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S1 Lemmas

We first introduce some notation. For a matrix B, we denote the Frobenius

norm of B by ||B||F = tr(B⊤B)1/2 and the spectral norm of B by ||B||sp =

max||x||2=1 ||Bx||2. If B is symmetric, we use B ⪰ 0 when B is positive

semi-definite.

S1.1 Proof of Lemma 1

We first state a result from Fang, Kotz, and Ng (1990, Section 3.1), which

shows some properties of uniform distribution on the surface of an unit

sphere.

Lemma S1. Let u1 = (u11, ..., u1p)
⊤ be a random vector uniformly dis-
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tributed on the unit sphere in Rp. Then u1 satisfies E(u1) = 0, V ar(u1) =

1
p
Ip. For ∀j ̸= k, E(u4

1j) =
3

p(p+2)
, E(u2

1ju
2
1k) =

1
p(p+2)

. And for any nonneg-

ative integers q1, ..., qp, with m =
∑p

j=1 qj, the mixed moments E
(
Πp

j=1u
qj
1j

)
=

0 if at least one qj is odd.

Proof of Lemma 1. From the definition of r1, u1 and Lemma S1, we have

E(z1) = E(r1u1) = E(r1)E(u1) = 0,

V ar(z1) = V ar(E(z1|r1)) + E(V ar(z1|r1)) = E(r21V ar(u1)) = Ip.

By definition that z1 = (z11, ..., z1p)
⊤ = r1u1, we have, for ∀i ̸= j,

E(z41i) = E(r41u
4
1i) = 3 +O(p−1), E(z21iz

2
1j) = E(r41u

2
1iu

2
1j) = 1 +O(p−1).

Hence, we have

V ar(
z⊤1 z1
p

) =

∑p
i=1E(z41i) +

∑
i ̸=j E(z21iz

2
1j)

p2
− E(

z⊤1 z1
p

)2 = O(p−1),

and complete the proof.

S1.2 Auxiliary lemmas

We first present a result of asymptotic normality of quadratic form that

was discussed by Bhansali, Giraitis, and Kokoszka (2007).

Lemma S2. Consider a general quadratic form

Qn = z⊤Anz =
n∑

i,j=1

ziaijzj,
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where zi are i.i.d. variables with E(zi) = 0 and V ar(zi) = 1, and aij are

entries of a symmetric matrix An.

(1) If E(z4i ) < ∞ and ||An||sp
||An||F

→ 0, then

V ar(Qn)
−1/2

(
Qn − E(Qn)

) D→ N (0, 1).

(2) If ||An||sp
||An||F

→ 0, E(z2+δ
i ) < ∞ (for some δ > 0), and

∑n
i=1 a

2
ii =

o(||An||2F ), then

1√
2||An||F

(
Qn − E(Qn)

) D→ N (0, 1).

Lemma S3 (Woodbury’s formula). Suppose G is an n × n nonsingular

matrix, U and V are n × k matrices, with n > k. If the matrix (Ik +

V⊤G−1U) is invertible, we have

(G+UV⊤)−1 = G−1 −G−1U(Ik +V⊤G−1U)−1V⊤G−1.

Suppose u and v are vectors. Define H = uv⊤ and g = tr(HG−1). If

g ̸= −1, we have

(G+H)−1 = G−1 − 1

1 + g
G−1HG−1.

We then depict some results about sample covariance matrix in high di-

mensions. The first is the celebrated work of Marčenko and Pastur (1967),

which is named the M-P law by some authors. The second is concerned

with the extreme eigenvalues from Bai and Yin (1993, Theorem 2).
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Lemma S4. Let X = (xij) ∈ Rk×n be a matrix of i.i.d. entries with zero

mean and unit variance. Define Sn = 1
n
XX⊤. Suppose the eigenvalues

of Sn are λj, j = 1, . . . , k, the empirical spectral distribution (ESD) of

the matrix Sn is defined as F Sn = 1
k

∑k
j=1 1{λj≤x}. If E(x4

11) < ∞, as

(n, k) → ∞ with relationship k/n → ρ ∈ (0, 1), we have

(1) F Sn tends to the standard M-P law with probability 1, where the stan-

dard M-P law Fρ(x) has a density function

pρ(x) =


1

2πxρ

√
(b− x)(x− a), if a ≤ x ≤ b,

0, otherwise,

where a = (1−√
ρ)2 and b = (1 +

√
ρ)2.

(2) The extreme eigenvalues of Sn satisfy

λmax(Sn) → (1 +
√
ρ)2 a.s.,

and

λmin(Sn) → (1−√
ρ)2 a.s..

Lemma S5. Let X = (x1, ...,xn) be a random matrix with xi i.i.d. from

N (0, Ik). As (k, n) → ∞ with relationship k/n → ρ ∈ (0, 1), we have

(1) X(I−P1)X
⊤ and x̄ are independent, where 1 = (1, ..., 1)⊤, P1 =

1
n
11⊤

and x̄ = 1
n

∑n
i=1 xi.
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(2) E
(
( 1
n−1

x⊤
nS

−1
n−1xn − ρ

1−ρ
)2
)
= o(1), where Sn−1 =

1
n−1

∑n−1
j=1 xjx

⊤
j , and

E
(
(x⊤

i (XX⊤)−1xi − ρ)2
)
= o(1), x⊤

i (XX⊤)−1xi ≤ 1
1+(1−√

ρ)2
, a.s..

Proof. (1) We first define an orthogonal matrix O by

O = (o1, ...,on) =



1√
n

0 0 · · · −
√
n−1√
n

...
...

...
. . .

...

1√
n

0 −
√
2√
3

· · · 1√
n(n−1)

1√
n

− 1√
2

1√
6

· · · 1√
n(n−1)

1√
n

1√
2

1√
6

· · · 1√
n(n−1)


.

Let V = XO with the ith column denoted as vi. Then the design of

orthogonal matrix O implies XX⊤ = XOO⊤X⊤ =
∑n

i=1 viv
⊤
i , v1 =

√
nx̄ andX(I−P1)X

⊤ =
∑n

i=2 viv
⊤
i . To study the properties of vi, the

random matrix X is divided by rows and denoted as (r1, ..., rk)
⊤ with

k independent N (0, In) variables. It follows that vi = (r1, ..., rk)
⊤oi

and is distributed as N (0, Ik). Let C
i,j = (Ci,j

s,l )
k
s,l=1 = Cov(vi,vj), for

i ̸= j. Then we have

Ci,j
s,l = E(r⊤s oir

⊤
l oj)− E(r⊤s oi)E(r⊤l oj) = 0, s ̸= l,

Ci,j
s,s = E(r⊤s oir

⊤
s oj)− E(r⊤s oi)E(r⊤s oj) = E(o⊤

i rsr
⊤
s oj) = 0, s = 1, .., k,

which indicates vi and vj are independent. This is sufficient to show

that X(I−P1)X
⊤ and x̄ are independent.
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(2) From the direct calculation, the standard M-P law Fρ(x) in Lemma S4

satisfies

∫
1

x
dFρ(x) =

∫ b

a

1

2πx2ρ

√
(b− x)(x− a)dx

=
1

2πρ

∫ 2
√
ρ

−2
√
ρ

1

(1 + ρ+ z)2

√
4ρ− z2dz (with x = 1 + ρ+ z)

=
1

2πρ

∫ π/2

−π/2

4ρ cos2 θ

(1 + ρ+ 2
√
ρ sin θ)2

dθ (with z = 2
√
ρ sin θ)

=
1

2πρ

(
−2

√
ρ cos θ

1 + ρ+ 2
√
ρ sin θ

∣∣∣∣π/2
−π/2

+

∫ π/2

−π/2

−2
√
ρ sin θ

1 + ρ+ 2
√
ρ sin θ

dθ

)

= − 1

2ρ
+

1

2πρ

∫ π/2

−π/2

1

1 + c sin θ
dθ
(
with c = 2

√
ρ(1 + ρ)−1 < 1

)
= − 1

2ρ
+

1

2πρ

∫ π/2

−π/2

1

cos2 θ
2
(1 + tan2 θ

2
+ 2c tan θ

2
)
dθ

= − 1

2ρ
+

1

2πρ

∫ 1

−1

2

1 + t2 + 2ct
dt (with t = tan

θ

2
)

= − 1

2ρ
+

1

2πρ
· 2√

1− c2
arctan(

t+ c√
1− c2

)

∣∣∣∣1
−1

=
1

1− ρ
.

We first study the asymptotic behavior of 1
n−1

x⊤
nS

−1
n−1xn. From nor-

mality of xi, Lemma S4 and the above calculation, we have

E(
1

n− 1
x⊤
nS

−1
n−1xn|Sn−1) =

k

n− 1

tr(S−1
n−1)

k

=
k

n− 1

∫
1

x
dFSn−1 → ρ

1− ρ
, a.s.,
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V ar(
1

n− 1
x⊤
nS

−1
n−1xn|Sn−1) =

2

(n− 1)2
tr
(
(S−1

n−1)
2
)

≤ 2k

(n− 1)2
(

1

λmin(Sn−1)
)2 → 0, a.s..

Therefore,

E(
1

n− 1
x⊤
nS

−1
n−1xn) = E

(
E(

1

n− 1
x⊤
nS

−1
n−1xn|Sn−1)

)
→ ρ

1− ρ
,

V ar(
1

n− 1
x⊤
nS

−1
n−1xn) → 0.

These lead to the first result,

E

(
(

1

n− 1
x⊤
nS

−1
n−1xn −

ρ

1− ρ
)2
)

→ 0.

From Lemma S3, we have

x⊤
n (XX⊤)−1xn =

x⊤
n (
∑

j ̸=n xjx
⊤
j )

−1xn

1 + x⊤
n (
∑

j ̸=n xjx⊤
j )

−1xn

=
1

n−1
x⊤
nS

−1
n−1xn

1 + 1
n−1

x⊤
nS

−1
n−1xn

.

Let f(x) = x
1+x

. Its derivative f
′
(x) = 1

(1+x)2
≤ 1, for x ≥ 0. From

x⊤
nS

−1
n−1xn ≥ 0 and the mean value theorem, we get

∣∣x⊤
n (XX⊤)−1xn − ρ

∣∣ ≤ ∣∣ 1

n− 1
x⊤
nS

−1
n−1xn −

ρ

1− ρ

∣∣,
which implies

E
(
(x⊤

n (XX⊤)−1xn − ρ)2
)
≤ E

(
(

1

n− 1
x⊤
nS

−1
n−1xn −

ρ

1− ρ
)2
)
→ 0.
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Furthermore, from 1
n−1

x⊤
nS

−1
n−1xn ≤ λ−1

min(Sn−1)
1

n−1
x⊤
nxn → 1

(1−√
ρ)2

a.s., we obtain

x⊤
n (XX⊤)−1xn ≤ 1

1 + (1−√
ρ)2

, a.s.,

and complete the proof.

Lemma S6. Let X = (x1, ...,xn) be a random matrix with xi i.i.d. from

N (0, Ik). The matrixH is defined as H = (I−P1)X
⊤(X(I−P1)X

⊤)−1
X(I−

P1) and has its entries denoted by Hij. As (k, n) → ∞ with k/n → ρ ∈

(0, 1), we have

max
i=1,...,n

E
[(
Hii − ρ

)2]→ 0.

Proof. From Lemma S5, we get

E
(
(nx̄⊤(X(I−P1)X

⊤)−1x̄− ρ

1− ρ
)2
)
→ 0, (S1.1)

E
(
(nx̄⊤(XX⊤)−1x̄− ρ)2

)
→ 0, nx̄⊤(XX⊤)−1x̄ ≤ 1

1 + (1−√
ρ)2

, a.s., (S1.2)

E
(
(x⊤

1 (XX⊤)−1x1 − ρ)2
)
→ 0. (S1.3)

The proof proceeds in two steps. First, we study x⊤
1

(
X(I − P1)X

⊤)−1
x1

and show that it converges to ρ in quadratic mean. Second, we divide

Hii into three parts and investigate them separately. Then we reach the

statement in the lemma and complete the proof.

In the first step, we would show x⊤
1 (XX⊤)−1x1 is a well approximation
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to x⊤
1

(
X(I−P1)X

⊤)−1
x1 and then the convergence is guaranteed by (S1.3).

Lemma S3 and (S1.2) imply

(
X(I−P1)X

⊤)−1
= (XX⊤)−1 +

1

1 + g
(XX⊤)−1nx̄x̄⊤(XX⊤)−1,

where g = −nx̄⊤(XX⊤)−1x̄ ≥ − 1
1+(1−√

ρ)2
a.s. is lower-bounded. Then, we

have

∣∣x⊤
1

(
X(I−P1)X

⊤)−1
x1 − x⊤

1 (XX⊤)−1x1

∣∣
=

1

1 + g
x⊤
1 (XX⊤)−1nx̄x̄⊤(XX⊤)−1x1

=
n

1 + g
(x⊤

1 (XX⊤)−1x̄)2

≤ 2

1 + g

[ 1
n
(x⊤

1 (XX⊤)−1x1)
2 +

1

n
(
∑
j ̸=1

x⊤
1 (XX⊤)−1xj)

2
]
.

Based on (S1.3), the expectation of the first part in the sum goes to 0. Then

we show the second part 1
n
(
∑

j ̸=1 x
⊤
1 (XX⊤)−1xj)

2 would also converge to 0

in the first mean. Define A1,j =
∑

k ̸=1,j xkx
⊤
k and S1,j =

1
n−2

A1,j. We have

XX⊤ = A1,j + x1x
⊤
1 + xjx

⊤
j . From Lemma S3,

x⊤
1 (XX⊤)−1xj =

x⊤
1 A

−1
1,jxj

D1,j

,

where D1,j = (1 + x⊤
1 A

−1
1,jx1)(1 + x⊤

j A
−1
1,jxj)− (x⊤

1 A
−1
1,jxj)

2 ≥ 1. Then,

E
( 1
n
(
∑
j ̸=1

x⊤
1 (XX⊤)−1xj)

2) = E
( 1
n
(
∑
j ̸=1

x⊤
1 A

−1
1,jxj

D1,j
)2
)

=
∑
j ̸=1

E(
(x⊤

1 A
−1
1,jxj)

2

nD2
1,j

) +
∑

j ̸=ℓ̸=1

E(
x⊤
j A

−1
1,jA

−1
1,ℓxℓ

nD1,jD1,ℓ
).
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For any j ̸= ℓ ̸= 1, we have

E(
(x⊤

1 A
−1
1,jxj)

2

D2
1,j

) = E(
(x⊤

1 A
−1
1,2x2)

2

D2
1,2

) and E(
x⊤
j A

−1
1,jA

−1
1,ℓxℓ

D1,jD1,ℓ

) = E(
x⊤
2 A

−1
1,2A

−1
1,3x3

D1,2D1,3

).

Therefore,

E
( 1
n
(
∑
j ̸=1

x⊤
1 (XX⊤)−1xj)

2) =
n− 1

n
E(

(x⊤
1 A

−1
1,2x2)

2

D2
1,2

) +
(n− 1)(n− 2)

n
E(

x⊤
2 A

−1
1,2A

−1
1,3x3

D1,2D1,3
).

(S1.4)

Lemma S4 asserts the first part in (S1.4) converges to 0 by

E(
(x⊤

1 A
−1
1,2x2)

2

D2
1,2

) ≤ E
(
(x⊤

1 A
−1
1,2x2)

2
)
=

k

(n− 2)2
E(

tr(S−1
1,2)

2

k
) → 0.

Next, we study the second part and show it would also go to 0. Let A1,2,3 =∑
s̸=1,2,3 xsx

⊤
s , S1,2,3 = 1

n−3
A1,2,3. Then, g3 = x⊤

3 A
−1
1,2,3x3 ≥ 0 and Lemma

S3 gives the relationship

A−1
1,2 = A−1

1,2,3 −
1

1 + g3
A−1

1,2,3x3x
⊤
3 A

−1
1,2,3.

From calculations and Lemma S4, we have

E(x⊤
2 (A

−1
1,2,3)

2x3) = 0, E
(
(x⊤

2 (A
−1
1,2,3)

2x3)
2|A1,2,3

)
=

tr
(
(S−1

1,2,3)
4
)

(n− 3)4
= O(n−3),

E(x⊤
2 A

−1
1,2,3x3) = 0, E

(
(x⊤

2 A
−1
1,2,3x3)

2|A1,2,3

)
=

1

(n− 3)2
tr
(
(S−1

1,2,3)
2
)
= O(n−1),

(x⊤
2 A

−1
1,2,3x3)

2 ≤ (x⊤
2 A

−1
1,2,3x2)(x

⊤
3 A

−1
1,2,3x3) ≤

ρ2

(1−√
ρ)4

a.s.,

(n− 2)x⊤
2 (A

−1
1,2,3)

2x2 ≤
k(n− 2)

(n− 3)2
λ−2
min(S1,2,3)

x⊤
2 x2

k
≤ ρ

(1−√
ρ)4

a.s..
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These give two upper bounds

1 +
(x⊤

2 A−1
1,2,3x3)2

(1+g2)(1+g3)

n
n−1

D1,2D1,3

≤ 1 +
ρ2

(1−√
ρ)4

a.s.,

(n− 2)(
x⊤
2 (A−1

1,2,3)
2x2

1+g2
+

x⊤
3 (A−1

1,2,3)
2x3

1+g3
)

n
n−1

D1,2D1,3

≤ 2ρ

(1−√
ρ)4

a.s..

Then, we can get

(n− 2)2E
(
(x⊤

2 (A
−1
1,2,3)

2x3

1 +
(x⊤

2 A−1
1,2,3x3)2

(1+g2)(1+g3)

n
n−1

D1,2D1,3

)2
)
→ 0,

E
(
(x⊤

2 A
−1
1,2,3x3

(n− 2)(
x⊤
2 (A−1

1,2,3)
2x2

1+g2
+

x⊤
3 (A−1

1,2,3)
2x3

1+g3
)

n
n−1

D1,2D1,3

)2
)
→ 0.

These together show

E
[ (n− 1)(n− 2)

n

x⊤
2 A

−1
1,2A

−1
1,3x3

D1,2D1,3

]
= E

[
(n− 2)x⊤

2 (A
−1
1,2,3)

2x3

1 +
(x⊤

2 A−1
1,2,3x3)

2

(1+g2)(1+g3)
n

n−1
D1,2D1,3

]
− E

[
x⊤
2 A

−1
1,2,3x3

(n− 2)(
x⊤
2 (A−1

1,2,3)
2x2

1+g2
+

x⊤
3 (A−1

1,2,3)
2x3

1+g3
)

n
n−1

D1,2D1,3

]
→ 0.

Hence, from (S1.4), we derive E( 1
n
(
∑

j ̸=1 x
⊤
1 (XX⊤)−1xj)

2) → 0. This

together with an upper-bound inferred from (S1.3) and (S1.2) leads to

E
[
(x⊤

1 (X(I−P1)X
⊤)−1x1 − x⊤

1 (XX⊤)−1x1)
2
]
→ 0.

And then (S1.3) further shows

E
[
(x⊤

1 (X(I−P1)X
⊤)−1x1 − ρ)2

]
→ 0. (S1.5)
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For any i ∈ {1, . . . , n}, we divide Hii into three parts

Hii = (xi − x̄)⊤
(
X(I−P1)X

⊤)−1
(xi − x̄)

= x̄⊤(X(I−P1)X
⊤)−1

x̄− 2x⊤
i

(
X(I−P1)X

⊤)−1
x̄

+ x⊤
i

(
X(I−P1)X

⊤)−1
xi.

Based on (S1.1) and (S1.5), we obtain

E
[
(Hii − ρ)2

]
= E

[(
(xi − x̄)⊤(X(I−P1)X

⊤)−1(xi − x̄)− ρ
)2]

= E
[(
(x1 − x̄)⊤(X(I−P1)X

⊤)−1(x1 − x̄)− ρ
)2]

≤ E
[
3
(
x⊤
1 (X(I−P1)X

⊤)−1x1 − ρ
)2

+ 3
(
x̄⊤(X(I−P1)X

⊤)−1x̄
)2

+ 12
(
x⊤
1 (X(I−P1)X

⊤)−1x̄
)2]

= o(1).

Therefore,

max
i=1,...,n

E
[
(Hii − ρ)2

]
→ 0,

which completes the proof.

Lemma S7. Let z1, . . . , zn be i.i.d. m-variate random vectors satisfying

E(zi) = 0, V ar(zi) = Im and V ar(
z⊤i zi
m

) = O(m−1). Suppose matrix A

is uniformly distributed on the Stiefel manifold Vk(Rm) = {A ∈ Rm×k :

A⊤A = Ik} and is independent of zi. Let Z = (z1, . . . , zn)
⊤ and

H = (I−P1)ZA
(
A⊤Z⊤(I−P1)ZA

)−1
A⊤Z⊤(I−P1).
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As n, k,m → ∞, with k/n → ρ ∈ (0, 1) and m sufficiently larger than n,

we have

1

n

n∑
i=1

(
Hii − ρ

)2
= op(1),

where Hii denote the ith diagonal entries of H.

Proof. Let UΛO⊤ be the singular value decomposition (SVD) of Z, where

U is an n × n orthogonal matrix, O is an m ×m orthogonal matrix, and

Λ = (D,0) with D = diag(d1, . . . , dn). Let On be the matrix consisting of

first n columns of O, then Z can be denoted as

Z = UDO⊤
n . (S1.6)

In the first step, we study the properties of the entries of D. Based on

(S1.6), we have

1

m
ZZ⊤ =

1

m
UD2U⊤.

This indicates the diagonal entries of 1
m
D2 are the eigenvalues of 1

m
ZZ⊤,

then

max
i=1,...,n

(
d2i
m

− 1

)2

= λmax

{(
1

m
ZZ⊤ − I

)2
}

≤ tr

{(
1

m
ZZ⊤ − I

)2
}
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From the properties of zi, we have

E

{
tr

[(
1

m
ZZ⊤ − I

)2
]}

=
n∑

i=1

E

{(
z⊤i zi
m

− 1

)2
}

+
n∑

i ̸=j

E

{(
z⊤i zj
m

)2
}

= nV ar

(
z⊤1 z1
m

)
+

n2 − n

m

= O(n2m−1).

Therefore, from Markov’s inequality, for any t > 0,

P

{
max

i=1,...,n

(
di√
m

− 1

)2

> t

}
≤ P

{
max

i=1,...,n

(
d2i
m

− 1

)2

> t

}
≤ O(n2m−1t−1),

(S1.7)

which shows the eigenvalues of 1
m
ZZ⊤ are close to 1 when m is sufficiently

larger than n.

Let X = (I−P1)UO⊤
nA and Z̃ = (I−P1)U

D√
m
O⊤

nA. Since the hat

matrix for Z̃ and (I−P1)ZA are the same, the hat matrix for Z̃ and X

are denoted as

H = Z̃
(
Z̃

⊤
Z̃
)−1

Z̃
⊤
, S = X

(
X⊤X

)−1
X⊤,

where H is the target matrix of the lemma. Let Sii denote the ith diagonal

entry of the matrix S. We will show Hii and Sii are close. Let ei denote

the vector with 1 in the ith coordinate and 0’s elsewhere. Define γ̂ ls
i =(

X⊤X
)−1

X⊤ei. Based on the least square, then γ̂ ls
i satisfies

γ̂ ls
i = argmin

γ∈Rk

∣∣∣∣ (I−P1) ei −Xγ
∣∣∣∣2
2
. (S1.8)
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Similarly, define η̂ls
i =

(
Z̃

⊤
Z̃
)−1

Z̃
⊤
ei. Then, it satisfies

η̂ls
i = argmin

η∈Rk

∣∣∣∣ (I−P1) ei − Z̃η
∣∣∣∣2
2
. (S1.9)

Based on (S1.8) and (S1.9), we have

∣∣∣∣ (I−P1) ei − Z̃η̂ls
i

∣∣∣∣2
2
≤
∣∣∣∣ (I−P1) ei − Z̃γ̂ ls

i

∣∣∣∣2
2

=
∣∣∣∣ (I−P1) ei −Xγ̂ ls

i +
(
X− Z̃

)
γ̂ ls
i

∣∣∣∣2
2

≤
(∣∣∣∣ (I−P1) ei −Xγ̂ ls

i

∣∣∣∣
2
+
∣∣∣∣(X− Z̃

)
γ̂ ls
i

∣∣∣∣
2

)2
,

(S1.10)

and

∣∣∣∣ (I−P1) ei −Xγ̂ ls
i

∣∣∣∣2
2
≤
∣∣∣∣ (I−P1) ei −Xη̂ls

i

∣∣∣∣2
2

=
∣∣∣∣ (I−P1) ei − Z̃η̂ls

i +
(
Z̃−X

)
η̂ls
i

∣∣∣∣2
2

≤
(∣∣∣∣ (I−P1) ei − Z̃η̂ls

i

∣∣∣∣
2
+
∣∣∣∣(Z̃−X

)
η̂ls
i

∣∣∣∣
2

)2
.

(S1.11)

To study (S1.10) and (S1.11), we first investigate the values of
∣∣∣∣(X −

Z̃
)
γ̂ ls
i

∣∣∣∣
2
and

∣∣∣∣(Z̃ − X
)
η̂ls
i

∣∣∣∣
2
. From Theorem 2.2.1 in Chikuse (2003),

matrix A can be expressed as A = G
(
G⊤G

)−1/2
, where the elements

of m × k matrix G are i.i.d. from N (0, 1). Let E = O⊤
nG. Then

O⊤
nA = E

(
G⊤G

)−1/2
. From Lemma S11, for any h1 > 0 and h2 > 0,



Changyu Liu, Xingqiu Zhao and Jian Huang

the independence between A and Z leads to

P

[
λmax

(
1

n
E⊤E

)
≥ (1 +

√
k/n+ h1)

2

]
≤ exp

(
−nh2

1/2
)
,

P

[
λmin

(
1

n
E⊤E

)
≤ (1−

√
k/n− h2)

2

]
≤ exp

(
−nh2

2/2
)
.

(S1.12)

For any matrix M, SVD shows the nonzero eigenvalues of M⊤M and MM⊤

are the same. Therefore, with k < n, it indicates λmin

(
E⊤U⊤(I−P1

)
UE

)
=

λmin

(
E⊤E

)
and λmin

(
E⊤ D√

m
U⊤(I − P1

)
U D√

m
E
)
= λmin

(
E⊤D2

m
E
)
. Based

on the property λmax(M
⊤M) = λmax(MM⊤) and (S1.12) , we have

λmax

(
X
(
X⊤X

)−1
A⊤OnO

⊤
nA
(
X⊤X

)−1
X⊤
)

= λmax

(
E
(
E⊤U⊤(I−P1

)
UE

)−1
E⊤
)

≤ λmax

( 1
n
E⊤E

) 1

λmin

(
1
n
E⊤U⊤(I−P1

)
UE

)
≤

(1 +
√
k/n+ h1)

2

(1−
√

k/n− h2)2
,

(S1.13)

and

λmax

(
Z̃
(
Z̃

⊤
Z̃
)−1

A⊤OnO
⊤
nA
(
Z̃

⊤
Z̃
)−1

Z̃
⊤)

= λmax

(
E

(
E⊤ D√

m
U⊤(I−P1

)
U

D√
m
E

)−1

E⊤

)

≤ λmax

( 1
n
E⊤E

) 1

λmin

(
1
n
E⊤ D√

m
U⊤(I−P1

)
U D√

m
E
)

≤ 1

λmin

(
D2

m

) · (1 +√k/n+ h1)
2

(1−
√

k/n− h2)2

(S1.14)

with probability at least 1−exp (−nh2
1/2)−exp (−nh2

2/2). Based on (S1.7),
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(S1.13) and (S1.14), upper bounds can be derived as follows.

∣∣∣∣(X− Z̃
)
γ̂ ls
i

∣∣∣∣2
2
=
∣∣∣∣(I−P1

)
U
(
I− D√

m

)
O⊤

nA
(
X⊤X

)−1
X⊤ei

∣∣∣∣2
2

≤ max
i=1,...,n

(
1− di√

m

)2∣∣∣∣O⊤
nA
(
X⊤X

)−1
X⊤ei

∣∣∣∣2
2

≤ t ·
(1 +

√
k/n+ h1)

2

(1−
√

k/n− h2)2

(S1.15)

and

∣∣∣∣(Z̃−X
)
η̂ls
i

∣∣∣∣2
2
=
∣∣∣∣(I−P1

)
U
(
I− D√

m

)
O⊤

nA
(
Z̃

⊤
Z̃
)−1

Z̃
⊤
ei
∣∣∣∣2
2

≤ max
i=1,...,n

(
1− di√

m

)2∣∣∣∣O⊤
nA
(
Z̃

⊤
Z̃
)−1

Z̃
⊤
ei
∣∣∣∣2
2

≤ max
i=1,...,n

(
1− di√

m

)2 · 1

min
i=1,...,n

(d2i
m

) · (1 +√k/n+ h1)
2

(1−
√
k/n− h2)2

≤ t

(1−
√
t)2

·
(1 +

√
k/n+ h1)

2

(1−
√

k/n− h2)2
,

(S1.16)

with probability at least 1−O(n2m−1t−1)− exp (−nh2
1/2)− exp (−nh2

2/2).

Combining (S1.10), (S1.11), (S1.15) and (S1.16), with h1 = n−1/4, h2 =

n−1/4 and t = n−c, where c is a positive constant, we have

∣∣∣∣ (I−P1) ei − Z̃η̂ls
i

∣∣∣∣2
2
≤
∣∣∣∣ (I−P1) ei −Xγ̂ ls

i

∣∣∣∣2
2
+ 3n−c/2 ·

1 +
√

k/n+ n−1/4

1−
√

k/n− n−1/4
,

∣∣∣∣ (I−P1) ei −Xγ̂ ls
i

∣∣∣∣2
2
≤
∣∣∣∣ (I−P1) ei − Z̃η̂ls

i

∣∣∣∣2
2
+

3

nc/2 − 1
·
1 +

√
k/n+ n−1/4

1−
√
k/n− n−1/4

with probability at least 1−O(n2+cm−1)−2 exp
(
−n1/2/2

)
. Since || (I−P1) ei−

Z̃η̂ls
i ||22 = e⊤i (I−P1) ei−Hii and || (I−P1) ei−Xγ̂ ls

i ||22 = e⊤i (I−P1) ei−
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Sii, and the above derivation is valid for any ei, we obtain

|Hii − Sii| ≤
3

nc/2 − 1
·
1 +

√
k/n+ n−1/4

1−
√

k/n− n−1/4
, i = 1, . . . , n,

with probability at least 1−O(n2+cm−1)− 2 exp
(
−n1/2/2

)
. When n → ∞

and n2+cm−1 = o(1), there is a constant C ≥ 12+12
√
ρ

1−√
ρ

such that

P

[
max
i=1...,n

|Hii − Sii| ≥ Cn−c/2

]
= o(1). (S1.17)

According to the definitions of X and A, the hat matrix S can be

denoted as

S =
(
I−P1

)
UO⊤

nG
(
G⊤OnU

⊤(I−P1

)
UO⊤

nG
)−1

G⊤OnU
⊤(I−P1

)
,

where UO⊤
n is independent of G and satisfies UO⊤

nOnU
⊤ = In. From the

definition of G, Lemma S6 and the dominated convergence theorem, we

obtain

E

[
1

n

n∑
i=1

(
Sii − ρ

)2]→ 0.

Then, 1
n

∑n
i=1(Sii−ρ)2 = op(1) can be derived based on Markov’s inequality.

Combining this with (S1.17) and Slutsky’s theorem, it shows

1

n

n∑
i=1

(
Hii − ρ

)2
=

1

n

n∑
i=1

(
Hii − Sii + Sii − ρ

)2
≤ 2

n

n∑
i=1

(
Hii − Sii

)2
+

2

n

n∑
i=1

(
Sii − ρ

)2
≤ max

i=1...,n
2
(
Hii − Sii

)2
+

2

n

n∑
i=1

(
Sii − ρ

)2
= op(1),
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which completes the proof.

Conditional on A⊤z, Theorem 2.1 in Steinberger and Leeb (2018)

showed that the mean of z is approximately linear in A⊤z under certain

conditions. Based on this result, we derived the following lemma.

Lemma S8. Suppose m-variate random vector z = (z1, . . . , zm)
⊤ has a

Lebesgue density fz and satisfies E(z) = 0 and E(zz⊤) = Im. For all

i = 1, . . . ,m, the components zi are independent and the moments satisfy

E(z20i ) ≤ C for some constant C. And all the marginal densities of the

components of z are bounded by a constant D ≥ 1. Suppose matrix A

is uniformly distributed on the Stiefel manifold Vk(Rm) = {A ∈ Rm×k :

A⊤A = Ik}. Let νm,k denote the uniform distribution on Vk(Rm). Let

z1, . . . , zn be the i.i.d. copies of z and A be independent of zi. For any

nonzero vector b ∈ Rm, as n → ∞, with k/n → ρ ∈ (0, 1) and m suf-

ficiently larger than n, there is a series of Borel set Fn ⊆ Vk(Rm) such

that

sup
A∈Fn

P

(
n∑

i=1

(
E(b⊤zi|A⊤zi)− b⊤AA⊤zi

)2
> ||b||22

)
= o(1),

sup
A∈Fn

P

(
1√
n

n∑
i=1

∣∣V ar
(
b⊤zi|A⊤zi)− b⊤

(
Im −AA⊤)b∣∣ > 5||b||22

)
= o(1),

and νm,k(Fn) → 1.

Proof. Based on Example 3.1 and Theorem 2.1 given in Steinberger and
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Leeb (2018), for each τ ∈ (0, 1), there is a Borel set Fn ⊆ Vk(Rm) such

that

sup
A∈Fn

P
(∣∣∣∣E(z|A⊤z

)
−AA⊤z

∣∣∣∣
2
> t
)
≤ m−τ/10

t
+

γ2
1− τ

2k

logm
,

sup
A∈Fn

P
(∣∣∣∣E(zz⊤|A⊤z

)
−
(
Im −AA⊤ +AA⊤zz⊤AA⊤)∣∣∣∣

sp
> t
)
≤ m−τ/10

t
+

γ2
1− τ

2k

logm
,

for each t > 0, and such that νm,k(F
c
n) ≤ κ2m

−(τ/10)·(1− γ2
τ

10k
logm

), where κ2

and γ2 are constants. Therefore, when t = n−1/2, we have

sup
A∈Fn

P

(
n∑

i=1

∣∣∣∣E(zi|A⊤zi
)
−AA⊤zi

∣∣∣∣2
2
> 1

)

≤
n∑

i=1

sup
A∈Fn

P
(∣∣∣∣E(zi|A⊤zi

)
−AA⊤zi

∣∣∣∣
2
> t
)

≤ n3/2m−τ/10 +
γ2

1− τ

2nk

logm
,

(S1.18)

sup
A∈Fn

P

(
1√
n

n∑
i=1

∣∣∣∣E [ziz⊤i ∣∣A⊤zi
]
−AA⊤ziz

⊤
i AA⊤ −

(
Im −AA⊤)∣∣∣∣

sp
> 1

)

≤
n∑

i=1

sup
A∈Fn

P
(∣∣∣∣E [ziz⊤i ∣∣A⊤zi

]
−AA⊤ziz

⊤
i AA⊤ −

(
Im −AA⊤)∣∣∣∣

sp
> t
)

≤ n3/2m−τ/10 +
γ2

1− τ

2nk

logm
,

(S1.19)

and νm,k(F
c
n) ≤ κ2m

−(τ/10)·(1− γ2
τ

10k
logm

).

For each i, define ri = E(b⊤zi|A⊤zi) − b⊤AA⊤zi and qi = b⊤zi −

E(b⊤zi|A⊤zi). Based on the definition of the conditional variance, we
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could derive

V ar
(
qi|A⊤zi) = b⊤E

[
ziz

⊤
i

∣∣A⊤zi
]
b− E

[
b⊤zi|A⊤zi

]2
,

then

1√
n

n∑
i=1

∣∣V ar
(
qi|A⊤zi)− b⊤(Im −AA⊤)b∣∣

=
1√
n

n∑
i=1

∣∣b⊤ {E [ziz⊤i ∣∣A⊤zi
]
−AA⊤ziz

⊤
i AA⊤ −

(
Im −AA⊤)}b− 2b⊤AA⊤ziri − r2i

∣∣
≤ ||b||22

1√
n

n∑
i=1

∣∣∣∣E [ziz⊤i ∣∣A⊤zi
]
−AA⊤ziz

⊤
i AA⊤ −

(
Im −AA⊤)∣∣∣∣

sp

+ 2

√√√√ n∑
i=1

(b⊤AA⊤zi)2

n

√√√√ n∑
i=1

r2i +
1√
n

n∑
i=1

r2i .

(S1.20)

From the calculation,

V ar
{(

b⊤AA⊤zi
)2} ≤ (C1/5 + 1)

(
b⊤AA⊤b

)2
,

Markov’s inequality leads to

P

(
n∑

i=1

(b⊤AA⊤zi)
2

n
> 2b⊤AA⊤b

)
≤ C1/5 + 1

n
. (S1.21)

According to Cauchy–Schwarz inequality,

r2i =
{
E(b⊤zi|A⊤zi)− b⊤AA⊤zi

}2 ≤ ∣∣∣∣b∣∣∣∣2
2
·
∣∣∣∣E(zi|A⊤zi

)
−AA⊤zi

∣∣∣∣2
2
.



Changyu Liu, Xingqiu Zhao and Jian Huang

Therefore, combining (S1.18), (S1.19), (S1.20) and (S1.21), we can derive

sup
A∈Fn

P

(
1√
n

n∑
i=1

∣∣V ar
(
qi|A⊤zi)− b⊤(Im −AA⊤)b∣∣ > 5||b||22

)

≤ sup
A∈Fn

P
( n∑

i=1

r2i > ||b||22
)
+ sup

A∈Fn

P
( n∑

i=1

(b⊤AA⊤zi)
2

n
> 2b⊤AA⊤b

)
+ sup

A∈Fn

P
( 1√

n

n∑
i=1

∣∣∣∣E[ziz⊤i |A⊤zi
]
−AA⊤ziz

⊤
i AA⊤ −

(
Im −AA⊤)∣∣∣∣

sp
> 1
)

≤ 2n3/2m−τ/10 +
γ2

1− τ

4nk

logm
+

2C

n
.

When m is sufficiently large such that n2 = o(logm), as n → ∞, we have

sup
A∈Fn

P

(
n∑

i=1

r2i > ||b||22

)
= o(1).

and

sup
A∈Fn

P

(
1√
n

n∑
i=1

∣∣V ar
(
qi|A⊤zi)− b⊤(Im −AA⊤)b∣∣ > 5||b||22

)
= o(1),

where νm,k(Fn) → 1. The proof is completed.

S1.3 Proof of Lemma 2

First we present a trace inequality (Lopes, Jacob, and Wainwright , 2011,

Lemma 2).

Lemma S9. If A and B are square matrices of the same size with A ⪰ 0

and B = B⊤, then

λmin(B)tr(A) ≤ tr(AB) ≤ λmax(B)tr(A).
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Some results for Gaussian concentration inequalities will be introduced.

The following concentration bounds for Gaussian quadratic forms are given

in Bechar (2009).

Lemma S10. Let A ∈ Rp×p with A ⪰ 0 and z ∼ N (0, Ip). For any t > 0,

we have

P
[
z⊤Az ≥ tr(A) + 2||A||F

√
t+ 2||A||spt

]
≤ exp(−t), and

P
[
z⊤Az ≤ tr(A)− 2||A||F

√
t
]
≤ exp(−t).

Davidson and Szarek (2001, Theorem 2.13) gave an upper-bound and

a lower-bound on the extreme eigenvalues of Wishart matrices.

Lemma S11. For k ≤ p, let Pk ∈ Rp×k be a random matrix with i.i.d.

N (0, 1) entries. Then, for all t ≥ 0, we have

P

[
λmax(

1

p
P⊤

k Pk) ≥ (1 +
√

k/p+ t)2
]
≤ exp(−pt2/2), and

P

[
λmin(

1

p
P⊤

k Pk) ≤ (1−
√

k/p− t)2
]
≤ exp(−pt2/2).

As a restatement of partial proof in Lopes, Jacob, and Wainwright

(2011, Lemma 5), we obtain an upper bound for tr(P⊤
k ΣPk).

Lemma S12. For k ≤ p, let Pk ∈ Rp×k be a random matrix with i.i.d.

N (0, 1) entries. Suppose matrix Σ ∈ Rp×p satisfies Σ ⪰ 0. Then, as
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(k, p) → ∞, for any constant C > 1, we have

P
[
tr(P⊤

k ΣPk) ≤ Cktr(Σ)
]
→ 1.

Proof. Let U⊤DU be a spectral decomposition of Σ. Then P⊤
k ΣPk can

be written as (UPk)
⊤D(UPk). As UPk has the same distribution as Pk,

P⊤
k ΣPk is distributed as P⊤

k DPk. In the following, we work under P⊤
k DPk.

Let ξi be the ith column of Pk and Z⊤ = (ξ⊤1 , ..., ξ
⊤
k ). Then Z ∈ Rpk×1

and is distributed as N (0, Ipk). Likewise, let D̃ ∈ Rpk×pk be a diagonal

matrix obtained by arranging k copies of D along the diagonal, i.e.

D̃ :=


D

. . .

D

 .

Consider the diagonal entries of P⊤
k DPk

tr(P⊤
k DPk) =

k∑
i=1

ξ⊤i Dξi = Z⊤D̃Z.

Applying Lemma S10 to the quadratic form Z⊤D̃Z, and noting that ||D||F
tr(D)

and ||D||sp
tr(D)

are at most 1, we get

tr(P⊤
k DPk) ≤ tr(D̃) + 2||D̃||F

√
t1 + 2||D̃||spt1

= ktr(D) + 2||D||F
√
t1k + 2||D||spt1

≤ ktr(Σ)(1 +
2
√
t1√
k

+
2t1
k
)
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with probability at least 1− exp(−t1).

Choose t1 =
√
k. The probability of the event tends to 1 as (k, p) → ∞

with

(1 +
2
√
t1√
k

+
2t1
k
) → 1.

Hence, for large k and any constant C > 1, we can obtain (1+ 2
√
t1√
k
+ 2t1

k
) < C

and complete the proof.

Proof of Lemma 2. Let U⊤DU be a spectral decomposition of Σ, where

D = diag(d1, ..., dp) and d1 ≥ d2 ≥ · · · ≥ dp ≥ 0. From this decomposition,

√
n||Γ⊤β − Γ⊤Pkη||22 =

√
n||

√
DUβ −

√
DUPkη||22. (S1.22)

To cover general cases, we assume β/||β||2 distributed uniformly on the

unit sphere. Then, we work under the assumption β/||β||2 = δ/
√
p, where

δ follows N (0, Ip). In light of this, Uβ/||β||2 and β/||β||2 have the same

distributions and then Uβ/||β||2 is denoted by δ/
√
p for simplicity. For

the same reason, we denote UPk as Pk.

For the s given in Assumption 6, we let δ = (δ⊤
s , δ

⊤
p−s)

⊤, where δs ∈

Rs and δp−s ∈ Rp−s. Correspondingly, D is divided into Ds and Dp−s,

where Ds = diag(d1, ..., ds) and Dp−s = diag(ds+1, ..., dp). Let Pk =

(P⊤
s,k,P

⊤
p−s,k)

⊤ with Ps,k ∈ Rs×k and Pp−s,k ∈ R(p−s)×k. We define η0 ∈ Rk
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as

η0 = P⊤
s,k(Ps,kP

⊤
s,k)

−1 δs√
p
.

Plugging η0 into (S1.22), we have

min
η∈Rk

√
n||Γ⊤β − Γ⊤Pkη||22

||β||22

= min
η∈Rk

√
n||

√
D

δ
√
p
−

√
DPkη||22

= min
η∈Rk

√
n

(
||
√

Ds(
δs√
p
−Ps,kη)||22 + ||

√
Dp−s(

δp−s√
p

−Pp−s,kη)||22
)

≤
√
n||
√

Ds(
δs√
p
−Ps,kη0)||22 +

√
n||
√

Dp−s(
δp−s√

p
−Pp−s,kη0)||22

=
√
n||
√
Dp−s

δp−s√
p

−
√

Dp−sPp−s,kP
⊤
s,k(Ps,kP

⊤
s,k)

−1 δs√
p
||22

≤ 2
√
n||
√

Dp−s
δp−s√

p
||22 + 2

√
n||
√

Dp−sPp−s,kP
⊤
s,k(Ps,kP

⊤
s,k)

−1 δs√
p
||22

= T1 + T2. (S1.23)

Next we show that ||β||22T1 and ||β||22T2 both converge to 0 with probability

tending to 1.

In the first step, the concentration inequality for quadratic forms in

Lemma S10 gives an upper bound on T1

P

[
T1 ≤

2
√
n

p

(
tr(Dp−s) + 2

√
h1||Dp−s||F + 2h1||Dp−s||sp

)]
≥ 1−exp(−h1),

where h1 is a positive real number that may vary with n. From Assumption
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6 and the properties of || · ||F and || · ||sp , we select h1 = nγ and get

||β||22T1 ≤
2
√
n||β||22
p

(
tr(Dp−s) + 2

√
h1||Dp−s||F + 2h1||Dp−s||sp

)
≤ 2

√
n||β||22
p

tr(Dp−s)
(
1 + 2

√
h1 + 2h1

)
≤ 10n0.5+γ||β||22tr(Dp−s)

p
= o(1)

(S1.24)

with probability at least 1− exp(−nγ).

In the next step, Lemmas S12 and S11 give upper bounds by

kλmax

(
(Ps,kP

⊤
s,k)

−1
)
=

1

λmin(
Ps,kP

⊤
s,k

k
)
≤ 1

(1−
√

s/k − k−1/4)2
,

tr(P⊤
p−s,kDp−sPp−s,k)

k
≤ 2tr(Dp−s)

with probability converging to 1. These inequalities together with Lemma

S9 lead to

tr
(
(Ps,kP

⊤
s,k)

−1Ps,kP
⊤
p−s,kDp−sPp−s,kP

⊤
s,k(Ps,kP

⊤
s,k)

−1
)

≤ kλmax

(
P⊤

s,k(Ps,kP
⊤
s,k)

−2Ps,k

)tr(P⊤
p−s,kDp−sPp−s,k)

k

= kλmax

(
(Ps,kP

⊤
s,k)

−1
)tr(P⊤

p−s,kDp−sPp−s,k)

k

≤ 2tr(Dp−s)

(1−
√

s/k − k−1/4)2

(S1.25)

with probability converging to 1. To study the randomness from δs, we

apply the same method in the first step of investigating ||β||22T1 with the
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help from upper bound in (S1.25) and get

||β||22T2 ≤
20n0.5+γ||β||22tr(Dp−s)

p(1−
√
s/k − k−1/4)2

= o(1) (S1.26)

with probability tending to 1.

Combining (S1.23), (S1.24) and (S1.26), we have

min
η∈Rk

√
n||Γ⊤β − Γ⊤Pkη||22 = o(1)

with probability tending to 1 and complete the proof.

S2 Proof of theorems

S2.1 Proof of Theorem 1

Under H0, we have

Tn − 1 =
ϵ⊤Mϵ

ϵ⊤(I−P1 −Hk)ϵ/(n− 1− k)
,

where M = (mij) =
Hk

k
− I−P1−Hk

n−k−1
. The property that Hk is idempotent

with rank k leads to tr(M) = 0 and M⊤M = Hk

k2
+ I−P1−Hk

(n−k−1)2
. Therefore,

||M||2sp
||M||2F

=
λmax(M

⊤M)

tr(M⊤M)
≤

λmax(
Hk

k2
) + λmax(

I−P1−Hk

(n−k−1)2
)

1
k
+ 1

n−k−1

= O(n−1).

And we have

E(ϵ⊤Mϵ|M) = σ2tr(M) = 0,

V ar(ϵ⊤Mϵ|M) = (µ4 − 3σ4)
n∑

i=1

m2
ii + 2σ4(

1

k
+

1

n− k − 1
),
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where the error term ϵ = (ϵ1, ..., ϵn)
⊤ has E(ϵi) = 0, V ar(ϵi) = σ2, and

E(ϵ4i ) = µ4. When M is given, these together with Lemma S2 imply

ϵ⊤Mϵ√
V ar (ϵ⊤Mϵ|M)

D−→ N (0, 1).

The randomness brought from M in fact does not influence the asymptotic

normality. From the law of total expectation, we have, for ∀α ∈ R,

P
( ϵ⊤Mϵ√

V ar(ϵ⊤Mϵ|M)
≤ α

)
= E

(
P (

ϵ⊤Mϵ√
V ar(ϵ⊤Mϵ|M)

≤ α|M)
)
.

And the aforementioned result shows

P (
ϵ⊤Mϵ√

V ar(ϵ⊤Mϵ|M)
≤ α|M) → Φ(α).

Based on the dominated convergence theorem, we get

ϵ⊤Mϵ

σ2
√

(µ4

σ4 − 3)
∑n

i=1 m
2
ii + 2( 1

k
+ 1

n−k−1
)

D−→ N (0, 1). (S2.1)

Let Gn =
∑n

i=1m
2
ii. Next, we will show nGn = op(1). From the definition,

nGn = n
n∑

i=1

m2
ii =

1

n

n∑
i=1

{
(Hk)ii − k

n−1
(1− 1

n
)

k
n−1

(1− k+1
n
)

}2

≤ 2

n

n∑
i=1

{(Hk)ii − ρ}2 +
{
ρ− k

n−1
(1− 1

n
)
}2{

k
n−1

(1− k+1
n
)
}2 .

(S2.2)

Let Σ1 = P⊤
k ΣPk. From Lemma S4, we find the smallest eigenvalue of

1
p
P⊤

k Pk is bounded away from 0 a.s., showing Pk is of full column rank

with probability 1. Therefore, Σ1 is of full rank with probability 1. Define
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Ũk = XPkΣ
−1/2
1 . Since Hk is invariant to the full rank linear transform of

Uk, the hat matrix can be expressed as

Hk = Uk(U
⊤
k Uk)

−1U⊤
k = (I−P1)Ũk(Ũ

⊤
k (I−P1)Ũk)

−1Ũ
⊤
k (I−P1).

From Assumption 1, Ũk can be denoted by ZA, where A = Γ⊤PkΣ
−1/2
1 is

an m × k matrix. From Section 2.4.2 in Chikuse (2003), matrix A is on

the Stiefel manifold Vk(Rm) with probability 1, which demonstrates U⊤
k Uk

is of full rank with probability 1. From Lemma S7 and (S2.2), we obtain

nGn = op(1).

Assumption 3 implies n
k
+ n

n−k−1
→ 1

ρ(1−ρ)
, as n → ∞. Therefore, (S2.1)

leads to

ϵ⊤Mϵ

σ2
√

2/nρ(1− ρ)

D−→ N (0, 1).

In addition, from E(ϵ
⊤(I−P1−Hk)ϵ

n−k−1
) = σ2, V ar(ϵ

⊤(I−P1−Hk)ϵ
n−k−1

) ≤ µ4−σ4

n−k−1
→ 0

and Markov’s inequality, we have

ϵ⊤(I−P1 −Hk)ϵ

n− k − 1
= σ2 + op(1).

Hence, under H0,

Tn − 1√
2/nρ(1− ρ)

D−→ N (0, 1),

which completes the proof.
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S2.2 Proof of Theorem 2

First, we derive a decomposition of x⊤
i β. Let ξ = (P⊤

k ΣPk)
−1P⊤

k Σβ. For

each i, define

ri = E(x⊤
i β|P⊤

k xi)− x⊤
i Pkξ, qi = x⊤

i β − E(x⊤
i β|P⊤

k xi).

Then, we have x⊤
i β = x⊤

i Pkξ + ri + qi, where qi satisfies E(qi|P⊤
k xi) = 0.

Let ω2 = β⊤Σβ − ξ⊤P⊤
k ΣPkξ and τi = V ar(qi|P⊤

k xi)− ω2. According to

Lemma S8 and the condition β⊤Σβ = o(1), it shows

n∑
i=1

r2i = op(1) and
1√
n

n∑
i=1

|τi| = op(1), (S2.3)

when the event A ∈ Fn is satisfied, where Fn is a series of sets that satisfy

vm,k(Fn) → 1, as n → ∞, and A = Γ⊤Pk(P
⊤
k ΣPk)

−1/2. The probability of

the event tends to 1, based on the randomness of Pk.

Define a new error term ei = qi + ϵi. Let σ
2 = V ar(ϵi). The model can

be denoted as

y = α1+XPkξ + r+ e, (S2.4)

where r = (r1, ..., rn)
⊤, and e = (e1, ..., en)

⊤ with each elements of e sat-

isfying E(ei) = 0, E(ei|P⊤
k xi) = 0, V ar(ei|P⊤

k xi) = σ2 + ω2 + τi, and

E(e4i |P⊤
k xi) = µ4 + 6σ2V ar(qi|P⊤

k xi) + E(q4i |P⊤
k xi). For matrix M =
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(mij) =
Hk

k
− I−P1−Hk

n−k−1
, calculation shows

E(e⊤Me|XPk) =
n∑

i=1

miiτi,

V ar(e⊤Me|XPk) =
n∑

i=1

m2
ii

{
E(e4i |XPk)− 3E(e2i |XPk)

2
}

+ 2
∑
i,j

m2
ijE(e2i |XPk)E(e2j |XPk)

= 2(σ2 + ω2)2tr(M⊤M) + g(M,X, ϵ,Pk),

where g(M,X, ϵ,Pk) =
∑n

i=1m
2
ii {E(e4i |XPk)− 3E(e2i |XPk)

2}+2
∑

i,j m
2
ij{(σ2+

ω2)(τi + τj) + τiτj}. For a constant a ≤ 2/ρ(1− ρ) and large n, M satisfies

||M||sp ≤ a/n and |mii| = |e⊤i Mei| ≤ ||M||sp. Then, (S2.3) leads to

√
nE(e⊤Me|XPk) = op(1). (S2.5)

To investigate the conditional variance, based on (S2.2) and Lemma S7, we

can derive

n∑
i=1

m2
ii

{
E(e4i |XPk)− 3E(e2i |XPk)

2
}
≤

n∑
i=1

m2
ii

{
µ4 − 3σ4 + E(q4i |XPk)

}
= op(n

−1).

In addition,
∑n

j=1 m
2
ij = e⊤i MM⊤ei ≤ ||M||2sp ≤ a2/n2 and (S2.3) lead to

∑
i,j

m2
ij

{
(σ2 + ω2)(τi + τj) + τiτj

}
≤ 2(σ2+ω2)a2

∑n
i=1 |τi|
n2

+a2
(
∑n

i=1 |τi|)2

n2
= op(n

−1).

Therefore, g(M,X, ϵ,Pk) = op(n
−1), from which we obtain

V ar(e⊤Me|XPk) = 2(σ2 + ω2)2tr(M⊤M) + op(n
−1). (S2.6)
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According to tr(M⊤M) = 1
k
+ 1

n−1−k
, (S2.5), (S2.6) and the condition

k/n → ρ, Lemma S2 shows

√
nρ(1−ρ)

2
e⊤Me− op(1)

(σ2 + ω2)
√
1 + op(1)

D−→ N (0, 1). (S2.7)

To investigate the numerator of the test statistic, (S2.3) shows that r

satisfies

1√
n
r⊤Er ≤ 1√

n
r⊤r = op(n

−1/2), (S2.8)

for any n×n idempotent matrix E. Based on Jensen’s inequality, the fourth

moment of qi satisfies E(q4i ) ≤ 16E{(x⊤
i β)

4}. According to

E
{
(x⊤

1 β)
4
}
=

m∑
i=1

(Γ⊤β)4iE(z41i) + 3
m∑
i ̸=j

(Γ⊤β)2i (Γ
⊤β)2jE(z21iz

2
1j),

and V ar(qi) ≤ ω2 ≤ β⊤Σβ, the condition β⊤Σβ = o(1) leads to E(q4i ) =

o(1) and

|E(e4i )−µ4| ≤ c1β
⊤Σβ = o(1), E{τ 2i } ≤ E(q4i )+ω4 ≤ c1(β

⊤Σβ)2 = o(1),

(S2.9)
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for a constant c1. In addition, the calculation shows∣∣∣∣E (e⊤(I−P1 −Hk)e

n− 1− k

)
− (σ2 + ω2)

∣∣∣∣ =
∣∣∣∣∣E
{

n∑
i=1

(
I−P1 −Hk

n− 1− k

)
ii

τi

}∣∣∣∣∣
≤

n∑
i=1

1

n− 1− k

√
E{τ 2i } = o(1),

E

{
V ar

(
e⊤(I−P1 −Hk)e

n− 1− k

∣∣XPk

)}

≤
∑n

i=1 E (e4i )

(n− 1− k)2
+

2(σ2 + ω2)2

n− 1− k
+

4n(σ2 + ω2)
∑n

i=1

√
E(τ 2i ) + 2

∑
i,j

√
E(τ 2i )E(τ 2j )

(n− 1− k)2
= o(1),

V ar

{
E

(
e⊤(I−P1 −Hk)e

n− 1− k

∣∣XPk

)}
= V ar

(
n∑

i=1

(I−P1 −Hk)ii
n− 1− k

τi

)

≤ E

{(
n∑

i=1

(I−P1 −Hk)
2
ii

(n− 1− k)2

)(
n∑

i=1

τ 2i

)}

≤ n

(n− 1− k)2

n∑
i=1

E(τ 2i ) = o(1).

Consequently, Markov’s inequality leads to

e⊤(I−P1 −Hk)e

n− 1− k
= σ2 + ω2 + op(1).

This combines with (S2.8) shows

(e+ r)⊤
(
I−P1 −Hk

)
(e+ r)

n− 1− k
= σ2 + ω2 + op(1). (S2.10)

Next, we study
√
n
k
ξ⊤P⊤

k X
⊤(I − P1)XPkξ. From Assumption 1, we

have

E

{
1√
n
ξ⊤P⊤

k X
⊤(I−P1)XPkξ

}
=

n− 1√
n

ξ⊤P⊤
k ΣPkξ (S2.11)
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and the fourth moment of x⊤
1 Pkξ satisfies

E
{
(x⊤

1 Pkξ)
4
}
=

m∑
i=1

(Γ⊤Pkξ)
4
iE(z41i) + 3

m∑
i ̸=j

(Γ⊤Pkξ)
2
i (Γ

⊤Pkξ)
2
jE(z21iz

2
1j).

Based on ξ⊤P⊤
k ΣPkξ = β⊤ΣPk(P

⊤
k ΣPk)

−1P⊤
k Σβ ≤ β⊤Σβ = o(1), we

have

V ar

(
1√
n
ξ⊤P⊤

k X
⊤(I−P1)XPkξ

)
≤ E

{
(x⊤

1 Pkξ)
4
}
+2(ξ⊤P⊤

k ΣPkξ)
2 = o(1).

From Markov’s inequality and k/n → ρ , we have

√
n

k
ξ⊤P⊤

k X
⊤(I−P1)XPkξ =

√
n

ρ
ξ⊤P⊤

k ΣPkξ + op(1). (S2.12)

To investigate
√
n
k
ξ⊤P⊤

k X
⊤(I−P1)e, the condition β⊤Σβ = o(1), (S2.9)

and (S2.11) lead to

E

{(
1√
n
ξ⊤P⊤

k X
⊤(I−P1

)
e

)2
}

= E

[
E

{(
1√
n
ξ⊤P⊤

k X
⊤(I−P1

)
e

)2 ∣∣XPk

}]

= E

{
1

n

n∑
i=1

(σ2 + ω2 + τi)
(
x⊤
i Pkξ − 1

n

n∑
j=1

x⊤
j Pkξ

)2}

≤ (σ2 + ω2)E

{
1

n
ξ⊤P⊤

k X
⊤(I−P1)XPkξ

}

+

√√√√E

(
1

n

n∑
i=1

τ 2i

)√√√√E

{
1

n

n∑
i=1

(
x⊤
i Pkξ −

n∑
j=1

x⊤
j Pkξ

)4}

≤ (σ2 + ω2)ξ⊤P⊤
k ΣPkξ +

√
c1β

⊤Σβ

√√√√E

{
16

n

n∑
i=1

(
x⊤
i Pkξ

)4}

= o(1).
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Therefore, Markov’s inequality and k/n → ρ demonstrate

√
n

k
ξ⊤P⊤

k X
⊤(I−P1)e = op(1).

This combines with (S2.8) and (S2.12) implies

√
n

k
ξ⊤P⊤

k X
⊤(I−P1)(e+ r) = op(1). (S2.13)

Based on the new expression (S2.4), together with (S2.8), (S2.10),

(S2.12) and (S2.13), we have

Tn − 1√
2/[nρ(1− ρ)]

=

√
nρ(1−ρ)

2

{
ξ⊤P⊤

k X⊤(I−P1)XPkξ

k
+

2ξ⊤P⊤
k X⊤(I−P1)(e+r)

k
+ (e+ r)⊤M(e+ r)

}
(e+r)⊤(I−P1−Hk)(e+r)

n−k−1

=

√
nρ(1−ρ)

2
(1
ρ
ξ⊤P⊤

k ΣPkξ + e⊤Me) + op(1)

σ2 + ω2 + op(1)
.

Define δ2k = σ2 +β⊤Σβ− ξ⊤P⊤
k ΣPkξ. From (S2.7), the asymptotic power

function of the proposed test Tn is

ΨRP
n (β;Pk) = P (

Tn − 1√
2/[nρ(1− ρ)]

> zα)

= Φ(−zα +

√
n(1− ρ)

2ρ

ξ⊤P⊤
k ΣPkξ

δ2k
) + o(1),

which completes the proof.
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S2.3 Proof of Theorem 3

Recall the definitions of projection matrices.

P1 =
1

n
11⊤,

PX1 = (I−P1)X1(X
⊤
1 (I−P1)X1)

−1X⊤
1 (I−P1),

Hk2 = (I−P1)W(W⊤(I−P1)W)−1W⊤(I−P1),

where W = (X1,X2Pk2). Under Hpart,0, we have

Tn,p2 =
ϵ⊤(Hk2 −PX1)ϵ/k2

ϵ⊤(I−P1 −Hk2)ϵ/(n− 1− p1 − k2)
.

Define M = (mij) =
Hk2

−PX1

k2
− I−P1−Hk2

n−1−p1−k2
. From Span{(I − P1)X1} ⊆

Span{(I−P1)W} and properties of projection matrices, we have

PX1Hk2 = Hk2PX1 = PX1 .

Hence, tr(M) = 0, M⊤M =
Hk2

−PX1

k22
+

I−P1−Hk2

(n−1−p1−k2)2
, and

||M||2sp
||M||2F

=
λmax(M

⊤M)

tr(M⊤M)
≤

λmax(
Hk2

−PX1

k22
) + λmax(

I−P1−Hk2

(n−1−p1−k2)2
)

1
k2

+ 1
n−1−p1−k2

= O(n−1).

For given M, we have

E(ϵ⊤Mϵ|M) = σ2tr(M) = 0,

V ar(ϵ⊤Mϵ|M) = (µ4 − 3σ4)
n∑

i=1

m2
ii + 2σ4

(
1

k2
+

1

n− 1− p1 − k2

)
.

Then, Lemma S2 leads to

ϵ⊤Mϵ√
V ar(ϵ⊤Mϵ|M)

D−→ N (0, 1).
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This together with the law of total expectation and the dominated conver-

gence theorem shows

P

(
ϵ⊤Mϵ√

V ar(ϵ⊤Mϵ|M)
≤ α

)
= E

[
P

(
ϵ⊤Mϵ√

V ar(ϵ⊤Mϵ|M)
≤ α|M

)]
→ Φ(α),

for ∀α ∈ R. Therefore,

ϵ⊤Mϵ

σ2
√

[E{( ϵ1
σ
)4} − 3]

∑n
i=1m

2
ii + 2( 1

k2
+ 1

n−1−p1−k2
)

D−→ N (0, 1).

When n
∑n

i=1m
2
ii = op(1), Assumption S3 and Slutsky’s lemma demon-

strate

ϵ⊤Mϵ

σ2
√

2(1− ρ1)/nρ2(1− ρ1 − ρ2)

D−→ N (0, 1). (S2.14)

Let Gn =
∑n

i=1 m
2
ii. Next, we will verify nGn = op(1). From the definition,

mii =
(Hk2

)ii−(PX1
)ii

k2
− 1− 1

n
−(Hk2

)ii
n−1−p1−k2

. Then

nGn = n
n∑

i=1

m2
ii =

1

n

n∑
i=1

{
(1− 1

n
− p1

n
)
(
(Hk2)ii − p1+k2

n

)
k2
n
(1− 1

n
− p1

n
− k2

n
)

−
(PX1)ii − p1

n
k2
n

}2

≤ 2h1

n

n∑
i=1

{
(Hk2)ii −

p1 + k2
n

}2

+
2h2

n

n∑
i=1

{
(PX1)ii −

p1
n

}2

,

(S2.15)

where h1 = (1− 1
n
− p1

n
)2/(k2

n
(1− 1

n
− p1

n
− k2

n
))2 and h2 = n2/k2

2. Based on

Assumption S3, as n → ∞,

h1 →
(1− ρ1)

2

ρ22(1− ρ1 − ρ2)2
, h2 →

1

ρ22
.
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Consequently, we only need to consider the sum parts in (S2.15). From the

definition,

W = (X1,X2Pk2) = ZΓ⊤

 Ip1 0

0 Pk2

 ∆
= ZΓ⊤V,

where Z = (z1, ..., zn)
⊤ and V is a full column rank matrix with probability

1. Define Σ2 = V⊤ΣV. The matrix Σ2 is of full rank with probability

1, then Γ⊤VΣ
−1/2
2 is well defined on the Stiefel manifold Vp1+k2(Rm). Let

W1 = WΣ
−1/2
2 = ZΓ⊤VΣ

−1/2
2 . The hat matrix Hk2 can be denoted as

Hk2 = (I−P1)W1(W
⊤
1 (I−P1)W1)

−1W⊤
1 (I−P1).

According to Lemma S7 and the condition (p1+k2)/n → ρ1+ρ2, we obtain

1

n

n∑
i=1

{
(Hk2)ii −

p1 + k2
n

}2

= op(1).

Let R1 = ZΓ1Σ
−1/2
11 . The hat matrix PX1 can be denoted as

PX1 = (I−P1)R1(R
⊤
1 (I−P1)R1)

−1R⊤
1 (I−P1).

Based on Lemma S7 and the condition p1/n → ρ1, we obtain

1

n

n∑
i=1

{
(PX1)ii −

p1
n

}2

= op(1).

Therefore, nGn = op(1) is verified, and then (S2.14) is demonstrated.
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To study the denominator of Tn,p2 , calculation shows

E

{
ϵ⊤(I−P1 −Hk2)ϵ

n− 1− p1 − k2

}
= E

[
E

{
ϵ⊤(I−P1 −Hk2)ϵ

n− 1− p1 − k2

∣∣Hk2

}]
= σ2,

V ar

(
ϵ⊤(I−P1 −Hk2)ϵ

n− 1− p1 − k2

)
= E

{
V ar

(
ϵ⊤(I−P1 −Hk2)ϵ

n− 1− p1 − k2

∣∣Hk2

)}
= o(1).

From Markov’s inequality, we have

ϵ⊤(I−P1 −Hk2)ϵ

n− 1− p1 − k2
= σ2 + op(1).

Combining this with (S2.14), we obtain

Tn,p2 − 1√
2(1− ρ1)/nρ2(1− ρ1 − ρ2)

D−→ N (0, 1),

which completes the proof.

S2.4 Proof of Theorem 4

Define V = diag(Ip1 ,Pk2). The matrix is a full column rank matrix with

probability 1, and W = XV, with the ith row wi = V⊤xi. Let γ =

(V⊤ΣV)−1V⊤ΓΓ⊤
2 β2. For each i, define

ri = E
(
x⊤
2iβ2

∣∣V⊤xi

)
− x⊤

i Vγ, qi = x⊤
2iβ2 − E

(
x⊤
2iβ2

∣∣V⊤xi

)
.

Then, a decomposition of x⊤
2iβ2 can be derived, given as x⊤

2iβ2 = w⊤
i γ +

ri + qi. Let ω2 = β⊤
2 Σ22β2 − γ⊤V⊤ΣVγ and τi = V ar(qi|V⊤xi) − ω2.

According to Lemma S8 and the condition β⊤
2 Σ22β2 = o(1), we have

n∑
i=1

r2i = op(1) and
1√
n
|τi| = op(1), (S2.16)
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when the event A ∈ Fn is satisfied, where A = Γ⊤V(V⊤ΣV)−1/2 and Fn is

a series of sets that satisfy νm,(p1+k2)(Fn) → 1, as n → ∞. The probability

of the event tends to 1, based on the randomness of Pk2 .

Define a new error term ei = qi + ϵi. Let σ2 denote the variance of ϵi.

The model can be expressed as

y = α1+X1β1 +Wγ + r+ e, (S2.17)

where r = (r1, . . . , rn)
⊤, and e = (e1, ..., en)

⊤ with each elements of e

satisfying E(ei) = 0, E(ei|V⊤xi) = 0, V ar(ei|V⊤xi) = σ2 + ω2 + τi, and

E(e4i |V⊤xi) = µ4+6σ2V ar(qi|V⊤xi)+E(q4i |V⊤xi). Define M =
Hk2

−PX1

k2
−

I−P1−Hk2

n−1−p1−k2
. The matrix satisfies tr(M) = 0, tr(MM⊤) = 1

k2
+ 1

n−1−p1−k2
,

and ||M||2sp ≤ 1
k22

+ 1
(n−1−p1−k2)2

. Based on the condition p1/n → ρ1 and

k2/n → ρ2, then for large n, there is a constant a ≤ 2/ρ2(1− ρ1 − ρ2) such

that ||M||sp ≤ a/n. With a similar proof method in Appendix S2.2, we can

derive √
nρ2(1−ρ1−ρ2)

2(1−ρ1)
e⊤Me− op(1)

(σ2 + ω2)
√
1 + op(1)

D−→ N (0, 1). (S2.18)

The condition β⊤
2 Σ22β2 = o(1) leads to E(q4i ) = o(1) as well as

|E(e4i )−µ4| ≤ c1β
⊤
2 Σ22β2 = o(1), E{τ 2i } ≤ E(q4i )+ω4 ≤ c1(β

⊤
2 Σ22β2)

2 = o(1),

(S2.19)
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for a constant c1, from which we could obtain

(e+ r)⊤(I−P1 −Hk2)(r+ e)

n− 1− p1 − k2
= σ2 + ω2 + op(1). (S2.20)

Let Vγ = (ξ⊤1 , ξ
⊤
2 )

⊤ with ξ1 ∈ Rp1 and ξ2 ∈ Rp2 . Define ν2 = ξ⊤2 (Σ22−

Σ21Σ
−1
11 Σ12)ξ2. Then

ν2 = β⊤
2 Γ2

(
Γ⊤V(V⊤ΣV)−1V⊤Γ− Γ⊤

1 Σ
−1
11 Γ1

)
Γ⊤

2 β2 ≤ β⊤
2 (Σ22−Σ21Σ

−1
11 Σ12)β2 = o(1).

To investigate γ⊤W⊤(I−P1 −PX1)Wγ, the term could be denoted as

γ⊤W⊤(I−P1 −PX1)Wγ

= ϕ⊤Z⊤(I−P1)Zϕ− ϕ⊤Z⊤(I−P1)ZΓ
⊤
1

(
Γ1Z

⊤(I−P1)ZΓ
⊤
1

)−1
Γ1Z

⊤(I−P1)Zϕ

where ϕ = (I−Γ⊤
1 Σ

−1
11 Γ1)Γ

⊤
2 ξ2 and ϕ⊤ϕ = ν2 = o(1). From the calculation

E

{
1√
n
ϕ⊤Z⊤(I−P1)Zϕ

}
=

n− 1√
n

ν2,

V ar

{
1√
n
ϕ⊤Z⊤(I−P1)Zϕ

}
≤ 6ν4 = o(1)

Markov’s inequality implies,

1√
n
ϕ⊤Z⊤(I−P1)Zϕ =

√
nν2 + op(1).

From a similar derivation method for (S2.20), we obtain

1√
n
ϕ⊤Z⊤(I−P1)ZΓ

⊤
1

(
Γ1Z

⊤(I−P1)ZΓ
⊤
1

)−1
Γ1Z

⊤(I−P1)Zϕ =
p1√
n
ν2+op(1).

Therefore,

1√
n
γ⊤W⊤(I−P1 −PX1)Wγ =

n− p1√
n

ν2 + op(1). (S2.21)
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To study γ⊤W⊤(I−P1 −PX1)(e+ r), (S2.16) and (S2.21) lead to

∣∣∣∣ 1√
n
γ⊤W⊤(I−P1 −PX1)r

∣∣∣∣ ≤ √
r⊤r·

√
1

n
γ⊤W⊤(I−P1 −PX1)Wγ = op(1).

the condition β⊤
2 Σ22β2 = o(1), (S2.19) and (S2.21) lead to

E

{(
1√
n
γ⊤W⊤(I−P1 −PX1)e

)2
}

= E

[
E

{(
1√
n
γ⊤W⊤(I−P1 −PX1

)
e

)2 ∣∣W}]

≤ (c3 + σ2 + ω2)β⊤
2 Σ22β2

= o(1),

where c3 is a constant. Therefore, we obtain

1√
n
γ⊤W⊤(I−P1 −PX1)(e+ r) = op(1). (S2.22)

From the new expression (S2.17), together with (S2.16), (S2.20), (S2.21)

and (S2.22), we have

Tn,p2 − 1√
2(1− ρ1)/nρ2(1− ρ1 − ρ2)

=

√
nρ2(1−ρ1−ρ2)

2(1−ρ1)

{γ⊤W⊤(I−P1−PX1
)(Wγ+2e+2r)

k2
+ (r+ e)⊤M(r+ e)

}
(r+e)⊤(I−P1−Hk2

)(r+e)

n−1−p1−k2

=

√
nρ2(1−ρ1−ρ2)

2(1−ρ1)

{
(1−ρ1)

ρ2
ν2 + e⊤Me

}
+ op(1)

σ2 + ω2 + op(1)
.

Define τ 2k = σ2+ω2. Then, ν2 and τ 2k can also be calculated as follows. Let

γ̃ = (V⊤ΣV)−1V⊤Σβ and Vγ̃ = (ξ̃⊤1 , ξ̃
⊤
2 )

⊤, where ξ̃1 ∈ Rp1 and ξ̃2 ∈ Rp2 .
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Then,

ν2 = β⊤
2 Γ2

(
Γ⊤V(V⊤ΣV)−1V⊤Γ− Γ⊤

1 Σ
−1
11 Γ1

)
Γ⊤

2 β2

= β⊤Γ
(
Γ⊤V(V⊤ΣV)−1V⊤Γ− Γ⊤

1 Σ
−1
11 Γ1

)
Γ⊤β

= ξ̃⊤2 (Σ22 −Σ21Σ
−1
11 Σ12)ξ̃2.

and

τ 2k = σ2 + β⊤
2 Σ22β2 − γ⊤V⊤ΣVγ = σ2 + β⊤Σβ − γ̃⊤V⊤ΣVγ̃.

From (S2.18), the asymptotic power function of the proposed test Tn,p2

is

ΨRP
n,p2

(β2;Pk2) = P (
Tn,p2 − 1√

2(1− ρ1)/nρ2(1− ρ1 − ρ2)
> zα)

= Φ(−zα +

√
n(1− ρ1 − ρ2)(1− ρ1)

2ρ2

ν2

τ 2k
) + o(1),

which completes the proof.

S3 Simulations

In the second simulation study, we consider the problem of testing the

partial regression coefficient in the linear model

yi = α + x⊤
1iβ1 + x⊤

2iβ2 + ϵi.

The covariate (x⊤
1i,x

⊤
2i)

⊤ is generated from µ + Σ1/2zi. The setup is

almost the same as the first simulation study with differences lying in the
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design of β1, β2 and Σ1/2. Specifically, we generated Σ1/2 by c1U1

√
D1U

⊤
1 c2U1(

√
D1,0)U

⊤
2

0 U2

√
D2U

⊤
2

 ,

where U1 (U2) is an orthogonal matrix generated from the uniform distri-

bution on the p1 × p1 (p2 × p2) orthogonal group, the entries of diagonal

matrix D1 are from N (0, Ip1) with absolute values taken and the entries of

diagonal matrix D2 are generated in the same way as the first simulation

study for the small tail eigenvalue requirement. We used an indicator R

for the different cases: (i) uncorrelated case (R = 0): c1 = 1, c2 = 0; (ii)

correlated case (R = 1): c1 = c2 = 1/
√
2. Here, the values of c1 and c2 are

selected to ensure the variances of x1i and x2i keep unchanged in the two

cases. The regression coefficient β1 is generated from N (0, Ip1) and β2 is

randomly selected from the space generated by the first s columns of U2

with ||β2||22 taking 0.1, 0.2, and 0.3. This selection is aimed for a better

display of the impact from the correlation on the power of the tests. For a

high-dimensional design, we chose (n, p1, p2) to be (400, 40, 3960).

Figures 1a and 1b display the kernel density estimation of the proposed

test statistics under Hpart,0, indicating that the asymptotic null distribution

of the proposed tests can be well approximated by the standard normal

distribution. Here, ρ takes the value 0.2. We show both the correlated
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and uncorrelated cases. The good resemblance to the normal distribution

confirms the theoretical results in Theorem 3.

Table 1 reports the empirical power and type-I error of the proposed

tests for the error term ϵ distributed from N (0, 1) and
√

3/5t(5), based

on 2000 simulations. It can be observed that the performances of the three

proposed tests have negligible differences. The type-I errors of the proposed

tests are close to 0.05 and the power of the tests are increasing functions of

the norm ||β2||22. Compared with the correlated case, the tests show large

power when there is no correlation between x1i and x2i, which is consistent

with the feature in the asymptotic power in Theorem 4. Moreover, we find

the empirical power is close to the asymptotic power, which further confirms

the result in Theorem 4.
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(a) Norm z, norm ϵ and R=0.

0.0

0.1

0.2

0.3

0.4

-5.0 -2.5 0.0 2.5 5.0

D
en

si
ty

test
multi-RP
RP
S-RP
Std Normal

(b) Norm z, norm ϵ and R=1.

Figure 1: The kernel density estimation of RP,multi-RP, and S-RP tests under Hpart,0.
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Table 1: Empirical power and type-I error of the RP, multi-RP, S-RP at the significance

level 0.05 when (n, p1, p2) = (400, 40, 3960) and ρ = 0.2.

Z R ||β2||22
ϵ ∼

√
3/5t(5) ϵ ∼ N (0, 1)

RP multi-RP S-RP RP multi-RP S-RP

N (0, 1)

0 0.056 0.059 0.053 0.063 0.057 0.060

0
0.1 0.715 0.729 0.717 0.704 0.707 0.715
0.2 0.981 0.978 0.979 0.980 0.982 0.980
0.3 0.999 0.998 0.999 1.000 0.999 0.999

1

0 0.063 0.060 0.064 0.063 0.060 0.062
0.1 0.533 0.548 0.532 0.544 0.532 0.545
0.2 0.903 0.897 0.904 0.898 0.900 0.904
0.3 0.988 0.983 0.985 0.992 0.991 0.990

U(−
√
3,

√
3)

0 0.064 0.058 0.060 0.063 0.066 0.065

0
0.1 0.716 0.716 0.720 0.717 0.711 0.722
0.2 0.983 0.981 0.984 0.981 0.981 0.986
0.3 1.000 1.000 1.000 1.000 1.000 1.000

1

0 0.058 0.057 0.056 0.059 0.062 0.060
0.1 0.533 0.537 0.539 0.533 0.542 0.542
0.2 0.901 0.895 0.901 0.905 0.911 0.916
0.3 0.991 0.992 0.991 0.991 0.992 0.993

In the third simulation, we conducted numerical comparison with the

LWT test and LDFF test proposed in Lan, Wang, and Tsai (2014) and Lan

et al. (2016), respectively. The data are generated from yi = α+x⊤
i β+ ϵi,

where α = 0 and ϵi is generated from N (0, 1). The covariate xi follows a

latent factor structure in Lan et al. (2016). Specifically, xi = γzi+
√
Dx̃i,

where zi is a d-dimensional latent factor, γ ∈ Rp×d is an associated factor

loadings, x̃i is a p-dimensional factor profiled predictor that is independent

of zi, andD is a diagonal matrix. From Lan et al. (2016), the factor profiled

predictor x̃i represents the information that is contained in xi but cannot be

fully explained by the low-dimensional latent factor zi. In the simulation,
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each element of zi and x̃i is independently generated from N (0, 1), and

each entry of γ ∈ Rp×d is independently generated from N (0, d−1). The

elements of
√
D are generated in the same way as that in the first set of

simulation, when s = [n0.5] and L = [n1.5]. For the alternative hypothesis,

we considered β = ||β||2δ, where δ = (δ1, . . . , δp)
⊤ with δj = s−1/2, for

j ≤ s, and otherwise, δj = 0. The integer s takes values 5 and 50 to denote

different levels of sparsity, and the norm ||β||22 = 0.04 and 0.08. In the

simulation, (n, p) = (300, 3000).

Table 2: Empirical power and type-I error of the multi-RP, RCV, LWT, and LDFF tests

at the significance level 0.05.

d β ||β||22 multi-RP LWT LDFF RCV

d=3

0 0.062 0.052 0.050 0.458

s = 5
0.04 0.249 0.087 0.086 0.502
0.08 0.532 0.116 0.118 0.544

s = 50
0.04 0.735 0.218 0.216 0.787
0.08 0.984 0.409 0.388 0.951

d=5

0 0.052 0.071 0.069 0.843

s = 5
0.04 0.295 0.183 0.181 0.917
0.08 0.605 0.312 0.308 0.959

s = 50
0.04 0.764 0.387 0.384 0.999
0.08 0.987 0.698 0.681 1.000

As shown in Table 2, the type-I errors of the multi-RP, LWT and LDFF

tests are around 0.05, which indicates that the type-I error can be well con-

trolled at the nominal level by the tests. But for the RCV test, the type-I

errors are alarmingly larger than the given significance level, which indicates
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the test might not be applicable in this experimented setting, where the co-

variates have high correlations based on the latent factor structure. There-

fore, the comparison for the empirical powers is only considered among the

multi-RP test, LWT test and LDFF test. Table 2 indicates that empirical

powers grow when ||β||2 increases and the performances of the LWT and

LDFF tests are similar. The large empirical powers demonstrate that our

proposed test has superior performances in all the experimented alterna-

tives. Therefore, the simulation results demonstrate that our proposed test

is applicable in the highly correlated setting and has higher testing power

than the competing tests in some cases.
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