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Abstract: We consider unbiased estimation of the number of classes, ν, in a pop-

ulation where the classes are equally likely to occur and the parameter space of

the number of classes is bounded from above. Among the stopping rules based on

a minimal sufficient statistic, the closed and complete plans are characterized. It

is shown that ν cannot be estimated unbiasedly if the sample size is unbounded,

but some finite and closed plans admit unbiased estimators of all functions of ν. A

general rule for obtaining such estimators is given.
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1. Introduction

In a recent paper, Christman and Nayak (1994) considered sequential unbi-
ased estimation of the number of classes, ν, in a population assuming that the
parameter space of ν is unrestricted, i.e. {ν : ν ≥ 1}. When sampling stops
according to some non-randomized stopping rule based on a minimal sufficient
statistic, they showed that the number of classes cannot be unbiasedly estimated
if the sample size is bounded. On the other hand, unbounded sampling plans
admit unbiased estimators of all functions of ν. They assumed throughout that
all classes are equally likely to occur in a random selection.

In many applications, the unrestricted parameter space may be too general
and a natural upper bound for the number of classes may be known. For example,
in a study of the number of distinct animals in a particular species within a
geographic region it may be known that the ecosystem can support no more
than some given maximum number of animals, ν0 say. (Note that here each
animal is its own class.) Hence, it is of interest to consider how the restriction
of the parameter space alters the characterization of plans that admit unbiased
estimators of functions of ν.

Our development of unbiased estimation of ν follows that for the unrestricted
parameter space as given in Christman and Nayak (1994). We refer the reader
to their paper for the formulation of the problem and the relevant definitions.
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We also assume, as in Goodman (1953), Harris (1968) and others, that all classes
are equally likely to occur. This assumption is unlikely to hold in practice but is
assumed here for mathematical tractability. For some stopping rules, it has been
shown (Nayak and Christman (1992)) that unbiased estimators of ν derived under
the assumption of equiprobability are negatively biased when the assumption
fails. The magnitude of the bias depends on the severity of the deviation from
equiprobability in that the more dissimilar the classes are in their “catchability”
the more negatively biased the estimators are. Most of the previously studied
estimators appear to behave reasonably well, i.e. are not too severely biased,
when the classes have similar probabilities of being observed in a random selection
(cf. Chao and Lee (1992), Nayak and Christman (1992)). Some preliminary
investigations are currently underway to evaluate stopping rules that might yield
estimators that are more robust to failure of the equally likely assumption than
those previously studied.

The following notation is used. Let R (M) be the number of selections in
which a new class is (not) discovered; then, R + M = N is the total number of
selections. Note that N can be a random quantity depending on the stopping
rule used. Only non-randomized stopping rules based on the sufficient statistics
(R,M) are considered here. The set of all points (r,m) where the rule is to stop
sampling is referred to as the boundary, denoted by B, of the sampling plan.

In the next section, the relevant probability distributions are given and clo-
sure and completeness of stopping rules are briefly discussed. The results are
similar to those for the unrestricted parameter space. Unbiased estimation of
functions of ν is discussed in Section 3. It is shown that if the cardinality of
the boundary set is less than ν0 then ν is not unbiasedly estimable. Conversely,
closed, complete plans with a boundary whose cardinality equals ν0 admit a
unique (and hence best) unbiased estimator of all functions of ν and such esti-
mators can be calculated recursively. We also give conditions under which some
sampling plans that are not complete admit unbiased estimators of functions of
ν.

2. Closure and Completeness

Given a stopping rule φ with boundary B and a point γ ∈ B, let pν(γ) be the
probability given ν of observing the point γ. Using the notation and definitions
in Christman and Nayak (1994), the probability of observing γ = (r,m) ∈ B

given ν is

pν(γ) =
(ν)r
νr+m

K(r,m), (2.1)



UNBIASED ESTIMATION OF THE NUMBER OF CLASSES 999

where K(r,m) is a combinatorial quantity related to the set of paths that reach
γ = (r,m) and (ν)r = ν(ν − 1) · · · (ν − r + 1) is defined to be zero if r > ν. We
note that K(r,m) depends on γ and B but not on ν.

For closure of plans, a stopping rule with boundary B is said to be closed
if sampling stops with probability 1 for all ν ≤ ν0. The necessary and sufficient
conditions for closure of boundaries that hold when the parameter space of ν

is unrestricted, i.e. when {ν : ν ≥ 1}, must also hold for each ν in the subset
1 ≤ ν ≤ ν0. Hence, the conditions for closure of plans for the restricted param-
eter space (Propositions 3.1 and 3.2 and associated corollaries, Christman and
Nayak (1994)) are analogous to those for the unrestricted case with only minor
modifications due to the finite parameter space. For example, statements such
as “for all r ≥ 2” are replaced with “for all 2 ≤ r ≤ ν0”.

We note that since the parameter space of ν is restricted from above, con-
dition (ii) of Proposition 3.2 of Christman and Nayak (1994) implies that if B

has infinitely many points then B cannot be closed. Hence, in the subsequent
sections we consider only closed sampling plans with finitely many points.

For completeness of sampling plans, a closed plan with boundary B is said
to be complete if for any function f defined on B, Eν [f(γ)] = 0 for all ν ≤ ν0

implies that f(γ) = 0 for all γ ∈ B. For the following, let |B| be the cardinality
of closed B; since only boundaries with finitely many points can be closed, we
must have |B| < ∞.

Proposition 2.1. A closed sampling plan with boundary B is not complete if
|B| > ν0.

Proof. When |B| = s > ν0, Eν [f(γ)] = 0 for all ν ≤ ν0 defines a set of ν0 linear
homogeneous equations with s > ν0 unknowns. Hence, an infinite number of
solutions exist and B is not complete.

For further discussion, we need the following definitions. Any point (r,m)
that could be observed during sampling and for which the stopping rule is to
continue sampling is called a continuation point. The index of the point, (r,m),
is r + m and is the sample size necessary for observing the point. A boundary
B is said to be simple if for each n ≥ 1, the continuation points of index n form
an interval. A closed boundary B is said to be minimal if changing a boundary
point to a continuation point destroys closure.

Similar to the case where the parameter space is unrestricted we can show
that a closed finite boundary is complete if and only if it is both simple and
minimal but, in view of Proposition 2.1, with the added proviso that the plan have
|B| ≤ ν0. We refer the reader to Propositions 4.2, 4.5 and 4.6 of Christman and
Nayak (1994) which are also true in the restricted case as long as the boundary
under consideration has cardinality of no more than ν0.
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3. Unbiased Estimation

For a sampling plan, the boundary B can be taken as the sample space
so that an estimator of a function of ν is a function f defined on B. Given a
function, g(ν) say, we address the question: Is g(ν) unbiasedly estimable from B,
i.e. does there exist a function f defined on B such that Eν [f(γ)] = g(ν) for all
ν ≤ ν0? We begin by giving some conditions under which all functions of ν, g(ν),
are unbiasedly estimable and give formulas for calculating the estimators. Let
|B| = s and define B(r) = {(r,m) : (r,m) ∈ B}, i.e. B(r) is the set of boundary
points with R = r. Also, let mr = max{m : (r,m) ∈ B(r)}.
Proposition 3.1. Let B be a closed boundary with s ≥ ν0 and r∗ = max{r :
(r,m) ∈ B} = ν0. Then all functions of ν, g(ν), are unbiasedly estimable and
can be calculated recursively by f(1,m1) = g(1) and

f(r,mr) =
1

pr(r,mr)

(
g(r) −

r−1∑
i=1

f(i,mi)pr(i,mi)
)
, 2 ≤ r ≤ ν0,

f(r,m) = 0, 2 ≤ r ≤ ν0, m < mr. (3.1)

Further, if B is complete (implying that |B| = ν0), the unbiased estimator of g(ν)
is unique.

Proof. Since B is closed with s ≥ ν0 and r∗ = ν0, B(r) is non-empty and finite
and mr exists for each r ≤ ν0. Then it is easy to show that f(γ) as given in the
Proposition is an unbiased estimator of g(ν).

Further, if B is complete, |B| = ν0 so that B(r) contains exactly one point
(r,mr) for all r ≤ ν0. Hence, f as defined in the proposition is the unique
unbiased estimator of g(ν).

These results are similar to some of those for the case of the unrestricted
parameter space with one important difference. When the parameter space is
unrestricted, only infinite closed boundaries admit an estimator which is unbiased
for g(ν). The condition of infinitely many points for the unrestricted space is
replaced here with the conditions that ν ≤ |B| < ∞ and r∗ = ν0.

For further discussion of unbiased estimation we require some definitions and
notation. Uniquely number each γ ∈ B so that γ1 ∈ B(1), B(2) = {γ2, . . . , γk}
where k = |B(2)| + 1, B(3) contains γk+1, . . . , γl where l = |B(3)| + k, and the
last |B(r∗)| points in B are in B(r∗). Define the ν0 × s matrix of probabilities
P = {pν(γj)}, ν = 1, . . . , ν0, j = 1, . . . , s where pν(γj) is the probability given
ν of reaching γj and its formula is as given in (2.1). Also, define fs×1 = [f(γ1)
f(γ2) · · · f(γs)]′ and gν0×1 = [g(1) g(2) · · · g(ν0)]′. Then, g(ν) is unbiasedly es-
timable if there is a solution, f0 say, to the equation Pf0 = g. We shall derive
further results concerning unbiased estimation in the form of propositions whose
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proofs are based on some well-known results in linear algebra (see Edelen and
Kydoniefs (1976) for details).

Proposition 3.2. If a closed boundary B has s < ν0, then ν is not unbiasedly
estimable.

Proof. For each ν ≤ ν0, Eν [f(r,m)] = ν defines a system of linear equations
in f(γ), γ ∈ B, and an unbiased estimator of ν must satisfy ν0 such equations.
This is not possible as ν0 > s. Thus, an unbiased estimator of ν does not exist
when |B| < ν0.

The following example demonstrates that some functions of ν are unbiasedly
estimable using Harris’s (1968) ratio estimator of ν for the fixed sample size rule.

Example 1. Consider the fixed sample size rule, i.e. B = {(r,m) : r + m = n}
where n < ν0. Then, |B| = n < ν0, B is complete, and rank(P) = n. Now,
partition P so that

P =
[P1

P2

]
,

where P1 = {pν(γj)}, ν = 1, . . . , n, j = 1, . . . , ν, is an n × n, lower triangular
matrix of rank n and P2 = {pν(γj)}, ν = n+1, . . . , ν0, j = 1, . . . , n is a (ν0−n)×n

matrix. Partition g similarly so that

Pf =
[P1

P2

]
f =

[g1

g2

]
= g,

where g1 = [g(1) · · · g(n)]′ and g2 = [g(n + 1) · · · g(ν0)]′. Then for any g1, f0 =
P−1

1 g1, so that g2 = P2f0 = P2P−1
1 g1. Such g have unbiased estimators and

further, by the Lehmann-Scheffe theorem (Bickel and Doksum (1977), p. 122),
the estimator is unique since B is complete.

For example, let g1 = [1 · · · n]′, i.e. g(ν) = ν. Now, for the fixed sample size
rule,

pν(γj) = pν(r, n − r) =
(ν)r
νn

S(n, r)

for r ≤ ν where S(n, r) is a Stirling number of the second kind (Harris (1968)).
Let p∗ν(γ) denote the probability distribution for the boundary B∗ = {(r,m+1) :
(r,m) ∈ B} so that

p∗ν(r, n − r + 1) =
(ν)r
νn+1

S(n + 1, r)

for r ≤ ν. Note that pν(B∗) =
∑

r∈B∗ pν(r) = 1 for ν ≤ n but B∗ is not closed
when n < ν ≤ ν0.
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Then, the solution f0 = P−1
1 g1 is given by

f(r, n − r) =
S(n + 1, r)

S(n, r)
,

r ≤ n, since, for ν ≤ n, Eν [f ] = ν. So, for ν > n we have

Eν [f(r, n − r)] = ν
n∑

r=1

p∗ν(r, n − r + 1) = ν[1 − p∗ν(n + 1, 0)],

where p∗ν(n+1, 0) is defined to be the probability under B∗ of reaching the point
(n + 1, 0), i.e. it is the probability of not stopping sampling under B∗ for given
ν. Note that p∗ν(n + 1, 0) = 0 if ν ≤ n. Hence f(r, n− r) = S(n + 1, r)/S(n, r) is
the UMVU estimator of g(ν) = ν[1 − p∗ν(n + 1, 0)].

Our next proposition gives conditions for unbiased estimation of any function
of ν when r∗ = max{r : (r,m) ∈ B} < ν0.

Proposition 3.3. Let B be a closed boundary with s ≥ ν0 and r∗ < ν0. Then,
all functions of ν have unbiased estimators if either (i) B is complete; or, (ii)
d = s − ν0 where d is the dimension of the solution space of Pf = 0. Further, if
B is complete then the unbiased estimator is unique.

Proof. (i) If B is complete, P is a square matrix of size ν0×ν0 and rank(P) = ν0.
Then, Pf = g is always consistent. So, for any g, the unique unbiased estimator
is given by f = P−1g.

(ii) If d = s − ν0, rank(P) = ν0 and consistency of Pf = g follows.

Finally, it is of interest to consider boundaries that are not complete but
admit unbiased estimators of ν and to ask whether such plans admit unique
minimum variance unbiased estimators of ν or functions of ν even though they
are not complete.

First note that the plans of interest are such that |B| > ν0 (by Proposition
3.1), rank(P) = ν0 (by Proposition 3.3), and |B(r)| > 1 for some r ≤ r∗ ≤ ν0.
Let ν̂(γ) be an unbiased estimator of ν and let h(γ) be unbiased for 0. Further,
let H be the set of all unbiased estimators of 0 except for h(γ) = 0 ∀γ. Now,
there exists a subset of B, A′ say, where h(γ) = 0 if γ ∈ A′ for all h ∈ H.
That A′ is not empty is easily shown. Note that when ν = 1, E1[h] = 0 implies
that h(1,m1) = 0. Now suppose ν = 2 and h(1,m1) = 0. Then E2[h] = 0
implies that if |B(2)| = 1 then h(2,m2) = 0. Using induction on ν we have
h(1,m1) = 0 ∀h ∈ H and h(r,mr) = 0 ∀r ≤ r′ where r′ is the lowest value of
r such that |B(r)| > 1. Hence, at a minimum A′ contains the boundary points
with r-coordinate values less than r′.
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Proposition 3.4. A boundary B that is not simple admits a UMVU estimator
of g(ν) if g(ν) is of the form

g(ν) = Eν [ν̂(γ)|γ ∈ A′]pν(A′) + cpν(B − A′),

where c is an arbitrary constant that does not depend on ν and pν(X)=
∑

r∈X
pν(r).

Proof. Let a closed boundary B with an unbiased estimator, ν̂, of ν be not
simple. Since B is not simple, then, for some x ≥ 2, y ≥ 1, and k ≥ 0, (x−1, y+1)
and (x + k + 1, y − k − 1) are two continuation points separated by the points
D = {γi = (x + i, y − i) : i = 0, . . . , k, γi ∈ B}. Further, let α′ = (x, y + 1) and
α′′ = (x+k+1, y−k); note that these two points are accessible. It can be shown
that, for non-simple B, h(γ) is an unbiased estimator of 0 if it is of the form

h(γi) =
a(−1)i

(x + 1)!K(γi)
, γi ∈ D,

h(γ) =
a

K(γ)

[−Lα′(γ)
(x − 1)!

+
(−1)k+1Lα′′(γ)

(x + k)!

]
, γ ∈ B − D, (4.3)

where a is an arbitrary constant, Lα(α) = 1 and Lα(γ) = 0 if α, γ ∈ B, and
otherwise Lα(γ) is the K-function for path segments from α to γ when α is
a continuation point (Christman and Nayak (1994)). Now, a necessary and
sufficient condition for ν̂ to be UMVU for its expectation is Eν [ν̂h] = 0 for
all h ∈ H and for all ν ≤ ν0 (Lehmann (1983), Theorem 1.1, p. 77), i.e. for
ν̂(γ)h(γ) ∈ H so that it satisfies (4.3). This condition is satisfied provided
ν̂(γ) = c, a constant that does not depend on ν, for all γ ∈ B − A′ = {γ : γ ∈ B
such that h(γ) �= 0} and ν̂ is otherwise a finite function of γ ∈ B. Hence, ν̂(γ) is
a UMVU estimator of its expectation

Eν [ν̂(γ)] =
∑
γ∈A′

ν̂(γ)pν(γ) + c
∑

γ∈B−A′
pν(γ)

= Eν [ν̂(γ)|γ ∈ A′]pν(A′) + cpν(B − A′). (4.4)

So g(ν) has a UMVU estimator if and only if it is of the form given in (4.4).

Example 2. Let B be a boundary for the fixed sample size stopping rule with
n = ν0 where B is not simple, e.g. let B = {(3 + i, y − i) : i = 0, 1; 3 + y =
ν0−1}+{(r,m) : r+m = ν0, r = 1, 2, 3, 5, . . . , ν0}, say. Here, α′ = (3, ν0−3) ∈ B
and α′′ = (5, ν0 − 5) ∈ B. Further, A′ = {(r, ν0 − r) : r < 3 or r > 5}. Let
ν̂(r,m) = K∗(r,m + 1)/K(r,m) for all (r,m) ∈ A′; otherwise set ν̂(r,m) = c, a
constant. Then, the expected value of ν̂ is

Eν [ν̂] = ν
∑

(r,m)∈A′

(ν)r
νν0+1

K∗(r,m + 1) + c
∑

(r,m)∈B−A′

(ν)r
νr+m

K(r,m)

= νp∗ν((A
′)∗) + cpν(B − A′),
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where (A′)∗ = {(r,m + 1) : (r,m) ∈ A′} and p∗ν((A′)∗) is the probability under
B∗ = {(r,m + 1) : (r,m) ∈ B} of reaching any boundary point in (A′)∗ given ν.
Note that setting c as

c = ν
[1 − p∗ν((A′)∗)]

pν(B − A′)

yields an unbiased estimator of ν but which is a function of ν so that ν̂ as given
here is only locally minimum variance unbiased. On the other hand, setting c = 0
yields a UMVU estimator of νp∗ν((A′)∗).

Finally, we mention that unlike the unrestricted parameter space, it is possi-
ble in the restricted case to have a boundary that is simple but not minimal. This
occurs if the boundary points that can be deleted without destroying closure of
B have R-coordinate values of ν0. In that case, if the boundary without these
points is simple then the locally minimum variance unbiased estimator of g(ν) is
also the UMVU estimator since c depends on the constant ν0.
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