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MIXED DOMAIN ASYMPTOTICS

FOR GEOSTATISTICAL PROCESSES
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Abstract: Geostatistics is one of the three main branches of spatial statistics, with

the maximum likelihood method is widely used for parameter estimation. The

asymptotic properties of maximum likelihood estimators are often considered un-

der the increasing domain asymptotic framework or the infill asymptotic framework.

A third framework, the mixed domain asymptotic framework, has the advantage

of incorporating both local and global properties of the covariance structure. In

this study, we establish the asymptotic properties of maximum likelihood estima-

tors under the mixed domain asymptotic framework. In addition to the asymptotic

framework, the sampling design and the form of the covariance functions are also

important factors for the asymptotic properties of maximum likelihood estimators.

Here, general conditions are imposed to ensure the consistency and asymptotic nor-

mality of these estimators. The imposed conditions are verified for some commonly

used covariance functions. The resulting asymptotics provides novel insights into

the convergence rates of parameter estimators under mixed domain asymptotics,

as well as some useful guidelines for data analysis in practice. Simulation stud-

ies are conducted to examine the finite-sample properties of maximum likelihood

estimators, and a yearly precipitation anomaly data set is analyzed for illustration.

Key words and phrases: Asymptotic framework, covariance function, sampling de-

sign, spatial dependence parameter, spatial statistics.

1. Introduction

Geostatistics is widely accepted as one of the three main branches of spa-

tial statistics, and various models have been proposed to analyze different types

of geostatistical data sets (Cressie (1993); Schabenberger and Gotway (2005);

Diggle and Ribeiro (2007)). The likelihood-based approach is often used for

parameter estimation in geostatistics. The theoretical properties of parameter

estimators are typically studied under two asymptotic frameworks, namely, the

increasing domain asymptotic framework and the infill asymptotic framework. In

the former case, the spatial domain expands, while the density of the sampling

locations stays constant. Under increasing domain asymptotics, the consistency
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and asymptotic normality have been established for both maximum likelihood

estimation (MLE) and restricted MLE (Mardia and Marshall (1984); Cressie and

Lahiri (1993, 1996)). The infill asymptotic framework is also known as the fixed

domain asymptotic framework, where denser sampling locations are added to a

fixed domain and the density of the sampling locations increases. Under infill

asymptotics, the estimators of individual parameters can be inconsistent, while

those of a combination of parameters are consistent (Ying (1993); Stein (1999);

Zhang (2004); Loh (2005)). A detailed comparison between these two frame-

works is presented by Zhang and Zimmerman (2005). In addition to these two

frameworks, there is a third framework known as the mixed domain framework.

Under the mixed domain framework, the sampling domain expands, which en-

ables it to capture the covariance function for locations that are far apart. At the

same time, the density of the sampling locations also increases, which enables

it to capture the local property of the spatial process (Hall and Patil (1994)).

The mixed domain framework is widely used for spatial bootstrap and testing in

the frequency domain (Lahiri (2003); Lahiri and Zhu (2006); Matsuda and Ya-

jima (2009); Bandyopadhyay and Rao (2017)). However, the asymptotics of the

mixed domain framework is underdeveloped for likelihood-based methods. Re-

cently, Chang, Huang and Ing (2017) established the consistency and derived the

limit distribution of maximum likelihood estimators for an Ornstein–Uhlenbeck

process under the mixed domain asymptotic framework. In this study, we fo-

cus on establishing some general conditions of the mixed domain asymptotics for

maximum likelihood estimators.

Another important aspect of spatial asymptotics is the sampling design,

which concerns the spatial locations of observations. There are two types of

sampling designs: fixed sampling designs and stochastic sampling designs (Lahiri

(2003); Lahiri and Zhu (2006)). Here, we take the fixed sampling design ap-

proach, because spatial locations are usually considered to be fixed in geostatis-

tics (Cressie (1993)). In Lahiri (2003), sampling locations lie on a rectangular

grid with possibly unequal spacing in different directions, but are not irregularly

spaced. We propose a fixed sampling design that includes both a rectangular

grid and irregularly spaced locations. For spatial covariance functions, there are

many types of spatial covariance functions, including the Matérn class (Matérn

(1960)), powered exponential family (Diggle, Tawn and Moyeed (1998)), Cauchy

family (Gneiting and Schlather (2004)), and covariance functions with compact

support (Gneiting (2002); Furrer, Genton and Nychka (2006)). It is of interest

to investigate what types of covariance functions yield sound theoretical proper-

ties for maximum likelihood estimators. Because the asymptotics of parameter
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estimators is related to how fast the covariance functions decay with respect to

distance, we classify these functions into two categories based on their decay

rates. Moreover, we give general conditions for both types of spatial covariance

functions, and show that some commonly used covariance functions satisfy these

conditions.

We investigate the asymptotic properties of the spatial dependence parame-

ters using three important factors: the spatial asymptotic framework, the sampling

design, and the form of the covariance function. For spatial dependence parame-

ters, asymptotic normality is often based on the uniform asymptotic normality of

Sweeting (1980), and the result has been applied to different types of spatial pro-

cesses under increasing domain asymptotics (Mardia and Marshall (1984); Cressie

and Lahiri (1993, 1996); Xu and Genton (2017)). For mixed domain asymptotics,

we take an alternative approach based on the central limit theorem of a gener-

alized quadratic form, which requires weaker assumptions (de Jong (1987); Shao

and Zhang (2019)). Note that although the theoretical results are intended for

mixed domain asymptotics, they can also be applied to increasing domain asymp-

totics. The resulting asymptotic properties show that as the spatial dependence

becomes stronger, the convergence rates of the parameter estimators usually be-

come slower. However, this does not necessarily hold for all parameters. One

notable exception is the nugget effect. Moreover, in practice, it is not obvious

which asymptotic framework should be used for a particular data set. Zhang and

Zimmerman (2005) emphasizes that the parametric function of interest needs to

be consistently estimable. Our simulation study shows that for mixed domain

asymptotics to hold, the parameter estimators also need to be consistently es-

timable. Moreover, there are certain requirements for the sample size and the

strength of the spatial dependence.

The remainder of the paper is organized as follows. In Section 2, we intro-

duce the mixed domain asymptotic framework, fixed sampling design, and spatial

covariance functions. The asymptotics for the spatial dependence parameter es-

timators is established in Section 3. A simulation study is conducted in Section 4

and a yearly precipitation anomaly data set is analyzed in Section 5. All technical

proofs are given in the Supplementary Material.

2. Frameworks and Spatial Processes

2.1. Spatial asymptotic frameworks

To investigate the asymptotics of maximum likelihood estimators, we first

review the mixed domain asymptotic framework. Following Lahiri (2003), we
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denote U0 ⊂ Rl as an open and connected subset of (−1/2, 1/2]l containing the

origin, where l ∈ N. The prototype of the sampling region R0 is a Borel set

satisfying U0 ⊂ R0 ⊂ Ū0, where Ū0 denotes the closure of U0. Throughout this

paper, we refer to n as the stage of asymptotics and Nn as the sample size at the

nth stage of asymptotics. Moreover, the sampling region at stage n is

Rn = λnR0,

where {λn} is an increasing sequence of positive numbers and λn/N
α
n → c, as

n → ∞, for some constant c > 0 and 0 ≤ α ≤ 1/l. The density at stage

n is Nnλ
−l
n |R0|−1 and the size of the sampling region |Rn| is λln|R0|, which

are at the rates of N1−αl
n and Nαl

n , respectively. Therefore, it corresponds to

the increasing domain asymptotic framework when α = 1/l, and to the infill

asymptotic framework when α = 0. For 0 < α < 1/l, both the density and

the size of the sampling domain increase, and we refer to it as the α-rate mixed

domain asymptotic framework (Lahiri (2003)).

Under the mixed domain asymptotic framework, the sampling domain is al-

lowed to expand, but at a slower rate than that of the increasing domain frame-

work; the density is also allowed to increase, but at a slower rate than that of the

infill framework (Hall and Patil (1994); Lahiri (2003); Lahiri and Zhu (2006); Lu

and Tjøstheim (2014)). The strength of the mixed domain asymptotic framework

is that it obtains the local property, because the density is increasing; at the same

time, the covariance function for locations far apart is captured by allowing the

spatial domain to expand (Hall and Patil (1994)).

2.2. Fixed sampling design

The sampling design also plays an important role in spatial asymptotics.

Before formally introducing our fixed sampling design, we first give a brief review

of the fixed sampling design (Lahiri (2003)). Let ∆ = diag{δ1, . . . , δl} be an l× l
diagonal matrix, and Z l = {∆i : i ∈ Zl} be a regular grid with an increment δj in

the jth direction, for 1 ≤ j ≤ l. For the mixed domain framework, a geostatistical

process is observed at sampling locations

{s1, . . . , sNn
} = {s ∈ ηnZ l : s ∈ Rn}, (2.1)

where {ηn} is a sequence of decreasing positive real numbers and ηn → 0 as

n → ∞. Consequently, the sampling locations become finer for larger n and fill

the sampling domain with a larger density. Moreover, the minimum distance

between any two adjacent sampling sites is bounded by ηn min{δ1, . . . , δl}.
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Here, we extend the sampling design (2.1) and allow sampling locations ob-

served on Rn ∩ Rl. Thus, we propose the following fixed sampling design:

(S1) There exist constants dmin, dmax > 0, such that for sufficiently large n, any

sampling location si ∈ Rn ∩ Rl satisfies

ηndmin ≤ min
j:j 6=i
‖si − sj‖ ≤ ηndmax,

where ηn = N
α−1/l
n .

Here, the sampling locations in (S1) can be on a rectangular grid, similar to (2.1).

Moreover, (S1) includes the scenario in which the sampling locations are not on

a grid, but on the domain Rn ∩ Rl, provided the condition (S1) is met. Here,

we refer to such sampling locations as irregularly spaced locations. Furthermore,

the minimum distance requirement is used to avoid having too many sampling

locations added to the same region as the sample size Nn increases.

2.3. Covariance functions

For a Gaussian spatial process {y(s) : s ∈ Rl}, let γ(s, s′;θ)=cov{y(s), y(s′)}
denote the covariance function between s and s′, and let θ = (θ1, . . . , θq)

> be

a q × 1 vector of spatial dependence parameters. Assuming stationarity and

isotropy of the covariance functions, we have γ(s, s′;θ) = γ(‖s − s′‖;θ), where

‖s − s′‖ is a norm defined on a vector space in Rq. For a given distance d ≥ 0,

we further assume γ(d;θ) is twice continuously differentiable with respect to

θ, and denote the first-order and second-order partial derivatives of γ(d;θ) by

γk(d;θ) = ∂γ(d;θ)/∂θk and γkk′(d;θ) = ∂γ(d;θ)/∂θk∂θk′ , respectively. More-

over, let θ0 be the true value of the spatial dependence parameter, and let

B(θ0) = {θ : ‖θ − θ0‖2 < c} be a neighborhood of θ0 for some constant c > 0,

where ‖θ − θ0‖2 is the Euclidean distance between θ and θ0.

In this study, a spatial covariance function γ(d;θ) is referred to as a Type-I

covariance function if it satisfies the following (C1):

(C1) The functions |γ(d;θ)|, |γk(d;θ)|, |γkk′(d;θ)| are bounded and satisfy

max
θ∈B(θ0)

∫ ∞
0

ul−1|γ(u;θ)|du <∞

max
θ∈B(θ0)

∫ ∞
0

ul−1|γk(u;θ)|du <∞

max
θ∈B(θ0)

∫ ∞
0

ul−1|γkk′(u;θ)|du <∞.
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In spatial statistics, many covariance functions satisfy (C1), including the follow-

ing three forms as examples. The first form of covariance functions is the Matérn

class,

γ(d;θ) =

{
θ3

2
Γ(κ)

(
θ1d
2

)κ
Kκ(θ1d), if d > 0,

θ3 + θ2, if d = 0,
(2.2)

where θ1 > 0 is a scale parameter, θ2 > 0 is the nugget effect, and θ3 > 0 is

the partial sill parameter representing the variance without the nugget effect.

Furthermore, κ > 0 is a smoothness parameter controlling the smoothness of

the Gaussian process, and Kκ(·) is a modified Bessel function of the second kind

of order κ (Cressie (1993)). In practice, κ is prespecified instead of estimated,

because the parameter κ is often poorly identified; see Chapter 5.4 of Diggle and

Ribeiro (2007) for more details. The second form of covariance functions is the

Gaussian covariance function,

γ(d,θ) =

θ3 exp

{
−
(
d
θ1

)2
}
, if d > 0,

θ3 + θ2, if d = 0,
(2.3)

where θ1 > 0 is a scale parameter, θ2 > 0 is the nugget effect, and θ3 > 0 is

the partial sill parameter. The third form of covariance functions is the powered

exponential covariance function,

γ(d,θ) =

θ3 exp

{
−
(
d
θ1

)θ4}
, if d > 0,

θ3 + θ2, if d = 0,
(2.4)

where θ1 > 0 is a scale parameter, θ2 > 0 is the nugget effect, θ3 > 0 is the partial

sill, and 0 < θ4 ≤ 2 is a shape parameter. The covariance functions (2.2)–(2.4)

satisfy (C1), as proved in Lemma 1 of the Supplementary Material.

Although many covariance functions satisfy (C1), some do not meet the

requirement, such as those with long-range dependence (Beran (1994); Mikosch

and Stărică (2004)). One example of such a covariance function is the Cauchy

covariance function,

γ(d,θ) =

θ3

{
1 +

(
d
θ1

)2
}−κ

, if d > 0,

θ3 + θ2, if d = 0,

(2.5)

where θ1 > 0 is a scale parameter, θ2 > 0 is the nugget effect, and θ3 > 0 is

the partial sill parameter. Moreover, κ > 0 is the smoothness parameter. If
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l − 2κ ≥ 0, (C1) is not satisfied, because
∫∞

0 ul−1|γ(u;θ)|du =∞. To study this

type of covariance function, we propose the following condition:

(C2) The functions |γ(d;θ)|, |γk(d;θ)|, |γkk′(d;θ)| are bounded. Moreover, there

exists some 0 < ζ ≤ l, such that

max
θ∈B(θ0)

∫ M

0
ul−1|γ(u;θ)|du = O(M l−ζ),

max
θ∈B(θ0)

∫ M

0
ul−1|γk(u;θ)|du = O(M l−ζ),

max
θ∈B(θ0)

∫ M

0
ul−1|γkk′(u;θ)|du = O(M l−ζ),

max
θ∈B(θ0)

∫ M

0
ul−1γ2

kk′(u;θ)du = O(1),

as M →∞.

A covariance function is referred to as a Type-II covariance function if it satisfies

(C2). In Lemma 2 of the Supplementary Material, we show that (C2) holds for

a Cauchy covariance function with l/4 ≤ κ ≤ l/2.

3. Mixed Domain Asymptotics

3.1. Maximum likelihood estimation

In this section, we investigate the theoretical properties of maximum like-

lihood estimators under the mixed domain asymptotic framework. Recall that

we denote n as the stage of asymptotics and Nn as the sample size at the nth

stage. At the nth stage, let y = (y(s1), . . . , y(sNn
))T denote an Nn × 1 vector of

observations and Σ(θ) = [γ(si, si′ ;θ)]Nn

i,i′=1 denote an Nn×Nn covariance matrix.

Here, the spatial process {y(s) : s ∈ Rl} is assumed to be a Gaussian process.

Therefore, the negative log-likelihood function of θ is

`(θ) =
Nn

2
log(2π) +

1

2
log |Σ(θ)|+ 1

2
y>Σ(θ)−1y. (3.1)

The minimizer of (3.1) is the maximum likelihood estimator of θ and is denoted

as θ̂n. There is usually no analytical solution for minimizing (3.1), and thus a

numerical method is used to find the minimizer. For more details, see Chapter 5

of Diggle and Ribeiro (2007).

In the following sections, we denote Σ0 = Σ(θ0) and Σ = Σ(θ) for ease

of presentation. Let `′(θ) = ∂`(θ)/∂θ and `′′(θ,θ) = ∂2`(θ)/∂θ∂θ> denote
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the first-order and second-order derivatives, respectively, of `(θ) with respect

to θ. The kth element of `′(θ) is (1/2){tr(Σ−1Σk) + y>Σky}, where Σk =

Σk(θ) = ∂Σ/∂θk and Σk = Σk(θ) = ∂Σ−1/∂θk = −Σ−1ΣkΣ
−1. Moreover, the

(k, k′)th element of `′′(θ,θ) is (1/2){tr(Σ−1Σkk′ + ΣkΣk′) + y>Σkk′
y}, where

Σkk′ = Σkk′(θ) = ∂2Σ/∂θk∂θk′ and Σkk′
= Σkk′

(θ) = ∂2Σ−1/∂θk∂θk′ . The

information matrix of θ is

Jθ0
= E

{
`′′(θ0,θ0)

}
=

[
tkk′,n

2

]q,q
k,k′=1

,

where tkk′,n = tr(Σ−1
0 Σk0Σ

−1
0 Σk′0) and Σk0 = Σk(θ0).

For any p×m matrixA, let ‖A‖2 =
√
λmax(A>A) denote the matrix 2-norm,

‖A‖∞ = max1≤i≤p
∑m

j=1 |aij | denote the matrix infinity norm, and ‖A‖F =√
tr(A>A) denote the matrix Frobenius norm, where aij is the (i, j)th element

of A and λmax(·) is the largest eigenvalue. To establish Theorem 1, the following

regularity conditions are assumed:

(A1) Given d ≥ 0, the covariance function γ(d;θ) is twice continuously differen-

tiable with respect to θ, for θ ∈ B(θ0).

(A2) There exists a constant c3 > 0, such that for any θ ∈ B(θ0), we have

‖Σ−1‖2 ≤ c3 for sufficiently large Nn.

(A3) The smallest eigenvalue of Ωn = (ωkk′,n)qk,k′=1 is bounded away from zero,

where ωkk′,n = tkk′,n/(tkk,ntk′k′,n)1/2.

(A4) As Nn → ∞, we have tkk,n → ∞, maxθ∈B(θ0) ‖Σk‖2 = o(t
1/2
kk,n), and

maxθ∈B(θ0) ‖Σkk′‖F = o(t
1/2
kk,nt

1/2
k′k′,n).

Assumption (A1) requires that the covariance functions are twice continu-

ously differentiable with respect to θ, and it is easy to verify that covariance

functions (2.2)–(2.5) satisfy (A1). Assumption (A2) requires that the smallest

eigenvalue of Σ is bounded away from zero and avoids the covariance matrix of

y being asymptotically singular as Nn → ∞. If the nugget effect θ2 > 0, then

‖Σ−1‖2 ≤ 1/θ2 and c3 = maxθ∈B(θ0){1/θ2} for (A2). Assumption (A3) ensures

that the information matrix is nonsingular in the limit, and the elements of θ̂n
are not asymptotically linearly dependent (Mardia and Marshall (1984)). For

Assumption (A3), we only require the condition for θ = θ0, while in Mardia and

Marshall (1984), the condition is imposed for θ ∈ B(θ0).

A key assumption for the following Theorem 1 is Assumption (A4), which

imposes the bounds for Σk and Σkk′ in terms of tkk,n under mixed domain asymp-

totics. First, note that under increasing domain asymptotics, the bounds for Σk
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and Σkk′ are assumed in terms of the sample sizeNn. That is, maxθ∈B(θ0) ‖Σk‖2 =

O(1), maxθ∈B(θ0) ‖Σkk′‖2 = O(1), and maxθ∈B(θ0) ‖Σk‖−2
F = O(N

−1/2−τ
n ), for

some τ > 0 (Mardia and Marshall (1984)). However, the above assumptions

are too restrictive for mixed domain asymptotics and the different types of co-

variance functions considered here. Therefore, we impose the bounds in terms

of tkk,n instead. Second, Assumption (A4) is rather abstract and the sufficient

conditions are discussed in Section 3.3. In particular, a sufficient condition for

(A4) is given in Theorem 3 for Type-I covariance functions and in Theorem 4 for

Type-II covariance functions.

3.2. Asymptotics

Let
p−→ and

D−→ denote convergence in probability and in distribution, re-

spectively. For 1 ≤ k ≤ q, let θ̂k,n be the kth element of θ̂n, and θk,0 be the kth

element of θ0. First, we establish the consistency of θ̂n in Theorem 1:

Theorem 1. Under Assumptions (A1)–(A4), the estimator θ̂n satisfies∣∣∣θ̂k,n − θk,0∣∣∣ = Op(t−1/2
kk,n ), for 1 ≤ k ≤ q.

Theorem 1 shows that the convergence rate of each parameter depends on

tkk,n. Although the convergence rate of a parameter estimator is usually slower

for a smaller α, this does not necessarily hold for all parameters. One notable

exception is the nugget effect θ2. Because Σ2 = ∂Σ/∂θ2 = INn
,

t22,n = tr(Σ−1Σ−1) =

Nn∑
i=1

1

λi(Σ)2
≥ N−1

n

{
Nn∑
i=1

1

λi(Σ)

}2

≥ N−1
n

{
N2
n∑Nn

i=1 λi(Σ)

}2

= N−1
n

(
N2
n

Nn(θ2,0 + θ3,0)

)2

=
Nn

(θ2,0 + θ3,0)2
,

where λi(Σ) is the ith largest eigenvalue of Σ. That is, t
−1/2
22,n is at the rate of

N
−1/2
n and θ̂2 has the root-Nn convergence rate under the mixed domain asymp-

totic framework.

To understand the different convergence rate of θ̂2 intuitively, we first review

the model assumption for an observed spatial process (Cressie (1993); Schaben-

berger and Gotway (2005)). That is, an observed spatial process y(s) is assumed

to be the summation of two independent processes, namely, the underlying spa-

tial process of interest u(s) and the measurement error ν(s). The measurement

errors ν(s1), . . . , ν(sNn
) are modeled by a sequence of independent and identi-
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cally distributed Gaussian random variables N(0, θ2). Because the measurement

errors are independently realized Nn times, the root-Nn convergence rate is not a

surprise. In contrast, the other parameters are for the underlying spatial process

u(s), and the Nn realizations u(s1), . . . , u(sNn
) are spatially correlated. As the

spatial dependence becomes stronger, Nn realizations provide less information,

which leads to a slower convergence rate for these parameter estimators. Note

that the root-Nn convergence rate of θ̂2 can also happen under the infill frame-

work. In particular, Chen, Simpson and Ying (2000) shows that the MLE of the

nugget effect has a root-Nn convergence rate for an Ornstein–Uhlenbeck process

with a measurement error.

For the mixed domain framework, Theorem 1 does not establish asymptotic

normality. To establish the asymptotic normality of θ̂n, an additional assumption

(A5) is needed:

(A5) As Nn →∞, we have maxθ∈B(θ0) ‖Σk‖2 = o
(

min1≤k≤q t
1/2
kk,n

)
.

Similarly to (A4), the rate of maxθ∈B(θ0) ‖Σk‖2 is expressed in terms of tkk,n in

(A5), and the sufficient conditions are discussed in Section 3.3.

Theorem 2. Under Assumptions (A1)–(A5),

J 1/2
θ0

(θ̂n − θ0)
D−→ N (0, Iq) ,

where Iq is an identity matrix of order q. Moreover, let Jθ̂ = [
t̂kk′,n

2 ]q,qk,k′=1 be an

estimator of Jθ0
. Then, we have

J −1
θ0
Jθ̂

p−→ Iq,

where t̂kk′,n = tr(Σ̂−1Σ̂kΣ̂
−1Σ̂k′), Σ̂ = Σ(θ̂n) and Σ̂k = Σk(θ̂n).

Theorem 2 shows that the limiting distribution of θ̂n isN
(
θ0,J −1

θ0

)
. Because

Jθ0
is unknown in practice, Jθ̂ is often used for statistical inference. Theorem 2

also guarantees that the distribution of θ̂n is well approximated byN (θ0,J −1

θ̂
) for

sufficiently large Nn. The proofs of Theorems 1 and 2 are provided in Appendix A

of the Supplementary Material.

For the increasing domain framework, it is well known that Mardia and

Marshall (1984) established the asymptotic normality of θ̂n. In Appendix C of

the Supplementary Material, we show that Theorems 1–2 are compatible with

the results under increasing domain asymptotics of Mardia and Marshall (1984).
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3.3. Type-I and Type-II covariance functions

In this section, Theorems 1–2 are used to investigate the theoretical prop-

erties of the Type-I and Type-II covariance functions introduced in Section 2.3.

Here, we also require the following condition (C3) for the covariance functions:

(C3) Except for the nugget effect θ2, the integral
∫∞

0 ul−1{γk(u;θ0)}2du > 0 holds

for all 1 ≤ k ≤ q.

Condition (C3) is a mild condition for the first-order derivative γk(u;θ0), and

requires that except for the nugget effect θ2, γk(u;θ0) is not zero in a set with a

measure that is greater than zero. It is verified for the covariance functions (2.2)–

(2.4) in Lemma 1, and for the covariance function (2.5) in Lemma 2.

First, we investigate the consistency and asymptotic normality of Type-I

covariance functions.

Theorem 3. For Type-I covariance functions and the fixed sampling design (S1),

a sufficient condition for (A4) and (A5) is αl > 2/3.

The proof of Theorem 3 can be found in Appendix B of the Supplementary

Material. In particular, for the quantities mentioned in Assumptions (A4)–(A5),

it is shown that for Type-I covariance functions, maxθ∈B(θ0) ‖Σk‖2 = O(N1−αl
n ),

maxθ∈B(θ0) ‖Σkk′‖F = O(N
1−αl/2
n ), and tkk,n is at a rate larger or equal to Nαl

n .

Theorem 3 implies that if (A1)–(A3) hold and αl > 2/3, then the consistency and

asymptotic normality of the maximum likelihood estimators for Type-I covariance

functions are guaranteed under the fixed sampling design (S1). However, αl > 2/3

is a lower bound for all Type-I covariance functions and may not be a necessary

condition for an individual covariance function.

In the following Corollary 1, we establish a theoretical property of the pa-

rameter estimator for covariance functions (2.2)–(2.4). Because the covariance

functions (2.2)–(2.4) are twice continuously differentiable with respect to θ in

an open set, (A1) is satisfied. Moreover, (A2) holds because the nugget effect

θ2 > 0. Conditions (C1) and (C3) are verified for covariance functions (2.2)–(2.4)

in Lemma 1. Thus, we obtain Corollary 1, as follows:

Corollary 1. For covariance functions (2.2)–(2.4), under Assumptions (S1),

(A3), and αl > 2/3, Theorem 1 and Theorem 2 hold.

Next, we establish the consistency and asymptotic normality of the parameter

estimator for Type-II covariance functions.

Theorem 4. For Type-II covariance functions and the fixed sampling design

(S1), a sufficient condition for (A4) and (A5) is (4ζ − l)α > 2.
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The proof of Theorem 4 can be found in Appendix B of the Supplementary

Material. In particular, for the quantities mentioned in Assumptions (A4)–(A5),

it is shown that for Type-II covariance functions, we have maxθ∈B(θ0) ‖Σk‖2 =

O(N1−αζ
n ), maxθ∈B(θ0) ‖Σkk′‖F =O(N

1−αl/2
n ), and tkk,n is at a rate larger or equal

to N
α(2ζ−l)
n . Note that the bounds for maxθ∈B(θ0)‖Σk‖2, maxθ∈B(θ0)‖Σkk′‖F , and

tkk,n are different for Type-I and Type-II covariance functions, and therefore,

different sufficient conditions are needed for Assumption (A4)–(A5). Compared

with Type I covariance functions, the sufficient condition for Type-II covariance

functions also depends on ζ, which regulates the decay of the covariance functions.

For the Cauchy covariance function (2.5), it is easy to verify that (A1)–(A2)

hold. Furthermore, By Lemma 2, conditions (C2) and (C3) hold if l/4 ≤ κ ≤ l/2.

Therefore, the theoretical properties of the maximum likelihood estimators of

Cauchy covariance functions are established in the following Corollary 2:

Corollary 2. For the Cauchy covariance function (2.5) with l/4 ≤ κ ≤ l/2,

under Assumptions (S1), (A3), and (8κ − l)α > 2, Theorem 1 and Theorem 2

hold.

4. Simulation Studies

4.1. Type-I covariance function and effect of frameworks

Here, the finite-sample properties of maximum likelihood estimators are in-

vestigated for Type-I covariance functions. For the mixed domain asymptotic

framework, we set α = 0.4 and 0.3. For each choice of α, the sample sizes are

set to Nn = 200, 400, 800, and 1600. The spatial domain of interest is Rn =

[−ιn/2, ιn/2]2, with the side length ιn = 10(Nn/100)α. The minimum distance

between any two sampling locations is 0.2(Nn/100)α−1/2. For spatial covariance

functions, we consider the Gaussian covariance function and the exponential co-

variance function. For the Gaussian covariance function (2.3), we set the range

parameter θ1,0 = 5, the nugget effect θ2,0 = 0.5, and the partial sill θ3,0 = 2. For

the exponential covariance function

γ(d;θ) =

{
θ3 exp

(
− d

θ1

)
, if d > 0,

θ3 + θ2, if d = 0,
(4.1)

we set the range parameter θ1,0 = 3, the nugget effect θ2,0 = 0.5, and the partial

sill θ3,0 = 2.

For each choice of the sample size Nn and α, a total of 500 data sets are simu-

lated. The parameter estimation is carried out by minimizing (3.1) for each simu-
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Table 1. The mean, root mean squared error (RMSE), standard deviation (SD), and

coverage probability of θ̂ and the mean of the standard errors (SEm) of se(θ̂) for the
Gaussian covariance function.

α=0.4 α=0.3
Nn θ1 θ2 θ3 θ1 θ2 θ3

True value 5.00 0.50 2.00 5.00 0.50 2.00

200

Mean 5.03 0.50 2.07 5.10 0.50 2.11
RMSE 0.84 0.06 0.98 1.54 0.05 1.07

SD 0.70 0.05 0.94 0.73 0.05 0.99
SEm 0.73 0.05 0.99 0.81 0.05 1.07

CP90 0.87 0.87 0.83 0.88 0.90 0.83

400

Mean 5.01 0.50 2.05 5.06 0.50 2.10
RMSE 0.52 0.04 0.77 0.62 0.04 0.89

SD 0.49 0.04 0.74 0.53 0.04 0.82
SEm 0.50 0.04 0.77 0.55 0.04 0.88

CP90 0.90 0.88 0.87 0.88 0.91 0.86

800

Mean 5.03 0.50 2.06 5.05 0.50 2.11
RMSE 0.37 0.03 0.61 0.43 0.03 0.73

SD 0.35 0.03 0.58 0.40 0.03 0.68
SEm 0.36 0.03 0.61 0.40 0.03 0.73

CP90 0.89 0.90 0.89 0.91 0.90 0.89

1,600

Mean 5.02 0.50 2.03 5.01 0.50 2.03
RMSE 0.26 0.02 0.44 0.31 0.02 0.58

SD 0.25 0.02 0.45 0.30 0.02 0.56
SEm 0.26 0.02 0.46 0.30 0.02 0.57

CP90 0.90 0.89 0.91 0.89 0.90 0.88

lated data set. The standard deviation of θ̂ is obtained as sd(θ̂) = diag(J −1
θ0

)1/2,

and the standard error of θ̂ is obtained as se(θ̂) = diag{J −1

θ̂
}1/2. Moreover, the

100(1− α)% confidence interval of θi is(
θ̂i − z1−α/2se(θ̂i), θ̂i + z1−α/2se(θ̂i)

)
,

where z1−α/2 is the 1−α/2 quantile of a standard normal distribution and se(θ̂i)

is the ith element of se(θ̂). The simulation results for the Gaussian covariance

function are reported in Table 1, and the results for the exponential covariance

function are reported in Table 2. Specifically, “Mean” and “RMSE” represent the

mean and root mean squared error, respectively, of the parameter estimates from

the 500 simulated data sets, “SD” represents the standard deviation of θ̂, “SEm”

represents the mean of the standard errors from the 500 simulated data sets,

and “CP90” represents the coverage probability of the nominal 90% confidence

intervals.
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Table 2. The mean, root mean squared error (RMSE), standard deviation (SD), and

coverage probability of θ̂ and the mean of the standard errors (SEm) of se(θ̂) for the
exponential covariance function.

α=0.4 α=0.3
Nn θ1 θ2 θ3 θ1 θ2 θ3

True value 3.00 0.50 2.00 3.00 0.50 2.00

200

Mean 3.18 0.47 2.09 3.14 0.49 2.03
RMSE 1.45 0.14 0.65 1.61 0.13 0.77

SD 1.36 0.14 0.67 1.39 0.13 0.71
SEm 1.57 0.14 0.76 1.62 0.14 0.78

CP90 0.86 0.91 0.89 0.83 0.91 0.84

400

Mean 3.09 0.49 2.02 3.01 0.49 1.98
RMSE 1.22 0.10 0.56 1.22 0.09 0.61

SD 1.03 0.10 0.53 1.11 0.09 0.59
SEm 1.14 0.10 0.56 1.19 0.09 0.61

CP90 0.86 0.88 0.87 0.81 0.90 0.83

800

Mean 3.07 0.50 2.00 2.99 0.49 2.01
RMSE 0.81 0.06 0.41 0.86 0.06 0.49

SD 0.78 0.06 0.41 0.89 0.06 0.48
SEm 0.84 0.06 0.43 0.92 0.06 0.50

CP90 0.89 0.90 0.88 0.87 0.88 0.87

1,600

Mean 3.02 0.50 2.01 3.01 0.49 2.02
RMSE 0.57 0.04 0.31 0.75 0.04 0.40

SD 0.59 0.04 0.32 0.71 0.04 0.40
SEm 0.61 0.04 0.32 0.73 0.04 0.41

CP90 0.89 0.91 0.90 0.86 0.89 0.89

For both covariance functions, as the sample size increases, the mean of the

parameter estimates becomes closer to the true value, and the root mean squared

error becomes smaller. For the convergence rate, θ̂1 and θ̂3 have smaller root mean

squared errors for α = 0.4 than those of α = 0.3, indicating a faster convergence of

θ̂1 and θ̂3 for a bigger α. On the other hand, the standard deviations of the nugget

effect θ̂2 are similar for both α = 0.4 and α = 0.3, because the convergence rate

of θ̂2 is root-Nn, as shown in Section 3.2. Moreover, as the sample size increases,

the root mean squared error of θ̂ becomes closer to the standard deviation, and

the mean of the standard error of se(θ̂) becomes closer to standard deviation.

For statistical inference with α = 0.4, the confidence interval coverage proba-

bilities become closer to the nominal ones as the sample size increases. Similarly

to Zhang and Zimmerman (2005), we plot the 0.05 + 0.1(i− 1) quantiles for each

parameter estimate, where the horizontal axis represents the empirical quantiles

and the vertical axis represents the theoretical quantiles derived from Theorem 2.
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Figure 1. Cauchy (solid line) and Gaussian (dashed line) Covariance Functions.

Table 3. The mean, root mean squared error (RMSE), standard deviation (SD), and

coverage probability of θ̂ and the mean of the standard errors (SEm) of se(θ̂) for the
Cauchy covariance function.

Nn=200 Nn=400 Nn=800 Nn=1,600

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3
True value 4.00 0.50 2.00 4.00 0.50 2.00 4.00 0.50 2.00 4.00 0.50 2.00

Mean 4.07 0.50 2.17 4.05 0.50 2.10 4.05 0.50 2.07 4.00 0.50 2.03

RMSE 1.01 0.06 1.05 0.66 0.04 0.73 0.49 0.03 0.53 0.36 0.02 0.43

SD 0.91 0.06 0.92 0.65 0.04 0.69 0.46 0.03 0.50 0.36 0.02 0.44

SEm 0.94 0.06 1.03 0.67 0.04 0.74 0.47 0.03 0.53 0.36 0.02 0.45

CP90 0.88 0.89 0.84 0.89 0.88 0.88 0.89 0.89 0.88 0.90 0.91 0.90

These plots can be found in Figures A–D of the Supplementary Material. Overall,

the normal approximations provided by Theorem 2 and Corollary 1 appear to be

appropriate when α = 0.4. Note that α = 0.4 satisfies the sufficient condition in

Corollary 1, while α = 0.3 does not. For α = 0.3, the simulation results show that

the normal approximations appear to be appropriate for the Gaussian covariance

function, but less than satisfactory for the exponential covariance function.

4.2. Type-II covariance function

Here, we investigate the finite-sample properties for Type-II covariance func-

tions. A simulation study is conducted for α = 0.4. The sampling design is the

same as that in Section 4.1. For the covariance function, we use the Cauchy co-

variance function with κ = 0.8 and set the range parameter θ1,0 = 4, the nugget

effect θ2,0 = 0.5, and the partial sill θ3,0 = 2.
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In Figure 1, the Cauchy covariance function is plotted with the Gaussian

covariance function considered in Section 4.1. For smaller distances, the Cauchy

covariance function has a similar spatial dependence to that of the Gaussian co-

variance function. As the distance increases, the spatial dependence of the Cauchy

covariance function decays more slowly. The results of the simulation study are

reported in Table 3. As the sample size increases, the mean of the parameter esti-

mates becomes closer to the true value and the root mean squared error becomes

smaller. Moreover, the mean of the standard errors of se(θ̂) is closer to the stan-

dard deviation for larger sample sizes. Furthermore, as the sample size increases,

the confidence interval coverage probabilities become closer to the nominal ones.

Therefore, despite the stronger spatial dependence of Type-II covariance func-

tions, the consistency and asymptotic normality of the parameter estimates still

hold.

4.3. Practical consideration for mixed domain asymptotics

In practice, there is usually only one data set and it is not obvious which

asymptotic framework should be used. Zhang and Zimmerman (2005) studied the

choice of asymptotic frameworks both theoretically and empirically, pointing out

the importance of microergodicity. That is, the parametric function of interest

needs to be consistently estimable. Moreover, they conducted simulation studies

with sample sizes between 40 and 160 for the exponential covariance function. In

Section 4.1, our simulation studies are conducted for sample sizes between 200 and

1,600. The QQ plots of each individual parameter and φ = θ3/θ1 are presented in

Figures C, D, and F of the Supplementary Material for α = 0.4, 0.3, and 0. The

theoretical quantiles of φ̂ are derived from φ̂ ∼ N (φ0, sd(φ̂)). To the best of our

knowledge, the asymptotic standard deviation of φ̂ is not available for irregularly

spaced locations and the exponential covariance function with the nugget effect.

Therefore, sd(φ̂) is replaced by the sample standard deviation. Under the infill

asymptotics, Figure F shows that φ̂ appears to be normally distributed, while θ̂

is not. Moreover, φ̂ appears to be normally distributed under the mixed domain

asymptotic framework. Therefore, the infill asymptotics is a better choice if φ is

of interest or the goal is spatial interpolation (Stein (1999)).

If the individual parameter is of interest, mixed domain asymptotics or in-

creasing domain asymptotics is used. In the following, we attempt to provide

some guidelines for mixed domain asymptotics. First, it is important that the

individual parameter is consistently estimable, which we have established in Sec-

tion 3. Second, any asymptotic result requires certain sample sizes. However, a

larger sample alone cannot guarantee good normal approximations for parame-
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Table 4. The mean, root mean squared error (RMSE), standard deviation (SD), and cov-

erage probability of θ̂ and the mean of the standard errors (SEm) of se(θ̂) for Gaussian,
exponential, and Cauchy covariance functions with sample size Nn = 800 and various
values of ι/dp.

Gaussian Exponential Cauchy
ι/dq θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

True value 5.00 0.50 2.00 3.00 0.50 2.00 4.00 0.50 2.00

1

Mean 5.11 0.50 2.24 3.29 0.50 2.15 4.03 0.50 2.11
RMSE 1.27 0.02 1.63 2.48 0.04 1.46 0.71 0.03 1.03

SD 0.85 0.03 1.33 1.95 0.04 1.20 0.66 0.03 0.97
SEm 0.93 0.03 1.54 2.46 0.04 1.48 0.68 0.03 1.05
CP90 0.87 0.91 0.80 0.76 0.90 0.76 0.89 0.92 0.85

2

Mean 5.10 0.50 2.13 3.05 0.49 2.04 4.04 0.50 2.09
RMSE 0.60 0.03 0.97 1.37 0.05 0.78 0.54 0.03 0.67

SD 0.50 0.03 0.88 1.32 0.05 0.77 0.51 0.03 0.62
SEm 0.53 0.03 0.96 1.46 0.05 0.85 0.52 0.03 0.66
CP90 0.90 0.90 0.88 0.81 0.92 0.82 0.90 0.89 0.89

3

Mean 5.01 0.50 2.04 3.08 0.49 2.03 3.98 0.50 2.00
RMSE 0.40 0.03 0.68 1.18 0.06 0.63 0.47 0.03 0.47

SD 0.39 0.03 0.66 1.04 0.06 0.58 0.45 0.03 0.47
SEm 0.39 0.03 0.68 1.16 0.06 0.63 0.45 0.03 0.47
CP90 0.88 0.89 0.88 0.83 0.91 0.85 0.90 0.89 0.88

4

Mean 5.00 0.50 2.00 3.04 0.49 2.00 3.98 0.50 1.99
RMSE 0.35 0.03 0.53 0.97 0.07 0.46 0.44 0.03 0.39

SD 0.33 0.03 0.54 0.88 0.07 0.46 0.43 0.03 0.38
SEm 0.33 0.03 0.54 0.94 0.07 0.49 0.43 0.03 0.38
CP90 0.89 0.91 0.89 0.86 0.88 0.87 0.89 0.90 0.88

5

Mean 5.02 0.50 2.03 3.05 0.49 2.02 4.02 0.50 2.02
RMSE 0.31 0.03 0.48 0.80 0.07 0.41 0.44 0.04 0.36

SD 0.30 0.03 0.45 0.77 0.07 0.39 0.42 0.04 0.33
SEm 0.30 0.03 0.46 0.81 0.07 0.41 0.42 0.04 0.33
CP90 0.89 0.90 0.87 0.89 0.92 0.91 0.89 0.88 0.87

ter estimators. In Section 5 of Zhang and Zimmerman (2005), they cautioned

“certain covariogram parameters may be hard to estimate and that the estimates

may be badly nonnormal even with a large sample size.” In Figure F, the dis-

tributions of θ̂1 and θ̂3 are hardly normal distributed, even when the sample

size n = 1600. This observation prompts us to consider the strength of spa-

tial dependence in mixed domain asymptotics. Here, we suggest using the ratio

ι/dq, with γ(dq;θ0) = 0.25(θ2,0 + θ3,0), where a larger ratio means weaker spatial

dependence.

Simulation studies are conducted with different values of ι/dq for the covari-

ance functions in Section 4.1. The sample size is fixed at N = 800 and the results
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Figure 2. Locations of Weather Stations

are given in Table 4. For ι/dq = 1, the coverage probabilities for all three covari-

ance functions are well below the nominal 90% confidence intervals, especially

for θ̂3. As ι/dq increases, the bias of the parameter estimates becomes smaller

and the coverage probabilities improve. For the Gaussian and Cauchy covariance

functions, ι/dq ≥ 3 provides a good normal approximation, whereas ι/dq ≥ 4 is

required for the exponential covariance function. Therefore, for statistical infer-

ence of the individual parameters, a relatively large sample is needed and the

spatial dependence cannot be too strong.

5. Data Example

Here, yearly precipitation anomalies in 1962 at a set of US weather stations

are analyzed for illustration. The yearly precipitation anomaly is the departure of

the precipitation from its long-period precipitation average value, standardized

with respect to the long-period mean and standard deviation of each station

(Johns et al. (2003); Kaufman, Schervish and Nychka (2008)). There are 7,352

observations across the United States, and we consider the observations in the

Great Plains that are north of 40 degrees latitude. The area measures around

1,000 km from north to south, and the distance from east to west varies from

1,000 to 1,300 km. There are 926 weather stations in this area; their locations

are shown in Figure 2.

The variogram is presented in Figure 3. The estimated d̂q is around 250 km

and the ratio ι/d̂q ≥ 5. The maximized log-likelihood function is 895 for the

Gaussian covariance function, 922 for the exponential covariance function, and

911 for the Cauchy covariance function. Therefore, among the three covariance
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Figure 3. Variogram of Yearly Precipitation Anomaly Data.

functions, the exponential covariance function performs the best. From the ex-

ponential covariance function, we obtain θ̂ = (130, 0.09, 0.72) and the standard

error se(θ̂) = (29, 0.016, 0.13). The estimated range parameter θ̂1 = 130 km and

the estimated practical range is 374 km. Although the nugget effect θ̂2 = 0.09

is much smaller than the partial sill θ̂3 = 0.72, the measurement error is not

negligible, because the standard error of θ̂2 is 0.016.

Supplementary Material

The online Supplementary Material contains all proofs, as well as additional

simulation studies.
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