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Abstract: Comparing two univariate distributions based on independent samples

from them is a fundamental problem in statistics, with applications in a variety of

scientific disciplines. In many situations, we might hypothesize that the two distri-

butions are stochastically ordered, meaning that samples from one distribution tend

to be larger than those from the other. One type of stochastic order is the likelihood

ratio order, in which the ratio of the density functions of the two distributions is

monotone nondecreasing. In this article, we derive and study the nonparametric

maximum likelihood estimator of the individual distribution functions and the ratio

of their densities under the likelihood ratio order. Our work applies to discrete dis-

tributions, continuous distributions, and mixed continuous-discrete distributions.

We demonstrate convergence in distribution of the estimator in certain cases, and

illustrate our results using numerical experiments and an analysis of a biomarker

for predicting bacterial infection in children with systemic inflammatory response

syndrome.
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straint, odds ratio, ordinal dominance curve, shape-constrained inference.

1. Introduction

Comparing the distributions of two independent samples is a fundamental

problem in statistics. Suppose that X1, . . . , Xn1
and Y1, . . . , Yn2

are independent

real-valued samples with distribution functions F0 and G0, respectively. In many

situations, we might hypothesize that F0 and G0 are stochastically ordered, mean-

ing intuitively that samples from F0 tend to be larger than those from G0. A

particular type of stochastic order that arises in many applications is the like-

lihood ratio order. Specifically, G0 and F0 satisfy a likelihood ratio order if the

density ratio f0/g0 is monotone nondecreasing over the support G0 of G0, where

f0 := dF0/dη and g0 := dG0/dη, for some dominating measure η. For this reason,

the likelihood ratio order is also called a density ratio order.
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A likelihood ratio order can arise for a variety of scientific reasons (Beare

and Moon (2015); Roosen and Hennessy (2004); Dykstra, Kochar and Robertson

(1995); Yu, Li and Qin (2017)). In the biomedical sciences and elsewhere, the

ratio of two density functions is an object of interest for describing the relative

likelihood of a binary status indicator conditional on a covariate. If D is a binary

random variable, Z is a scalar random variable, F0(z) = P (Z ≤ z | D = 1),

G0(z) = P (Z ≤ z | D = 0), and H0(z) := P (Z ≤ z), then

f0(z)

g0(z)
=

[dF0/dH0](z)

[dG0/dH0](z)
=
P (D = 1 | Z = z)/P (D = 1)

P (D = 0 | Z = z)/P (D = 0)
. (1.1)

Therefore, the density ratio in this context may be interpreted as the relative odds

of D = 1 given Z = z to the overall odds of D = 1. Because the transformation

x 7→ x/(1−x) is strictly increasing, monotonicity of the density ratio is equivalent

to monotonicity of z 7→ P (D = 1 | Z = z). One specific situation in which

the representation given in (1.1) is of scientific interest is biomarker evaluation,

wherein D represents infection status and Z represents the value of a biomarker.

Equation (1.1) implies that the ratio of the densities of biomarker values among

infected patients to that among uninfected patients can be interpreted as the

odds ratio of infection given a biomarker level relative to the overall odds of

infection. Monotonicity of the density ratio corresponds to the assumption that

the conditional probability of infection given a biomarker level increases with the

biomarker level, which is reasonable if the biomarker can predict the disease.

In this article, we derive the nonparametric maximum likelihood estimators

of F0, G0, and θ0 = f0/g0 under the likelihood ratio order restriction, and de-

rive certain asymptotic properties of these estimators, including consistency and

convergence in distribution. In particular, we use a connection between the esti-

mation of θ0 and the classical isotonic regression problem with a binary outcome,

which both simplifies the derivation of large-sample results and suggests that

existing inference methods for the isotonic regression problem can be used to

perform inference for θ0 as well. Our results generalize those of Dykstra, Kochar

and Robertson (1995), who derived the maximum likelihood estimator of F0 and

G0 under a likelihood ratio order in the special case where F0 and G0 are discrete

distributions. We illustrate our results using numerical experiments and an anal-

ysis of a biomarker for predicting bacterial infection in children with systemic

inflammatory response syndrome.

Recently, Yu, Li and Qin (2017) estimated a monotone density ratio and the

individual density functions by maximizing a smoothed likelihood function, and

demonstrated certain asymptotic properties of their estimator. Yu, Li and Qin
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(2017) considered maximizing a smoothed likelihood rather than maximizing the

likelihood directly because the maximum likelihood estimator of the individual

densities does not exist. In contrast, we use a definition of the likelihood ratio

ordered model based on convexity of the ordinal dominance curve to show that

a well-defined nonparametric maximum likelihood estimator of the monotone

density ratio function and the individual distribution functions (rather than the

density functions) does exist. Furthermore, unlike the smoothed estimator, the

derivation of the maximum likelihood estimator does not require the selection of

a bandwidth or any other tuning parameter, and does not rely on the existence

of Lebesgue density functions.

Additional relevant references include Lehmann and Rojo (1992) and Shaked

and Shanthikumar (2007), which contain additional examples and details on

stochastic orders, Carolan and Tebbs (2005) and Beare and Moon (2015), who

studied tests of the likelihood ratio order, and Rojo and Samaniego (1991), Rojo

and Samaniego (1993), Mukerjee (1996), Arcones and Samaniego (2000), Davidov

and Herman (2012), and Tang, Wang and Tebbs (2017), who considered testing

and estimation under other stochastic orders.

2. Likelihood Ratio Orders

We observe two independent real-valued samples X1, . . . , Xn1
and Y1, . . . , Yn2

with distribution functions F0 and G0, respectively. We define F0 as the support

of F0, and G0 as the support of G0. We denote n := n1 + n2, and Fn and Gn as

the empirical distribution functions of X1, . . . , Xn1
and Y1, . . . , Yn2

, respectively.

We define x1 < · · · < xm1
as the unique values of X1, . . . , Xn1

, y1 < · · · < ym2
as

the unique values of Y1, . . . , Yn2
, and z1 < z2 < · · · < zm as the unique values of

(X1, . . . , Xn1
, Y1, . . . , Yn2

). Throughout, we assume that n is fixed, but that n1 is

drawn from a Binomial(n, π0) distribution, for some π0 ∈ (0, 1).

We let D be the space of distribution functions on R, that is, all nondecreas-

ing, cádlàg functions H such that limx→−∞H(x) = 0 and limx→∞H(x) = 1.

For any nondecreasing function h : R → R, we define its generalized-inverse h−

pointwise as h−(u) := inf{x : h(x) ≥ u}. When h ∈ D , h− is called the quantile

function of h. For any interval I ⊆ R and any function h : I → R, we define

the greatest convex minorant (GCM) of h on I, denoted GCMI(h) : I → R, for

R the extended real line, as the pointwise supremum of all convex functions on

I bounded above by h. The least concave majorant operator is defined analo-

gously. We say a function H is convex over a set S ⊆ R if for every x, y ∈ S and

λ ∈ [0, 1] such that λx+ (1−λ)y ∈ S , H(λx+ (1−λ)y) ≤ λH(x) + (1−λ)H(y).
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We also define ∂− as the left derivative operator for a left differentiable function

and Im(h) := {h(x) : x ∈ S } as the image of a function h defined on a domain

S .

The unrestricted nonparametric model for the pair (F,G) of distribution

functions of the observed data is MNP := D2. As mentioned in the introduction,

the likelihood ratio order can be defined as the ratio of the density functions

f0 and g0 of F0 and G0, respectively, with respect to some dominating measure

η being nondecreasing. By varying the dominating measure, both discrete and

continuous distributions can be handled this way. However, as noted by Yu, Li

and Qin (2017), this definition does not lend itself to the derivation of a maximum

likelihood estimator, because the likelihood defined through the densities can be

made arbitrarily large. Instead, other authors have defined the likelihood ratio

order as convexity of the ordinal dominance curve, defined as t 7→ RF,G(t) :=

F ◦ G−(t) for t ∈ [0, 1] (Bamber (1975); Hsieh and Turnbull (1996)). Lehmann

and Rojo (1992) demonstrated the equivalence of this definition to that using

the density functions in the special case that F and G are strictly increasing

and continuous on their supports, which were assumed to be intervals. As an

alternative, Shaked and Shanthikumar (2007) defined the likelihood ratio order

as F (A)G(B) ≤ F (B)G(A) for all measurable sets A,B ⊆ R with A ≤ B, where

F (A) :=
∫
A dF (with some abuse of notation) and A ≤ B means that a ≤ b for

all a ∈ A and b ∈ B.

In Theorem 1 below, we consolidate and generalize existing results connecting

these different definitions of the likelihood ratio order.

Theorem 1. If F � G and ν := dF/dG is continuous on the support G of G,

then (1) the following are equivalent: RF,G is convex on Im(G), ν is nondecreasing

on G , and F (A)G(B) ≤ F (B)G(A) for all measurable sets A ≤ B; and (2) if ν

is nondecreasing on G , then ν(x) = ∂−GCM[0,1](RF,G) ◦G(x) for all x ∈ G .

To the best of our knowledge, Theorem 1 is the most general result to date

connecting the three definitions of the likelihood ratio ordered model. Note that

the three definitions may not be equivalent when F is not dominated byG or when

ν is not continuous. For instance, in the proof of Theorem 1 part (1), we use only

the assumption that ν is continuous on G to show that RF,G is convex on Im(G)

implies that ν is nondecreasing. However, we show that if ν is nondecreasing,

then F (A)G(B) ≤ F (B)G(A) for all A ≤ B (the definition used in (Shaked and

Shanthikumar (2007))), regardless of whether ν is continuous. Additionally, we

show that F (A)G(B) ≤ F (B)G(A) for all A = (a1, b1] ≤ B = (b1, b2] implies

that RF,G is convex on Im(G), regardless of whether F � G or ν is continuous.
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However, to show the converse, we use F � G. For a simple counterexample when

F is not dominated by G, consider F ({a}) = 1 and G({b}) = 1, where a < b.

Then RF,G(u) = I(u > 0) for u ∈ [0, 1], which is convex on Im(G) = {0, 1}, but

1 = F (A)G(B) > F (B)G(A) = 0 for A = {a} ≤ {b} = B. Finally, when F � G,

but dF/dG is not continuous on G , it is unclear whether RF,G being convex on

Im(G) implies that F (A)G(B) ≤ F (B)G(A) for all measurable sets A ≤ B, or

even all such Borel sets.

Throughout the remainder of the article, we say (F,G) ∈ MNP satisfy a

likelihood ratio order, and write G ≤LR F if RF,G is convex on Im(G). We

then define the likelihood ratio ordered model MLR as all (F,G) ∈ MNP such

that G ≤LR F . For any (F,G) ∈ MNP , we further define θ : MNP → Θ as

θF,G := ∂−GCM[0,1](RF,G) ◦ G, where Θ is defined as the set of nonnegative,

nondecreasing functions on R. Note that this definition allows for the possibility

that F is not dominated by G, but by Theorem 1, for all (F,G) ∈ MLR such

that F � G and dF/dG is continuous on G , θF,G = dF/dG on G . We define

θ0 := θF0,G0
.

In the context of the likelihood ratio order, many existing works either as-

sume that F0 and G0 are discrete (e.g., (Dykstra, Kochar and Robertson (1995))),

or that F0 and G0 are continuous (e.g., (Lehmann and Rojo (1992); Yu, Li and

Qin (2017))). In the discrete setting, if F0 and G0 are discrete distributions

with common support and mass functions ∆F0 and ∆G0, respectively, such that

(F0, G0) ∈ MLR, then θ0 = ∆F0/∆G0 on G0. Alternatively, if F0 and G0 both

possess Lebesgue density functions f0 and g0, respectively, and (F0, G0) ∈MLR,

then θ0 = f0/g0 on G0. However, for the purpose of deriving a maximum like-

lihood estimator, we show that these two cases do not need to be treated sep-

arately. Furthermore, in some applied settings, F0 and G0 are neither discrete

nor continuous, but rather a mixture of discrete and continuous components,

and we derive results that apply in these situations as well. For instance, expo-

sures that are bounded below may have positive mass at their lower boundary,

and be continuous thereafter. Many biomarkers exhibit this property. Similarly,

some measurements are “clumpy,” exhibiting positive mass at integers or other

“round” numbers owing to the measurement process, but also possessing positive

Lebesgue density between such points. In all cases, θ0 has a meaningful interpre-

tation as the ratio of the conditional odds of a sample being from the distribution

F0 to the unconditional odds of a sample being from F0.
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3. Estimation Under a Likelihood Ratio Order

3.1. Maximum likelihood estimator

The pair (F0, G0) determines the joint distribution of the observed data.

Defining the nonparametric likelihood of the observed data as Ln(F,G) :=
∏n1

i=1

[F (Xi)− F (Xi−)]
∏n2

j=1 [G(Yj)−G(Yj−)], the nonparametric (that is, in the

model MNP ) maximum likelihood estimator of (F0, G0) is (Fn, Gn), for Fn and

Gn the empirical distribution functions of X1, . . . , Xn1
and Y1, . . . , Yn2

, respec-

tively. This suggests taking as an estimator of θ0 the plug-in estimator θn :=

θFn,Gn
= ∂−GCM[0,1](Fn ◦ G−n ) ◦ Gn. The function Fn ◦ G−n is known as the

empirical ordinal dominance curve, and its properties were studied by Hsieh and

Turnbull (1996).

In this section, we demonstrate, among other results, that θn is the max-

imum likelihood estimator of θ0 in the likelihood ratio ordered model MLR.

A maximum likelihood estimator of (F0, G0) in MLR is defined as (F ∗n , G
∗
n) ∈

argmax(F,G)∈MLR
Ln(F,G), and a maximum likelihood estimator of θ0 is defined

as θ∗n := θF ∗
n ,G

∗
n
.

We define Hn(z) := πnFn(z) + (1 − πn)Gn(z) as the empirical distribu-

tion of the combined sample X1, . . . , Xn1
, Y1, . . . , Yn2

, and hk := Hn(yk) for

k = 1, . . . ,m2. Our first result characterizes (F ∗n , G
∗
n).

Theorem 2. Let A∗k be the value at hk of the GCM over [0, hm2
] of {(hk, Fn(yk)) :

k = 0, . . . ,m2}, and let B∗k be the value at hk of the LCM over [0, hm2
] of

{(hk, Gn(yk)) : k = 0, . . . ,m2}. Then G∗n is a right-continuous step function with

jumps at y1, . . . , ym2
with G∗n(yk) = B∗k, and F ∗n is given by a right-continuous

step function with jumps at z1, . . . , zm, where F ∗n(yk) = A∗k, and for any xi such

that yj−1 < xi ≤ yj, where y0 := −∞, the mass of F ∗n at xi is given by

F ∗n(xi)− F ∗n(xi−) = [F ∗n(yj)− F ∗n(yj−1)]
Fn(xi)− Fn(xi−)

Fn(yj)− Fn(yj−1)
.

For any xi such that ym2
< xi, the mass of F ∗n at xi is given by

F ∗n(xi)− F ∗n(xi−) = [1− F ∗n(ym2
)]
Fn(xi)− Fn(xi−)

1− Fn(ym2
)

.

Note that F ∗n(yk) = GCM[0,hm2
](Fn ◦H−n )(Hn(yk)) and

G∗n(yk) = LCM[0,hm2 ]
(Gn ◦H−n )(Hn(yk)).

A proof of Theorem 2 (and all other theorems) is provided in the Supplemen-
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tary Material. Note that F ∗n necessarily has jumps at all xi and at all yj such that

yj ≥ x1, and G∗n has jumps at all yj . Note too that if there are j such that no

xi ∈ (yj , yj+1], but F ∗n(yj) > F ∗n(yj−1), then there are infinitely many maximizers

F ∗n , because any F ∗n that assigns mass F ∗n(yj)−F ∗n(yj−1) to the interval (yj , yj+1]

yields the same likelihood and satisfies the constraints. In these cases, for the

sake of uniqueness, we put mass F ∗n(yj)− F ∗n(yj−1) at the point yj+1.

Theorem 2 implies the following result characterizing θ∗n.

Corollary 1. The points {(G∗n(yk), F
∗
n(yk)) : k = 1, . . . ,m2} lie on the GCM

over [0, 1] of the empirical ordinal dominance curve

{(Gn(yj), Fn(yj)) : k = 0, . . . ,m2} ,

where y0 := −∞. Specifically, if {(hjk , Fn(yjk)) : k = 0, . . . ,K} are the ver-

tices of the GCM of {(hk, Fn(yk)) : k = 0, . . . ,m2}, then (Gn(yjk), Fn(yjk)) : k =

0, . . . ,K} are the vertices of the GCM of the empirical ordinal dominance curve.

Therefore, θ∗n := θF ∗
n ,G

∗
n

is equal to θn := θFn,Gn
.

Theorem 2 bears a resemblance to, but differs from, Theorem 2.1 of Dykstra,

Kochar and Robertson (1995), which characterizes the maximum likelihood esti-

mator under a likelihood ratio order in the discrete case. Here, we perform the

maximization over all pairs of univariate distribution functions (F,G) such that

RF,G = F ◦G− is convex on the support of G. In contrast, Theorem 2.1 of Dyk-

stra, Kochar and Robertson (1995) performed the maximization over (F,G) with

support contained in {z1, . . . , zm} and such that [∆F (zj)]/[∆G(zj)] is nonde-

creasing. The first set is strictly larger than the second, which results in possibly

different maximum likelihood estimators. In particular, our maximum likelihood

estimator G∗n is supported only on y1, . . . , ym2
, whereas the maximum likelihood

estimator of G0 derived by Dykstra, Kochar and Robertson (1995) may have sup-

port on xj that are not equal to any y1, . . . , ym2
. This difference makes sense in

the context of our respective problem formulations: Dykstra, Kochar and Robert-

son (1995) assumed that the supports of F0 and G0 are subsets of {z1, . . . , zm},
whereas we do not assume the supports are known a priori. In the Supplementary

Material, we illustrate the use of Theorem 2 using hypothetical data in which our

maximum likelihood estimators F ∗n and G∗n differ from those of Dykstra, Kochar

and Robertson (1995).

3.2. Representation as a transformation of isotonic regression

Dykstra, Kochar and Robertson (1995) and Carolan and Tebbs (2005) pro-

vided representations of the maximum likelihood estimators of F0 and G0 in terms
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of an isotonic regression in the discrete and continuous cases, respectively. Here,

we show that θ∗n can also be represented as a transformation of an isotonic re-

gression, which aids in deriving its asymptotic properties. We let D1, . . . , Dn

be independent Bernoulli random variables with common probability π0 and

such that n1 =
∑n

i=1Di. Letting j1, . . . , jn1
be the indices such that Dji = 1

for each i, we then define Zji := Xi for each i = 1, . . . , n1. Similarly, letting

k1, . . . , kn2
be the indices such that Dki = 0 for each i, we define Zki := Yi for

each i = 1, . . . , n2. Defining the data unit Oi := (Zi, Di), observing the indepen-

dent samples X1, . . . , Xn1
from F0 and Y1, . . . , Yn2

from G0 is then equivalent to

observing independent observations O1, . . . ,On from P0, where P0 satisfies

P0(Z ≤ z,D = d) = dπ0F0(z) + (1− d)(1− π0)G0(z) .

Thus, Z1, . . . , Zn represent the pooled values of X1, . . . , Xn1
, Y1, . . . , Yn2

, and each

Di represents an indicator that Zi corresponds to a sample from F0. Furthermore,

F0(z) = P0(Z ≤ z | D = 1), G0(z) = P0(Z ≤ z | D = 0), and π0 := P0(D =

1). Estimating θ0 given the independent samples X1, . . . , Xn1
and Y1, . . . , Yn2

is

therefore equivalent to estimating θ0 given independent observations O1, . . . ,On

from P0, where n1 :=
∑n

i=1Di.

The benefit to the above reframing of the problem is that θ0, F0, and G0

can then be written as transformations of P0. First, we have that θ0(z) =

T (µ0(z))/T (π0), where µ0(z) := P0(D = 1 | Z = z) and T : [0, 1) → R+ is

the odds transformation, defined as T (µ) := µ/(1 − µ). Because T is strictly

increasing, θ0 is monotone if and only if µ0 is monotone. Because the maximum

likelihood estimator of µ0 under the assumption that µ0 is nondecreasing is given

by the isotonic regression µ∗n of D1, . . . , Dn on Z1, . . . , Zn, and the maximum

likelihood estimator of π0 is given by πn, the maximum likelihood estimator of

θ0(z) is then given by T (µ∗n(z))/T (πn). It is straightforward to see that this form

of the maximum likelihood estimator is equivalent to the forms given above. In

the next section, we use this form of θ∗n to derive its asymptotic properties and

to construct asymptotic confidence intervals.

4. Asymptotic Results

4.1. Discrete distributions

We first consider the situation whereG0 has finite support G0 and θ0 is strictly

increasing on G0. The next result demonstrates that in this case, F ∗n and G∗n are

asymptotically equivalent to Fn and Gn, respectively, and θ∗n is asymptotically
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equivalent to the ratio of the empirical masses on the support of G0.

Theorem 3 (Discrete distributions). Suppose that the support G of G0 is a finite

set {y1 < y2 < · · · < ym2
} and that [F0(yj) − F0(yj−1)]/∆G0(yj) < [F0(yj+1) −

F0(yj)]/∆G0(yj+1) for j = 1, . . . ,m2 − 1, where y0 := −∞. Then, F ∗n = Fn
and G∗n = Gn with probability tending to one, so that with probability tending

to one, θ∗n is a left-continuous step function with jumps at y1, . . . , ym2−1 and

θ∗n(yj) = [Fn(yj) − Fn(yj−1)]/∆Gn(yj) and θ∗n(z) = 0 for z < y1. As a result,

n1/2[θ∗n(yj)− θ0(yj)]
d−→N(0, σ20(yj)) for

σ20(yj) := θ0(yj)
π0F0,j + (1− π0)∆G0(yj)− F0,j∆G0(yj)

π0(1− π0)[∆G0(yj)]2
,

where F0,j := F0(yj)− F0(yj−1).

Note that the above result does not require that F0 be discrete as well, or

that it be dominated by G0. If F0 is dominated by G0, then θ0 = ∆F0/∆G0

corresponds to the ratio of the mass functions.

4.2. Continuous distributions

Here, we address the situation where F0 and G0 are both absolutely con-

tinuous on G0, and θ0, which now corresponds to the ratio f0/g0 of the density

functions, is strictly increasing. We first consider the large-sample behavior of

F ∗n and G∗n.

Theorem 4. Suppose that G0 is supported on a bounded interval [a, b] ⊂ R, that

F0 and G0 possess continuous density functions f0 and g0, respectively, on [a, b]

such that f0/g0 is strictly increasing on [a, b], and g0(z) ≥ κ > 0 on [a, b]. Then,

‖G∗n −Gn‖∞ = oP (n−1/2) and ‖F ∗n − Fn‖∞ = oP (n−1/2).

Theorem 4 demonstrates that when θ0 is strictly increasing, the maximum

likelihood estimators of the individual distribution functions are asymptotically

equivalent to the empirical distribution functions at the rate n−1/2, and hence pos-

sess the same limit distributions as the empirical distribution functions. This re-

sult is proved using the functional delta method and the results of Beare and Fang

(2017), who demonstrated that the LCM operation is a directionally Hadamard

differentiable mapping at any concave function.

We now turn to large-sample results for θ∗n at points z where both F0 and

G0 possess Lebesgue density functions f0 and g0, respectively. First, consistency

of µ∗n implies consistency of θ∗n.
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Theorem 5 (Consistency). If f0 is continuous at x, g0 is continuous at x, and

g0(x) > 0, then θ∗n(x)
P−→ θ0(x). If f0 and g0 are uniformly continuous on G0,

then supx∈I |θ∗n(x)− θ0(x)| P−→ 0 for any strict sub-interval I ( G0.

Recall that, at any z such that h0 = π0f0 + (1−π0)g0 is positive and contin-

uous in a neighborhood of z, µ0(z) ∈ (0, 1), and µ0 is continuously differentiable

in a neighborhood of z, it holds that

n1/3 [µ∗n(z)− µ0(z)]
d−→
{

4µ′0(z)µ0(z)[1− µ0(z)]h0(z)−1
}1/3

W , (4.1)

where W follows Chernoff’s distribution, defined as the point of maximum of

Z(u) − u2 for Z a two-sided standard Brownian motion originating from zero

(Brunk (1970); Groeneboom and Jongbloed (2014)). We can then use the delta

method to see that

n1/3 [θ∗n(z)− θ0(z)]
d−→T (π0)T

′(µ0)
{

4µ′0(z)µ0(z)[1− µ0(z)]h0(z)−1
}1/3

W .

The scale parameter in the above limit distribution is equal to [4κ0(z)θ
′
0(z)]

1/3

for

κ0(z) := θ0(z)
π0f0(z) + (1− π0)g0(z)

π0(1− π0)g0(z)2
.

This yields the following result.

Theorem 6 (Pointwise convergence in distribution). Suppose that, in a neigh-

borhood of z, θ0 is continuously differentiable with θ′0(z) > 0, and f0 and g0 are

positive and continuous. Then,

n1/3[θ∗n(z)− θ0(z)]
d−→
[
4κ0(z)θ

′
0(z)

]1/3
W.

Theorem 6 reflects certain common tradeoffs of the monotonicity constraint.

Theorem 6 indicates that the nonsmoothed estimator converges pointwise at the

rate n−1/3. In contrast, the smoothed estimator proposed by Yu, Li and Qin

(2017) converges at the faster rate n−2/5, albeit under stronger smoothness as-

sumptions. While Yu, Li and Qin (2017) did not propose a method for conducting

inference, smoothed estimators typically possess an asymptotic bias that compli-

cates the task of performing valid inference. In contrast, the limit distribution

in Theorem 6 has mean zero, which we can use to construct asymptotically valid

confidence intervals. Defining τn(z) as an estimator of τ0(z) := κ0(z)θ
′
0(z) and

qα as the 1−α/2 quantile of W , a 100(1−α)% Wald-type confidence interval for

θ0(z) is given by θ∗n(z)± [4τn(z)/n]1/3q1−α/2. If τn(z)
P−→ τ0(z), then this interval

has asymptotic coverage of 100(1− α)%. The quantiles of W were computed by
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Groeneboom and Wellner (2001), and in particular q0.975 ≈ 0.9982.

In practice, we recommend using an alternative method to construct confi-

dence intervals for θ0(z). We recommend first constructing confidence intervals

for µ0(z) using either of two existing methods, then transforming these intervals

into intervals for θ0(z). Specifically, if [`n(z), un(z)] represents a 100(1 − α)%

confidence interval for µ0(z), then we take [T (`n(z))/T (πn), T (un(z))/T (πn)]

as a 100(1 − α)% confidence interval for θ0(z). Two existing method used to

construct [`n(z), un(z)] are Wald-type intervals with plug-in estimation of the

nuisance parameters and intervals based on likelihood ratio tests. The former

intervals are analogous to the Wald-type interval, but based on the limit distri-

bution for n1/3[µ∗n(z) − µ0(z)] given in (4.1). Alternatively, we can form con-

fidence intervals by inverting likelihood ratio tests, proposed first by Banerjee

and Wellner (2001) and studied further by, among others, Banerjee (2007) and

Groeneboom and Jongbloed (2015), based on the limiting distribution of twice

the log of the ratio of the likelihoods of the maximum likelihood estimator and

a suitably constrained maximum likelihood estimator. Because this limiting dis-

tribution is pivotal, meaning it does not depend on any unknown features of the

true distribution, this approach does not require estimating any unknown nui-

sance parameters. We therefore expect this method to have better finite-sample

properties than intervals based on plug-in estimation of the nuisance parameters.

5. Numerical Studies

In the Supplementary Material, we present the results of two simulation

studies in the cases where F0 and G0 are fully discrete and fully continuous. In

short, these studies confirm the validity of our large-sample theory, and demon-

strate that the maximum likelihood estimator and various proposed methods of

conducting inference perform well in both cases. Here, we present the results

of a numerical study illustrating the behavior of θ∗n when F0 and G0 are mixed

discrete-continuous distributions. Note that our asymptotic results do not ad-

dress the behavior of θ∗n at mass points in mixed discrete-continuous distributions;

to the best of our knowledge, no such results yet exist for monotone estimators.

We use this numerical study to explore this important case.

We simulated Y as a mixed discrete-continuous random variable with prob-

ability 1/9 each of being 0, 0.5, and 1, and probability 2/3 of being from the

uniform distribution on [0, 1]. We simulated X as a mixed discrete-continuous

random variable with probabilities 1/18, 1/9, and 3/18 of being 0, 0.5, and

1, respectively, and probability 2/3 of being from the density function x 7→
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I[0,1](x)(0.5+x). We then have that θ0(x) = 0.5+x for x ∈ [0, 1]. We set π0 := 0.4.

For each combined sample size n ∈ {500, 1K, 5K, 10K}, we simulated 1,000 data

sets, and in each data set we computed the maximum likelihood estimator, maxi-

mum smoothed likelihood estimator of Yu, Li and Qin (2017), and nonmonotone

estimator based on kernel density estimates for each z ∈ {0, 0.05, . . . , 0.95, 1}.
We constructed confidence intervals at each z using the transformed plug-in and

likelihood ratio-based methods described in Section 4.2. To estimate the scale

parameter in the limit distribution of µ∗n(z), as defined in (4.1), we used the plug-

in estimator µ∗n(z) for µ0(z), and estimated µ′0(z)/h0(z) = (µ0 ◦ H−10 )′ ◦ H0(z)

using the derivative of a local linear smoother of µ∗n ◦H−n evaluated at Hn(z).

In addition to the properties of the estimators listed above, we also investi-

gated the properties of the general sample-splitting procedure proposed by Baner-

jee, Durot and Sen (2019). Given a generic monotone estimator γn of a monotone

function γ0 such that n1/3[γn(z) − γ0(z)]
d−→G for G a mean-zero distribution

with finite variance, Banerjee, Durot and Sen (2019) proposed randomly splitting

the sample into m subsets of roughly equal size, computing monotone estimates

γn,1, . . . , γn,m in each subset, then defining γ̄n,m(z) := (1/m)
∑m

j=1 γn,j(z). They

demonstrated that if m > 1 is fixed, then under mild conditions, γ̄n,m(z) has a

strictly better asymptotic mean squared error than γn(z), and that for moderate

m, γ̄n,m(z) ± σn,m(z)t1−α/2,m−1/
√
m forms an asymptotic 100(1 − α)% confi-

dence interval for γ0(z), where σ2n,m(z) := (1/(m− 1))
∑m

j=1[γn,j(z)− γ̄n,m(z)]2,

and t1−α/2,m−1 is the 100(1− α/2) quantile of the t-distribution with m− 1 de-

grees of freedom. Therefore, γ̄n,m(z) is preferable to γn(z) for two reasons: it

has a better asymptotic mean squared error, and asymptotically valid pointwise

confidence intervals for γ0 based on γ̄n,m can be formed without estimating any

nuisance parameters. They also studied the asymptotic properties of γ̄n,mn
(z)

when mn grows with n. In our simulation study, we considered the estimator

θ̄n,m defined as θ̄n,m(z) := (1/m)
∑m

j=1 θ
∗
n,j(z), where θ∗n,j is the maximum like-

lihood estimator in the jth subset, and the corresponding confidence intervals

defined above. We considered only the situation where m ∈ {5, 10} is fixed with

the sample size.

We now turn to the results of the simulation study. The left panel of Figure 1

displays the distribution of θ∗n(z) − θ0(z) for z ∈ [0, 1] and n = 10K. These

distributions are approximately centered around 0 for z ∈ (0, 1), but not for

z ∈ {0, 1}. Hence, despite the positive mass at the boundaries, the maximum

likelihood estimator does not appear to be consistent at the boundaries. This

is a common problem among monotonicity-constrained estimators, and various

correction procedures have been proposed and could be considered in this context



ESTIMATION UNDER A LIKELIHOOD RATIO ORDER 585

1,000            5,000           10,000

Figure 1. Left: Box plots of θ∗n(z) − θ0(z) with n = 10K. Right: Empirical standard
errors of rn[θ∗n(z) − θ0(z)] divided by the limit theory-based counterparts for z ∈ (0, 1),
where rn = n1/2 for z = 0.5, and rn = n1/3 otherwise.

(see, e.g., (Woodroofe and Sun (1993); Kulikov and Lopuhaä (2006))).

The right panel of Figure 1 displays the ratio of the standard deviation of

rn[θ∗n(z)−θ0(z)] to the standard deviation of the asymptotic distributions derived

in Section 4 for z 6= 0, 1. For z = 0.5, rn = n1/2 and the asymptotic distribution

is that of the fully discrete case presented in Section 4.1, though the results pre-

sented in that section do not apply here because of the mixed discrete-continuous

nature of F0 and G0. Otherwise, rn = n1/3 and the asymptotic distribution is

that of the continuous case presented in Section 4.2. We see that, for z 6= 0.5,

the empirical standard error approaches the asymptotic standard deviation as n

grows. However, for z = 0.5, the empirical standard error is converging to a limit

that is strictly smaller than the asymptotic standard deviation. This suggests

that, at points that have both positive mass and positive density in a neigh-

borhood of the point, the maximum likelihood estimator gains efficiency from

the positive density. In addition, points of continuity near the mass point also

experience finite-sample efficiency gains.

Figure 2 shows the ratios of the mean squared errors of the maximum smoo-

thed likelihood estimator, the kernel density-based estimator, and the sample

splitting estimators to that of the maximum likelihood estimator. The maximum

smoothed likelihood estimator is slightly more efficient than the maximum like-

lihood estimator at continuity points, but is less efficient around mass points.

Furthermore, the relative performance of the maximum likelihood estimator at

positive mass points increases as the sample size grows. The kernel density esti-

mator is, in general, less efficient than the maximum likelihood estimator, espe-

cially near mass points, and the discrepancy grows with the sample size.
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1,000            5,000           10,000

Figure 2. Relative mean squared errors of the maximum smoothed likelihood estimator,
kernel density-based estimator, and sample splitting estimators to the maximum likeli-
hood estimator for z ∈ [0, 1] and various sample sizes n. The maximum likelihood has a
better mean squared error for y-values greater than one, and the other estimator has a
better mean squared error for y-values less than one.

For large enough n, the sample splitting estimator is more efficient than the

maximum likelihood estimator at all points at which the latter is consistent. The

relative improvement of θ̄n,m grows with the number of splits m, as does the

sample size n required for θ̄n,m to outperform θ∗n.

Figure 3 shows the empirical coverage of 95% confidence intervals for θ0(z)

constructed using the plug-in method described in Section 4.2, the inverted like-

lihood ratio test approach of Banerjee and Wellner (2001), and the sample split-

ting approach of Banerjee, Durot and Sen (2019), described above. Note that the

likelihood ratio approach does not provide intervals at the end points z = 0 or

z = 1. The plug-in method is conservative in large samples near mass points, but

anti-conservative at some points of positive density. This is because the plug-in

method is designed to work when the distributions are fully continuous, and es-

timation of the required nuisance parameters in the limit distribution fails in the

presence of mass points. The likelihood ratio method is conservative in smaller

samples, but approaches nominal coverage in large samples for points z of abso-

lute continuity. The sample splitting method with m = 5 has adequate coverage

for all sample sizes, except for z close to the boundaries. The sample splitting
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1,000         5,000         10,000

Figure 3. Coverage of 95% CIs for z ∈ [0, 1], various sample sizes n, and four methods:
the plug-in method centered around the maximum likelihood estimator (upper left), the
inverted likelihood ratio tests (upper right), and the sample splitting method with m = 5
(lower left) and m = 10 (lower right). Note that the likelihood ratio method does not
provide intervals at the endpoints.

method with m = 10 (and similarly for m = 20, which is not shown) appears to

require very large sample sizes to attain adequate coverage over a large range of

z. Note that the sample splitting methods were able to achieve good coverage

in large samples at both interior absolutely continuous points and interior mass

points, without the user specifying which points are which.

6. Analysis of C-reactive Protein for Predicting Bacterial Infection

In this section, we use the methods presented herein to assess using the

biomarker C-reactive protein (CRP) to determine the presence or absence of

bacterial infection in children with systemic inflammatory response syndrome

(SIRS). The Optimizing Antibiotic Strategies in Sepsis (OASIS) II study enrolled

a prospective observational cohort of children under the age of 19 at the pediatric

intensive care unit at The Children’s Hospital of Philadelphia from August 2012

to June 2016 (Downes et al. (2020)). Patients were enrolled in the study if they

presented signs of SIRS, were started on a new broad-spectrum antibiotic for
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Figure 4. Odds of bacterial infection given C-reactive protein value relative to population
odds in children with SIRS.

suspected bacterial infection, and had blood cultures taken within six hours of

SIRS onset. A primary goal of the study was to assess whether CRP, which

had previously been found to be predictive of bacterial infection (Downes et al.

(2017)), could be used to determine when antibiotic therapy could be safely ended.

Additional details of the study design and the results of the primary analysis may

be found in Downes et al. (2020).

We analyzed all patients in the OASIS II cohort with measured biomarkers

and bacterial infection status to assess the odds of bacterial infection as a function

of CRP value. Some patients had measurements at multiple episodes; because

all such episodes were at least 30 days apart, we treated them as independent

of one another. We analyzed a total of n = 504 CRP measurements among 443

unique patients, with n1 = 202 bacterial infections among 191 unique patients

and n2 = 302 non-infections among 266 unique patients.

Because CRP has previously been found to be predictive of bacterial infection

in this patient population, there is scientific reason to believe that the density

ratio order holds. We therefore computed the MLE of the density ratio function

and corresponding 95% likelihood ratio-based pointwise confidence intervals, and

the sample splitting estimator of Banerjee, Durot and Sen (2019) with m = 5

splits and corresponding 95% pointwise confidence intervals.

Figure 4 displays the estimated odds of bacterial infection given a CRP value,

relative to the population odds of bacterial infection, and 95% pointwise confi-

dence intervals. We find that values of CRP under one are indicative of roughly

quartered odds of infection relative to the population odds of infection, and val-

ues of CRP greater than 20 are indicative of roughly doubled odds of infection



ESTIMATION UNDER A LIKELIHOOD RATIO ORDER 589

relative to the population odds. Values of CRP between one and 20 do not

clearly indicate that a patient’s odds of infection are larger or smaller than the

population odds.

7. Conclusion

We have considered nonparametric maximum likelihood inference for the

density ratio function and individual distribution functions under the assumption

that the density ratio is nondecreasing. We applied these methods to analyze the

biomarker C-reactive protein for predicting bacterial infection in children with

SIRS. The methods apply broadly to biomarker analysis, as well as to other areas

of biomedical research.

One of our important contributions is the ability to deal with discrete, con-

tinuous, and mixed discrete-continuous distributions. Such distributions arise

frequently in applied settings, and particularly in the context of biomarker anal-

ysis. Furthermore, we have demonstrated via numerical studies that sample split-

ting provides good pointwise confidence interval coverage without knowing which

values correspond to discrete mass points and which correspond to points of

Lebesgue continuity of the underlying densities. This is important, because in

practice, analysts may not have such knowledge a priori. However, a theoreti-

cal treatment of the precise asymptotic behavior of the estimator at mass points

remains unknown, and is an interesting topic for future research.

Supplementary Materials

The Supplementary Material contains an example of the use of Theorem 2,

proofs of all theorems, additional simulation results, and additional results from

the data analysis.
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