(3)
tuudt)

2du,
and J5 =

∫ 1
0

∫ 1
0 (η(4)

ttuu)2dtdu. The sequence {ψν(t)ψµ(u)} is orthonormal under
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Ṽ and orthogonal under J̃ . More precisely, J1 defines a square norm in H1 =
{ψν(t)ψ1(u)}ν≥3, J2 in H2 = {ψ1(t)ψν(u)}ν≥3, J3 in H3 = {ψν(t)ψ2(u)}ν≥3, J4

in H4 = {ψ2(t)ψν(u)}ν≥3, J5 in H5 = {ψν(t)ψµ(u)}ν,µ≥3, and the null space
is J̃⊥ = {ψν(t)ψµ(u)}ν,µ=1,2. Taking {σνσµ}ν,µ≥3 in increasing order as {σ̃ν}
increases, it can be shown that σ̃ν grows at a rate faster than (ν/ log ν)4 but
slower than ν4 (cf. Wahba (1990), §12.1). Assuming that eη0 S̃m is bounded
from above on [0, 1]× [0, 1] and taking J(η) =

∑5
β=1 θ

−1
β Jβ(η) where θβ > 0, A.1

and A.2 follow standard arguments with a nil upper bound and r = 4−ε, ∀ε > 0.
Once again, a function decomposition is available for possible model sim-

plifications. Two such simplifications are briefly described below, where H5 is
eliminated so r = 4.

Taking J(η)=θ−1
1 J1(η)+θ−1

2 J2(η) inH={ψ1(t)ψ1(u), ψ1(t)ψ2(u), ψ2(t)ψ1(u)}
⊕H1⊕H2, one obtains a proportional hazard model. Such a model was considered
by O’Sullivan (1988b), where the function component in {ψ1(t)ψ1(u), ψ2(t)ψ1(u)}
⊕H1 was treated as a nuisance and that in {ψ1(t)ψ2(u)} ⊕ H2 estimated via
penalized partial likelihood with J2 as the penalty.

Taking J(η) = θ−1
1 J1(η) + θ−1

3 J3(η) in H = J̃⊥ ⊕ H1 ⊕ H3, one obtains
a model of the form η(t, u) = α(t) + β(t)u. Such a model was considered by
Zucker and Karr (1990), where effectively the function component α(t) + .5β(t)
in {ψ1(t)ψ1(u), ψ2(t)ψ1(u)} ⊕ H1 was treated as a nuisance and the function
component β(t)(u− .5) in {ψ1(t)ψ2(u), ψ2(t)ψ2(u)}⊕H3 estimated via penalized
partial likelihood with J3 as the penalty.

4. Asymptotic Theory

4.1. Linear approximation

Assume η0 ∈ H. Let η1 be the minimizer of the quadratic functional

− 1
n

n∑
i=1

{ ∫
T
ηidNi −

∫
T
ηiYie

η0,i

}
+

1
2
V (η − η0) +

λ

2
J(η), (4.1)

where η0,i(t) = η0(t, Ui). η1 is linear in dNi. Write η =
∑

ν ηνφν and η0 =∑
ν ην,0φν , where ην = V (η, φν) are the Fourier coefficients of η with basis

φν . Substituting these into (4.1) and solving for ην,1, one obtains ην,1 = (βν +
ην,0)/(1 + λρν), where βν = (1/n)

∑n
i=1

∫
T φν,idMi and φν,i(t) = φν(t, Ui). By

(2.3), (2.4), and noting that
∫
U

∫
T φ

2
νe

η0 S̃m = V (φν) = 1, Eβν = 0 and Eβ2
ν =

n−1. It then follows that

EV (η1 − η0) = E
n∑

i=1

(ην,1 − ην,0)2 = O(n−1λ−1/r + λ),

EλJ(η1 − η0) = Eλ
n∑

i=1

ρν(ην,1 − ην,0)2 = O(n−1λ−1/r + λ),
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as n → ∞ and λ → 0 (see Gu and Qiu (1993), Theorem 5.1 and also Silverman
(1982), §6).

Theorem 4.1. Under A.1 and A.2, as n → ∞ and λ → 0, V (η1 − η0) =
Op(n−1λ−1/r + λ) and λJ(η1 − η0) = Op(n−1λ−1/r + λ).

4.2. Approximation error

Let η̂ be a minimizer of (2.6). Let L(η) = −(1/n)
∑n

i=1{
∫
T ηidNi −

∫
T Yie

ηi}
and Bη,h(α) = L(η + αh) + (λ/2)J(η + αh). It can be shown that

0 = Ḃη̂,η̂−η1(0) = − 1
n

n∑
i=1

{ ∫
T
(η̂ − η1)idNi −

∫
T
(η̂ − η1)iYie

η̂i

}
+ λJ(η̂, η̂ − η1).

(4.2)
Similarly, define L1(η) = (1/n)

∑n
i=1{

∫
T ηidNi−

∫
ηiYie

η0,i}+(1/2)V (η−η0) and
Cη,h(α) = L1(η + αh) + (λ/2)J(η + αh). It follows that

0 = Ċη1,η̂−η1(0) = − 1
n

n∑
i=1

{ ∫
T

(η̂ − η1)idNi −
∫
T

(η̂ − η1)iYie
η0,i

}

+V (η1 − η0, η̂ − η1) + λJ(η1, η̂ − η1). (4.3)

In equating (4.2) and (4.3), some algebra yields

1
n

n∑
i=1

∫
T
(η̂ − η1)i(eη̂ − eη1)iYi + λJ(η̂ − η1)

= V (η1 − η0, η̂ − η1) −
1
n

n∑
i=1

∫
T
(η̂ − η1)i(eη1 − eη0)iYi. (4.4)

One needs the following technical assumptions in order to proceed.

Assumption A.3. For η in a convex set B0 around η0 containing η̂ and η1,
∃c1, c2 ∈ (0,∞) such that c1eη0 ≤ eη ≤ c2e

η0 uniformly on {(t, u) : S̃(t, u) > 0}.

A.3 implies the equivalence of the V distance and the SKL in B0.

Assumption A.4. ∃c3 <∞ such that
∫
U

∫
T φ

2
νφ

2
µe

kη0 S̃m ≤ c3, k = 1, 2, ∀ν, µ.

When η0 is bounded, A.4 essentially requires a uniform bound on the fourth
moments of φν . By A.3,

c1
1
n

n∑
i=1

∫
T
(η̂ − η1)2i e

η0,iYi ≤
1
n

n∑
i=1

∫
T
(η̂ − η1)i(eη̂ − eη1)iYi. (4.5)

Writing η̂ =
∑

ν η̂νφν and η1 =
∑

ν ην,1φν ,
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∣∣∣ 1
n

n∑
i=1

∫
T
(η̂ − η1)2i e

η0,iYi − V (η̂ − η1)
∣∣∣

=
∣∣∣ ∑

ν

∑
µ

(η̂ν − ην,1)(η̂µ − ηµ,1){
1
n

n∑
i=1

∫
T
φν,iφµ,ie

η0,iYi −
∫
U

∫
T
φνφµe

η0 S̃m}
∣∣∣

≤
{ ∑

ν

∑
µ

(1 + λρν)(1 + λρµ)(η̂ν − ην,1)2(η̂µ − ηµ,1)2
}1/2

{ ∑
ν

∑
µ

(1 + λρν)−1(1 + λρµ)−1{ 1
n

n∑
i=1

∫
T
φν,iφµ,ie

η0,iYi

−
∫
U

∫
T
φνφµe

η0 S̃m}2
}1/2

= (V + λJ)(η̂ − η1)Op(n−1/2λ−1/r), (4.6)

where Cauchy-Schwartz inequality,

E
{ 1
n

n∑
i=1

∫
T
φν,iφµ,ie

η0,iYi −
∫
U

∫
T
φνφµe

η0 S̃m
}2

= O(n−1) (4.7)

via A.4, and
∑

ν(1 + λρν)−1 = O(λ−1/r) (Gu and Qiu (1993), Lemma 5.2) are
used. To verify (4.7), note that

E
{ ∫

T
φνφµe

η0Y −
∫
U

∫
T
φνφµe

η0 S̃m
}2

= E
{ ∫

T
φνφµe

η0(Y − S̃)
}2

+ E
{ ∫

T
φνφµe

η0 S̃ −
∫
U

∫
T
φνφµe

η0 S̃m
}2

≤ E
{ ∫

T
|φνφµ|eη0 S̃1/2

}{∫
T
|φνφµ|eη0 S̃−1/2E[(Y −S̃)2|U ]

}
+E

{∫
T
φνφµe

η0 S̃
}2

≤ E
{ ∫

T
|φνφµ|eη0 S̃1/2

}2
+

∫
U

∫
T
φ2

νφ
2
µe

2η0 S̃2m

≤ 2c3. (4.8)

Similar to (4.5) and (4.6),

1
n

n∑
i=1

∫
T

(η̂ − η1)i(eη1 − eη0)iYi = c
1
n

n∑
i=1

∫
T
(η1 − η0)i(η̂ − η1)ieη0,iYi, (4.9)

where c ∈ [c1, c2], and

∣∣∣ 1
n

n∑
i=1

∫
T

(η1 − η0)i(η̂ − η1)ieη0,iYi − V (η1 − η0, η̂ − η1)
∣∣∣

= (V + λJ)1/2(η1 − η0)(V + λJ)1/2(η̂ − η1)Op(n−1/2λ−1/r). (4.10)
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Combining (4.4) – (4.10) and letting nλ2/r → ∞,

(c1V + λJ)(η̂ − η1)(1 + op(1))

≤ |c− 1|V (η1−η0, η̂−η1)+(V +λJ)1/2(η1−η0)(V +λJ)1/2(η̂−η1)op(1). (4.11)

Theorem 4.2. Under A.1 – A.4, as λ → 0 and nλ2/r → ∞, V (η̂ − η1) =
Op(n−1λ−1/r + λ) and λJ(η̂ − η1) = Op(n−1λ−1/r + λ).

The proof of the theorem follows from (4.11), Cauchy-Schwartz inequality
and Theorem 4.1.

Theorem 4.3. Under A.1 – A.4, as λ → 0 and nλ2/r → ∞, V (η̂ − η0) =
Op(n−1λ−1/r+λ), λJ(η̂−η0) = Op(n−1λ−1/r+λ), and SKL(η0, η̂) = Op(n−1λ−1/r

+λ).

Theorem 4.3 is a direct consequence of Theorems 4.1, 4.2, and Assumption
A.3.

4.3. Semiparametric adaptive estimate

Let η̂n be a minimizer of (2.6) in Hn = J⊥ ⊕ {RJ((Xi, Ui), ·), δi = 1}. I now
show that η̂n shares the same asymptotic convergence rates as η̂.

Let h ∈ H�Hn ⊂ H�J⊥. It follows that δih(Xi, Ui) = δiJ(RJ((Xi, Ui), ·), h)
= 0. So

∑n
i=1

∫
h2

i dNi =
∑n

i=1 δih
2(Xi, Ui) = 0 where hi(t) = h(t, Ui). By (2.3)

– (2.5), A.4, and (4.8), E{
∫
T φνφµdN −

∫
U

∫
T φνφµe

η0 S̃m} = 0 and

E
{ ∫

T
φνφµdN −

∫
U

∫
T
φνφµe

η0 S̃m
}2

=
∫
U

∫
T
φ2

νφ
2
µe

η0 S̃m+ E
{ ∫

T
φνφµe

η0Y −
∫
U

∫
T
φνφµe

η0 S̃m
}2

≤ 3c3. (4.12)

Lemma 4.1. Under A.1, A.2, A.4, as λ→ 0 and nλ2/r → ∞, V (h) = λJ(h)op(1)
for h ∈ H �Hn.

Proof. Similar to (4.6),

V (h) =
∣∣∣ ∑

ν

∑
µ

hνhµ

{ 1
n

n∑
i=1

∫
T
φν,iφµ,idNi −

∫
U

∫
T
φνφµe

η0 S̃m
}∣∣∣

= (V + λJ)(h)Op(n−1/2λ−1/r),

where (4.12) is used to bound E{ 1
n

∑n
i=1

∫
T φν,iφµ,idNi −

∫
U

∫
T φνφµe

η0 S̃m}2.

Let ηn be the projection of η̂ onto Hn. Note that Ḃη̂,η̂−ηn(0) = 0 and that
J(ηn, η̂ − ηn) = 0. It follows that

λJ(η̂ − ηn) =
1
n

n∑
i=1

∫
T
(η̂ − ηn)idMi −

1
n

n∑
i=1

∫
T
(η̂ − ηn)i(eη̂ − eη0)iYi. (4.13)



872 CHONG GU

Applying the technique used in (4.6),
∣∣∣ 1
n

n∑
i=1

∫
T

(η̂ − ηn)idMi

∣∣∣ =
∣∣∣ ∑

ν

(η̂ν − ην,n)
1
n

n∑
i=1

∫
T
φν,idMi

∣∣∣
= (V + λJ)1/2(η̂ − ηn)Op(n−1/2λ−1/2r). (4.14)

Similar to (4.9) and (4.10), letting nλ2/r → ∞ and using A.3 and Lemma 4.1,
∣∣∣ 1
n

n∑
i=1

∫
T
(η̂−ηn)i(eη̂ −eη0)iYi

∣∣∣ = (λJ)1/2(η̂−ηn)(V +λJ)1/2(η̂−η0)op(1) (4.15)

Theorem 4.4. Under A.1 – A.4, as λ → 0 and nλ2/r → ∞, λJ(η̂ − ηn) =
Op(n−1λ−1/r + λ) and V (η̂ − ηn) = op(n−1λ−1/r + λ).

The proof of Theorem 4.4 follows from (4.13) – (4.15) and Theorem 4.3.
I now calculate V (η̂n − ηn). From Ḃη̂n,η̂n−ηn(0) = Ḃη̂,η̂n−η̂(0) = 0, noting

that J(η̂−ηn, ηn) = J(η̂−ηn, η̂n) = 0 so J(η̂, η̂− η̂n) = J(η̂−ηn)+J(ηn, ηn− η̂n),
it can be shown that

1
n

n∑
i=1

∫
T
(η̂n − ηn)i(eη̂n − eηn)iYi + λJ(η̂n − ηn) + λJ(η̂ − ηn)

=
1
n

n∑
i=1

∫
T

(η̂ − ηn)idMi +
1
n

n∑
i=1

∫
T
(η̂n − ηn)i(eη̂ − eηn)iYi

+
1
n

n∑
i=1

∫
T
(η̂ − ηn)i(eη0 − eη̂)iYi. (4.16)

Modify A.3 to include ηn and η̂n in B0. It follows that, as λ→ 0 and nλ2/r → ∞,

c1V (η̂n−ηn)+(V +λJ)(η̂n−ηn)op(1) ≤
1
n

n∑
i=1

∫
T
(η̂n−ηn)i(eη̂n −eηn)iYi, (4.17)

∣∣∣ 1
n

n∑
i=1

∫
T
(η̂n − ηn)i(eη̂ − eηn)iYi

∣∣∣ = (V + λJ)1/2(η̂n − ηn)(λJ)1/2(η̂ − ηn)op(1),

(4.18)
and
∣∣∣ 1
n

n∑
i=1

∫
T
(η̂−ηn)i(eη0 −eη̂)iYi

∣∣∣ = (V +λJ)1/2(η̂−η0)(λJ)1/2(η̂−ηn)op(1). (4.19)

Combining (4.16) – (4.19) and (4.14), and substituting in the results of Theo-
rems 4.3 and 4.4,

(c1V + λJ)(η̂n − ηn)(1 + op(1))

≤ (V + λJ)1/2(η̂n − ηn)op(n−1/2λ−1/2r + λ1/2) +Op(n−1λ−1/r + λ). (4.20)
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This proves the following theorem.

Theorem 4.5. Under A.1 – A.4, as λ → 0 and nλ2/r → ∞, λJ(η̂n − ηn) =
Op(n−1λ−1/r + λ) and V (η̂n − ηn) = Op(n−1λ−1/r + λ).

The next theorem follows from Theorems 4.3, 4.4, 4.5, and Assumption A.3.

Theorem 4.6. Under A.1 – A.4, as λ → 0 and nλ2/r → ∞, V (η̂n − η0) =
Op(n−1λ−1/r+λ), λJ(η̂n−η0)=Op(n−1λ−1/r+λ), and SKL(η0, η̂n)=Op(n−1λ−1/r

+λ).

5. More on Examples

A.3 and A.4 are typical of technical regularity conditions, which in general
are very difficult to verify from more primitive conditions. Nevertheless, they
appear to be highly plausible as I shall discuss briefly. If η0 is bounded, then
functions in a ball around η0 of constant radius have uniform bounds, so A.3 may
fail to hold only when η1, η̂, or η̂n systematically move away from η0 as n→ ∞.
In general, φν are not available in explicit forms and their fourth moments not
computable. Nevertheless, φν represent more wiggliness or higher frequencies
as ν → ∞, and there is no special reason that their magnitudes should grow
indefinitely, so A.4 appears to be mild. In an overly simplified suggestive special
case of Example 1 where eη0 S̃ ∝ 1 and H = {η :

∫ 1
0 η̈

2 < ∞, η periodic}, φν are
the familiar sinusoidal functions and A.4 follows trivially.

I assume A.3 and A.4 in the remainder of this section and discuss further
aspects of the examples of Section 3.

Example 1. Singleton U (continued). It is clear from the theory of Section 4
that the convergence rates of η̂ and η̂n are Op(n−1λ−1/4 + λ). The best rates
Op(n−4/5) are attained when λ = O(n−4/5), which satisfies nλ2/4 = O(n3/5) →
∞. To calculate η̂n, one needs to identify RJ . If the norm in J⊥ is taken as
(
∫ 1
0 η)

2 +(
∫ 1
0 η̇)

2, then the reproducing kernel of H�J⊥ = {η :
∫ 1
0 η̈

2 <∞,
∫ 1
0 η =∫ 1

0 η̇ = 0} with a square norm
∫ 1
0 η̈

2 is

RJ(t, s) = K(t, s) def= k2(t)k2(s) − k4(|t− s|),
where kν = Bν/ν! and Bν is the νth Bernoulli polynomial (see, e.g., Craven and
Wahba (1979)).

Example 2. Doubleton U (continued). Similar to Example 1, the convergence
rates are Op(n−1λ−1/4 + λ). I shall now identify a RJ for calculating η̂n. With
a square norm J(η) = θ−1

1 J1 + θ−1
2 J2 in H1 ⊕H2, the reproducing kernel can be

shown to be

RJ((t, u), (s, v)) = θ1R1((t, u), (s, v)) + θ2R2((t, u), (s, v))

= θ1K(t, s)ω1(u)ω1(v) + θ2K(t, s)ω2(u)ω2(v),
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where R1((t, u), ·) and R2((t, u), ·) span H1 and H2, respectively.

Example 3. U = [0, 1] (continued). When H5 is part of the model space,
the convergence rates are seen to be Op(n−1λε−1/4 + λ), ∀ε > 0, and the best
attainable rates are Op(nε−4/5), ∀ε > 0. When H5 is not part of the model space,
as is the case with the proportional hazard model and the model of Zucker and
Karr (1990), the rates are simply Op(n−1λ−1/4 + λ).

Jβ(η) are square norms in Hβ, β=1, . . . , 5, respectively, and the associated
reproducing kernels are R1((t, u), (s, v)) =K(t, s)ψ1(u)ψ1(v), R2((t, u), (s, v)) =
ψ1(t)ψ1(s)K(u, v), R3((t, u), (s, v)) =K(t, s)ψ2(u)ψ2(v), R4((t, u), (s, v)) =ψ2(t)
ψ2(s)K(u, v), and R5((t, u), (s, v))=K(t, s)K(u, v). Taking J(η)=

∑5
β=1β

−1
β Jβ(η)

as the square norm in ⊕5
β=1Hβ, the reproducing kernel is RJ =

∑5
β=1 θβRβ.

Setting θβ = 0 eliminates Hβ from the model space.

The construction of reproducing kernels in Examples 2 and 3 are instances
of the construction of tensor-product reproducing kernel Hilbert spaces (see, e.g.,
Aronszajn (1950), Wahba (1990), and Gu and Wahba (1991)). The extra smooth-
ing parameters θβ control the relative loads of the penalty λJ(η) on the roughness
of individual terms.

The calculation of η̂n in Example 1 with an automatic λ was developed and
illustrated in Gu (1994) and portable code is available. The algorithm is generic
and applies also to η̂n in Examples 2 and 3 if subjective choices of θβ can be
made. For the calculation of η̂n in Examples 2 and 3 with automatic objective
multiple smoothing parameters (λ and θβ), an algorithm with data examples has
been explored in Gu (1995).

6. Remarks

Compared to previous analyses of closely related problems, the theory devel-
oped in this article is more general yet simpler. The simplicity comes from the
choice of the natural loss functions SKL(η̂, η0) and V (η̂ − η0) and the indirect
analysis of the indirectly defined estimates. Note that no attempt is made to
explicitly express η̂ or η̂n, which may not even be unique. Only the minimizing
properties are employed in the analysis.

In the absence of a covariate, the convergence rates of η̂ in SKL(η̂, η0) and
V (η̂− η0) may be obtained from the analyses of Antoniadis (1989) and Cox and
O’Sullivan (1990), but those of an adaptive η̂n appear to be new. In the presence
of a covariate, the estimates proposed did not seem to exist in the literature, and a
computable η̂n makes the first step towards the practicability of the methodology.

The examples presented are among the simplest possible hazard models ob-
tainable via the methodology in that the covariate domains are the simplest
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possible. When the covariate u consists of several qualitatively different compo-
nents, possibly a mixture of categorical and continuous ones, the theory remains
intact whereas further structures may be introduced on the domain U via the
tensor-product spline technique.
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