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Abstract: We present supremum Lagrange multiplier tests for comparing a linear

ARMA specification against its threshold ARMA extension. We derive the asymp-

totic distribution of the test statistics under both the null hypothesis and contigu-

ous local alternatives, and prove the consistency of the tests. A Monte Carlo study

shows that the tests enjoy good finite-sample properties and are robust against var-

ious forms of model mis-specification. Furthermore, the performance of the tests

is not affected by the unknown order of the model. The tests have a low com-

putational burden and do not suffer from some of the drawbacks that affect the

quasi-likelihood ratio setting. Lastly, we present an application to a time series

of standardized tree-ring growth indices. Our results can lead to new research in

climate studies.
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1. Introduction

Threshold AR (TAR) models are very popular and widely applied in ecol-

ogy, economics, epidemiology, finance and many other fields (Tong (1990); Chan

(2009); Tong (2011); Hansen (2011)). Three special issues have been devoted

to such tests: Statistica Sinica in 2007 (Chan and Li (2007)), Statistics and Its

Interface in 2011 (Chan, Li and Yao (2011)), and the Journal of Business and

Economic Statistics in 2017 (Chan, Hansen and Timmermann (2017)). In par-

ticular, threshold autoregressive-moving average (TARMA) models, introduced

by Tong (see Tong (1990)), are nonlinear models with a regime-switching mech-

anism specifying an autoregressive moving-average (ARMA) sub-model in each

regime. They include two particular models of independent interest, namely, the

TAR model and the threshold MA (TMA) model. The combination of the two

yields the TARMA model, which is a parsimonious, but rich model for nonlin-
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ear time series analysis; see, for example, Goracci (2020, 2021). Least squares

estimation of the parameters of a general TARMA model typically assumes sta-

tionarity and ergodicity (e.g., Li, Li and Ling (2011)), although few studies have

examined these assumptions. An exception is the work of Ling (1999), albeit his

conditions are quite restrictive. In fact, a full characterization of the long-run

probabilistic behavior of TARMA models was only recently made available. To

the best of our knowledge, Chan and Goracci (2019) is the only study to pro-

vide the necessary and sufficient conditions for the ergodicity of the first-order

TARMA model. Moreover, they provide a complete parametric classification of

the first-order TARMA into regions of (geometric) ergodicity, null recurrence,

and transience.

Many works have developed tests for a linear model versus its threshold ex-

tension, although most focus on autoregressive (AR)-type models. For instance,

Petruccelli and Davies (1986) developed a portmanteau test based on cumula-

tive sums of standardized residuals from an AR fit, and Tsay (1998) studied a

variation of this test. Luukkonen, Saikkonen and Teräsvirta (1988) proposed a

Lagrange multiplier test for linearity against nonlinear models, including TAR

models. A Lagrange multiplier test was also developed by Wong and Li (1997,

2000) for TAR models with conditional heteroscedasticity. Quasi-likelihood ratio

tests were studied in Chan (1990), Chan and Tong (1990), Chan (1991), and Su

and Chan (2017) for threshold diffusion. For a review, see Tong (2011).

Threshold models that include moving-average (MA) components have been

under-developed, probably due to the mathematical difficulties that arise when

MA components are included. However, since data are almost always affected by

measurement errors, a TARMA model is more appropriate than a TAR model.

Indeed, it is known that an AR model with measurement errors becomes an

ARMA model. Similarly, it can be proved that a TAR model with measurement

errors can be approximated by a TARMA model (see, e.g., Chan et al. (2020)).

Note that the adoption of a TARMA model is significant because, in the presence

of measurement errors, a high-order AR model is necessary if tests are conducted

only with respect to TAR models, and a loss of power occurs.

For MA-type models, Ling and Tong (2005) investigated a quasi-likelihood

ratio test for the MA model against its threshold extension. They proved that,

under the null hypothesis, the test statistic converges weakly to a functional

of the centered Gaussian process. Their results were extended by Li and Li

(2008) to the case with GARCH errors. For a comprehensive development, see

Chan et al. (2014). Li and Li (2011) developed a quasi-likelihood ratio statistic

to test the presence of thresholds in an ARMA model setting. They used a
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stochastic permutation device to build the distribution of the statistic under the

null hypothesis.

In this study we extend the work of Chan (1990) and Ling and Tong (2005)

and propose supremum Lagrange multiplier test statistics (supLM) for determin-

ing whether a TARMA model fits a stationary time series significantly better

than an ARMA model does. One of the main advantages of using a Lagrange

multiplier test over the likelihood-ratio test is that the former avoids estimation

under the alternative hypothesis. We prove that under both the null hypothesis

and contiguous local alternatives, the asymptotic distributions of the test statis-

tics reduce to functionals of Gaussian processes that are centered under the null

and noncentered under the alternative. Our results extend the work of Ling and

Tong (2005) on the weak convergence of linear marked empirical processes with

infinitely many markers to the case where the underlying process is an ARMA

model. Moreover, we prove the consistency of our tests and show that they have

nontrivial power against local alternatives.

In order to test the null hypothesis of an ARMA model against the alternative

hypothesis of a TARMA model, we propose two supLM statistics. In the first,

denoted by sLM, only the AR part is tested for threshold nonlinearity. In the

second statistic, denoted by sLM?, both the AR and MA parts are tested. Note

that the sLM? statistic does not reduce to the sLM when the MA part is either

absent or regime independent. This is reflected in the different finite-sample

behavior of the tests.

We explore systematically the performance of our supLM tests and compare

them with the quasi-likelihood ratio (qLR) test of Li and Li (2011). An extensive

simulation study shows clearly that our tests have better size and power, while

incurring a much lower computational burden. Furthermore, the two supLM

tests are robust against model mis-specification, and their performance is not

adversely affected if the order of the ARMA model is unknown and selected

using the Hannan–Rissanen procedure. Lastly, we apply our tests to time series of

standardized tree-ring growth indices. We show that a TARMA model provides

a better fit than the ARMA models commonly adopted in the literature. We

suggest that a TARMA model can lead to a deeper understanding of the tree-

ring dynamics, possibly leading to novel directions of research in climate studies,

which incorporate nonlinear dynamics.

The rest of the paper is organized as follows. In Section 2, we present our

setting and the two tests. In Section 3, we derive the asymptotic distributions of

the supLM test statistics under the null hypothesis. In Section 4, we derive the

asymptotic distributions of the statistics under local contiguous alternatives and
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prove the consistency of the tests. Section 5 contains a Monte Carlo study to

assess the finite-sample performance of our proposed tests. We also investigate

the behavior of the tests under model mis-specification and when the order of

the tested model is unknown. In Section 6, we apply our tests to a tree-ring time

series. We conclude the paper in Section 7. All proofs and the tabulated quantiles

of the null distribution are provided in the online Supplementary Material, which

also contains additional results from both the simulation study and the tree-ring

data analysis.

2. Notation and Preliminaries

Let the time series {Xt : t = 1, . . . , n} follow the TARMA(p, q) model defined

by the difference equation

Xt = φ0 +

p∑
i=1

φiXt−i −
q∑
j=1

θjεt−j + εt

+

ϕ0 +

p∑
i=1

ϕiXt−i −
q∑
j=1

ϑjεt−j

 I(Xt−d ≤ r). (2.1)

When the MA parameters are regime independent, the rightmost summation

involving ϑj , for j = 1, . . . , q, is absent. The innovation process {εt} is assumed

to be independent and identically distributed (i.i.d.) with zero mean and E[ε2
t ] =

σ2 <∞. The positive integers p and q are the AR and MA orders, respectively,

and d is the delay parameter, which takes positive integer values. We assume

p, q, and d are known. Moreover, I(·) is the indicator function and r ∈ R is the

threshold parameter. For notational convenience, we abbreviate I(Xt ≤ r) as

Ir(Xt). Let η be the vector of all the parameters (excluding the threshold r) in

Model (2.1), that is,

η = (ηᵀ
1 ,η

ᵀ
2 , σ

2)ᵀ ∈ Θη = Θφ ×Θθ ×Θϕ ×Θϑ × (0,+∞),

η1 = (φᵀ,θᵀ)ᵀ, η2 = (ϕᵀ,ϑᵀ)ᵀ,

where

φ = (φ0, φ1, . . . , φp)
ᵀ ∈ Θφ; θ = (θ1, . . . , θq)

ᵀ ∈ Θθ;

ϕ = (ϕ0, ϕ1, . . . , ϕp)
ᵀ ∈ Θϕ; ϑ = (ϑ1, . . . , ϑq)

ᵀ ∈ Θϑ, (2.2)

with Θφ and Θϕ (Θθ and Θϑ) being subsets of Rp+1 (Rq). Moreover, let Ψ be the

vector that contains the parameters to be tested, partitioned as Ψ = (Ψᵀ
1 ,Ψ

ᵀ
2)ᵀ,
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where

Ψ1 = φ, Ψ2 = ϕ if only the AR part is tested (sLM), and (2.3)

Ψ1 = (φᵀ,θᵀ)ᵀ, Ψ2 = (ϕᵀ,ϑᵀ)ᵀ if both the AR and

the MA parts are tested (sLM?).

All true parameters have a subscript zero, whereas unknown ones do not. Specif-

ically, the true parameters are denoted by

η0 = (ηᵀ
0,1,η

ᵀ
0,2, σ

2
0)ᵀ; Ψ0 = (Ψᵀ

0,1,Ψ
ᵀ
0,2)ᵀ;

φ0 = (φ0,0, φ0,1, . . . , φ0,p)
ᵀ ; θ0 = (θ0,1, . . . , θ0,q)

ᵀ ;

ϕ0 = (ϕ0,0, ϕ0,1, . . . , ϕ0,p)
ᵀ ; ϑ0 = (ϑ0,1, . . . , ϑ0,q)

ᵀ .

In addition, we assume η0 is an interior point of the parameter space.

We test whether a TARMA(p, q) model provides a significantly better fit

than that of the linear ARMA(p, q) model. To this end, we develop two Lagrange

multiplier test statistics for the hypotheses:{
H0 : Ψ0,2 = 0,

H1 : Ψ0,2 6= 0,

where 0 is the vector of all zeroes. The statistic for testing the threshold effect

in the AR parameters is denoted as sLM, whereas sLM? is the statistic for the

general test in which both the AR and the MA parameters change across regimes.

Under H0, the time series follows the linear ARMA(p, q) model

Xt = φ0,0 +

p∑
i=1

φ0,iXt−i −
q∑
j=1

θ0,jεt−j + εt. (2.4)

To study the asymptotic properties of the tests, we assume the model is ergodic

and invertible under both the null hypothesis and the alternative hypothesis. Let

the AR and MA polynomials be defined as follows:

φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp; θ(z) = 1− θ1z − θ2z

2 − · · · − θqzq.

We assume the following.

Assumption 1. φ(z) 6= 0 and θ(z) 6= 0, for all z ∈ C, such that |z| ≤ 1 and they

do not share common roots. Moreover, {Xt} is ergodic and invertible under both

H0 and H1.
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The ergodicity of TARMA models was investigated in Ling (1999) and Chan and

Goracci (2019), and the invertibility of TARMA models was studied in Chan and

Tong (2010). A discussion on the invertibility of TMA models can also be found

in Ling and Tong (2005) and Ling, Tong and Li (2007).

Next, we fully develop the theory for the general statistic sLM?. Unless

otherwise stated, the results also hold for the statistic sLM. Suppose we ob-

serve X1, . . . , Xn. The Gaussian log-likelihood, conditional on the initial values

X0, X−1, . . . , is given by

`n(η, r) = −n
2

ln(σ22π)− 1

2σ2

n∑
t=1

ε2
t (η, r), (2.5)

εt(η, r) = Xt −

φ0 +

p∑
i=1

φiXt−i −
q∑
j=1

θjεt−j(η, r)


−

ϕ0 +

p∑
i=1

ϕiXt−i −
q∑
j=1

ϑjεt−j(η, r)

 Ir (Xt−d) , (2.6)

and the q initial values are set to zero. The rightmost summation involving ϑj ,

for j = 1, . . . , q, is absent for the sLM test. Furthermore,

εt(η1) = εt(η,−∞) = Xt −

φ0 +

p∑
i=1

φiXt−i −
q∑
j=1

θjεt−j(η1)

 . (2.7)

Consider the partial derivative of `n(η, r) with respect to Ψ:

∂`n(η, r)

∂Ψ
=

((
∂`n(η, r)

∂Ψ1

)ᵀ

,

(
∂`n(η, r)

∂Ψ2

)ᵀ)ᵀ

= − 1

σ2

n∑
t=1

εt(η, r)
∂εt(η, r)

∂Ψ
,

where ∂εt(η, r)/∂Ψ is the partial derivative of εt(η, r) with respect to Ψ, namely,

∂εt(η, r)

∂Ψ
=

((
∂εt(η, r)

∂Ψ1

)ᵀ

,

(
∂εt(η, r)

∂Ψ2

)ᵀ)ᵀ

. (2.8)

Moreover, let ∂εt(η1)/∂Ψ1 be the derivative of the function εt(η1) defined in

Eq. (2.7).

Lastly, define the block matrix In(η, r) as follows:
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In(η, r) =

(
In,11(η) In,12(η, r)

In,21(η, r) In,22(η, r)

)
=

−
∂2`n(η, r)

∂Ψ1∂Ψᵀ
1

− ∂2`n(η, r)

∂Ψ1∂Ψᵀ
2

−∂
2`n(η, r)

∂Ψ2∂Ψᵀ
1

− ∂2`n(η, r)

∂Ψ2∂Ψᵀ
2

 . (2.9)

Let `n(η1) = `n(η,−∞). Let η̂1 = (φ̂ᵀ, θ̂ᵀ)ᵀ = arg minη1
`n(η1) be the maximum

likelihood estimator (MLE) of the ARMA coefficients in Eq. (2.4), and let σ̂2 =

n−1
∑n

t=1 εt(η̂1). We define η̂ = (η̂ᵀ
1 ,0

ᵀ, σ̂2)ᵀ as the so-called restricted MLE,

that is, under the null hypothesis. We write ∂ ˆ̀
n(r)/∂Ψ2 and În(r) to refer to

∂`n(η, r)/∂Ψ and In(η, r), respectively, evaluated at the restricted MLE, that is,

∂ ˆ̀
n(r)

∂Ψ2
=
∂`n(η̂, r)

∂Ψ2
; În(r) = In(η̂, r) =

(
În,11 În,12(r)

În,21(r) În,22(r)

)
.

Under the null hypothesis, the threshold parameter r is absent, and so standard

asymptotic theory is not applicable. As such, we first develop the Lagrange

multiplier test statistic as a function of r ranging over a set R. Then, we take

the overall test statistic as the supremum on R. We set R = [rL, rU ], with rL
and rU being some percentiles of the sample. This widely used approach in the

time series literature for tests involving threshold models can be dated back to

Chan (1990) and was followed by others such as Ling and Tong (2005), Li and

Li (2011), and Chan et al. (2020). Our test statistic is

Tn = sup
r∈[rL,rU ]

Tn(r), (2.10)

where

Tn(r) =

(
∂ ˆ̀
n(r)

∂Ψ2

)ᵀ (
În,22(r)− În,21(r)Î−1

n,11În,12(r)
)−1 ∂ ˆ̀

n(r)

∂Ψ2
. (2.11)

3. The Null Distribution

In this section, we derive the asymptotic distribution of Tn under the null

hypothesis that {Xt} follows an ARMA(p, q) model of AR order p and MA order

q, and the true data-generating process (DGP) is defined in Eq. (2.4). Unless

stated otherwise, all expectations are taken with respect to the true probability

distribution under H0. In addition, op(1) denotes the convergence in probability

to zero as n increases, and ‖ · ‖ is the L2 matrix norm (the Frobenius norm, i.e.,

‖A‖ =
√∑n

i=1

∑m
j=1 |aij |2, where A is an n×m matrix). Moreover, let DR(a, b),

for a < b, be the space of functions from (a, b) to R that are right continuous with
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left-hand limits. DR(a, b) is equipped with the topology of uniform convergence

on compact sets; see Billingsley (1968) for more details.

In Lemma 1 of the Supplementary Material, we rewrite ∂εt(η, r)/∂Ψ as a

function of the roots of the MA characteristic polynomial. This is an alternative

way of representing the derivatives that simplifies the theoretical derivations.

Under the null hypothesis and η = η0, we obtain the same expansion for the

partial derivatives of εt(η0, r) described by Eqs. (6.3) and (6.4) in Ling and Tong

(2005). In Lemma 2 of the Supplementary Material, we derive an approximation

for the matrix of the second derivatives of the log-likelihood function under H0.

Define the vector ∇n(r) =
(
∇ᵀ
n,1,∇

ᵀ
n,2(r)

)ᵀ
, with

∇n,1 = − 1√
n

1

σ2
0

n∑
t=1

εt
∂εt(η0,1)

∂Ψ1
, ∇n,2(r) = − 1√

n

1

σ2
0

n∑
t=1

εt
∂εt(η0, r)

∂Ψ2
, (3.1)

and the matrices

Λ(η, r) =

(
Λ11(η) Λ12(η, r)

Λ21(η, r) Λ22(η, r)

)
= E

[
1

σ2

(
∂εt(η, r)

∂Ψ

)(
∂εt(η, r)

∂Ψ

)ᵀ]
,

Λ(r) =

(
Λ11 Λ12(r)

Λ21(r) Λ22(r)

)
= E

[
1

σ2
0

(
∂εt(η0, r)

∂Ψ

)(
∂εt(η0, r)

∂Ψ

)ᵀ]
,

where the sub-matrices Λ are (p + 1) × (p + 1) matrices in the sLM test, and

(p+ q + 1)× (p+ q + 1) matrices in the sLM? test.

In the following proposition, we provide a uniform approximation of the test

statistics that enables us to derive the asymptotic null distribution of the test

statistic Tn in Theorem 1.

Proposition 1. Under Assumption 1 and under H0, we have the following re-

sults:

(i) For each η, the matrix Λ(η, r) is positive definite.

(ii)

sup
r∈[a,b]

∥∥∥∥( În,22(r)

n
− În,21(r)

n

(
În,11

n

)−1 În,12(r)

n

)−1

.

−

(
Λ22(r)− Λ21(r)Λ−1

11 Λ12(r)

)−1
∥∥∥∥∥ = op(1).
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(iii)

sup
r∈[a,b]

∥∥∥∥∥ 1√
n

∂ ˆ̀
n(r)

∂Ψ2
−
(
∇n,2(r)− Λ21(r)Λ−1

11 ∇n,1
)∥∥∥∥∥ = op(1).

Note that in the above proposition,
(
∇n,2(r)− Λ21(r)Λ−1

11 ∇n,1
)

is a linear marked

empirical process with infinitely many markers. Similarly to Ling and Tong (2005)

and Li and Li (2011), we rely on Assumption 2, stated below.

Assumption 2. εt has a continuous and strictly positive density on the real line

and E
[
ε4
t

]
is finite.

Theorem 1. Let {ξ(r), r ∈ R} be a centered Gaussian process with covariance

kernel Σ(r1, r2) = Λ22(r1 ∧ r2) − Λ21(r1)Λ−1
11 Λ12(r2). Then, under H0 and As-

sumptions 1 and 2, Tn converges weakly to

sup
r∈[rL,rU ]

ξ(r)ᵀ
(
Λ22(r)− Λ21(r)Λ−1

11 Λ12(r)
)−1

ξ(r).

In Table 1 of the Supplementary Material, we tabulate the empirical quantiles

of the null asymptotic distribution of our supLM statistics for AR orders from

one to four and MA orders from one to two. The quantiles do not depend on

the MA parameters, and are in good agreement with those shown in Table 1 of

Andrews (2003), where π0 = 0.25, and those in Table 1 of Chan (1991). The

asymptotic behavior of the two statistics depends only on the dimension of the

parameter vector Ψ, irrespective of whether it has AR or MA components. As

shown in Section S1 of the Supplementary Material, the results do not depend on

the parameter values of the data-generating process, and are robust with respect

to deviations from normality of the innovation process.

4. The Distribution under Local Alternatives and the Consistency of

the Test

In this section, we derive the asymptotic distribution of Tn under a sequence

of local alternatives, and prove the consistency of the associated tests. For each

n, the null hypothesis H0 states that {Xt, t = 1, . . . , n} follows the model

Xt = φ0,0 +

p∑
i=1

φ0,iXt−i −
q∑
j=1

θ0,jεt−j + εt.
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The sequence of alternative hypotheses H1,n states that {Xt, t = 1, . . . , n}
follows the model

Xt = φ0,0 +

p∑
i=1

φ0,iXt−i −
q∑
j=1

θ0,jεt−j + εt

+

h10√
n

+

p∑
i=1

h1i√
n
Xt−i −

q∑
j=1

h2j√
n
εt−j

 Ir0(Xt−d). (4.1)

Here, h = (h10, h11, . . . , h1p, h21, . . . , h2q)
ᵀ ∈ Rp+q+1 is a vector of constants and

r0 is a fixed scalar. For the sLM statistic, the rightmost summation term within

square brackets is absent such that h = (h10, h11, . . . , h1p)
ᵀ ∈ Rp+1.

Let P0,n and P1,n be the probability measure of (X1, . . . , Xn) under H0 and

H1,n, respectively. In the following proposition, we prove the asymptotic normal-

ity of the log-likelihood ratio and the contiguity of P1,n to P0,n. As in C5 of Chan

(1990), 3.1 of Ling and Tong (2005), and A5 of Li and Li (2011), we assume the

following.

Assumption 3. The density f of εt is absolutely continuous with derivative f ′

almost everywhere and
∫

(f ′(x)/f(x))2 f(x) dx <∞.

Proposition 2. Under Assumptions 1–3, the following assertions hold.

(i) Let ∇2(r) be a Gaussian distributed random vector with zero mean and covari-

ance matrix equal to Λ22(r). Under the null hypothesis, the log-likelihood ra-

tio log(dP1,n/dP0,n) converges to the Gaussian random variable hᵀ∇2(r0)−
2−1hᵀΛ22(r0)h.

(ii) {P1,n} is contiguous to {P0,n}.

Next, we have the following asymptotic distribution for Tn.

Theorem 2. Assume that Assumption 1–3 hold. Under H1,n, the following as-

sertions hold.

(i) Tn converges weakly in D(−∞,∞) to

(ξr + γr)
ᵀ
(
Λ22(r)− Λ2,1(r)Λ−1

11 Λ12(r)
)−1

(ξr + γr),

where γr =
{

Λ22(min{r, r0})− Λ21(r)Λ−1
11 Λ12(r0)

}
h.

(ii) supr∈[rL,rU ] Tn converges weakly to

sup
r∈[rL,rU ]

(ξr + γr)
ᵀ
(
Λ22(r)− Λ21(r)Λ−1

11 Λ12(r)
)−1

(ξr + γr).
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Finally, we prove the consistency of our tests.

Theorem 3. Under H1,n, as ‖h‖ → ∞, the test statistic Tn has power approach-

ing 100%.

Note that Proposition 2 and Theorem 2 can be proved for the sLM statistic with-

out assumption 3. The two proofs are reported separately in the Supplementary

Material.

5. Finite-Sample Performance

In this section, we investigate the finite-sample performance of our supLM

tests (sLM, sLM?) and compare them with the qLR test developed in Li and Li

(2011). Hereafter εt, for t = 1, . . . , n, is generated from a standard Gaussian white

noise, the length of the series is n = 100, 200, 500, the nominal size is α = 5%,

and the number of Monte Carlo replications is 1,000. For our tests, we use the

critical values shown in Table 1. For the qLR test, we use B = 1000 resamples.

In Section 5.1, we study the size of the tests. Section 5.2 shows the power of

the tests in scenarios where i) only the AR parameters change across regimes,

ii) only the MA parameters change across regimes, and iii) both the AR and

the MA parameters change across regimes. Then, in Section 5.3, we assess the

behavior of the tests in presence of model mis-specification and, in Section 5.4,

that when the order of the ARMA process tested is treated as unknown and is

selected using the Hannan–Rissanen method .

5.1. Size of the tests

We generated time series from 25 different simulation settings of the following

ARMA(1, 1) model:

Xt = φ1Xt−1 + εt − θ1εt−1, (5.1)

where φ1 = 0,±0.3,±0.6 and θ1 = 0,±0.4,±0.8. Table 1 shows the rejection per-

centages for the three sample sizes in use. Note that the case θ1 = 0 corresponds

to testing an AR versus a TAR model. For n = 100, the qLR test is biased in

almost all settings, and reaches 53% of false rejections for the case θ1 = φ1 = 0.

The size of the sLM test is always acceptable, because it is slightly greater than

10% in only three cases, and its maximum value is 15.5%. The size of the sLM?

test is slightly more biased than that of the sLM test. When n = 200, the bias of

the sLM test reduces further, and its size is not far from the nominal 5% in most

situations. This also holds for the sLM? test, except for the case θ1 = 0.8, where

the size is still around 10%. This is not the case for the qLR test, with a size close
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Table 1. Empirical size at nominal level 5% of the supLM tests (sLM, sLM?) and the
quasi-likelihood ratio test (qLR). Rejection percentages from the ARMA(1, 1) model of
Eq. (5.1). Sample size n = 100, 200, 500.

n = 100 n = 200 n = 500

φ1 θ1 sLM sLM? qLR sLM sLM? qLR sLM sLM? qLR

-0.6 -0.8 5.8 10.0 45.0 4.6 6.2 25.2 4.4 5.7 10.2

-0.3 -0.8 3.4 8.4 29.1 3.4 7.0 14.9 4.9 5.3 7.3

0.0 -0.8 4.3 7.4 22.4 4.1 7.2 9.2 4.2 4.2 6.3

0.3 -0.8 4.2 8.7 21.0 5.0 8.0 9.8 4.9 4.6 5.6

0.6 -0.8 4.6 8.4 19.5 5.6 7.9 8.1 4.4 5.8 4.9

-0.6 -0.4 6.1 8.5 41.0 5.1 5.2 26.2 4.7 4.8 13.9

-0.3 -0.4 7.5 8.3 46.1 4.9 5.0 40.7 5.9 5.8 24.0

0.0 -0.4 4.5 4.2 20.4 4.1 5.2 8.2 5.0 4.5 5.1

0.3 -0.4 5.4 6.2 10.8 3.8 4.3 6.0 4.3 4.3 4.7

0.6 -0.4 7.1 6.5 6.7 4.4 5.6 5.8 6.1 5.2 3.2

-0.6 0.0 4.6 4.2 10.0 4.2 4.0 5.8 4.6 4.9 3.1

-0.3 0.0 5.1 5.6 31.8 3.4 3.7 16.0 5.9 6.2 4.8

0.0 0.0 9.4 11.4 53.5 9.2 9.4 42.0 6.7 7.1 34.0

0.3 0.0 7.5 6.9 22.4 5.1 4.6 7.6 3.3 4.2 4.3

0.6 0.0 9.8 8.5 7.5 6.1 5.4 4.1 5.2 5.8 4.6

-0.6 0.4 4.2 4.8 5.9 3.3 4.3 3.7 4.6 4.4 3.1

-0.3 0.4 4.7 5.6 9.7 4.1 5.0 5.1 3.9 4.5 3.8

0.0 0.4 5.0 4.5 24.2 3.7 4.1 8.2 4.5 5.2 5.7

0.3 0.4 6.4 7.7 45.6 6.0 7.1 38.1 5.1 5.4 23.4

0.6 0.4 15.5 14.4 27.6 8.8 9.2 8.8 6.9 7.7 3.2

-0.6 0.8 10.3 16.8 20.2 7.2 10.7 7.0 4.5 7.0 5.3

-0.3 0.8 8.3 14.8 20.2 6.3 10.4 9.7 4.2 6.6 3.3

0.0 0.8 8.2 16.0 20.4 6.0 11.3 8.7 4.9 7.2 5.2

0.3 0.8 7.7 14.4 24.5 7.2 10.0 10.5 4.1 6.5 4.4

0.6 0.8 11.9 16.0 32.0 9.3 11.2 22.2 6.3 8.1 7.6

to 40% in three simulation settings. When n = 500, both supLM tests achieve a

size close to the nominal 5% level, whereas the qLR test is still severely biased

for some cases when near cancellation occurs. This may be due to the sensitivity

of the quadratic approximation of the qLR test to near invertibility and/or near

cancellation. The bias is particularly severe when θ1 = φ1 = 0. One may argue

that it is not appropriate to apply these tests to a realization of a white-noise

process, and that it would be more sensible to apply other kinds of tests in the

first place. Nevertheless, it may occur that a threshold process resembles white

noise in terms of its second-order structure. Indeed, some sort of mis-specification

is always present. We investigate this aspect in Section 5.3.
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5.2. Power of the tests

In this section, we study and compare the power of the supLM tests. Note

that the parameter vector Ψ2 (see Eq. (2.3)) represents the departure from

the null hypothesis, and in all the simulations below, we take sequences of in-

creasing distance from H0 in all of its components. We simulate three different

TARMA(1, 1) models, where i) only the AR parameters change across regimes,

ii) only the MA parameters change across regimes, and iii) both the AR and

the MA parameters change across regimes. For the first case, we simulate the

following model:

Xt = −0.5− 0.2Xt−1 − θ1εt−1 + (ϕ0 + ϕ1Xt−1) I(Xt−1 ≤ 0) + εt, (5.2)

where (ϕ0, ϕ1) = (0.1, 0.4), (0.3, 0.6), (0.5, 0.8), (0.7, 1.0). We combine these with

θ1 = 0,±0.4,±0.8 to obtain 20 different parameter settings. Figure 1 presents

the size-corrected power of the tests (in percentage) for different values of θ1.

Clearly, the supLM tests outperform the qLR test in all cases, except for the

single instance θ = 0.4 and n = 100. The power depends on the true value of θ1,

and the case θ1 = 0 seems to impinge most negatively. In such instances, the qLR

test has no power, even for n = 200, whereas the supLM tests show power loss

due to the size correction only for n = 100. Moreover, for θ = 0.8, both supLM

tests outperform the qLR test. Indeed, their power for n = 200(100) is greater

than that of the qLR test for n = 500(200). Overall, starting from n = 200,

both supLM tests possess good power in almost every situation. As expected,

the sLM test is slightly superior to the sLM? test, because the MA parameter

is regime independent. The results for cases ii) and iii) and for higher-order

TARMA models are consistent with the above conclusions and are reported in

the Supplementary Material. In particular, they show that when both the AR

and the MA parameters change, the sLM? is the most powerful test.

5.3. Size and power in presence of mis-specification

In this section, we assess the impact of model mis-specification on the per-

formance of the tests. The sources of mis-specification can be diverse. As above,

we focus on testing the ARMA(1, 1) versus the TARMA(1, 1) specification, but

the data-generating process is not encompassed within the two models. Loosely

speaking, we are investigating the capability of the test to detect general depar-

tures from linearity beyond a direct comparison of two specific models. Ideally,

if the data-generating process is linear, we would want the test to not reject the

null hypothesis. Similarly, if the data-generating process is nonlinear in some
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Figure 1. Size-corrected power (percentages) at nominal α = 5% for the TARMA(1, 1)
model of Eq. (5.2), case i: only the AR parameters change across regimes. The sLM,
sLM?, and qLR tests are denoted by a blue filled point, an empty green point, and a
red triangle, respectively. The line type indicates the sample size: n = 100 (continuous),
n = 200 (dashed), n = 500 (dotted).
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Table 2. Rejection percentages under model mis-specification for the processes of Table 7
of the Supplementary Material for the supLM tests (sLM, sLM?) and the quasi-likelihood
ratio test (qLR). The upper panel (linear processes) reflects the empirical size at nominal
level 5%. The lower panel (nonlinear processes) reflects the empirical power for nonlinear
processes that are not representable as a TARMA(1, 1) process.

n = 100 n = 200 n = 500

sLM sLM? qLR sLM sLM? qLR sLM sLM? qLR

l
in
e
a
r

AR5 7.9 15.2 22.7 5.5 9.8 7.8 4.6 6.9 4.6

AR2.1 6.7 7.1 6.8 4.7 5.5 4.0 5.3 5.5 4.0

AR2.2 8.7 10.1 6.6 4.1 5.8 3.2 3.4 5.0 1.6

ARMA21.1 5.9 6.8 48.0 5.5 5.2 39.7 5.5 4.8 27.8

ARMA21.2 5.8 8.9 15.8 4.5 5.7 8.3 4.0 4.9 4.1

ARMA22 5.5 13.6 29.1 3.7 12.7 17.4 3.5 7.5 8.5

MA2 3.5 12.1 29.9 2.3 5.8 17.0 4.4 6.2 6.5

n
o
n
l
in
e
a
r

TAR3 34.7 98.1 63.0 61.8 99.7 48.0 96.7 100.0 36.8

3TAR1 19.2 18.4 8.8 36.1 30.4 8.5 78.5 72.4 16.5

NLMA.1 85.1 84.0 78.7 97.3 97.2 92.1 99.8 99.9 99.0

NLMA.2 86.4 86.8 73.6 98.3 98.5 85.2 100.0 99.9 97.0

BIL.1 12.0 62.1 53.2 13.5 84.8 58.2 14.7 95.0 77.4

BIL.2 84.0 83.1 86.8 98.7 98.9 96.0 100.0 100.0 99.9

EXPAR.1 100.0 100.0 32.5 100.0 100.0 30.5 100.0 100.0 80.1

EXPAR.2 95.8 99.1 45.0 99.6 99.9 59.3 100.0 100.0 96.2

NLAR 100.0 100.0 63.7 100.0 100.0 47.0 100.0 100.0 27.1

of its components, then we expect the test to reject the null hypothesis. The

linear and nonlinear data-generating processes used are presented in Table 7 of

the Supplementary Material. The seven linear processes are not ARMA(1, 1), be-

cause they contain higher-order AR/MA terms. In the second part of the table,

we show nonlinear processes that cannot be encompassed within the two-regime

TARMA(1, 1) specification. In particular, we simulate from TAR models with

both a higher AR order and more than two regimes. Lastly, we generate data

from seven nonlinear models that do not belong to the TARMA class. These

include the nonlinear MA (NLMA), bilinear (BIL), exponential AR (EXPAR),

and deterministic chaos (NLAR) models.

The rejection percentages are reported in Table 2. As discussed above, the

first seven rows should reflect the empirical size at nominal level 5% under mis-

specification. Consistent with the results of Table 1, the sLM test is well behaved

in terms of size, even for n = 100, whereas the sLM? test has acceptable size

starting from n = 200. The qLR test presents acceptable size for n = 500 only,

except for the ARMA21.1 case with 27.8% false rejections. The lower panel
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Table 3. Empirical size of the supLM tests at nominal level 5% for six parameterizations
of the ARMA(2, 2) process. The subscript “HR” indicates that the order of the ARMA
model has been selected using the Hannan–Rissanen procedure.

n = 100 n = 200 n = 500

φ1 φ2 θ1 θ2 sLM sLMhr sLM sLMhr sLM sLMhr

-0.35 -0.45 0.25 -0.25 5.4 4.4 3.6 3.7 4.9 4.9

0.45 -0.55 0.25 -0.25 5.6 5.8 5.7 4.8 4.6 4.6

-0.90 -0.25 0.25 -0.25 6.1 4.6 5.8 5.9 4.4 5.6

-0.35 -0.45 -0.25 0.25 2.9 3.0 4.3 4.4 5.3 5.3

0.45 -0.55 -0.25 0.25 3.0 3.4 3.9 4.3 5.3 5.0

-0.90 -0.25 -0.25 0.25 7.1 4.7 6.8 4.6 5.7 5.2

n = 100 n = 200 n = 500

φ1 φ2 θ1 θ2 sLM? sLM?
hr sLM? sLM?

hr sLM? sLM?
hr

-0.35 -0.45 0.25 -0.25 6.1 4.3 4.3 3.7 4.5 4.9

0.45 -0.55 0.25 -0.25 7.2 6.4 4.8 5.3 4.5 5.1

-0.90 -0.25 0.25 -0.25 6.7 5.9 4.9 5.3 4.8 5.4

-0.35 -0.45 -0.25 0.25 3.1 3.0 4.9 4.8 4.6 4.2

0.45 -0.55 -0.25 0.25 4.4 4.8 4.1 4.7 4.9 4.8

-0.90 -0.25 -0.25 0.25 11.4 6.5 6.7 4.3 5.3 5.2

of Table 2 shows the rejection percentages for the nine nonlinear models that

do not belong to the TARMA(1, 1) class. Here, the power of the sLM tests is

higher than that of the qLR test in almost every case, even for n = 100, and

increases consistently with the sample size. The qLR test has good power in

several instances, but for the TAR3, the 3TAR1, and NLAR models, the power

decreases as the sample size increases. The cause of this phenomenon is not

clear and deserves further investigation. One possible intuitive explanation is the

following. Consider the case in which we test the null hypothesis of an AR(p)

model. In practice, the LM statistics test whether E[εtXt−iIr(Xt−d)] = 0, for

i = 1, . . . , p. When the true model is a linear model, the above result most likely

holds and, consequently, the sLM tests still have an accurate size. However,

when the true model is a nonlinear model, the result most likely does not hold,

in which case, the proposed LM tests are still powerful. The above arguments

fail for the qLR test, which needs to consider the model under both the null and

the alternative hypotheses.

5.4. The impact of model selection

In practice, the tests require selecting the model order beforehand. In this

section, we show that there is virtually no loss incurred when using our supLM

tests without prior information on the order, provided a proper model selection
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procedure is adopted. Our experience suggests using the order selection proposed

in Hannan and Rissanen (1982); see also Choi (1992).

In Table 3, we present the empirical size of the supLM tests at the nomi-

nal level 5% for six parameterizations of an ARMA(2, 2) model (the first four

columns). The upper panel of the table refers to the sLM test, and the lower

panel refers to the sLM? test. In both cases, the subscript HR indicates that the

order of the ARMA process has been selected using the Hannan–Rissanen pro-

cedure; no subscript is used if the true order has been used. The results indicate

that not only does the model selection step not produce a size bias, but it seems

to reduce it in some instances.

The impact of model selection on the power of the tests is shown in Ta-

ble 4, where we simulate twelve parameter settings of the TARMA(1, 1) model of

Eq. (5.2). Clearly, the power loss produced by using model selection is minimal,

lying within 2% for the sLM test and 3% for the sLM? test. Finally, in the pres-

ence of mis-specification, the HR model selection step poses no problems. The

results are shown in the Supplementary Material.

5.5. Discussion

The Monte Carlo study shows that the supLM tests have good finite-sample

properties. They are also robust against model mis-specification, and their per-

formance is not affected if the order of the tested process is unknown, provided

a consistent order selection procedure is used. In theory, because the asymptotic

distribution of the supLM statistics is the same as that of the qLR statistic,

the tests should display the same asymptotic behavior. Nevertheless, the Monte

Carlo evidence points at clear finite-sample differences, because supLM tests do

not suffer from some of the drawbacks that affect the qLR test. The reasons are

diverse. First, the supLM statistics require fitting only an ARMA model, whereas

the qLR test is bound to estimating a full TARMA model. Recall that there are

no theoretical results regarding the sampling properties of the maximum likeli-

hood estimators for the parameters of a TARMA model. Moreover, the qLR test

of Li and Li (2011) uses a representation in terms of a quadratic form. However,

this is only valid asymptotically, and so impinges on the rate of convergence of

the statistic toward its asymptotic distribution. This does not occur in our case

because such a representation is exact for the supLM statistics. The size dis-

tortion for the qLR approach is at its greatest when the model is either nearly

non-invertible or there is near cancellation in the MA and AR roots, reflecting

the sensitivity of the quadratic approximation in these two cases.

The sLM statistic tests the ARMA(p, q) against the TARMA(p, q) model
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Table 4. Empirical power for the TARMA(1, 1) model of Eq. (5.2). Sample size n =
100, 200, 500. The subscript “HR” indicates that the order of the ARMA model has
been selected using the Hannan–Rissanen procedure.

n = 100 n = 200 n = 500

ϕ0 ϕ1 θ1 sLM sLMhr sLM sLMhr sLM sLMhr

0.1 0.4 -0.5 13.0 12.9 30.2 29.4 71.2 69.4

0.3 0.6 -0.5 34.8 35.1 71.9 70.6 99.6 98.9

0.5 0.8 -0.5 65.5 65.2 97.1 96.3 100.0 100.0

0.7 1.0 -0.5 90.4 89.6 99.7 99.5 100.0 100.0

0.1 0.4 0.0 15.7 14.9 19.0 19.2 43.0 43.0

0.3 0.6 0.0 30.7 30.4 51.8 51.0 94.0 93.6

0.5 0.8 0.0 54.5 54.6 87.9 87.5 100.0 99.9

0.7 1.0 0.0 81.3 80.5 99.1 99.1 100.0 100.0

0.1 0.4 0.5 17.4 16.0 35.9 33.8 77.9 75.8

0.3 0.6 0.5 41.3 38.7 78.2 73.1 99.9 99.6

0.5 0.8 0.5 70.7 67.2 95.7 93.9 99.9 99.7

0.7 1.0 0.5 75.5 74.6 93.7 93.1 99.5 99.5

n = 100 n = 200 n = 500

ϕ0 ϕ1 θ1 sLM? sLM?
hr sLM? sLM?

hr sLM? sLM?
hr

0.1 0.4 -0.5 13.9 13.9 28.7 28.7 66.7 65.0

0.3 0.6 -0.5 35.5 35.7 69.5 67.0 99.0 98.6

0.5 0.8 -0.5 65.7 65.1 96.4 95.7 100.0 100.0

0.7 1.0 -0.5 89.7 88.8 99.8 99.6 100.0 100.0

0.1 0.4 0.0 15.0 14.4 18.7 19.1 40.3 40.6

0.3 0.6 0.0 27.8 28.2 48.8 48.5 91.7 91.5

0.5 0.8 0.0 52.0 52.1 86.1 85.5 100.0 99.9

0.7 1.0 0.0 80.1 79.7 98.9 98.7 100.0 100.0

0.1 0.4 0.5 16.4 16.0 32.6 31.2 75.4 73.6

0.3 0.6 0.5 40.8 38.7 75.3 71.6 99.6 98.9

0.5 0.8 0.5 68.3 65.8 95.9 94.5 100.0 100.0

0.7 1.0 0.5 74.8 74.3 93.7 93.0 99.6 99.6

when only the p AR parameters change across regimes. However, the results

show that it also has power when only the MA parameters change. This could

be ascribed to the duality between the MA and AR processes, and indicates

some capabilities in detecting general departures from linearity. The results in

Section 5.3 provide additional evidence. The results also show that, as expected,

when either only the q MA parameters or all the p+ q parameters of the ARMA

model change across regimes, then the sLM? test is more powerful. The price

to be paid for this superior power is the increased size bias in small samples.

In general, we expect the two tests to behave similarly, but in the case of small
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samples, the sLM statistic is recommended and can be used in conjunction with

the sLM? test.

6. A Real-Data Application: Tree-Ring Time Series

In this section, we apply our test to the time series of the tree-ring standard-

ized growth index. Tree rings provide a measure of the responses of tree growth to

past climatic variation, which is useful in climate studies. Despite the recognition

that the climatic factors affecting tree growth form a complex network, according

to the literature, the best model to adopt are either the AR(1) or ARMA(1, 1)

models; see Table 3 in Fox, Ades and Bi (2001). Usually, the indices of many

trees from the same site are used to cross-date the rings, and are averaged into a

single index to obtain a chronology that covers a long time span. Here, we focus

on the tree-ring chronology of a pinus aristata var. longaeva (California, United

States) from the year 800 to the year 1979 (n = 1180). For more details on the

data, see Graybill (2018).

We test the null hypothesis of an ARMA(1, 1) model against the following

TARMA(1, 1) model:

Xt =

{
φ10 + φ11Xt−1 + εt + θ11εt−1, if Xt−1 ≤ r,
φ20 + φ21Xt−1 + εt + θ11εt−1, otherwise.

(6.1)

With the threshold searched between the 10th and 90th percentiles, the sLM test

statistic is 23.45 and the sLM? statistic is 25.21, and both correspond to a p-value

smaller than 0.001, suggesting that tree-ring growth is regulated from below. In

Figure 2 (left), we show the time series, and the right panel reports the values

of the AIC versus the threshold values. The vertical line indicates the estimated

threshold r̂ = 0.97, the same value of r that maximizes the Tn statistic. Table 5

reports a TARMA(1, 1) model parameterized in the form of (6.1), with a common

MA parameter, but with unconstrained φi,1, for i = 0, 1, 2, and an ARMA(1, 1)

model fitted to the data. The estimated AR parameters point to a threshold

effect, and the normalized AIC and BIC indicate an improvement with respect

to the ARMA(1, 1) model. The estimated TARMA(1, 1) model is invertible and

geometrically ergodic. The estimated threshold is r̂ = 0.97, which is close to

one, the mean of the time series. It identifies an upper regime with increased

persistence with respect to the lower regime. The entropy-based diagnostics of

Giannerini, Maasoumi and Bee Dagum (2015), reported in the Supplementary

Material, indicate that the TARMA(1, 1) model provides a good fit to the data,

whereas an unaccounted dependence structure is present in the residuals of the
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Figure 2. Time series of the yearly standardized tree-ring growth index of Pinus aristata
var. longaeva, California, United States (left). AIC versus the threshold r (right). The
value of r that minimizes the AIC is indicated with a dashed vertical line.

Table 5. Parameter estimates for the tree-ring time series.

θ11 φ10 φ11 φ20 φ21 r d NAIC NBIC

ARMA -0.60 1.00 0.76 0.232 0.251

(0.09) (0.01) (0.07)

TARMA -0.44 0.54 0.37 0.29 0.71 0.97 1 0.213 0.240

(0.09) (0.10) (0.11) (0.09) (0.09)

ARMA(1, 1) model. Note that tree-ring growth indices are produced by fitting a

growth curve that can be derived from a prey–predator-type differential equation

describing the growth of a tree in the presence of surrounding trees. Threshold

models are discrete-time versions of such equations, and appear as natural candi-

dates to describe this phenomenon. Moreover, the data are likely to be affected

by measurement errors, and this is accounted for by the MA parameter.

7. Conclusion

We have presented consistent supremum Lagrange multiplier tests for testing

a linear ARMA model against its TARMA extension. Our proposal extends the

results of previous studies, such as Chan (1990) and Ling and Tong (2005), and

enjoys very good finite-sample properties in terms of size and power. Moreover,

being based upon asymptotic theory, it has a low computational burden. Our

Monte Carlo study shows that the supLM tests are also robust against various

forms of model mis-specification, and their performance is not affected, even if

the order of the tested process is unknown, provided a consistent order selection
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procedure is used. Our supLM tests do not suffer from some of the shortcomings

that affect the quasi-likelihood test, and can be used for small samples. In such

cases, the sLM statistic has less power than the sLM? statistic, but is better

behaved in terms of size, so that it is also recommended. For sample sizes from

200 upwards, the two tests can be used in conjunction. The theoretical framework

of our supLM tests does not take into account GARCH-type innovations. A

possible solution would be to adopt a wild-bootstrap scheme, similar to that

used in Chan et al. (2020). While the implementation is straightforward, to the

best of our knowledge, the validity of the bootstrap in a threshold framework has

not been proved, even for TAR models, and constitutes an interesting challenge

for future research. Our analysis of a tree-ring time series shows that TARMA

models can provide new insights for all problems that use dendrochronological

data. The TARMA(1,1) fit improves considerably over the commonly accepted

linear models, because the latter do not take into account nonlinear effects.

Supplementary Material

The online Supplementary Material contains all the proofs, as well as addi-

tional results from the simulation study and the tree-ring data analysis.
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