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S1 Lemmas

We first introduce some notation. For a matrix B, we denote the Frobenius
norm of B by ||B||r = tr(B"B)"/? and the spectral norm of B by ||B||,, =
max|x|j,=1 ||Bx||2. If B is symmetric, we use B > 0 when B is positive

semi-definite.

S1.1 Proof of Lemma 1

We first state a result from Fang, Kotz, and Ng | (1990, Section 3.1), which
shows some properties of uniform distribution on the surface of an unit

sphere.

Lemma S1. Let uy = (uy1,...,u1p)  be a random vector uniformly dis-



Changyu Liu, Xingqiu Zhao and Jian Huang

tributed on the unit sphere in RP. Then w satisfies E(w) = 0,Var(w) =

%Ip. ForVj # k, E(uj;) = m, E(uijui,) = m. And for any nonneg-
ative integers qu, ..., gy, withm = Y, q;, the mized moments E(I_juf)) =

0 if at least one q; is odd.
Proof of Lemma 1. From the definition of r1, u; and Lemma [S1], we have
E(z)) = E(riu;) = E(r)E(u;) =0,
Var(z,) = Var(E(zi|r)) + E(Var(zi|r))) = E(r?Var(u,)) = L.
By definition that z; = (211, ..., 21,) | = r1u;, we have, for Vi # j,
E(Zi') = E(ﬁ“i’) =3+ O(pfl)a E(Z%izfj) = E(T%U%iu%j) =1+ O(pfl).
Hence, we have
Z1TZ1 ?:1 E(zi) + Zz’;&j E(ziz%]) Z1TZ1

)= - E(

p? P

Var( )?=0(p),

and complete the proof. O

S1.2 Auxiliary lemmas

We first present a result of asymptotic normality of quadratic form that

was discussed by |[Bhansali, Giraitis, and Kokoszka | (2007).

Lemma S2. Consider a general quadratic form

n

-
Qn = Anzzg ZiQijZj,

3,j=1
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where z; are i.i.d. variables with E(z;) = 0 and Var(z;) = 1, and a;; are

entries of a symmetric matriz A,,.

(1) If E(z}) < oo and ‘|‘|‘jz|||“;f’ — 0, then

Var(Qu)™2(Qu — E(Qn)) S N(0,1).

(2) If \52ke = 0, E(z2Y) < oo (for some 6 > 0), and Y0, a2 =
o(||Au|%), then

1 D
——(Q, — E(Q,)) = N(0,1).
VAl Al )
Lemma S3 (Woodbury’s formula). Suppose G is an n x n nonsingular

matriz, U and V are n x k matrices, with n > k. If the matriz (I +

V' G U) is invertible, we have
(G+UVH'=G@'-G'UL+V'cg'U)'vVIig

Suppose w and v are vectors. Define H = uv' and g = tr(HG™").

g # —1, we have

1
-1 _ (1 _ -lga!.
(G+H) =G = G 'HG

We then depict some results about sample covariance matrix in high di-
mensions. The first is the celebrated work of [Marcenko and Pastur | (1967)),
which is named the M-P law by some authors. The second is concerned

with the extreme eigenvalues from [Bai and Yin | (1993, Theorem 2).
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Lemma S4. Let X = (z;;) € R¥™ be a matriz of i.i.d. entries with zero
mean and unit variance. Define S, = %XXT. Suppose the eigenvalues
of S, are \;, j = 1,...,k, the empirical spectral distribution (ESD) of
the matriz S, is defined as F5 = %Z?:l 1y <oy If E(zf)) < o0, as

(n, k) — oo with relationship k/n — p € (0,1), we have

(1) F5 tends to the standard M-P law with probability 1, where the stan-

dard M-P law F,(x) has a density function

SV(b—2)(r—a), ifa<z<),

2map
pplz) =

0, otherwise,
where a = (1 — /p)? and b= (1 + /p)*.

(2) The extreme eigenvalues of S, satisfy

Mma(8n) = (14 y/p)? 5.,

and

Amin(Sn) = (1 = /p)? a.s..

Lemma S5. Let X = (@, ..., x,) be a random matriz with x; i.i.d. from
N(0, I,,). As (k,n) — oo with relationship k/n — p € (0,1), we have
(1) X(I-P)X" and T are independent, where 1 = (1,....,1)T, P, = 1117

-1 n
and =~ " .
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(2) E((-=5=) S, @, — 2)?) = o(1), where S,_; = - Z;:ll z;jz], and

n—1 1—p .7 4
L ((%‘T(XXT)A% - P)Z) =o(1), «/ (XX")'a; < ma a.s..
Proof. (1) We first define an orthogonal matrix O by
1 n—1
w 00 —
- | L V2 1
O = (017 70n) = NG 0 V3 (1)
L4 1 1 1
Vn V2 V6 n(n—1)
L L A 1
| Vvn V2 NG n(n—1) |

Let V = XO with the ith column denoted as v;. Then the design of

orthogonal matrix O implies XX = XO0'X" = 37 v;v], v; =

vnx and X(I-P;)X' = Y7, v;v/. To study the properties of v;, the
random matrix X is divided by rows and denoted as (ry,...,r;)" with
k independent N(0,1,,) variables. It follows that v; = (ry,...,t%) " 0
and is distributed as A'(0,1;). Let C"7 = (C;{)’;lzl = Cov(v;, v;), for

t # j. Then we have

ng = E(r] o/ 0;) — E(r]0;)E(r/ 0;) =0, s #1,

Ci = E(r]ox)0;) — BE(rl0)E(r]0;) = E(0/r,r)0;) = 0,5 = 1, ...k,

s

which indicates v; and v; are independent. This is sufficient to show

that X(I — P;)X" and X are independent.
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(2) From the direct calculation, the standard M-P law F,(z) in Lemma

satisfies

1 b
/;de(x) _/a 2wx2p

27

Qf(l—l—p—i-z
w/2

1
-~ 2mp

1

Vi

4pcos? 0

x)(z — a)dz

s \/4p — 2%dz (with z = 1 + p + 2)

- 2mp
1

—7/2

(1+p+2,/psinf)?
—2\/ﬁ0089

/2

- 2mp

We first study the asymptotic behavior of —XTS 1Xp-

1+p+2,/psind

1
2mp
1

w/2 1

—x/2 L+ csind

/2

—2/psiné

df (with z = 2,/psin )

w/2
+f .
/2 —x2 L+ p+2/psinb

df (with ¢ = 2,/p(1 + p)~*

1

do
27p J_r 2 cos? (1 + tan? & + 2ctan &)

+ L /1 2 dt (with ¢ =t 9)
W1 = tan —
o2p ) 1+ 12+ 2ct 2
1 2 tan t+c )1
—_— arctan
2p 1 -2 VAT

1

mality of x;, Lemma [S4] and the above calculation, we have

1
n—

x, St

1 n n—

B(

1Xn‘Sn—1) =

k tr(S;1)

n—1

-1

1

n
__k / . p
T n—-1J =z 1—p

k
dFSrt —

From nor-

, @.S.,

)

<1)
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1 2 _
Var(n_l xS %,[Sho1) = ( _1)2157" ((S:1)?)
2k 1
0
= 1 (S 0
Therefore,
E( e x,) = E(E( L st x S ))—>L
n_lnnln n_lnnlnnl 1_p’
Var( x, 8.1 x,) = 0.
n_

These lead to the first result,

n—1

E(( L T8, — LV) 0.

From Lemma [S3] we have

X (2 o X% ) 1%

1 + XT(Z]#TL ij;!—)ilxn
1

x, (XX") %, =

TSn 1Xn

1 —|— —XTSn Xn

Let f(z) = 2. Its derivative f (z) = <1, for z > 0. From

14z (1+:1:)

xS, ! x, > 0 and the mean value theorem, we get

T T % Tg-1 P
which implies
1
T T\— Tq-1 2
E((xn(XX ) 1Xn—p)2) SE((n_lann 1 "_Tp) ) —0
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1

1 Tq-! -1 1T
Furthermore, from X, 8, 1 %Xn < Apin(Snc1) X, X, —

= min e
a.s., we obtain
x, (XX ") !x, < ;, a.s.,
1+ (1—/p)
and complete the proof.
O

Lemma S6. Let X = (x,...,x,) be a random matriz with x; i.i.d. from
N(0, I,). The matriz H is defined as H = (I—Pl)XT(X(I—Pl)XT)_lX(I—
P,) and has its entries denoted by H;;. As (k,n) — oo with k/n — p €
(0,1), we have

max B |(H —p)’| >0,

i=1,...n

Proof. From Lemma [S5|, we get

E((nx" (XA -P)X ) 'z — ﬁf) —0, (S1.1)
-T —1_ 2 _ —1_ 1

E((nx XXk —p) ) — 0,nx (XX 'x < (1=’ a.s., (S1.2)

E((x{ (XX")'x1 — p)?) — 0. (S1.3)

The proof proceeds in two steps. First, we study x, (X(I — Pl)XT)_lxl
and show that it converges to p in quadratic mean. Second, we divide
H;; into three parts and investigate them separately. Then we reach the
statement in the lemma and complete the proof.

In the first step, we would show x| (XX ")~!x; is a well approximation



S1. LEMMAS

to x; (X(I-P1)X") “'x; and then the convergence is guaranteed by (S1.3).

Lemma [S3| and (S1.2)) imply

(XIT-P)X) = (XXT) 4 —— (XX ) axx (XX )

14+g

where g = —nx (XX ") 'x > — A= o7 @ is lower-bounded. Then, we

(- \[

have

X (XTI -P)XT) "% — x| (XXT) x|

1
= — x| (XX nxx"(XXT)!
1+yg

n
1+g
2 1

T T
= m[ﬁ(xl (XX7) ;Xl (XX ") ™'x))?].

——(x (XX) %)

Based on ([S1.3)), the expectation of the first part in the sum goes to 0. Then
we show the second part +(3 i1 x| (XX T)~'x;)? would also converge to 0
in the first mean. Define Ay; =, ;. xpx; and Sy ; = 25 A, ;. We have
XX = A, J+ X1X1 + X;X; . From Lemma

TA-1
X, AT X,

_ 1 31,5X;
x| (XX ")y = ==,

where Dy ; = (1+x{ Ajix1)(1+x] A7 Jx;) — (x] Ay jx;)? > 1. Then,

TA-1
1 T Ty— 1 x1 Al X;

(xIA;}xjf
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For any j # ¢ # 1, we have

p AN g OTALR? o XA ALXe | X AAL
D%j D3, Dy ;D1 D12Dy 3
Therefore,
1 —1_ 32 -1 (XTA71X2)2 —1)(n—-2 xd ATIATIx
BT (XT) o)) = BB ) o) p R it
(S1.4)
Lemma |S4] asserts the first part in (S1.4) converges to 0 by
(x] Ay 5x0)? TA-1. 12 k tr(Sy5)”
( D%Q ) < ((Xl 1.2X2) ) (n—2)? ( L )

Next, we study the second part and show it would also go to 0. Let A3 =
28#12’3 xsx;r, Si23 = ﬁALQ,g. Then, g3 = x;Aié’ng > 0 and Lemma

gives the relationship

1
1 -1 T A1
- A1,2,3X3X3 A1,2,3-
14 g3

From calculations and Lemma we have

E(x; (Al55)°xs) =0, B((x; (A7}5)%3)%|A123) =

_ _ 1 _ _
E(X;Alé,sxi’») =0, E((X;A1,5,3X3>2|A1,2,3) = (n— 3)2757"((81 %,3)2) =0(n 1)7
2
TA-L 2 < (xTA-L TA-L e .
(%, 1,2,3X3) < (xy 1,2,3X2)(X3 1,2,3X3) = (1- \/ﬁ)4 a.s.,
k(n —2 g
(n —2)x] (A]} )%z < kn=2) - (Sros) 22 < P 45,

(n —3)2"min Eo— (11— p)*

).
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These give two upper bounds

-1
(x;A1,2,3X3)2

1,2,3%3) 2
Y i) o, P
g * )
—=D15D13 (1—/p)*
T —1 2 T -1 2
i X9 (A1,2,3) X2 X3 (A1,2,3) X3
(n 2>( 1+g2 1+g3 ) 2p a.s
D12 D1 s T 1=y
Then, we can get
1+ (<] Aj 5 5%x3)°
2 T/A—1 \2 (I1+g2)(1+g3) \2
(n—2) E(<X2 <A1,2,3) X3— DD ) ) — 0,
12013
(n — 2) (L Aisalxe | I (ALbes)
T A —1 1+g2 1493 2
E((XQ A1,2,3X3 " . oD ) ) — 0.
g 1213
These together show
p[n=De-2) xJA;éAI,éXS]
n Di12D1 3
14+ (xg AT 3 3x3)2
- E —x] (ATL )2 (1+g2)(1+g3)
[(n )Xg( 1,2,3) X3 ﬁDI,QDl,B ]
x;(Aiéy3)2x2 x;(Ai;y‘g)zx‘g
— E[xTA_l X3 (n — 2)( 1+g2 1+g3 )]
2123 %D1!2D173

— 0.

Hence, from (S1.4), we derive E(£(3 ., x{(XX")™'x;)?) — 0. This

together with an upper-bound inferred from (S1.3)) and (S1.2)) leads to
E[(x{ (X(I-P)X") "% —x{ (XX")"'%x)*] = 0.
And then (S1.3) further shows

E[(x{ (X(I-P)X")"'x; — p)’] = 0. (S1.5)
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For any i € {1,...,n}, we divide H;; into three parts

H; = (xi — %) (X(I-P)X") ' (x; — %)

—xT(X(IT-P)X) 'z —2x] (X(I-P)X") 'x

+x; (XA -P)X") 'x;.

Based on and (SI.5), we obtain
E[(Hi - p)’] = B[((x; = %) (XA =P)X") ' (x; = %) = p)’]
= E[((x1 =) (XTI = P)X") ' (x1 = %) = )]
< E[3(x{ (XTI -P)X")'x; — p)* +3(x"(X(I - P)X ") 'x)

+12(x] (XT - P)XT)'%)7]

Therefore,

max E[(H; — p)?] — 0,
which completes the proof. O]
Lemma S7. Let z,...,2, be i.i.d. m-variate random wvectors satisfying

E(z) = 0,Var(z) = I, and Var(%) = O(m™Y). Suppose matriz A
is uniformly distributed on the Stiefel manifold Vy(R™) = {A € R™F .

AT A = L} and is independent of z;. Let Z = (z,...,2,) and

H=(I-P)ZA(ATZ (I- P))ZA) ' ATZ (I- P)).
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As n,k,m — oo, with k/n — p € (0,1) and m sufficiently larger than n,

we have

where H;; denote the ith diagonal entries of H.

Proof. Let UAO" be the singular value decomposition (SVD) of Z, where
U is an n x n orthogonal matrix, O is an m x m orthogonal matrix, and
A = (D, 0) with D = diag(dy,...,d,). Let O, be the matrix consisting of

first n columns of O, then Z can be denoted as
Z = UDO,. (S1.6)

In the first step, we study the properties of the entries of D. Based on

(S1.6), we have

1 1
— 77" = —UD*U".
m m

This indicates the diagonal entries of %Dz are the eigenvalues of %ZZT,

then
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From the properties of z;, we have

oG ) Se{ 5 £ {5)]

Therefore, from Markov’s inequality, for any ¢ > 0,
d' 2 d2 2
P<{ max (— — 1) >ty < P{ max (—Z — 1) >t <Om*m ),
i=1,...mn \ /M =1,..mn \ M
(S1.7)

which shows the eigenvalues of %ZZT are close to 1 when m is sufficiently

larger than n.

Let X = (I-P;)UO, A and Z = (I- P;) U220, A. Since the hat
matrix for Z and (I — Py) ZA are the same, the hat matrix for Z and X
are denoted as

1

H=7 (ZTZ)_1 z', S=X(X'X)"'X",

where H is the target matrix of the lemma. Let S;; denote the ith diagonal
entry of the matrix S. We will show H;; and S;; are close. Let e; denote
the vector with 1 in the ith coordinate and 0’s elsewhere. Define 4!* =

(XTX)_1 X "e;. Based on the least square, then Als satisfies

Als = argmin|| (I — Py)e; — X~ {; (51.8)

~YERF
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ST\ -1
Similarly, define 9l = (ZTZ) ZTei. Then, it satisfies

n° = argmin|| (I - Py)e; — Zn‘ ’2 (51.9)

nERk
Based on (S1.8) and (S1.9), we have

| (@T-Py)e; — Zn¥

)

L<||@—P))e — 24"

‘ 2
2

= [ (= Py)e; = XA + (X - 2)47]],

<(lla-Pye - x5

2
L)

(S1.10)

L+ (X =2)4r

and

|(T—Pi)e, — XA°|2 < || (T —P1)e; — Xaf

)

| 2
2

= H I-Pi)e, —Zn* + (Z _X)ﬁll'st

L) -

(S1.11)

< (H (I-Py)e; — Zn)*

L+ @ - X)i

To study (S1.10) and (S1.11)), we first investigate the values of H(X —

Z)47[], and [|(Z = X)nf*

|,- From Theorem 2.2.1 in (Chikuse | (2003),

matrix A can be expressed as A = G (GTG)71/2, where the elements

of m x k matrix G are i.i.d. from N(0,1). Let E = O'G. Then

OJA = E(G'G) "’ From Lemma [S11] for any h; > 0 and hy > 0,
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the independence between A and Z leads to
1
P {/\max (—ETE) > (1++k/n+ hl)ﬂ < exp (—nhi/2),
n
1
P [)\min (—ETE) <(1—=+k/n— h2)2:| < exp (—nh%/?) :
n

(S1.12)

For any matrix M, SVD shows the nonzero eigenvalues of M' M and MM "

are the same. Therefore, with k£ < n, it indicates Ay, (ETUT (I—Pl)UE) =
T TD 1717 D T D?

Amin (E E) and Apin (E \/_EU (I — Pl)U\/—mE) = Amin (E EE) Based

on the property Apax(M™M) = Ay (MM ") and (S1.12) , we have

max( (X'X)'AT0,0]A(X"X)'X")

Anax (E(ETUT (1~ P,)UE) 'E7)
] (S1.13)
Amin(LE'UT(I-P;)UE)
_ A+ VE/n+ )
T (L= k/n— hy)?

< Amax (lE E)

n

and

Mo (2(2'2)'AT0,0]A(2'2)7'2")
Amax (E (ET%UT (I- Pl)U\/mE)_l ET>

. (S1.14)

Amin (E' 22U (I-P,)U2E)
1 (1+ +/k/n+ hy)?
S 2 :
)\min(%) (1 Y, k/n - h2)2

with probability at least 1 —exp (—nh?/2)—exp (—nh3/2). Based on (S1.7),
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(S1.13]) and (S1.14)), upper bounds can be derived as follows.

(X = 2)30 13 = |1~ PYUT - —=)OTA(XX) "X e

i

< max. j%)?\yo;A(xTx)—leeiH;
(]— + \/k:/n+h1)2

<t

(L= /k/n—h)?

(S1.15)

and
1z = X)at [ = || (=P U~ 2)0TA(Z'2) 2 e
< s, (1 7Y 1101A (2 2) 7 el |

< max (1= 1 (bbb
ST i () (0= R

-----

< t 1+\/k/n+h1
(1=V1)?2 (1 —\/k/n—hy)?

(S1.16)

with probability at least 1 — O(n*m™'t™!) — exp (—nh?/2) — exp (—nh3/2).

Combining (S1.10), (ST.11), (S1.15) and (ST.16), with hy = n~'/4, hy =

n—1/4

and t = n~¢ where c is a positive constant, we have

k/n +n-t/4

—/k/n — n—1/4"

| 3 1+ k/n+mn~Y/4
2 pe/2 -1 1—\/k/_n—n*1/4

with probability at least 1—O(n?**m~')—2exp (—n'/?/2). Since || (I — Py) e;—

(1= Py)e; - Zil 2 4 3nel . L

\g”a—Pg%—X%S

|(T—Pi)e; — XAE| < || @ Py)e; — ZA®

n°ll3 =e/ (I-Pi)e;—Hy and [[(T-Py)e; = X47[[3 =/ (I-P1)e;
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Si;, and the above derivation is valid for any e;, we obtain

H. _§.| < 3 14+ +/k/n+n1/4
i L
1—+/k/n—n

with probability at least 1 — O(n?**m™") — 2exp (—n'/?/2). When n — oo

=1,...,n,

and n***m~1 = o(1), there is a constant C' > 12:1\2[)!5 such that

i=1...,n
According to the definitions of X and A, the hat matrix S can be

denoted as
S= (I-P,)UO/G(G'0,U"(I-P,)UOJG) 'G'O,U" (I-P,),

where UO, is independent of G and satisfies UO, O, U" =1I,,. From the
definition of G, Lemma [S6| and the dominated convergence theorem, we
obtain

E

> (s - p)Ql 0.

=1

SRS

Then, £ >~ | (S;i—p)? = 0,(1) can be derived based on Markov’s inequality.

Combining this with (S1.17) and Slutsky’s theorem, it shows

1 < 1 <
EZ (H; —0)2 = ﬁz (Hii — S + Sii —0)2
i=1 i=1

2 o 2
= Z (H;; — Sii)2 +o Z (Sii — P)2
i=1 i=1

< max 2(H; — Sm;)Z + % Z (Sii — 0)2

i=1...,n
=1

= Op(1>7
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which completes the proof. O]

Conditional on A"z, Theorem 2.1 in |Steinberger and Leeb | (2018)
showed that the mean of z is approximately linear in Az under certain

conditions. Based on this result, we derived the following lemma.

Lemma S8. Suppose m-variate random vector z = (z1,...,%y,)" has a
Lebesque density f, and satisfies E(z) = 0 and E(zz") = I,,. For all
1 =1,...,m, the components z; are independent and the moments satisfy
E(z}°) < C for some constant C. And all the marginal densities of the
components of z are bounded by a constant D > 1. Suppose matriz A
is uniformly distributed on the Stiefel manifold Vy(R™) = {A € R™F .
ATA = I,}. Let vy denote the uniform distribution on Vi(R™). Let
Zi,...,2, be the i.i.d. copies of z and A be independent of z;. For any
nonzero vector b € R™, as n — oo, with k/n — p € (0,1) and m suf-

ficiently larger than n, there is a series of Borel set F,, C Vi(R™) such

that

sup P <Z (BE(b"z|ATz)—bTAAT2)" > ||b||§> = o(1),
A€F, i1

sup P <% Z ‘Va'r(szi]ATzi) —b' (I, — AAT)b| > 5Hb|]§) = o(1),
i=1

AeF,

and Vp, 1 (F,) — 1.

Proof. Based on Example 3.1 and Theorem 2.1 given in Steinberger and
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Leeb | (2018), for each 7 € (0, 1), there is a Borel set F,, C Vi (R™) such

that

m~7/10 Yo 2%

sup P (||E(z|AT2) ~ AATZ]|, > 1) < T
sup P <HE<ZZT|ATZ) _ (I o AAT _|_AATZZTAAT)H S '[;> < m_T/IO N Yo 2k
Aef% m sp — t 1—7 logm’
for each ¢ > 0, and such that vy, x(FS) < ﬁzm*(T/lo)'(1*¥1§§i)7 where g
and 7, are constants. Therefore, when t = n~12, we have
P . E(z;]ATz;) — AATz|]> > 1
e (;” (#1A7s) — ATz, > )
< Z sup P (||E(z:i|ATz;) — AATz||, > 1) (S1.18)

—/ AcF,

2nk
< 032y /10 T2 21 7
1 —7logm

iggﬂ P (% ; HE [zizﬂATzi} — AATziziTAAT — (Im — AAT) ‘ |Sp > 1)

<> sup P (||E [52] [AT2] - AATz2] AAT - (1, — AAT)||, > t)

i—1 A€M
< 32710 4 2 2nk
N 1—7logm’
(S1.19)
and vy (FS) < sgm” OO0 ),

For each i, define r; = E(szi|ATzi) —b'AATz; and ¢ = b'z; —

E(b'z;|A"z;). Based on the definition of the conditional variance, we
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could derive

Var(q|ATz;)=b'E [zizﬂATzi} b-F [szi|ATzi}2 :
then
% Z ‘Var(qi\ATzi) —b" (L, — AAT)b’
i=1

- % > b {E [z2] |ATz)] - AATzz] AAT — (I, — AAT)} b —2bTAA Tz — 1]
=1

» 1 ¢ T
<|b|2 7 Y E [zz] |ATz] — AATzz] AAT — (1, — AAT)]|
i=1
" (bTAATZ)? | I -,
po S AR IS, L sn
J i=1 " i=1 vn i=1
(S1.20)
From the calculation,
Var {(07AATz)*} < (€7 +1)(bTAATH)”,
Markov’s inequality leads to
T A AT, N2 1/5 41
P (ZM > 2bTAATb> LSOt (S1.21)
— n n

According to Cauchy—Schwarz inequality,

12 = {E(b'z|ATz) - bTAATz}" <|[|b][; - ||E(2:]ATz) - AATz][;.
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Therefore, combining (S1.18])), (S1.19), (S1.20)) and (S1.21)), we can derive

b - TAT, Y WT(T T 2
EggnP<ﬁ;|Var(ql|A z;) —b' (L, — AA")b| >5||b||2>

" (b"AATz;)?
< P 2> ||b||3 P (b AA z,)] >2b"AAD
< sup (;n > |[bll2) + sup (; - )

A€cF,

+ sup P(% Z |E[ziz |ATz;] — AATz;z] AAT — (I, — AAT)] \sp > 1)
=1

< opdl2rio . 2 Ank 20

l1—71logm n

When m is sufficiently large such that n? = o(logm), as n — oo, we have

Sullm) P (er > HbH%) = o(1).
i=1

AcF,

and

AcF,

sup P (% Z }Var(qi\ATzi) —b" (L, — AAT)b’ > 5Hng) = o(1),
i=1

where v, ,(F,) — 1. The proof is completed. O

S1.3 Proof of Lemma 2

First we present a trace inequality (Lopes, Jacob, and Wainwright | 2011}

Lemma 2).

Lemma S9. If A and B are square matrices of the same size with A = 0

and B= B', then

Amin(B)tr(A) < tr(AB) < Anax(B)tr(A).
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Some results for Gaussian concentration inequalities will be introduced.
The following concentration bounds for Gaussian quadratic forms are given

in Bechar | (2009).

Lemma S10. Let A € RP*? with A = 0 and z~ N(0, I,). For anyt >0,

we have

P [zTAzz tr(A)+2HAHF\/¥+2HAHspt] < exp(—t), and

P [zTAz <tr(A) — 2]|A||F\/E] < exp(—t).

Davidson and Szarek | (2001, Theorem 2.13) gave an upper-bound and

a lower-bound on the extreme eigenvalues of Wishart matrices.

Lemma S11. For k < p, let P, € RP** be a random matriz with i.i.d.

N(0,1) entries. Then, for all t > 0, we have
P [)\max( PTPk (I1++k/p+1) } < exp(—pt?/2), and
1
P {)\min( P/ P)<(1-k/p— t)Q] < exp(—pt?/2).

As a restatement of partial proof in [Lopes, Jacob, and Wainwright

(2011, Lemma 5), we obtain an upper bound for tr(P, P}).

Lemma S12. For k < p, let P, € RP** be a random matriz with i.i.d.

N(0,1) entries. Suppose matriz 3 € RP*P satisfies X = 0. Then, as
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(k,p) = o0, for any constant C' > 1, we have
P [tr(P,XP;) < Cktr(Z)] — 1.

Proof. Let U'DU be a spectral decomposition of ¥. Then P,IEPk can
be written as (UP,) D(UPy). As UP}, has the same distribution as Py,
P, XP}, is distributed as P, DP}. In the following, we work under P, DP;..

Let &; be the ith column of Py, and Z" = (&, ...,&]). Then Z € RP*!
and is distributed as N(0,L,). Likewise, let D € RP**?* he a diagonal

matrix obtained by arranging k copies of D along the diagonal, i.e.

Consider the diagonal entries of P, DP,

k
tr(P{DPy) =Y ¢'D¢; = Z'DZ.

=1

Applying Lemma [S10[ to the quadratic form ZTDZ, and noting that L':?—'l‘jf

and % are at most 1, we get

tr(P;DPy) < tr(D) + 2||D|[rv/f + 2/ D[t
= ktr(D) + 2[[Dl[p/t1k + 2[|D||5pt1

2Vt 2t
< ktr(Z)(1 + v + 7)
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with probability at least 1 — exp(—ty).
Choose t; = v/k. The probability of the event tends to 1 as (k,p) — oo
with

NI

N

(1+ ) — 1.

Hence, for large k and any constant C' > 1, we can obtain (1+2‘/H+2%) <C

and complete the proof. O]

Proof of Lemma 2. Let U'DU be a spectral decomposition of ¥, where

D = diag(dy, ...,d,) and dy > dy > --- > d, > 0. From this decomposition,
Val[TT B — T Pin||} = n||VDUB — VDUP;|[3. (S1.22)

To cover general cases, we assume (3/||3||z distributed uniformly on the
unit sphere. Then, we work under the assumption 3/||8||, = 6/./p, where
d follows N(0,1,). In light of this, UB/||B]||2 and B/||3||2 have the same
distributions and then UB/||3||; is denoted by &/,/p for simplicity. For
the same reason, we denote UP,, as Py.

For the s given in Assumption 6, we let § = (8, ,8,_,)", where 8, €
R* and d,_, € RP™*. Correspondingly, D is divided into Dy and D,_;,

where D, = diag(dy,...,ds) and D, = diag(ds+1,....d,). Let Py =

(P;r,ka PT

o) With Py € R™* and P,_, ), € RP=9** We define 1y € R*
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as

ds

m:ﬂ{APMP&)K@.

Plugging no into (S1.22)), we have

. /0|08 —T"Pyn|3

min
neRk 18113

)
= mj vD— — vVDP;n||5
min V| 7 w2

neRrk

. d; 2 % _ 2
= min v/n (II\/E(% = Pon)llz + v/ Dy b Pp—s,m)||2)

d, Op—s
< \/EH V DS(% - Ps,kno)H% + \/ﬁH V Dp—5<% - Pp—S,kno)H%
5

O, _
= \/EH V Dp—S% - Dp—st—s,kP;r,k(Ps,szT,k) \/Z—ng
Op_s 10
< 2\/5” V Dp—s \p/]—) ||3 + 2\/5“ Dp—SPp—s,szT,k(Ps,kP;r,k) ! \/ﬁH%
=T+ Ts. (S1.23)

Next we show that ||3||37} and ||3||3T, both converge to 0 with probability
tending to 1.
In the first step, the concentration inequality for quadratic forms in

Lemma gives an upper bound on T}
2y/n
P|1i < 2 (1r(Dy) 4 2/AIID, -l + 201D, L) | = 1-exp(-u),

where hy is a positive real number that may vary with n. From Assumption
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6 and the properties of || - ||r and || - ||s, , we select hy = n? and get

2vlIBIL3
18137y < V=2 (17(Dy.) + 20/l Dyl + 201Dy 1)

< %tr(Dp_s) (1 +2y/hy + 2h1>

0.5+~ 2
_ 100 B (D)

p
(S1.24)
with probability at least 1 — exp(—n"?).
In the next step, Lemmas and give upper bounds by

kAmax (PspP )" = ! < L

max s,k sk >\mm<Ps’kkPST’k) - (1 . /S/]C _ k71/4)2’
tr(P)_, 1 DpsPps

( p—s,k kp p :k'> S 2tr(Dp,S)

with probability converging to 1. These inequalities together with Lemma

lead to
tr ((P&kPlk)’1PsykP;S,kDp,st,s7kPlk(Ps,kP;k)*l)

tr PT_S D —sP —S
< k‘)\max (P;k(Ps,kP;k)_2Ps,k) ( p—s,k kp D ,k)

tT(P;—s,kDP—SPP—&k)
k

(S1.25)
= k?)\max ((Ps,kP;r,k)_l)

2tr(D,y_s)

o=

with probability converging to 1. To study the randomness from d,, we

apply the same method in the first step of investigating ||3||37y with the
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help from upper bound in (S1.25|) and get

200" 7| B][3tr(Dy-s)
p(1 —\/s/k — k=1/4)2

with probability tending to 1.

1BIT; < = o(1) (S1.26)

Combining (51.23)), (S1.24) and (S1.26|), we have

min /n[|T'78 — TTPyn|f; = o(1)

neRk

with probability tending to 1 and complete the proof. O

S2 Proof of theorems

S2.1 Proof of Theorem 1

Under Hy, we have

€' Me

Il = P, —H e = 1= )

where M = (m;;) = % — %. The property that Hj, is idempotent

with rank k leads to tr(M) =0 and M'M = % + I(;fé:gé“ Therefore,

H I-P,—H
HMHip o /\maX(MTM) < )\max(k_zk> + Amax(m)

= s =0(n™1).
IMIE - r(M"M) 1+ 1
And we have
E(e"Me|M) = ¢*tr(M) = 0,
Var(e" MelM) = (4 — 30™) im?. + 204(1 + ;)
" ko n—k—1"

=1
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where the error term € = (ey,...,€,)" has E(e) = 0, Var(e;)) = o2, and
E(€}) = pns. When M is given, these together with Lemma [S2| imply

€' Me
v/ Var (e"Me|M)

25 N(0,1).

The randomness brought from M in fact does not influence the asymptotic

normality. From the law of total expectation, we have, for Va € R,

T T
€ Me §a):E(P( € Me
V/Var(e"Me|M) V/Var(e"Me|M)

P(

< alM)).

And the aforementioned result shows

( €' Me
V/Var(e"Me|M)

< aM) — &(a).

Based on the dominated convergence theorem, we get

€' Me
02\/(% - 3) Z?:l m222 + 2(% + nfifl)

Let G, = Y"1, mi,. Next, we will show nG,, = op(1). From the definition,

n L( _ 2
Z 1 n
i=1 ; 1
k

2 p}2+{p—ﬁ< ~ L)
Z {n 1(1_%)}2 '

Let ¥, = P, XP;. From Lemma , we find the smallest eigenvalue of

2y N(0,1). (S2.1)

]%P;Pk is bounded away from 0 a.s., showing P, is of full column rank

with probability 1. Therefore, 3, is of full rank with probability 1. Define
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ﬁk = XPkEII/ % Since H,, is invariant to the full rank linear transform of

Uy, the hat matrix can be expressed as
~  ~T ~ ~ T
H, = U,(U] U, 'U] = 1-P,)UL(U, I1-P)U,)'U, 1~ Py).

From Assumption 1, I~Jk can be denoted by ZA, where A = I‘TPkE];l/2 is
an m X k matrix. From Section 2.4.2 in (Chikuse | (2003), matrix A is on
the Stiefel manifold V;,(R™) with probability 1, which demonstrates U} Uy,

is of full rank with probability 1. From Lemma and (S2.2), we obtain

nG, = op(1).
Assumption 3 implies 7 + —/— — p(11_p)’ as n — 0o. Therefore, (S2.1
leads to
™
€T D N(0,1).

o?y/2/np(1 — p)

In addition, from E(W) = o2, VaT(ET(I_fl_H’“)e) < “4_”41 — 0

and Markov’s inequality, we have

e (I-P,—Hye

2
=0° + 1).
n—k—1 Op()

Hence, under Hy,

T, —1
2/np(1 = p)

25 N(0, 1),

which completes the proof.
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S2.2 Proof of Theorem 2

First, we derive a decomposition of x; 3. Let £ = (P, XP;)"'P/X3. For

each i, define
ri = E(x T/B|kaz) iTPkéa 4q; —XTB E(x Tﬁ|Psz)

Then, we have x; 3 = x] P& + r; + ¢;, where ¢; satisfies E(ql-|P;Xi) = 0.
Let w? = 8788 — ¢"P.XP.£ and 7; = Var(q;|P.x;) — w?. According to

Lemma [S8| and the condition B"X83 = o(1), it shows

ZT? = 0p(1) and — Z 75| = 0p(1 (52.3)
i=1
when the event A € F), is satisfied, where Fj, is a series of sets that satisfy
Vmi(Fn) — 1, as n — 00, and A = TP (P} XP;) /2. The probability of
the event tends to 1, based on the randomness of Py.

Define a new error term e; = ¢; + ¢;. Let 0> = Var(e;). The model can

be denoted as
y=al+XP,.£+r+e, (52.4)

T, and e = (ey,...,e,)" with each elements of e sat-

where r = (rq,...,7,)
isfying E(e;) = 0, E(e;|Pix;) = 0, Var(e;]P.x;) = 02 + w? + 7, and

E(}|Plxi) = pa + 60°Var(¢|PLx;) + E(¢}|P.x;). For matrix M =
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(mij) = % — If_)lkjl’f, calculation shows

E(GTM8|XPk) = Zmim,
i=1
Var(e' Me|XP;,) = Zmi {E(eﬂXPk) — 3E(e]|XPy)?}
i=1
+2)  miE(e]|XPy) E(e}|XPy,)

i?j

=2(0? + w)tr(M™M) + g(M, X, €, Py),

7

where g(M, X, €, P.) = 3.1 my; { E(ef|[XPy) — 3E(ef[XPy)*} 42 3, mZ{(o*+
w?)(7; + 7j) + 7;7;}. For a constant a < 2/p(1 — p) and large n, M satisfies

[IM]||sp < a/n and |my;| = |e] Me;| < ||[M]]s,. Then, (52.3) leads to
VnE(e'Me|XPy) = o0,(1). (S2.5)

To investigate the conditional variance, based on (52.2)) and Lemma [S7], we

can derive
> m? {E(e]|XPy) — 3E(e}[XPy)*} <> m? {pu — 30" + E(¢/|XPy)} = 0,(n7").
i=1 i=1

In addition, Y7, m? = ¢/ MM 'e; < [[M]|2, < a?/n? and (52.3) lead to

nog no
S (0 4B+ 1) + iy} < 2ottt 2 Qi Ry
,J

Therefore, g(M, X, €, P) = 0,(n™!), from which we obtain

Var(e'Me|XP}) = 2(0? + w?)2tr(M"M) + 0,(n1). (52.6)
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According to tr(M'M) = + + ——. (52.5), (S2.6) and the condition

k/n — p, Lemma |S2| shows

[n0(1=P) s TMe — 1
r o Me - o) 2y N(0, 1). (S2.7)
(0% +w?)y/1 + 0,(1)

To investigate the numerator of the test statistic, (S2.3|) shows that r

satisfies

1 1
—1'Er < —=r'r = o0,(n"?), (52.8)

v v

for any n xn idempotent matrix E. Based on Jensen’s inequality, the fourth

moment of ¢; satisfies F(q}) < 16 E{(x; 3)*}. According to

m m

E{(x{B)'} = Y (LTB)IE() +3) (LB B)IE(=2)),

i=1 i#£j

and Var(q;) < w? < BTX0, the condition B'X3 = o(1) leads to E(q}) =

o(1) and

|B(ef)—mal aB'SB8 =0(1), B{r?} < B(g})+w" < c(B"38)* = o(1),

(52.9)
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for a constant ¢;. In addition, the calculation shows

(CURB) oo {Z (Lomoiy H
szﬁﬁ = o(1),

o (R )
S B() | A ) T VE) + 25\ B

(n—l—k;)2 n—1—k (n—1—k)?

Var {E (eT(In__Pll_ Hy)e }XPk>} Var (i g ;I_)ll ~ ki TZ-)

3 (I-P, —H, -,
) (57))
< —(n—f— k)Z;E(TIQ):

Consequently, Markov’s inequality leads to

e'(I-P,—H,e

> = 0%+ w? + 0,(1).

This combines with (S2.8) shows

(e+r) (I-P;—Hy)(e+r)

_ 22
S =0°+ w4+ 0,(1). (52.10)

Next, we study " YreTpIXT(I — P)XP,E. From Assumption 1, we
have

n—1

NG

E {igTP{XT(I — Pl)XPkg} = £'P.XPE (S2.11)

NG
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and the fourth moment of x| P& satisfies

m

E{(x/Pi&)'} =Y (TTP&)IE(x) +3) (TP} (T TPLE)IE(=A1,).
i=1 i#j

Based on §'P, XP.¢ = B'EP,(P.EP,) P, X8 < BTE8 = o(1), we

have

1
Var <%gpgxm - P1>XPk§) < E{(x/ Pré)"}+2(£ P ZPE)” = o(1).
From Markov’s inequality and k/n — p , we have
n n
%_gTPZXT(I —P)XP.¢ = %gTszPkg + 0,(1). (S2.12)

To investigate */TﬁéTPgXT(I—Pl)e, the condition 3" X8 = o(1), (S2.9)

and lead to
1 2
E { (WgTPgXT (I- Pl)e> }
1 2
E { <ﬁ§TP£XT (I- Pl)e> ]XPk}

=1 =

=F

< (P +A)E {%eTszTa - Pﬁxms}

(NS emeFme)

< (0 +W)ETPIEPE + \/EBTZﬂJ E {% Zn: (Xz‘TPkﬁ)4}

i=1

= o(1).
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Therefore, Markov’s inequality and k/n — p demonstrate

%gTP;XT(I —P)e =o,(1).

This combines with (52.8) and (S2.12)) implies

g&TPgXT(I —Py)(e+r)=o0,(1). (S2.13)

Based on the new expression (S2.4), together with (52.8), (S2.10]),
(S2.12)) and (S2.13)), we have

T,—1 2 k

k

np(1—p) {sTszT(I—PnXPks 4 2TRIXTA-P(en) | (o4 1) TM(e +r)}

2ol =) SRR

VAT (LETPIEPLE + e Me) + 0,(1)

0% +w? +0,(1)

Define 67 = 0> + B'E8 — £"P] ZP.£. From (S2.7), the asymptotic power

function of the proposed test T,, is

T, -1
2/[np(1 = p)]
n(l—p) &P, ZPE

2p 62

U(8; Py) = P( > Za)

) +o(1),

= P(—z, +

which completes the proof.
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S2.3 Proof of Theorem 3

Recall the definitions of projection matrices.

1
P, =-11",

R
n
Px, = I -P)X (X[ (I-P)X) X/ 1I-Py),
Hy, = I-P)WW' (I-P)W)'W'(I-P,),
where W = (X, X5Py,). Under Hy, 0, we have

GT(Hk2 — le)e/k’g

Ty = i
P2 €T (I—-Py—Hy,e/(n—1—p; — ky)
Define M = (m;;) = —2-2% — =75k - From Span{(I — P1)X;} C

Span{(I — P;)W} and properties of projection matrices, we have

Px, H,, = H;,Px, = Px,.

Hence, tr(M) = 0, M'M = Hka_%P)q + (nI—_lp—lp_ll—{I:;)z’ and
H;,—Px I-P,—H;
HMng _ /\max(MTM> < )\max( ng 1) + )\max((n—l—pl—kip) _ O(ﬂ—l)
||1\/IH%7 tT(MTM) B é + n—l—;—kz
For given M, we have
E(e"Me|M) = o*tr(M) = 0,
T . 4 2 4
Var(e MelM) = (s ~30) Y+ 20" (-4 = ).

=1

Then, Lemma [S2 leads to

€' Me

V/Var(e"Me|M) — NO.D.
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This together with the law of total expectation and the dominated conver-

gence theorem shows

e Me e Me
r (\/Var(eTMdM) = a) =P [P (\/Var(eTMe\M) = a\l\/[)] — 2a),

for Va € R. Therefore,
.
M
£ re 25 N(0,1).
o B =310 m2 + 20 + o)

When n) " m% = 0,(1), Assumption S3 and Slutsky’s lemma demon-

strate
-
M
c e 24 N(0,1). (S2.14)

o2\/2(1 = p1)/npa(1 = p1 — p2)

Let G, =Y 1, mZ. Next, we will verify nG,, = 0,(1). From the definition,

(Hiy)ii—(Px)ie 1=+ —(Hpy)u
my = —2 5 e — n—l—pling . Then
n n 1 p1 p1tka p ) 2
1 <1 T n 7)((sz)m — ) (le)zz -
i i=1 n n n n n

(S2.15)

B %)2/<k2(1 _ % — b %))2 and hy = n?/k3. Based on
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Consequently, we only need to consider the sum parts in (52.15)). From the

definition,
I
W = (X, X,P;,) = ZT'" =S 7TV,

where Z = (24, ...,2,) " and V is a full column rank matrix with probability
1. Define ¥y = V V. The matrix X, is of full rank with probability
1, then TTVE, "% is well defined on the Stiefel manifold V,, .4, (R™). Let

W, = WE];l/2 = ZFTVE;UZ. The hat matrix Hy, can be denoted as
H;, = (I-P) )W, (W (I-P)W,)'W/(I-P,).

According to Lemma and the condition (p; +k2)/n — p1+ p2, we obtain

n

Let Ry = ZI‘lEl_ll/z. The hat matrix Px, can be denoted as
Px, = 1-P)R;(R/I-P,))R)) 'R/ (I-P)).
Based on Lemma [S7 and the condition p;/n — p1, we obtain

LS (e -2} = a0

Therefore, nG,, = 0,(1) is verified, and then (S2.14)) is demonstrated.
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To study the denominator of 7, ,,, calculation shows

. {eT(I P, - H,@)e} . [E {eT(I P - Hk2)6|Hk2H e

n—1-=p1—ke n—1—p —ky
T1-P,-H e I-P,—H
Var ( £ ( ! w)e) _ E{ Var ( L kz ‘HkQ =o(1).
n—1—p — ko n—1—p —
From Markov’s inequality, we have
e (I-P;—Hy,)e 5
= 1).
n_l_pl_kQ U+0p()
Combining this with (52.14)), we obtain
Thp, — 1
22 25 N(0,1),

V2(1 = p1)/nps(1 — p1 — p2)

which completes the proof.

S2.4 Proof of Theorem 4

Define V = diag(I,,, Py,). The matrix is a full column rank matrix with
probability 1, and W = XV, with the ith row w; = V'x;. Let v =
(V'SV)~'V'TT, B,. For each i, define

r,=F (X;;/BQ‘VTXi) — XZTV")’, ¢ = X;Z-IBQ —F (XQTZ-B2|VTX,~) .
Then, a decomposition of xJ;,3, can be derived, given as x,8; = W, v +
ri + g Let w? = B 808, — vV EVy and 7, = Var(q|V'x) — w2

According to Lemma [S§ and the condition B, 39532 = 0(1), we have

Zr = 0,(1) and \/_|7'Z’ = 0,(1), (52.16)
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when the event A € F), is satisfied, where A = TTV(V'ZV)~/2 and F, is
a series of sets that satisfy vy, (p,+k,)(Fn) — 1, as n — oo. The probability
of the event tends to 1, based on the randomness of Py, .

Define a new error term e; = ¢; + ¢;. Let o denote the variance of ;.

The model can be expressed as

y=al+X;8;+ W~y +r+e, (52.17)

T, and e = (eq,...,e,)" with each elements of e

where r = (r1,...,7,)
satisfying E(e;) = 0, E(e|V'x;) = 0, Var(e;|V'x;) = 02 + w? + 75, and

E(e![Vx) = pa+602Var( V' x)+E(q![V'x;). Define M = S5 —

I-P,—H . . T
i The matrix satisfies tr(M) = 0, tr(MM') = 3= + ———-,
and [|[M][2, < % + m. Based on the condition p;/n — p; and

ks /m — pa, then for large n, there is a constant a < 2/ps(1 — p1 — p2) such

that |[M]|s, < a/n. With a similar proof method in Appendix [S2.2} we can

nP2(1*P1*P2)eTMe — 0 (1)
V. 2= L Py N(0,1). (92.18)

(02 4+ w?)\/1+0,(1)

derive

The condition By X982 = o(1) leads to E(q}) = o(1) as well as

|E(e})—pal < 185 TaaBa = 0(1), E{77} < E(g})+w" < 1(8; Ta2B2)” = o(1),

(S2.19)
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for a constant ¢;, from which we could obtain

(e+1)"I-P;—Hy,)(r+e)

=0 +w? 1). 2.2
R E— o+ w” +0,y(1) (52.20)

Let Vy = (¢],&, )" with & € RP* and &, € RP2. Define 12 = &, (Xg —

¥ 2 215)&,. Then

V=6, (T'V(VIEV) 'VIT —T[S/T1) T, 8 < B, (00— 0121 T12) B2 = o(1).
To investigate v W' (I — P, — Px, )W+, the term could be denoted as

~TWTH(I - P, — Px,)Wx

=¢'Z (1-P)Zp— ¢ Z"(1-P)ZI] (112" (1-P,)ZI]) T1Z"(1 - P,)Z¢

where ¢ = (I-T'] X 'T1 )T & and ¢ ¢ = v?> = o(1). From the calculation

1 n—1
E{—¢p'Z2"1-P))Z }_ V2,
{Jrozra-pize) -

1
Var {%qNZT(I - Pl)ng} < 6v* = o(1)
Markov’s inequality implies,
1
NZD

From a similar derivation method for (S2.20)), we obtain

¢'Z"(1—P)Z¢o = /nv* + o,(1).

1

NG

Therefore,

¢'Z"(1-P,)ZT] (TWZT (1-P)ZT] ) 'T1Z" (1-P,)Z¢ = %u2+op(1).

1 n—n
ﬁfyTWT(I — P, — Px, )W~ = T V2 + 0,(1). (S2.21)
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To study v' W' (I — P, — Px,)(e +r), (52.16) and (S2.21) lead to

"™WII-P, —Px,)r|<VrT \/ ~ATWT(I - P, — Px, )W~ = 0,(1).

o

the condition By 9532 = o(1), (S2.19) and (S2.21]) lead to

E { (%JWT(I -P, - le)e)Q} =E|E { (%JWT(I —P, - le)e)2 }WH

< (cs+o*+ w2)ﬁ;222,32

= o(1),

where c3 is a constant. Therefore, we obtain

ifyTWT(I — P, —Px,)(e+r1) =0,(1). (S2.22)

vn

From the new expression (52.17)), together with (S2.16)), (52.20), (52.21))

and ([S2.22)), we have

npa (1 ~TWT (I-P;—Px, )(W~+2e+2r) T
Top, — 1 _ p22(1 ppll = { T +(r+e) M(r+ e)}
V201 = p1)/npa(1 = p1 — p2) (rre) T (P Hy,)(rte)

n—1—p1—ks

np2(l—p1— 1—
Pzé(lfgl)pz) {( pzpl)VQ +eTMe} +0p(1)

02 +w? 4 0,(1)

Define 77 = 0% 4+ w?. Then, v* and 7 can also be calculated as follows. Let

= (VIEV)'VTE8 and V5 = (€], €))7, where &, € R”* and &, € Rz,
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Then,

V2 =BT, (TTV(VISV) 'V T —T%;/'T,) T} 8,
=8’ T (C'V(V'EV)'WWVT-T/s'T) T8
= €] (D93 — 157! T10)Eo.

and

=0+ B] S~ 7 VIEVy =0 + 8756 -7V BV,

From ([52.18]), the asymptotic power function of the proposed test T, ,,
is

T,

n,p2 1

\/2(1 — p1)/np2(l = p1 — p2)

:(I)(_Za+\/n(l_pl_p2)(1_p1)y_z)+0(1)’

‘1121;2(,62;131@2) = P( > 24)

209 Ti;

which completes the proof.

S3 Simulations

In the second simulation study, we consider the problem of testing the

partial regression coefficient in the linear model
yi = o+ %101 + X9, 82 + €.

The covariate (x];,xJ,)" is generated from p + X/2z;. The setup is

almost the same as the first simulation study with differences lying in the
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design of B3;, B, and /2. Specifically, we generated X/ by

aUivD U] U, (vDy,0)U]

0 U,v/D,U,

where U; (U,) is an orthogonal matrix generated from the uniform distri-
bution on the p; X p; (p2 X pa) orthogonal group, the entries of diagonal
matrix Dy are from N(0,1,,) with absolute values taken and the entries of
diagonal matrix Dy are generated in the same way as the first simulation
study for the small tail eigenvalue requirement. We used an indicator R
for the different cases: (i) uncorrelated case (R = 0): ¢; = 1, o = 0; (ii)
correlated case (R =1): ¢; = ¢y = 1/\/5 Here, the values of ¢; and ¢y are
selected to ensure the variances of x;; and x9; keep unchanged in the two
cases. The regression coefficient B is generated from N(0,1,,) and B, is
randomly selected from the space generated by the first s columns of U,
with ||32||3 taking 0.1, 0.2, and 0.3. This selection is aimed for a better
display of the impact from the correlation on the power of the tests. For a
high-dimensional design, we chose (n, p1, p2) to be (400,40, 3960).

Figures[lal and [1b| display the kernel density estimation of the proposed
test statistics under Hy,, o, indicating that the asymptotic null distribution
of the proposed tests can be well approximated by the standard normal

distribution. Here, p takes the value 0.2. We show both the correlated
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and uncorrelated cases. The good resemblance to the normal distribution
confirms the theoretical results in Theorem 3.

Table (1] reports the empirical power and type-I error of the proposed
tests for the error term e distributed from A(0,1) and /3/5¢(5), based
on 2000 simulations. It can be observed that the performances of the three
proposed tests have negligible differences. The type-I errors of the proposed
tests are close to 0.05 and the power of the tests are increasing functions of
the norm ||B3s]]3. Compared with the correlated case, the tests show large
power when there is no correlation between x;; and x,;, which is consistent
with the feature in the asymptotic power in Theorem 4. Moreover, we find
the empirical power is close to the asymptotic power, which further confirms

the result in Theorem 4.

0.4- bos test 0.4- ~ test
\ 7N
/ N\ multi-RP p \ multi-RP
\ [ RP / \\ [JRp
0.3- i \ ‘" S-RP 03- W T SRp
J \ Std Normal / \ Std Normal
£ [ £ [\
£ 0.2 J \ £ 0.2 | \
8 f \ & \
f \ / \
| { \ ] / \
0.1 / \ 0.1 / \
// \ // \\
QL
0.0- — R 0.0- — T
25 0.0 25 5.0 5.0 25 0.0 255 5.(
(a) Norm z, norm e and R=0. (b) Norm z, norm € and R=1.

Figure 1: The kernel density estimation of RP,multi-RP, and S-RP tests under Hpg¢ 0.
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Table 1: Empirical power and type-I error of the RP, multi-RP, S-RP at the significance

level 0.05 when (n,p1,p2) = (400,40, 3960) and p = 0.2.

~ +/3/5t(5 ~ N(0,1
. R (|62 € ~ \/3/5t(5) e~ N(©O 1
2 RP multi-RP  S-RP RP multi-RP  S-RP

0 0.056  _0.059 0053 0063 0057 _ 0.060

01 0715 0729  0.717 0.704 0707  0.715

0 02 0981 0978 0979 0980 0982  0.980

0.3 0999 0998  0.999 1.000 0999  0.999

N(0,1) 0 0.063 0.060 0.064 0.063 _ 0.060 0.062
01 0533 0548  0.532 0.544 0532  0.545

1 02 0903 0897 0904 0898  0.900  0.904

0.3 098 0983 0985 0.992 0991  0.990

0 0.064  0.058 0060 0063  0.066  0.065

01 0716 0716  0.720 0.717 0711  0.722

0 02 0983 0981 0984 0981 0981  0.986

0.3  1.000  1.000  1.000 1.000  1.000  1.000

U(—V3,V3) 0 0.058  0.057 0056 0059  0.062  0.060
01 0533 0537 0539 0533 0542  0.542

I 02 0901 0895 0901 0905 0911  0.916

0.3 0991 0992 0991 0991 0992  0.993

In the third simulation, we conducted numerical comparison with the

LWT test and LDFF test proposed in Lan, Wang, and Tsai | (2014)) and |Lan]

(2016), respectively. The data are generated from y; = a +x, B+ ¢;,

where @ = 0 and ¢; is generated from A(0,1). The covariate x; follows a

latent factor structure in |Lan et al. | (]2()16[). Specifically, x; = vz; + vDX;,

where z; is a d-dimensional latent factor, v € RP*? is an associated factor

loadings, X; is a p-dimensional factor profiled predictor that is independent

of z;, and D is a diagonal matrix. From|Lan et al. |(2016), the factor profiled

predictor X; represents the information that is contained in x; but cannot be

fully explained by the low-dimensional latent factor z;. In the simulation,
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each element of z; and X; is independently generated from N(0,1), and
each entry of v € RP*? is independently generated from A(0,d~1). The
clements of v/D are generated in the same way as that in the first set of
simulation, when s = [n%?] and L = [n'5]. For the alternative hypothesis,
we considered 3 = ||B||28, where § = (6y,...,6,)" with §; = s71/2 for
J < s, and otherwise, §; = 0. The integer s takes values 5 and 50 to denote
different levels of sparsity, and the norm ||3]|3 = 0.04 and 0.08. In the
simulation, (n,p) = (300, 3000).

Table 2: Empirical power and type-I error of the multi-RP, RCV, LWT, and LDFF tests

at the significance level 0.05.

d 8 182 multi-RP LWT LDFF RCV
0 0.062 0.052  0.050  0.458

0.04 0.249 0.087 0.086  0.502

d—3 S=9% 0.8 0.532  0.116 0.118 0.544
0.04 0.735 0218 0216  0.787

s=30 0,08 0.984 0.409  0.388  0.951

0 0.052 0.071  0.069  0.843

0.04 0.295 0.183 0.181  0.917

d—5 S5=95  0.08 0.605 0.312  0.308  0.959
0.04 0.764 0.387 0.384 0.999

s=30 (08 0.987 0.698  0.681  1.000

As shown in Table 2] the type-I errors of the multi-RP, LWT and LDFF
tests are around 0.05, which indicates that the type-I error can be well con-
trolled at the nominal level by the tests. But for the RCV test, the type-I

errors are alarmingly larger than the given significance level, which indicates
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the test might not be applicable in this experimented setting, where the co-
variates have high correlations based on the latent factor structure. There-
fore, the comparison for the empirical powers is only considered among the
multi-RP test, LWT test and LDFF' test. Table [2 indicates that empirical
powers grow when ||3|]2 increases and the performances of the LWT and
LDFF tests are similar. The large empirical powers demonstrate that our
proposed test has superior performances in all the experimented alterna-
tives. Therefore, the simulation results demonstrate that our proposed test
is applicable in the highly correlated setting and has higher testing power

than the competing tests in some cases.
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