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INFERRING SOCIAL INFLUENCE

IN DYNAMIC NETWORKS
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University of Illinois at Urbana-Champaign

Abstract: An interesting problem in social network analysis is whether individuals’

behaviors or opinions spread from one to another, which is known as social influence.

The degrees of influence describes how far the influence passes through individuals.

Here, we explore the degrees of influence in dynamic networks. We build a longi-

tudinal influence model to specify how people’s behaviors are influenced by others

in a dynamic network. In order to determine the degrees of influence, we propose

a sequential hypothesis testing procedure and use generalized estimating equations

to account for multiple observations of the same individual across different time

points. In addition, we show that the power of our proposed test goes to one as the

network size goes to infinity. We illustrate the performance of our proposed method

using simulation studies and real-data analyses.

Key words and phrases: Degrees of influence, dynamic network, generalized esti-

mating equations, longitudinal analysis, social influence.

1. Introduction

Social network analysis has become popular in many fields, including soci-

ology, psychology, computer science, and statistics. A social network consists of

individuals and the relationships between them, represented by nodes and edges,

respectively, in a graph. Social networks can be static or dynamic. A static net-

work is a snapshot of a network at a certain time point, and a dynamic network

is a sequence of observations of networks at different time points.

An interesting problem in social network analysis is whether the behaviors

or opinions of an individual can be influenced by others in the network, which is

known as social influence or social contagion. Several methods have been dev-

eloped to study the spread of individuals’ behavior within a social network (Va-

lente (1995); Centola (2010)).In addition, researchers have examined the spread

of various individual health outcomes, including obesity (Christakis and Fowler

(2007)), smoking (Christakis and Fowler (2008)), sleep loss and drug use (Med-

nick, Christakis and Fowler (2010)), alcohol consumption (Rosenquist et al.

Corresponding author: Yuguo Chen, Department of Statistics, University of Illinois at Urbana-
Champaign, Champaign, IL 61820, USA. E-mail: yuguo@illinois.edu.

https://doi.org/10.5705/ss.202020.0310
mailto:yuguo@illinois.edu


500 CUI AND CHEN

(2010)), and sexual orientation (Brakefield et al. (2014)). See Sun and Tang

(2011) for a summary of the models and algorithms developed for social influence

analysis. Kempe, Kleinberg and Tardos (2003) proposed methods for selecting

the most influential nodes in a network to maximize the spread of the influence

(i.e., social influence maximization). O’Malley (2013) used instrumental variables

to account for the confounding effect when analyzing peer effects, and proposed

a network influence model with multiple types of relationships.

The degrees of influence (DOI) describes how far an influence passes through

individuals in a network. For static networks, Christakis and Fowler (2013) pro-

posed a permutation test to identify the behavior association between individuals

across a social network, using the Framingham Heart Study data. They claimed

that the spread of influence in social networks obeys the three degrees of influ-

ence rule. VanderWeele (2013) discussed three distinct interpretations of this

rule. However, O’Malley (2013) pointed out an issue with the choice of the null

hypothesis in Christakis and Fowler (2013). Later, Su (2019) proposed a new

sequential test procedure with more appropriate null hypotheses for determining

the degrees of influence.

Existing works can only detect the degrees of influence for static networks

(Christakis and Fowler (2013); Su (2019)), and it is not clear how to extend

their methods to dynamic networks. Here, we introduce a longitudinal influence

model and a sequential hypothesis testing procedure for determining the degrees

of influence in dynamic networks. We also provide theoretical properties of the

level and power of the proposed test. In particular, we show that the power of

the proposed test goes to one as the network size goes to infinity.

The remainder of the paper is organized as follows. Section 2 provides the

basic notation. Section 3 introduces the longitudinal influence model. Section 4

gives the proposed sequential hypothesis testing procedure. Section 5 provides

the theoretical properties of the proposed method. Section 6 describes the sim-

ulation studies. Section 7 reports the results for the Higgs Twitter data set (De

Domenico et al. (2013)) and the Digg data set (Hogg and Lerman (2012)). Section

8 concludes the paper.

2. Notation

Consider a dynamic social network consisting of n individuals (nodes) and a

set of dyadic relationships (edges) between them at time t = 1, 2, . . . , T . We are

mainly concerned with directed networks with no loops (both ends of an edge

connect to a single node) or multiple edges between a pair of nodes. Such a
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Figure 1. A toy example of a dynamic social network, with gray nodes denoting smokers
(yi,t = 1) and white nodes denoting nonsmokers (yi,t = 0).

dynamic network can be represented by its adjacency matrix At = (aij,t)n×n, for

t = 1, 2, . . . , T , where each At is an n× n binary square matrix, with aij,t = 1 if

there is a directed edge from node i to j at time t (i.e., individual i is following

individual j at time t), and aij,t = 0 otherwise. For a directed network, At does

not need to be symmetric.

In addition, we observe whether each individual in the network possesses

a specific trait, such as obesity, smoking, or happiness, at each time point t.

This can be modeled by a binary random vector Yi = (yi,1, yi,2, . . . , yi,T ), with

yi,t = 1 indicating the trait is present in individual i at time t, and zero indicating

otherwise. A toy example of such a dynamic network is given in Figure 1.

In social networks, the individual we are focusing on is called the ego. If there

is a directed path from the ego to an individual at time t, then that individual is

called an alter. If the shortest directed path from the ego to an alter is d at time

t, then this alter is referred to as a dth-degree alter, denoted by alterd,t. Here is

a simple illustration:

ego→ alter1,t → alter2,t → · · ·

Obviously the first-degree alters (alter1,t) are directly connected to the ego.

The second-degree alters (alter2,t) have a length-two path from the ego, but
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they are not directly connected to the ego. In other words, aego, alter1,t,t = 1,

aalter1,t, alter2,t,t = 1, and aego, alter2,t,t = 0. For example, at time t = 2 in Figure 1,

individuals 6 and 8 are first-degree alters of ego 3, individual 2 is a second-degree

alter of ego 3, and individual 4 is a third-degree alter of ego 3, and so on.

Let dij,t be the length of the shortest directed path from i to j at time t.

Then, dego, alter1,t,t = 1, dego, alter2,t,t = 2, and so on. We define the dth-degree

alter set for each ego i at time t as

Sdi,t = {j : dij,t = d}.

For an individual i at time t, we define the dth-degree influence factor xdi,t as the

average status of individual i’s dth-degree alters at time t, that is,

xdi,t =

 1
|Sd

i,t|
∑

j∈Sd
i,t
yj,t, |Sdi,t| > 0,

0, |Sdi,t| = 0.
(2.1)

3. Longitudinal Influence Model

Social influence describes the process by which an individual’s behavior or

opinion is affected by others in the network. The influence may go beyond the

people a person is directly linked to. We are interested in studying the degrees

of influence, which describes how far an influence can pass through links between

individuals. In this section, we specify a longitudinal influence model for different

degrees of influence in dynamic networks.

We assume that

yi,t ∼ Bernoulli(pi,t), i = 1, 2, . . . , n and t = 1, 2, . . . , T. (3.1)

If the degrees of influence is zero, then the behavior of each individual is not

affected by others in the network. Therefore yi,t+1 depends only on individual i’s

status at time t. We propose the following longitudinal influence model:

yi,t+1 ∼ Bernoulli(pi,t+1),

logit(pi,t+1) = γ + β0yi,t, i = 1, 2, . . . , n and t = 1, 2, . . . , T − 1,
(3.2)

where γ is the intercept and β0 is the coefficient for the time-lagged status yi,t.

If the true degrees of influence is D∗ > 0, then each individual may be

influenced by anyone to whom the individual is connected by a path with length

no more than D∗. Thus each ego i’s binary status at time t+ 1 depends on ego

i’s status at time t and the status of ego i’s alters with degrees one to D∗ at time
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t. We propose the following longitudinal influence model:

yi,t+1 ∼ Bernoulli(pi,t+1),

logit(pi,t+1) = γ + β0yi,t +

D∗∑
d=1

βdx
d
i,t, i = 1, 2, . . . , n and t = 1, 2, . . . , T − 1,

(3.3)

where γ is the intercept, β0 is the coefficient for the time-lagged status yi,t, x
d
i,t

is the dth-degree influence factor defined in (2.1), and βd is its coefficient. In the

above model with true degrees of influence D∗ > 0, because we assume that each

individual i can be influenced by individual i’s alters with degrees one to D∗, we

are essentially assuming βd 6= 0, for d = 1, 2, . . . , D∗.

4. Hypothesis Testing

In order to determine the degrees of influence in a dynamic network, we

propose a sequential hypothesis testing procedure. This procedure is similar to

forward variable selection in linear regression models, where we add one new

predictor variable to the model at a time, and perform a goodness of fit test to

compare it with the model without the new predictor variable (Hocking (1976);

Everitt and Dunn (2001)). We propose sequentially testing the following hypoth-

esis:

H0 : DOI = D − 1 vs. H1 : DOI ≥ D. (4.1)

We start with D = 1, and if the null hypothesis is rejected, then we test (4.1)

again with D increased by 1 to D = 2. The procedure continues until the null

hypothesis cannot be rejected for a certain value of D, and we then report D− 1

as the degrees of influence.

For the test in (4.1), the null model M0 under H0 is

yi,t+1 ∼ Bernoulli(pi,t+1),

logit(pi,t+1) = γ + β0yi,t +

D−1∑
d=1

βdx
d
i,t, i = 1, 2, . . . , n and t = 1, 2, . . . , T − 1.

(4.2)

If the alternative hypothesis is true, based on the discussion after (3.3), the

coefficient for the Dth-degree influence factor is nonzero. Hence, hypothesis (4.1)

is testing

H0 : βD = 0 vs. H1 : βD 6= 0. (4.3)
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Under H1, the model closest to the null hypothesis is the following alternative

candidate model M1, with DOI = D:

yi,t+1 ∼ Bernoulli(pi,t+1),

logit(pi,t+1) = γ + β0yi,t +

D∑
d=1

βdx
d
i,t, i = 1, 2, . . . , n and t = 1, 2, . . . , T − 1.

(4.4)

The null model (βD = 0) is nested within the alternative candidate model. In

order to implement the test to compare the two models, we need to estimate

the parameter βD and the variance of the estimator in the alternative candidate

model M1.

To account for multiple observations of the same individual across differ-

ent time periods, we use generalized estimating equations (GEEs) (Liang and

Zeger (1986)) to estimate βD and the variance of the estimator. We first estab-

lish the notation for the parameter estimation. For the ith individual, let yi =

(yi,2, yi,3, . . . , yi,T )T be a vector of the outcome values and Xi = (xi,1, . . . , xi,T−1)
T

be a matrix of the covariate values, where xi,t = (1, yi,t, x
1
i,t, . . . , x

D
i,t)

T , for t =

1, . . . , T − 1. In the alternative candidate model M1, we have E(yi,t+1) = pi,t+1

and logit(pi,t+1) = xTi,tβ, where β = (γ, β0, β1, . . . , βD)T . When using GEEs for

parameter estimation, we assume an independence working correlation structure.

Under certain conditions, this can yield a consistent estimator β̂D for βD, and the

variance of the estimator β̂D can be consistently estimated by a sandwich estima-

tor Σ̂(β̂D) (Liang and Zeger (1986)). We used the R package geepack (Halekoh,

Højsgaard and Yan (2006)) to solve the GEEs by providing the outcome values

yi and the matrix of the covariate values Xi. More details on the use of GEEs

can be found in Liang and Zeger (1986) and Halekoh, Højsgaard and Yan (2006).

We use the Wald test with test statistic

W =
β̂2D

Σ̂(β̂D)
. (4.5)

Under the null hypothesis and certain conditions, the test statistic W approxi-

mately follows a χ2(1) distribution. For a given significance level α, the critical

value for the test is c∗ = χ2
1−α(1), and we reject H0 if W > c∗. In the remainder

of the paper, we choose α = 0.05 for all simulation and real-data analyses.
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4.1. Toy example

We use the toy example in Figure 1 to illustrate the sequential testing pro-

cedure. The dynamic network in Figure 1 was generated in the following way.

At time t = 1, we generated a network from the Erdős–Rényi model ER(n, pe)

(Erdös and Rényi (1960)), where n is the number of nodes and pe is the edge

probability. We set n = 10 and pe = 0.2. At the following time step t, for

2 ≤ t ≤ 5, the network structure is allowed to change. In particular, we assume

that for every pair of (i, j), aij,t is equal to aij,t−1 with probability 0.95, and is

equal to 1 − aij,t−1 with probability 0.05. We assigned the smoking status for

each node at time t = 1 based on Bernoulli(pm) with pm = 0.2. At time t, for

2 ≤ t ≤ 5, each node’s status was generated according to the longitudinal in-

fluence model in (3.3), where we set the degrees of influence D∗ = 1, and the

parameters γ = −3, β0 = 4, and β1 = 4. In Figure 1, gray nodes denote smokers

and white nodes denote nonsmokers.

To explore the degrees of influence in the toy example, we set the significance

level α = 0.05 and started by testing: H0 : DOI = 0 vs. H1 : DOI ≥ 1. The

dth-degree influence factor xdi,t for each individual can be calculated based on

Equation (2.1). To obtain the estimates of the parameters in Equation (3.3) and

the corresponding estimated variance, we solved the GEEs under an independence

working correlation structure using the R package geepack (Halekoh, Højsgaard

and Yan (2006)). Given yi,t and x1i,t, for i = 1, 2, . . . , 10 and t = 1, 2, . . . , 5, we

obtained the estimate β̂1 = 6.191 and the estimated variance Σ̂(β̂1) = 2.401. The

test statistic is

W =
β̂21

Σ̂(β̂1)
= 15.961,

which is larger than the critical value χ2
0.95(1) = 3.841. The null hypothesis

H0 : DOI = 0 is rejected.

Then, we tested H0 : DOI = 1 vs. H1 : DOI ≥ 2. Given yi,t and xdi,t, for

d = 1, 2, i = 1, 2, . . . , 10, and t = 1, 2, . . . , 5, we obtained the estimate β̂2 = 1.147

and the estimated variance Σ̂(β̂2) = 1.659. The test statistic is

W =
β̂22

Σ̂(β̂2)
= 0.792,

which is smaller than the critical value 3.841. The null hypothesis H0 : DOI = 1

cannot be rejected, and the degrees of influence in the toy example is reported

to be one based on the sequential test.
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5. Theoretical Properties

In this section, we provide some theoretical properties of the proposed se-

quential testing procedure. The following theorem shows how the level and power

of the test change as the network size increases.

Theorem 1. Suppose we observe a dynamic network with n nodes at time 1, . . . , T

and binary vectors Y1, . . . , Yn indicating the presence or absence of a trait for each

individual in the network. Let D∗ be the true degrees of influence in the network.

Let W in (4.5) be the proposed test statistic for testing H0 : DOI = D − 1 vs.

H1 : DOI ≥ D, with W estimated from observations that are independent across

individuals. Let α be the significance level and c∗ be the critical value of the test.

We have the following results:

(a) The level of the test P (W > c∗ | DOI = D − 1) −→ α as n → ∞, for

D − 1 = D∗.

(b) The power of the test P (W > c∗ | DOI ≥ D) −→ 1 as n → ∞, for all

1 ≤ D ≤ D∗.

The proof of Theorem 1 is provided in Appendix A. The above theorem

indicates that the level of the test goes to the significance level α and the power

of the test goes to one as the network size n→∞. This shows that the test can

always tell the difference between the null and the alternative hypotheses when

the network size is large. Furthermore, for large networks, the true degrees of

influence can be detected by our method with high probability.

The theorem requires that the test statistic W = β̂2D/Σ̂(β̂D) be estimated

based on observations that are independent across individuals. This ensures

that the theoretical properties of the estimates using GEEs are applicable here.

To obtain independent data across individuals, a convenient assumption is that

y1,t, . . . , yn,t are independent, conditional on all the observations at time t − 1.

Under this assumption, there are different ways of obtaining independent data.

For example, the observations yi,t at t = 2 are conditionally independent given yi,t
at t = 1. Furthermore, yi,t at t = 2k (k = 1, 2, . . .) are conditionally independent

given yi,t at t = 2k − 1. Because these independent data do not make full use of

the information in the observed data, in practice, using all observations yi,t, as

discussed in Section 4, tends to perform better. Therefore, we use the full data

in our simulation studies and real-data analyses.

In the proof for the power of the test (part (b) of the theorem), the test

statistic W is estimated based on the true model in the alternative hypothesis.

In practice, the true model is not known in the middle of the sequential test,
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Table 1. Results for detecting the degrees of influence for different parameter settings.

(n, pe, β1, β2) < D∗ = D∗ > D∗

(300, 0.02, 3, 3) 0 47 3
(500, 0.02, 3, 3) 0 49 1

(1000, 0.01, 2, 2) 4 44 2
(3000, 0.005, 2, 2) 1 47 2
(5000, 0.003, 2, 2) 0 47 3

so we estimate W based on the alternative candidate model M1 in (4.4). This

approach works well in the simulation studies and real-data analyses. This type

of approach has also been suggested in sequential testing for forward variable

selection in linear regression models (Hocking (1976); Everitt and Dunn (2001)).

In fact, our simulation shows that the test based on M1 is even more powerful

than that based on the true model for testing (4.1) with D < D∗. An intuitive

explanation might be that the estimates based on the alternative candidate model

M1 need to reflect the additional influence from distances larger than D, which

makes it easier to reject the null hypothesis of DOI = D − 1.

6. Simulation Results

6.1. Detecting the degrees of influence

In this section, we show the performance of our proposed test procedure in

detecting the degrees of influence in dynamic networks. We generated a network

at time t = 1 from the Erdős–Rényi model ER(n, pe), where n is the number of

nodes and pe is the edge probability. At the following time step t, for 2 ≤ t ≤ 5,

the network structure changes in the following way. For each pair of {i, j}, if

aij,t−1 = 1, then aij,t = 1 with probability 0.95, and aij,t = 0 with probability

0.05. If aij,t−1 = 0, then aij,t = 1 with probability pchange = 0.05pe/(1− pe), and

aij,t = 0 with probability 1 − pchange. At time t = 1, we assigned the status yi,1
for each individual from Bernoulli(pm) with pm = 0.2. For time t = 2, 3, 4, 5, each

individual’s status was generated according to the longitudinal influence model

in (3.3), where we set the true degrees of influence D∗ = 2, and the parameters

γ = −3 and β0 = 4. The values of β1 and β2, together with n and pe, are presented

in Table 1. For each set of parameter values, we generated data and applied our

proposed method to detect the DOI. We ran 50 trials for each simulation; the

results are presented in Table 1.

In Table 1, the first column gives the parameter settings for the network size

n, the edge probability pe, and the coefficients β1, β2 in the model in Equation
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(3.3). The columns “< D∗,” “= D∗,” and “> D∗ ” indicate that the number

of trials the DOI detected using our proposed method is smaller than, equal to,

and larger than, respectively, the true DOI. From Table 1, we can see that our

proposed test procedure detects the true DOI in most cases.

We also considered detecting the DOI when the network structure is fixed

for the whole time period 1 ≤ t ≤ 5. Using the same parameter settings as in the

above simulation, we obtained similar results to those shown in Table 1. This

shows that our proposed test procedure works well for both fixed and varying

network structures.

6.2. Level and power of the tests

In this section, we show the level and power of our proposed test for differ-

ent parameter settings and different true degrees of influence. We generated a

network at time t = 1 from the Erdős–Rényi model ER(n, pe). At the following

time step t, for 2 ≤ t ≤ 5, the network structure changes in the following way.

For each pair of {i, j}, if aij,t−1 = 1, then aij,t = 1 with probability 0.95, and

aij,t = 0 with probability 0.05. If aij,t−1 = 0, then aij,t = 1 with probability

pchange = 0.05pe/(1 − pe), and aij,t = 0 with probability 1 − pchange. At time

t = 1, we assigned the status yi,1 for each individual from Bernoulli(pm) with

pm = 0.2. For time t = 2, 3, 4, 5, each individual’s status was generated according

to the longitudinal influence model in (3.3). For a given DOI D∗, we generated

data with true DOI = D∗ and β1, . . . , βD∗ set to prespecified values. We then

estimated the power of the test H0 : DOI = D − 1 vs. H1 : DOI ≥ D for 1 ≤
D ≤ D∗ and the level of the test H0 : DOI = D − 1 vs. H1 : DOI ≥ D for

D−1 = D∗. In practice, when the size of the network n increases, it may become

sparse and the edge probability may decrease. Therefore, we assigned smaller

values to pe for larger networks. For the rest of this section, we set γ = −3 and

β0 = 4 in model (3.3). We ran 100 trials for each simulation setting to obtain the

level and power.

6.2.1. Testing when the true DOI is zero

In this section, we assume the true DOI D∗ = 0, and the data are generated

from model (3.2). We testH0 : DOI = 0 vs. H1 : DOI ≥ 1. BecauseH0 represents

the true DOI, we only examine the level of the test. The first column of Table

2 gives the parameter values for the network size n and the edge probability pe
at time t = 1. We ran 100 trials for each simulation to estimate the level. The

results in Table 2 show that our test procedure achieves the level around the

prespecified α = 0.05.
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Table 2. Levels for testing H0 : DOI = 0 vs. H1 : DOI ≥ 1 when the true DOI D∗ = 0.

(n, pe) Level
(500, 0.02) 0.06

(1000, 0.01) 0.04
(3000, 0.005) 0.06
(5000, 0.003) 0.07

Table 3. Power for testing: H0 : DOI = 0 vs. H1 : DOI ≥ 1 and levels for testing: H0 :
DOI = 1 vs. H1 : DOI ≥ 2 when the true DOI D∗ = 1.

(n, pe, β1) Power Level
(500, 0.02, 3) 1 0.06

(1000, 0.01, 3) 1 0.05
(3000, 0.005, 3) 1 0.03
(5000, 0.003, 3) 1 0.05
(500, 0.02, 2) 0.96 0.03

(1000, 0.01, 2) 1 0.06
(3000, 0.005, 2) 1 0.04
(5000, 0.003, 2) 1 0.03

6.2.2. Testing when the true DOI is one

In this section, we assume the true DOI D∗ = 1. The first column of Table 3

gives the parameter values for the network size n, the edge probability pe at time

t = 1, and the coefficient β1 in model (3.3). The nonzero β1 is used to generate

data with true DOI D∗ = 1. We first test H0 : DOI = 0 vs. H1 : DOI ≥ 1,

and report the power of the test in the second column of Table 3. Then, we test

H0 : DOI = 1 vs. H1 : DOI ≥ 2, and report the level of the test in the third

column of Table 3. We ran 100 trials for each simulation to estimate the level

and power.

The results in Table 3 show that our test procedure achieves the level around

the prespecified α = 0.05. The power of our test is close to or equal to one in all

settings. Thus, our test is powerful in all of the above parameter settings when

the true DOI is one.

6.2.3. Testing when the true DOI is two

In this section, we assume the true DOI D∗ = 2. The first column of Table 4

gives the parameter values for the network size n, the edge probability pe at time

t = 1, and the coefficients β1 and β2 in model (3.3). We first test H0 : DOI = 0

vs. H1 : DOI ≥ 1, and report the power of the test in the second column of Table

4 (denoted by Power-1). Then, we test H0 : DOI = 1 vs. H1 : DOI ≥ 2, and

report the power of the test in the third column of Table 4 (denoted by Power-2).
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Table 4. Power for testing: H0 : DOI = 0 vs. H1 : DOI ≥ 1 and H0 : DOI = 1 vs. H1 :
DOI ≥ 2, and levels for testing: H0 : DOI = 2 vs. H1 : DOI ≥ 3 when the true DOI
D∗ = 2 and β2 = β1.

(n, pe, β1, β2) Power-1 Power-2 Level
(500, 0.02, 3, 3) 1 0.94 0.03

(1000, 0.01, 3, 3) 1 1 0.06
(3000, 0.005, 3, 3) 1 1 0.02
(5000, 0.003, 3, 3) 1 1 0.07
(500, 0.02, 2, 2) 1 0.55 0.05

(1000, 0.01, 2, 2) 1 0.91 0.03
(3000, 0.005, 2, 2) 1 1 0.04
(5000, 0.003, 2, 2) 1 1 0.06

Table 5. Power for testing: H0 : DOI = 0 vs. H1 : DOI ≥ 1 and H0 : DOI = 1 vs. H1 :
DOI ≥ 2, and levels for testing: H0 : DOI = 2 vs. H1 : DOI ≥ 3 when the true DOI
D∗ = 2 and β2 < β1.

(n, pe, β1, β2) Power-1 Power-2 Level
(500, 0.02, 3, 2.25) 1 0.93 0.04

(1000, 0.01, 3, 2.25) 1 1 0.06
(3000, 0.005, 3, 2.25) 1 1 0.04
(5000, 0.003, 3, 2.25) 1 1 0.07
(500, 0.02, 2, 1.5) 1 0.30 0.05

(1000, 0.01, 2, 1.5) 1 0.49 0.04
(3000, 0.005, 2, 1.5) 1 0.84 0.03
(5000, 0.003, 2, 1.5) 1 0.93 0.05

Finally, we test H0 : DOI = 2 vs. H1 : DOI ≥ 3, and report the level of the

test in the fourth column of Table 4. We ran 100 trials for each simulation to

estimate the level and power.

In Table 4, the coefficients β1 and β2 were chosen to be the same. In some

situations, the influence from the second-degree alters may be weaker than the

influence from the first-degree alters, so we set β2 < β1 in Table 5 and re-ran the

same tests. The results are presented in Table 5.

From Tables 4 and 5, we can see that our proposed method preserves the

level of the test with a type I error close to the prespecified level α = 0.05. The

power of the test H0 : DOI = 0 vs. H1 : DOI ≥ 1 is always one. The power of

the test H0 : DOI = 1 vs. H1 : DOI ≥ 2 increases to about one as the network

size increases. For fixed network size n and edge probability pe, the test H0 :

DOI = 1 vs. H1 : DOI ≥ 2 is more powerful for larger values of β2. This is not

surprising, because larger values of β2 indicate a stronger influence from second-

degree alters, which makes it easier to detect the misspecified null hypothesis of
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Table 6. Power for testing: H0 : DOI = D − 1 vs. H1 : DOI ≥ D for D = 1, 2, 3,
and levels for testing: H0 : DOI = 3 vs. H1 : DOI ≥ 4 when the true DOI D∗ = 3 and
β3 = β2 = β1.

(n, pe, β1, β2, β3) Power-1 Power-2 Power-3 Level
(500, 0.02, 3, 3, 3) 1 1 0.47 0.05

(1000, 0.01, 3, 3, 3) 1 1 0.69 0.03
(3000, 0.005, 3, 3, 3) 1 1 0.82 0.07
(5000, 0.003, 3, 3, 3) 1 1 0.95 0.06
(500, 0.02, 2, 2, 2) 1 1 0.35 0.04

(1000, 0.01, 2, 2, 2) 1 1 0.68 0.03
(3000, 0.005, 2, 2, 2) 1 1 0.78 0.06
(5000, 0.003, 2, 2, 2) 1 1 0.90 0.05

Table 7. Power for testing: H0 : DOI = D − 1 vs. H1 : DOI ≥ D for D = 1, 2, 3,
and levels for testing: H0 : DOI = 3 vs. H1 : DOI ≥ 4 when the true DOI D∗ = 3 and
β3 < β2 < β1.

(n, pe, β1, β2, β3) Power-1 Power-2 Power-3 Level
(3000, 0.005, 3, 2.25, 1.5) 1 1 0.44 0.06
(5000, 0.003, 3, 2.25, 1.5) 1 1 0.61 0.05

(10000, 0.002, 3, 2.25, 1.5) 1 1 0.70 0.05
(3000, 0.005, 2, 1.5, 1) 1 0.99 0.24 0.03
(5000, 0.003, 2, 1.5, 1) 1 1 0.35 0.07

(10000, 0.002, 2, 1.5, 1) 1 1 0.47 0.03

no influence from second-degree alters. For fixed values of β1 and β2, the power

of the test increases as the network size increases.

6.2.4. Testing when the true DOI is three

In this section, we assume the true DOI D∗ = 3. The first column of Table 6

gives the parameter values for the network size n, the edge probability pe at time

t = 1, and the coefficients β1, β2, and β3 in model (3.3). We test H0 : DOI = D−1

vs. H1 : DOI ≥ D for D = 1, 2, 3, and report the power of the test in the second,

third, and fourth columns of Table 6 (denoted by Power-1, Power-2, Power-3,

respectively). Then, we test H0 : DOI = 3 vs. H1 : DOI ≥ 4, and report the level

of the test in the fifth column of Table 6. We ran 100 trials for each simulation

to estimate the level and power.

In Table 6, the coefficients β1 = β2 = β3 were chosen to be the same. In

some situations, the influence from the Dth-degree alters may be weaker than

the influence from the (D − 1)th-degree alters, so we set β3 < β2 < β1 in Table

7 and re-ran the same tests. The results are presented in Table 7.

From Tables 6 and 7, we can see that the correct level is achieved in different
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settings. The power of the tests H0 : DOI = 0 vs. H1 : DOI ≥ 1 and H0 : DOI =

1 vs. H1 : DOI ≥ 2 is always around one. With the same parameter settings for

βi (i = 1, 2, 3), the power of the test H0 : DOI = 2 vs. H1 : DOI ≥ 3 increases

as the network size increases. For a fixed network size n and edge probability pe,

the test H0 : DOI = 2 vs. H1 : DOI ≥ 3 is more powerful for larger values of β3,

which is consistent with our intuition.

We also re-ran all simulations related to the levels and power in Section 6.2

with a fixed network structure for the whole time period 1 ≤ t ≤ 5. Using the

same parameter settings as in the above simulations, we obtained similar results

to those shown in Tables 2 to 7. Thus, our proposed test procedure also works

well for dynamic networks with a fixed network structure.

7. Real-Data Analyses

7.1. Higgs Twitter data

Twitter is a popular American social networking site, with a microblogging

system that allows users to post and interact with posts, called “tweets.” In

this section, we analyze the Higgs Twitter data set collected by De Domenico et

al. (2013) and available at https://snap.stanford.edu/data/higgs-twitter.

html. These data were built by keeping track of the spreading process on Twitter

before, during, and after the announcement on July 4, 2012, of the discovery of

a new particle with the elusive Higgs boson features.

The data set contains a network of Twitter users who posted messages about

this discovery between July 1, 2012, and July 7, 2012. Nodes in the network

correspond to users, and an edge from node i to node j means node i follows

node j. The data set also contains interactions (including retweets, mentions,

and replies) between users with a time stamp. Here, we focus on the mention

behavior as a feature of interest, which indicates a user mentioned other users

when he/she posted on Twitter about the Higgs boson discovery. This feature is

represented by a binary random variable yi,t, where yi,t = 1 indicates that user i

mentioned other users in tweets about the discovery before a certain time t, and

yi,t = 0 otherwise.

Because the network in the original data set has a large number of nodes,

we consider a subset of the network by choosing the node that first showed the

feature of interest, and then selecting those nodes that have a path with a length

of no more than two to this node. This subnetwork has 1,757 nodes and is shown

in Figure 2. The network structure does not change in this data.

Because the announcement of the discovery was on July 4, 2012, the spread

https://snap.stanford.edu/data/higgs-twitter.html
https://snap.stanford.edu/data/higgs-twitter.html
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Figure 2. Higgs Twitter network.

of the feature of interest after the announcement might not come from social

influence in the network. Therefore, the time interval of interest is from July 1,

2012, to July 3, 2012. We divided this interval into six time steps, with t1 12

p.m. of 7/1/2012 and t6 12 a.m. of 7/4/2012; the gap between two neighboring

time steps is 12 hours.

We applied our sequential hypothesis test to determine the degrees of in-

fluence for the mention behavior. We started by testing H0 : DOI = 0 vs.

H1 : DOI ≥ 1. The test statistic W in (4.5) is 9.43, which is larger than the

critical value χ2
0.95(1) = 3.841. Thus, we rejected the null hypothesis and con-

tinued to test H0 : DOI = 1 vs. H1 : DOI ≥ 2. This time W = 57.76, which is

still larger than the critical value, so the null hypothesis is again rejected. Then,

we tested: H0 : DOI = 2 vs. H1 : DOI ≥ 3, and the test statistic W = 0.0019

is smaller than the critical value. Therefore, the null hypothesis H0 cannot be

rejected, and we report the degrees of influence as two. This means that the men-

tion behavior in Twitter can be influenced by an individual’s followees, as well as

by his/her followees’ followees. Note that there are many length-three paths in

the subnetwork, and every node in the subnetwork has some third-degree alters.

Thus, accepting H0 : DOI = 2 is not because there are not enough length-three

paths.

7.2. Digg data

Digg is a social news website with a curated front page that selects interesting

stories related to viral Internet issues, science, and political news for an Internet
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audience. Users can read and share the most popular and interesting stories

on the Internet. The Digg2009 data set, collected by Hogg and Lerman (2012),

contains data on the stories promoted to Digg’s front page based on users’ votes in

one month in 2009. The data are available at https://www.isi.edu/~lerman/

downloads/digg2009.html. This data set is anonymized and has the voting

records for 3,553 different stories during that month. The voting record for each

story contains the ID of the voter and the time stamp of the vote. In addition,

the data set contains links of the voters and the time stamp of the formation of

the link. Here, a link from node i to node j means user i is a fan/follower of user

j.

We consider users’ votes for the most voted story (which is story 714) as

the feature of interest. This feature is represented by a binary random variable

yi,t, where yi,t = 1 means user i voted for story 714 before time t, and yi,t = 0

otherwise. Because the original network has a large number of nodes, we consider

a subset of the network by choosing the node that made the first vote for story

714, and then selecting the nodes directly following this node at the time when

the first vote for story 714 was made. This subnetwork has 1,408 nodes.

For the selected subnetwork, a total of 304 votes were made for story 714.

After the first vote at 17:42:46 on June 25, 2009, there were 169 votes before

21:00:00 of the same day. This fast increase of votes was probably not due to

social influence. Furthermore, there were only 12 votes after June 26, 2009, and

we believe social influence was very weak by that time. Therefore, the time

interval of interest is from 21:00:00 of June 25, 2009 (t1), to 00:00:00 of June

27, 2009 (t10), during which the number of votes increased from 169 to 292. We

divided this interval into 10 time steps, and the gap between two neighboring

time steps is three hours. The network structure also changed slightly during the

selected time interval. The subnetwork at time t1 is shown in Figure 3.

We applied our sequential hypothesis test to determine the degrees of in-

fluence for the voting behavior for story 714. We tested H0 : DOI = D − 1

vs. H1 : DOI ≥ D for D = 1, 2, and 3, yielding the test statistics W equal to

4.02, 28.80, and 56.40, respectively, which are all larger than the critical value

χ2
0.95(1) = 3.841. Thus, the null hypothesis H0 for all three tests is rejected.

Then, we continued to test: H0 : DOI = 3 vs. H1 : DOI ≥ 4, and the test statis-

tic W = 0.87 is smaller than the critical value. Thus, the null hypothesis H0

cannot be rejected, and we report the degrees of influence as three. This shows

that users’ voting behavior in Digg network can be influenced by their directly

connected neighbors, their neighbors’ neighbors, and their third-degree alters.

Note that there are many length-four paths in the subnetwork. On average, each

https://www.isi.edu/~lerman/downloads/digg2009.html
https://www.isi.edu/~lerman/downloads/digg2009.html
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Figure 3. Digg network at time t1.

individual has more than 50 fourth-degree alters that can potentially influence

this individual. Thus, the fact that we cannot reject H0 : DOI = 3 is not because

there are not enough length-four paths.

8. Conclusion

We have presented a longitudinal influence model for dynamic networks with

various degrees of influence. We have proposed a sequential testing procedure

for determining the degrees of influence in dynamic networks. We also provide a

theoretical justification for our proposed test, and show that the power of the test

goes to one as the network size goes to infinity. Our proposed test performs well

in simulation studies and real-data analyses. The sequential testing procedure

may involve multiple tests, but because the degrees of influence is usually small

(often no more than three), we need only perform the test a few times in most

cases. Therefore, we do not consider the issue with multiple tests in this study.

The proposed longitudinal model and sequential test for dynamic networks

are quite different to the testing procedure for static networks (Christakis and

Fowler (2013); Su (2019)). It would be of interest to consider extensions of the

method proposed by Su (2019) to dynamic networks, and to compare the per-

formance with the approach presented here. A related topic is predicting how

a certain opinion/behavior spreads in a network, and how individuals’ behavior

changes in the future based on social influence. Missing values in individuals’

status or missing edges between individuals is quite common in real data. Devel-
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oping methods to deal with missing data is also very useful in practice. Another

interesting problem is to test whether social influence decreases as social distance

increases. This is beyond the scope of this study and is left to future work.
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Appendix

A. Proof of Thereom 1

Part (a):

For testing: H0 : DOI = D − 1 v.s. H1 : DOI ≥ D, the test statistic is

β̂2D/Σ̂(β̂D) in (4.5), where β̂D is the estimate based on the generalized estimating

equations and Σ̂(β̂D) is the sandwich estimator for the variance of β̂D. Under

H0, the longitudinal influence model is:

yi,t+1 ∼ Bernoulli(pi,t+1),

logit(pi,t+1) = γ + β0yi,t +

D∑
d=1

βdx
d
i,t,

where βD = 0.

By the property of generalized estimating equations (Liang and Zeger (1986)),

β̂D is a consistent estimator for βD and

√
nβ̂D

d−→ N(0, V (β)D+2,D+2),

where V (β)D+2,D+2 = limn→∞nVn(β)D+2,D+2 and Vn(β) = H1(β)−1H2(β)H1(β)−1

(Liang and Zeger (1986)). Thus,

β̂2D
V (β)D+2,D+2/n

=
nβ̂2D

V (β)D+2,D+2

d−→ χ2(1).

Given nΣ̂(β̂D) is a consistent estimator for V (β)D+2,D+2 (Liang and Zeger (1986))

and by Slutsky’s theorem, we have

W =
β̂2D

Σ̂(β̂D)
=

nβ̂2D
nΣ̂(β̂D)

=
nβ̂2D

V (β)D+2,D+2

V (β)D+2,D+2

nΣ̂(β̂D)

d−→ χ2(1).
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Since c∗ = χ2
1−α(1), we have:

P (W > c∗ | DOI = D − 1) −→ α.

Part (b):

Under H1, the longitudinal influence model is:

yi,t+1 ∼ Bernoulli(pi,t+1),

logit(pi,t+1) = γ + β0yi,t +

D∗∑
d=1

βdx
d
i,t,

where βD 6= 0 for 1 ≤ D ≤ D∗.
By the property of generalized estimating equations (Liang and Zeger (1986)),

β̂D is a consistent estimator for βD and

√
n(β̂D − βD)

d−→ N(0, V (β)D+2,D+2),

where V (β)D+2,D+2 = limn→∞nVn(β)D+2,D+2 and Vn(β) = H1(β)−1H2(β)

H1(β)−1 (Liang and Zeger (1986)). Also nΣ̂(β̂D) is a consistent estimator for

V (β)D+2,D+2 (Liang and Zeger (1986)).

Since β̂D is a consistent estimator for βD, we have β̂D
p−→ βD. So β̂2D

p−→
β2D > 0. Note that V (β) is a covariance matrix, so V (β)D+2,D+2 is a finite positive

number. Since nΣ̂(β̂D) is a consistent estimator of V (β)D+2,D+2, we have

nΣ̂(β̂D)
p−→ V (β)D+2,D+2,

so Σ̂(β̂D)
p−→ 0. Since β̂2D

p−→ β2D > 0, we have W = β̂2D/Σ̂(β̂D)
p−→ ∞. This

shows P (W > c∗ | DOI ≥ D)
p−→ 1, where c∗ = χ2

1−α(1).
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