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NEW TESTS FOR HIGH-DIMENSIONAL LINEAR

REGRESSION BASED ON RANDOM PROJECTION
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Abstract: We consider the problem of detecting significance in high-dimensional

linear models, in which the dimension of the regression coefficient is greater than

the sample size. We propose novel test statistics for hypothesis tests of the global

significance of the linear model, as well as for the significance of part of the regression

coefficients. The new tests are based on randomly projecting the high-dimensional

data onto a low-dimensional space, and then working with the classical F-test using

the projected data. An appealing feature of the proposed tests is that they have a

simple form and are computationally easy to implement. We derive the asymptotic

local power functions of the proposed tests and compare them with the existing

methods for hypothesis testing in high-dimensional linear models. We also provide

a sufficient condition under which our proposed tests have higher asymptotic relative

efficiency. Simulation studies evaluate the finite-sample performance of the proposed

tests and demonstrate that it outperforms existing tests in the models considered.

Lastly, we illustrate the proposed tests by applying them to real high-dimensional

gene expression data.

Key words and phrases: High-dimensional inference, hypothesis testing, linear model,

random projection, relative efficiency.

1. Introduction

High-dimensional data are now routinely encountered in many fields of sci-

entific research. For example, in genomic studies, the dimension of data such as

gene expression and genetic marker data is typically far greater than the sample

size. A common feature of high-dimensional data is that the data dimension p can

be greater than the sample size n. This phenomenon brings challenges to classi-

cal statistical analysis, even in many basic settings. For example, the Hotelling

T 2 statistic for the two-sample testing problem is not well defined when p is

larger than n, because the sample covariance matrix is no longer invertible in

this setting. In high-dimensional linear regression models, existing methods for

statistical inference about regression coefficients are no longer applicable. There-
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fore, it is important to develop new approaches for statistical inference in such

models.

Consider the linear regression model

yi = α+ x>i β + εi, i = 1, . . . , n, (1.1)

where yi is a response variable, xi is a p × 1 covariate vector, α is an intercept

term, β is a p× 1 vector of unknown coefficients, and εi is a random error term

with mean zero and variance σ2. We focus on the high-dimensional setting, in

which p can exceed the sample size n. We are interested in testing

H0 : β = 0 versus H1 : β 6= 0. (1.2)

In low-dimensional settings, a basic test statistic for this problem is the F-test

(Searle and Gruber (2017)). The idea behind this test is the least squares method,

which is based on projecting the vector of response variables onto the space gen-

erated by the covariates. Under conditions p < n and yi|xi ∼ N (α + x>i β, σ
2),

the exact distribution of the F-test is known and has certain optimal properties,

because it can be considered a likelihood ratio statistic. Without the normality

assumption, Wang and Cui (2013) proposed a generalized F-test statistic and

showed that it is asymptotically normal when p/n→ γ, with γ ∈ (0, 1). However,

neither the F-test nor the generalized F-test is well defined when p ≥ n. Even

when p < n, Zhong and Chen (2011) showed that the F-test is adversely affected

by the increasing dimension of the covariates and exhibits a poor performance.

Recently, there has been much effort devoted to developing new test statistics

for (1.2) that are applicable under the p > n setting. Zhong and Chen (2011)

proposed a test based on a U-statistic, and extended it to accommodate factorial

designs. This approach was further considered in Cui, Guo and Zhong (2018),

who implemented a new variance estimation method based on that of Fan, Guo

and Hao (2012). Lan, Wang and Tsai (2014) proposed a test for general random

design, and Lan et al. (2016) focused on situations with highly correlated predic-

tors. Based on the low-dimensional projection (LDP) method, many statistical

tests have been proposed under the sparsity condition. For example, statistical

tests for single or low-dimensional components in high-dimensional models are

proposed in Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and

Montanari (2014), and Ning and Liu (2017). For global testing problems, Zhang

and Cheng (2017) and Ma, Cai and Li (2021) constructed maximal-type statis-

tics based on the LDP method. For linear hypothesis testing problems, Zhu and

Bradic (2018) proposed a test applicable in nonsparse linear models, and Shi et al.
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(2019) constructed tests based on the constrained partial regularization method.

However, these test statistics are relatively complicated in form and tend to be

computationally expensive.

In this paper, we propose a new statistical test for hypothesis (1.2) in high-

dimensional settings. Using the technique of random projection to reduce the data

dimension, we construct F-statistics based on the projected data in the lower-

dimensional space. The F-test has a simple form and is easy to compute. Random

projection has been applied to several high-dimensional statistical inference prob-

lems, including independence testing (Huang and Huo (2022)), two-sample testing

(Lopes, Jacob and Wainwright (2011)), and nonparametric testing (Liu, Shang

and Cheng (2018)). An important advantage of the random projection-based

approach stems from its ability to reduce the dimension, while simultaneously

preserving the significant information in the data. The proposed test is shown to

be applicable in a general situation under some mild conditions. The use of ran-

dom projection results in extra randomness in the test statistic, which requires

further investigation of the relationship between the response and the projected

data, as well as the performance of the new hat matrix. Our analysis is inspired

by the results of Diaconis and Freedman (1984) that almost all low-dimensional

projection data are close to normal. Under the null hypothesis, we show that the

proposed test statistic is asymptotically normal as (n, p) → ∞. We also derive

the asymptotic local power functions of the proposed tests. The results show

that the asymptotic performance of the test statistics is similar to that in the

setting when the data are normal, and demonstrate the benefit of using random

projection to reduce the dimension of the data. Finally, we extend the proposed

random projection-based (RP) test procedure for the global hypothesis (1.2) to

the problem of testing partial regression coefficients, and derive its asymptotic

null distribution and local power function.

The rest of this paper is organized as follows. In Section 2, we propose our

test statistic and discuss the reasons for its design. In Section 3, we establish the

asymptotic null distribution of the proposed test statistic and derive its asymp-

totic local power function. We also derive the asymptotic relative efficiency of the

proposed test and compare it with that of other recent tests. In Section 4, we ex-

tend the proposed test to the problem of testing partial regression coefficients and

establish its asymptotic theoretical results. In Section 5.1, we conduct simulation

studies to evaluate the finite-sample behavior of the proposed test in terms of the

type-I error and power, and compare it with that of competing tests. We apply

the proposed test to high-dimensional gene expression data sets in 5.2. Section

6 concludes the paper. The proofs of the lemmas and theorems and additional
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numerical studies are given in the Supplementary Material.

2. Test Statistic

Let xi = (xi1, . . . , xip)
> be the ith row of the design matrix X = (x1, . . . ,xn)>

and y = (y1, . . . , yn)>. The linear model (1.1) can be written as

y = α1 + Xβ + ε, (2.1)

with the error vector ε = (ε1, . . . , εn)> and 1 = (1, . . . , 1)>.

To motivate the proposed test, we first recall the classical F -test of overall

significance for regressions in n > p settings. For simplicity, we consider the

model without an intercept,

y = Xβ + ε. (2.2)

We assume X is full column rank. Let H = X(X>X)−1X> be the projection

matrix (or hat matrix) for the regression. The F -statistic for testing H0 : β = 0

is

Fn =
y>Hy/p

y>(I−H)y/(n− p)
. (2.3)

Under the normality assumption y|X ∼ N (Xβ, σ2I), Fn has a noncentral F -

distribution with degrees of freedom (p, n − p). The F -test can be derived in

different ways. For example, it can be derived based on the distribution of the

least squares estimator of β, and it can also be derived as a likelihood ratio test.

Indeed, the F -test is the most widely used method for testing hypotheses about

regression coefficients in linear models, and enjoys certain optimality properties.

In addition, it has a known finite-sample distribution and is uniformly most

powerful invariant (Lehmann (1959)). Clearly, the F -test in (2.3) is not applicable

to high-dimensional data with n < p.

To overcome this difficulty, we first project the high-dimensional predictors

onto a lower-dimensional space, and then apply the F -test to the projected data.

Specifically, for an integer 1 ≤ k < min{n, p}, let Pk ∈ Rp×k denote a random

projection matrix with random entries, drawn independently from the data. De-

fine uki = P>k xi. Let Uk = (uk1, . . . ,ukn)> = XPk. We consider a working

model

y = Ukη + ε. (2.4)

We use this model to motivate the proposed test statistic. Of course, model (2.4)

is generally different from model (2.2). However, for the purpose of constructing

a valid test, it suffices that the null hypothesis H0 : β = 0 under model (2.2) is
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equivalent to the null hypothesis H0 : η = 0 under (2.4). To see this, we focus

on a random projection Pk with independent and identically distributed (i.i.d.)

N (0, 1) entries. First, for η = 0, model (2.4) can be written as y = ε = X0 + ε.

Therefore, y has the same distribution in model (2.2) for β = 0. Second, for

η 6= 0, Pkη 6= 0 holds with probability one, because Pkη is distributed as

N (0, ||η||22I). Consequently, β = 0 in model (2.2) implies η = 0 in model (2.4);

otherwise, a contradiction will be caused by Pkη 6= 0. Now, suppose Uk is full

column rank (this can be guaranteed if k < n and X is full row rank). The

projection matrix for (2.4) is

Hk = Uk(U
>
k Uk)

−1U>k .

The F -statistic based on (2.4) is

Tn =
y>Hky/k

y>(I−Hk)y/(n− k)
. (2.5)

For the model with an intercept, y = α1 + Xβ+ ε, we can simply center the

design matrix and modify the test statistic as

Tn =
y>Hky/k

y>(I−P1 −Hk)y/(n− k − 1)
, (2.6)

where P1 = (1/n)11> and Hk = Uk(U
>
k Uk)

−1U>k is a new hat matrix with

Uk = (I−P1)XPk.

Note that the matrix U>k Uk is of full rank with probability one when Pk

has i.i.d. N (0, 1) entries, which ensures the new hat matrix is well defined, even

when p > n, as shown in the proof of Theorem 1.

From the definition, the new test is based on a projection of the response

vector y onto the space spanned by the columns of Uk, which is a linear subspace

of the space spanned by the columns of the centered X.

A convenient way to construct Pk is to generate its entries as i.i.d. random

variables from the standard normal distribution N(0, 1). Li, Hastie and Church

(2006) suggested that one can also generate other types of random projections

Pk, for example, sparse random projections, to achieve asymptotically the same

performance as the normal random projection at a fast convergence rate. A

sparse random projection consists of entries pij that are i.i.d. from distributions

satisfying

P (pij =
√
l) = P (pij = −

√
l) =

1

2l
, P (pij = 0) = 1− 1

l
, (2.7)
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where the choice of l is recommended to be
√
p. Under this case, Li, Hastie and

Church (2006) showed that the projected data converge to normal at a rate of

O(p−1/4).

In our theoretical analysis, we focus on random projections of i.i.d. normal

random entries. The results can be applied to some non-normal projections. We

use the above sparse random projection and evaluate the performance of non-

normal projections in the simulation studies.

3. Main Results

This section contains our main theoretical results and related discussions.

Specifically, we derive the asymptotic normality and asymptotic power function

for the new RP test. We also compare the proposed test with one of the latest

tests in terms of their asymptotic relative efficiency.

3.1. Asymptotic normality

Our first main result demonstrates the asymptotic normality of the standard-

ized Tn under the null hypothesis. We work under the following assumptions.

Assumption 1. xi = µ + Γzi, where Γ is a p × m matrix with m ≥ p, µ is

a p-dimensional vector, and zi = (zi1, . . . , zim)> is an m-variate random vector

with E(zi) = 0, V ar(zi) = Im, and V ar(z>i zi/m) = O(m−1). For any nonneg-

ative integers q1, . . . , qm, with
∑m

j=1 qj = 4, the mixed moments E
(
Πm
j=1z

qj
ij

)
are

bounded, and equal to zero when at least one of the qj is odd.

Assumption 2. µ4 = E(ε41) <∞.

Assumption 3. p� n and there is a constant ρ ∈ (0, 1) such that k/n→ ρ.

As stated in Assumptions 1 and 3, we do not place any concrete relationships

between n and p, allowing the dimension p, mean vector µ, and covariance matrix

Σ = ΓΓ> to vary implicitly as n goes to infinity. This makes our test accommo-

date extremely high-dimensional problems. Taking a closer look at Assumption

1, we find it resembles a factor model structure with a linear relationship between

xi and zi. It can be proved that the following two assumptions are both included

in Assumption 1.

D1 (Pseudo-independence assumption.) Suppose the p-variate random vector

xi follows the general multivariate model xi = µ + Γzi, where µ is a p-

dimensional real vector, Γ is a p×m matrix, and zi = (zi1, . . . , zim)> is an m-

variate random vector with E(zi) = 0 and V ar(zi) = Im. Furthermore, each
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zij satisfies E(z4ij) = 3 + ∆ <∞, for some constant ∆, and E(zl1ij1 · · · z
ld
ijd

) =

E(zl1ij1) · · ·E(zldijd) for any
∑d

v=1 lv ≤ 4 and j1 6= · · · 6= jd, where d is a

positive integer. The integers m and p satisfy m ≥ p.

D2 (Elliptical distribution assumption.) Suppose the p-variate random vector

xi satisfies the stochastic representation xi = µ + Γriui, where µ is a p-

dimensional real vector, Γ is a p×p matrix, ui is a random vector uniformly

distributed on the unit sphere in Rp, and ri is a nonnegative random variable

independent of ui satisfying E(r2i ) = p and V ar(r2i ) = O(p).

The pseudo-independence assumption and similar versions are used in Bai and

Saranadasa (1996), Zhong and Chen (2011), and Cui, Guo and Zhong (2018).

Such assumptions are similar to Assumption 1, but impose stricter conditions on

each element of zi. This is because zi in D1 satisfies V ar(z>i zi/m) = (2 + ∆)/m.

In a multivariate statistical analysis, an elliptical distribution is often assumed.

It includes a flexible family of distributions, including the multivariate normal

distribution, multivariate t-distribution, and multivariate logistic distribution.

Let zi = riui and m = p; then, D2 and Assumption 1 enjoy a similar form.

Furthermore, Lemma 1, together with Lemma S1 in the Supplementary Material,

indicates that the distributions satisfying D2 are included in Assumption 1.

Because Tn is invariant to the location shift of y and X, we assume that

α = 0 and µ = 0 in the rest of the paper.

Lemma 1. Suppose u1 is a random vector uniformly distributed on the unit

sphere in Rp and r1 is a nonnegative random variable independent of u1 satisfying

E(r21) = p and V ar(r21) = O(p). Let z1 = r1u1. Then,

E(z1) = 0, V ar(z1) = Ip, V ar

(
z>1 z1
p

)
= O(p−1).

Therefore, our assumption for the distribution of xi is relatively flexible. For

example, there is no specific condition on the covariance matrix Σ. For the error

term, we only assume that εi is generated from a distribution having a finite

fourth moment. The projection dimension k is assumed to be asymptotically

proportional to n with a coefficient ρ ∈ (0, 1). The choice of ρ is discussed in

Section 3.3.

Clearly, to derive the asymptotic distribution of Tn, we need to study the

properties of the hat matrix Hk. Because Hk = Uk(U
>
k Uk)

−1U>k , the properties

of Hk can be established when Uk is generated from Gaussian variables. Dia-

conis and Freedman (1984) showed that the empirical distribution of randomly
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projected data tends to be approximately Gaussian. Inspired by this result, we

show in Lemmas S7 and S8 in the Supplementary Material that Uk is asymp-

totically close to Gaussian, which demonstrates the advantage of the random

projection method. We state the asymptotic distribution of the standardized Tn
under the null hypothesis.

Theorem 1. Suppose the random projection matrix Pk consists of i.i.d. standard

normal random variables. Under Assumptions 1–3 and H0, as n→∞, we have

Tn − 1√
2/nρ(1− ρ)

D−→ N (0, 1).

This asymptotic normality result justifies the following test procedure. Given

an α-level of significance, the proposed test rejects H0 if

Tn − 1√
2/nρ(1− ρ)

> zα,

where zα is the upper α-quantile of N (0, 1).

3.2. Asymptotic power function

We now investigate the asymptotic power function of the proposed test. Ad-

ditional assumptions are needed to facilitate our analysis.

Assumption 4. β>Σβ = o(1).

Assumption 4 is known as a local alternative, and is commonly used to study

the asymptotic properties of a statistical test. Detailed discussions can be found

in van der Vaart (1998, Sec. 14.1).

In the classical F-test in (2.3), the hat matrix H enjoys the properties X>H =

X> and HX = X. Hence,

y>Hy = β>X>Xβ + 2β>X>ε+ ε>Hε,

where ε>Hε does not involve the parameter value. This indicates that the power

of the F-test relies on β>X>Xβ and β>X>ε. Thus, we can use the properties

of H in the power analysis of the F-test without needing to consider the inverse

of X>X.

However, the properties of H do not hold for the hat matrix Hk. Fortu-

nately, we can get around this problem based on the properties of a random

projection. Specifically, the fact that a randomly projected variable is asymptot-

ically normal yields a new representation for model (2.1) by y = XPkξ+e, where
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ξ = (P>k ΣPk)
−1P>k Σβ and e = y −XPkξ. Note that α is assumed to be zero

here. It can be shown that the new error term e is asymptotically conditional

independent of XPk, making the conventional analysis for the F-test applicable

here. To show this rigorously, we need an additional requirement for zi.

Assumption 5. The m-variate random vector zi = (zi1, . . . , zim)> has a Lebesgue

density fz and satisfies E(zi) = 0 and V ar(zi) = Im. For j = 1, . . . ,m, the com-

ponents zij are assumed to be independent, satisfy E(z20ij ) ≤ C for a constant C,

and have a marginal density bounded by a constant D ≥ 1.

Define δ2k = σ2 + β>Σβ − ξ>P>k ΣPkξ as the variance of the new error. We

derive the asymptotic power function of the proposed test.

Theorem 2. Suppose Assumptions 1–5 hold. Let ΨRP
n (β;Pk) denote the power

function of the proposed RP test Tn. Then,

ΨRP
n (β;Pk)− Φ

(
− zα +

√
n(1− ρ)

2ρ

ξ>P>k ΣPkξ

δ2k

)
→ 0,

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution, and zα is the upper α-quantile of Φ.

Note that there is no extra assumption made for Σ, showing that the power

property of the proposed test holds over a wide range of alternatives. The asymp-

totic power function relies on Pk and is an increasing function of the product

ξ>P>k ΣPkξ. We find that the product is upper bounded by β>Σβ, which can

be reached when the vector Γ>β is in the space generated by Γ>Pk. To make

the bound achieved asymptotically, we give a sufficient condition.

Assumption 6. (Tail eigenvalue condition.) There exists an integer s and a real

number γ > 0 such that s < k and ||β||22
∑p

i=s+1 di = o(pn−0.5−γ), where di are

the eigenvalues of Σ satisfying d1 ≥ d2 ≥ · · · ≥ dp ≥ 0.

We call Assumption 6 a tail eigenvalue condition, because it requires the

product of ||β||22 and the sum of the tail eigenvalues of Σ to be of order less than

p/
√
n.

Lemma 2. Let Pk ∈ Rp×k consist of i.i.d. N (0, 1) entries. Assume that As-

sumption 6 holds. Then, we have

√
n||Γ>β − Γ>Pkη||22 = o(1),

for some η ∈ Rk with probability tending to one.
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This lemma indicates that we can approximate Γ>β by Γ>Pkη with a negli-

gible approximation error. In this case, we denote the asymptotic power function

as ΨRP
n (β), because it is not related to Pk. A formal result is given in the

following corollary.

Corollary 1. Suppose Assumptions 1–6 hold. Then,

ΨRP
n (β)− Φ

(
− zα +

√
n(1− ρ)

2ρ

β>Σβ

σ2

)
→ 0,

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution, and zα is the upper α-quantile of Φ.

3.3. Choice of ρ

The proposed test can be applied with any dimension of the projected space

k that satisfies Assumption 3. However, the power of the test depends on ρ. In

this subsection, we give a detailed discussion on the choice of ρ.

From Theorem 2, the asymptotic local power function satisfies

ΨRP
n (β; Pk) = Φ

(
− zα +

√
n(1− ρ)

2ρ

ξ>P>k ΣPkξ

δ2k

)
+ o(1). (3.1)

Let ∆2
k = ξ>P>k ΣPkξ. Then, ∆2

k can be derived by projecting the vector Γ>β

onto the space generated by Γ>Pk. Intuitively, a larger ρ would lead to larger ∆2
k,

because the dimension of the projection space k = ρn becomes larger. However,

with an increase of ρ, the function
√

(1− ρ)/ρ becomes smaller. This indicates

that the choice of ρ is a compromise between these two values.

First, we consider the situation in which the condition given in Corollary

1 is satisfied. In this case, ∆2
k becomes a deterministic value, even with the

randomly generated projection matrix Pk. The asymptotic local power function

is a decreasing function of ρ, confirmed in the simulation studies. Furthermore,

ρ can be arbitrarily small, as long as the tail eigenvalue condition is satisfied.

Then, we consider the other situation, where Σ = I. In this case, the eigen-

values of Σ are equally significant, with ∆2
k = β>Pk(P

>
k Pk)

−1P>k β. Suppose

that the direction of β is uniformly generated on the unit sphere. From Propo-

sition 1 in Lopes, Jacob and Wainwright (2011), quantity ∆2
k satisfies

P

(
∆2
k

||β||22
≥ ck

p

)
→ 1 and P

(
∆2
k

||β||22
≤ Ck

p

)
→ 1,
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for some constants c and C. This indicates that ∆2
k scales linearly in k up to

random fluctuations. Combining this result with (3.1), the influence of ρ on the

testing power is achieved mainly based on the function g(ρ) =
√

(1− ρ)/ρ · ρ,

which is maximized when ρ = 0.5. Therefore, a choice of k = [0.5n] may be

asymptotically optimal, in a general sense.

In many applications, no prior information on Σ is available. In such cases,

the above discussion suggests that ρ around 0.5 is an applicable choice, because

the above setting yields reasonable test performance, even in extreme cases.

When estimation methods of Σ or a related function of Σ are available, ρ can be

selected based on the estimators. For example, the ratio tr(Σ)2/tr(Σ2), which

lies between one and p, can be viewed as measuring the decay rate of the spec-

trum of Σ (Lopes, Jacob and Wainwright (2011)). In addition, the tail eigenvalue

condition can be satisfied when tr(Σ)2/tr(Σ2)� p. Consequently, we can deter-

mine ρ from the estimation of the ratio, which is available based on the estimators

of tr(Σ) and tr(Σ2) proposed in Chen, Zhang and Zhong (2010).

3.4. Asymptotic relative efficiency

The asymptotic power function of the proposed RP test in Corollary 1 has

the same form as the F-test studied in Zhong and Chen (2011). However, our

test accommodates high-dimensional settings and has milder assumptions on X

and ε. Because it is well known that the F -test has good performance in low

dimensions, the new test, as an extension of the F-test to high dimensions, is

expected to perform well under certain conditions. To confirm this, we compare

the performance of our test with the test proposed by Cui, Guo and Zhong (2018),

which is one of the latest tests designed for problem (1.2), and is demonstrated to

outperform existing tests for the problem considered. We denote this competing

test as the RCV test, and show that our test outperforms it in some situations.

In this subsection, we suppose Assumption 6 holds.

With a slight abuse of notation, we also denote the asymptotic power function

of our RP test as

ΨRP
n (β) = Φ

(
− zα +

√
n(1− ρ)

2ρ

β>Σβ

σ2

)
.

The asymptotic power function of the RCV test proposed by Cui, Guo and

Zhong (2018) is given by

ΨRCV
n (β) = Φ

(
− zα +

nβ>Σ2β

σ2
√

2tr(Σ2)

)
.
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Because the term added to −zα inside the Φ(·) function is what controls the

power, the ratio of such terms can be defined as the asymptotic relative efficiency

(ARE). For comparison, we define the ARE of our test to the RCV test as

ARE(ΨRP
n ,ΨRCV

n ) =

(√
n(1− ρ)

ρ
β>Σβ/

nβ>Σ2β√
tr(Σ2)

)2

. (3.2)

Whenever the ARE is larger than one, the proposed test is asymptotically more

powerful than the competing test. Therefore, we search for sufficient conditions

under which the ARE is greater than one.

Write β as ||β||2δ, where δ = β/||β||2 is the direction of β. Under As-

sumptions 4 and 6, we further require the sum of the tail eigenvalues to satisfy∑p
i=s+1 di/δ

>Σδ = O(pn−0.5−γ), where γ is a small constant greater than zero.

By Jensen’s inequality, we have

ARE(ΨRP
n ; ΨRCV

n ) ≥ 1− ρ
ρ

∑p
i=s+1 d

2
i

n

(
δ>Σδ

δ>Σ2δ

)2

≥ 1− ρ
ρ

(δ>Σδ)4

(δ>Σ2δ)2
O(pn−2−2γ).

(3.3)

Clearly, if (δ>Σ2δ)2/(δ>Σδ)4 = o(pn−2−2γ), the right side of the inequality goes

to infinity as n goes to infinity, which sufficiently demonstrates that the proposed

test is more powerful than the RCV test. In addition, this inequality shows that ρ

is preferred to be the smallest value such that the tail eigenvalue condition holds.

We give two examples to illustrate situations where (δ>Σ2δ)2/(δ>Σδ)4 =

o(pn−2−2γ) is satisfied.

Example 1. Suppose β is an eigenvector of Σ; then, (δ>Σ2δ)2/(δ>Σδ)4 = 1.

Given that n = o(p1/(2+2γ)) for a constant γ > 0, which frequently happens when

p� n, we have (δ>Σ2δ)2/(δ>Σδ)4 = o(pn−2−2γ).

Example 2. Suppose the covariance matrix Σ has the spectral decomposition

Σ = OΛO> = O diag(d1, . . . , dp)O
>,

where O is an orthogonal matrix with the ith column denoted by Oi, and di are

the eigenvalues of Σ satisfying 0 ≤ d1 ≤ d2 ≤ · · · ≤ dp. We assume there exist

integers 1 ≤ s1 ≤ s2 ≤ p and constants r1 ≤ r2 such that, for i = s1, . . . , s2,

the order of di is between nr1 and nr2 in the sense that 1/di = O(n−r1) and

di = O(nr2). Consider β ∈ Span{Os1 , . . . ,Os2}. Then, we get

(δ>Σ2δ)2

(δ>Σδ)4
≤ O(n4(r2−r1)).
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When n and p satisfy n = o(p1/2(1+γ+2r2−2r1)) for a constant γ > 0, we have

(δ>Σ2δ)2/(δ>Σδ)4 = o(pn−2−2γ), and thus our test outperforms the RCV test

in these situations.

4. Testing Partial Regression Coefficients

In Section 3, we proposed an RP test for the hypothesis test in (1.2). In

many studies, we are also interested in investigating the significance of part of

the covariates. In this section, we generalize the test in Section 3 to hypothesis

testing of a partial linear regression coefficient, and derive its asymptotic results.

Consider a linear regression model

yi = α+ x>1iβ1 + x>2iβ2 + εi, i = 1, . . . , n, (4.1)

where α is an intercept term, x1i is a p1-dimensional covariate and x2i is a p2-

dimensional covariate, β1 and β2 are vectors of unknown regression coefficients,

and εi is a random variable with mean zero and variance σ2. We are interested

in testing

Hpart,0 : β2 = 0 versus Hpart,1 : β2 6= 0. (4.2)

Let y = (y1, . . . , yn)> and x1i = (x1i1, . . . , x
1
ip1

)> be the ith row of the matrix

X1 = (x11, . . . ,x1n)>. Similarly, let X2 = (x21, . . . ,x2n)>. The linear model

(4.1) can be written as

y = α1 + X1β1 + X2β2 + ε, (4.3)

with the error vector ε = (ε1, . . . , εn)> and 1 = (1, . . . , 1)>.

Following the same idea as in Section 3, we develop a new test for the hy-

pothesis test in (4.2). For an integer 1 ≤ k2 < min{n− p1, p2}, let Pk2 ∈ Rp2×k2
be a matrix with i.i.d. N (0, 1) entries, drawn independently from the data. We

define the following projection matrices.

P1 =
1

n
11>,

PX1
= (I−P1)X1(X

>
1 (I−P1)X1)

−1XT
1 (I−P1),

Hk2 = (I−P1)W(W>(I−P1)W)−1W>(I−P1),

where W = (X1,X2Pk2). Note that the matrix W>(I − P1)W is of full rank

with probability one when Pk2 has i.i.d. N (0, 1) entries and k2 is selected ap-

propriately. This ensures the projection matrix Hk2 is well defined, even when

p2 > n. We propose a new test statistic
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Tn,p2 =
y>(Hk2 −PX1

)y/k2
y>(I−P1 −Hk2)y/(n− 1− p1 − k2)

. (4.4)

From the definition, the numerator of Tn,p2 represents the part of y that can only

be explained by X2Pk2 , and the denominator of Tn,p2 estimates the variance of

the error term.

4.1. Asymptotic null distribution

To study the asymptotic null distribution and the power of the proposed test,

we make the following assumptions.

Assumption S1. xi = (x>1i,x
>
2i)
> = µ + Γzi, where x1i ∈ Rp1 and x2i ∈ Rp2

are covariates, µ is a p-dimensional mean vector, Γ is a p × m matrix with

m ≥ p, and zi is an m-variate random vector with E(zi) = 0, V ar(zi) = Im,

and V ar(z>i zi/m) = O(m−1). For any nonnegative integers q1, . . . , qm, with∑m
j=1 qj = 4, the mixed moments E

(
Πm
j=1z

qj
ij

)
are bounded, and are equal to zero

when at least one qj is odd.

Assumption S2. µ4 = E(ε41) <∞.

Assumption S3. p = p1 + p2 � n, p2 � p1, and there exist constants ρ1, ρ2 ∈
(0, 1), with ρ1 + ρ2 < 1, such that p1/n→ ρ1 and k2/n→ ρ2.

Because Tn,p2 is invariant to the location shift of y, X1, and X2, we assume

α = 0 and µ = 0 in the following. The dimensions of the covariates are assumed

to satisfy p2 � p1, so X2 is the high-dimensional component. In addition, p1
is assumed to be less than, but possibly comparable with n. The projection

dimension k2 needs to be asymptotically proportional to n, and the choice of ρ2
is discussed below.

Theorem 3. Under Assumptions S1–S3 and Hpart,0, as n→∞, we have

Tn,p2 − 1√
2(1− ρ1)/nρ2(1− ρ1 − ρ2)

D−→ N (0, 1).

The asymptotic normality of the standardized test statistic provides the test-

ing procedure. Given an α-level of significance, Hpart,0 is rejected when

Tn,p2 − 1√
2(1− ρ1)/nρ2(1− ρ1 − ρ2)

> zα,

where zα is the upper α-quantile of N (0, 1).
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4.2. Asymptotic power function

We are now in a position to study the asymptotic power of the test. We first

divide Γ = (Γ>1 ,Γ
>
2 )> with Γ1 ∈ Rp1×m and Γ2 ∈ Rp2×m. Define Σ11 = Γ1Γ

>
1 ,

Σ22 = Γ2Γ
>
2 , Σ12 = Γ1Γ

>
2 , and Σ21 = Γ2Γ

>
1 . Following the same idea as in

Section 3, we give additional assumptions to facilitate our analysis.

Assumption S4. β>2 Σ22β2 = o(1) and β>2 Σ21Σ
−1
11 Σ12β2 = o(1).

Assumption S5. The m-variate random vector zi = (zi1, . . . , zim)> has a Lebe-

sgue density fz and satisfies E(zi) = 0 and V ar(zi) = Im. For j = 1, . . . ,m, the

components zij are assumed to be independent, satisfy E(z20ij ) ≤ C for a constant

C, and have a marginal density bounded by a constant D ≥ 1.

Define V = diag(Ip1 ,Pk2) and γ = (V>ΣV)−1V>Σβ. We write the p-

dimensional vector Vγ = (ξ>1 , ξ
>
2 )> with ξ1 ∈ Rp1 and ξ2 ∈ Rp2 . Let τ2k =

σ2 + β>Σβ − γ>V>ΣVγ. We derive the asymptotic power function of the

proposed test.

Theorem 4. Under Assumptions S1–S5, we have

ΨRP
n,p2(β2;Pk2)− Φ

(
−zα +

√
n(1− ρ1 − ρ2)(1− ρ1)

2ρ2

ξ>2 (Σ22 −Σ21Σ
−1
11 Σ12)ξ2

τ2k

)
→ 0,

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution, and zα is the upper α-quantile of Φ.

Note that no extra assumption is made for Σ. From the expression of the

asymptotic power function, we can see that the product ξ>2 (Σ22−Σ21Σ
−1
11 Σ12)ξ2

is preferred to be larger, is dependent on Pk2 , and is upper bounded by β>2 (Σ22−
Σ21Σ

−1
11 Σ12)β2. We give a sufficient condition such that the upper bound can be

reached.

Assumption S6. There exist an integer s2 < k2 and a real number γ2 > 0

such that ||β2||22
∑p2

i=s2+1 di = o(p2n
−0.5−γ2), where di are the eigenvalues of Σ22

satisfying d1 ≥ d2 ≥ · · · ≥ dp2 ≥ 0.

This assumption ensures Lemma 2 is valid for β2 and Σ22, leading to a

negligible distance between the vector Γ>β and the space generated by Γ>V. In

this case, we denote the power function of the proposed RP test Tn,p2 as ΨRP
n,p2(β2).
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Corollary 2. Under Assumptions S1–S6, we have

ΨRP
n,p2(β2)−Φ

(
−zα +

√
n(1− ρ1 − ρ2)(1− ρ1)

2ρ2

β>2 (Σ22 −Σ21Σ
−1
11 Σ12)β2

σ2

)
→ 0,

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution, and zα is the upper α-quantile of Φ.

5. Numerical Studies

5.1. Simulation studies

We conduct simulations to evaluate the finite-sample performance of the

proposed tests and compare it with that of the RCV test.

The first simulation study was designed to test: H0 : β = 0 versus H1 : β 6=
0 in the linear regression model

yi = α+ x>i β + εi.

Set α = 2. Suppose that εi is generated from N (0, 1) or t(5)/
√

5/3, and the

covariate xi is generated from µ + Σ1/2zi, where µ = (µ1, . . . , µp)
>, with µi

generated from U(2, 3) independently, and zi = (zi1, . . . , zip)
> is generated as

(i) N (0, Ip) or (ii) zij
i.i.d.∼ U(−

√
3,
√

3). The matrix Σ1/2 is generated by

U
√

DU>, where U is an orthogonal matrix generated from the uniform dis-

tribution on the p× p orthogonal group with the ith column denoted by ui and√
D = diag(

√
d1, . . . ,

√
dp). Let s = [n0.72] and L = [n0.8]. The function [x]

takes the greatest integer less than or equal to the number x. To achieve the

tail eigenvalue condition, we set di = 1, for i ≤ s, and di = (L − s)(wi/W ),

for i = s + 1, . . . , p, where wi = 1/(i − s)4 and W =
∑p

i=s+1wi. Under the

alternative hypothesis, the regression coefficient β is randomly selected from

Span{u1, . . . ,us+M}, with ||β||22 taking 0.1, 0.2, and 0.3. In the simulations,

we consider M = 0 and M = 50. Working under high-dimensional settings, we

set (n, p) = (300, 3000), (400, 5000), and (800, 5000).

In the simulations, we implemented three types of RP tests according to the

choice of random projection: (i) RP test: applying a normal random projection;

(ii) multi-RP test: independently generating a normal random projection 10 times

and using their mean; (iii) S-RP test: applying the sparse random projection

defined in (2.7) with l = 400.

We first report the kernel density estimation of the proposed test statistics

under H0 in Figures 1a and 1b, showing that the asymptotic null distribution of
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(a) Norm z, norm ε and (n, p) = (300, 3000).
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(b) Norm z, norm ε and (n, p) = (800, 5000).

Figure 1. The kernel density estimation of the RP, multi-RP, and S-RP tests under H0.

the proposed tests can be well approximated by the standard normal distribution.

Here, we chose ρ = 0.4. The good resemblance to the normal distribution confirms

the theoretical result in Theorem 1.

Tables 1 and 2 report the empirical power and sizes of the proposed tests

and the RCV test for ε distributed from N (0, 1) and
√

3/5t(5), based on 2,000

simulations. There are negligible difference between the performance of the three

proposed tests, which confirms the discussion in Section 2 and suggests the fea-

sible usage of a different random projection in the test. The empirical sizes of

the proposed tests and the RCV test are close to 0.05 under the null hypothesis.

The empirical power of the proposed tests are decreasing functions of ρ, which

is consistent with the result in Theorem 2. Moreover, we can see that the power

of the tests are increasing functions of the norm of β. Compared with the RCV

test, the proposed tests are more powerful.

In the second simulation study, we consider the problem of testing the partial

regression coefficients in the linear model. The results are given in Figure 1 and

Table 1 in the Supplementary Material. In the third simulation, we conducted a

numerical comparison with the LWT test and LDFF test proposed in Lan, Wang

and Tsai (2014) and Lan et al. (2016), respectively. The simulation results are

given in Table 2 in the Supplementary Material, and show that our proposed test

is applicable in highly correlated settings and has higher testing power than that

of competing tests.

5.2. Illustrative examples

To illustrate the proposed methods, we consider two examples.
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Table 1. Empirical power of the RP, multi-RP, S-RP, and RCV tests at the significance
level 0.05 when ε ∼ N (0, 1).

M ρ ||β||22
Z ∼ U(−

√
3,
√

3) Z ∼ N (0, 1)
RP multi-RP S-RP RCV RP multi-RP S-RP RCV

(n, p) = (300, 3000)
0.2 0 0.062 0.066 0.061 0.065 0.062 0.062 0.060 0.062
0.4 0 0.064 0.065 0.069 0.065 0.069 0.065 0.064 0.062

0

0.2
0.1 0.637 0.623 0.637 0.120 0.647 0.655 0.654 0.120
0.2 0.956 0.954 0.954 0.188 0.961 0.960 0.959 0.195
0.3 0.998 0.996 0.998 0.310 0.999 0.998 0.998 0.327

0.4
0.1 0.437 0.440 0.439 0.120 0.442 0.435 0.441 0.120
0.2 0.822 0.837 0.834 0.188 0.833 0.836 0.838 0.195
0.3 0.971 0.968 0.974 0.310 0.976 0.971 0.974 0.327

50

0.2
0.1 0.402 0.389 0.392 0.095 0.382 0.374 0.381 0.095
0.2 0.762 0.748 0.755 0.135 0.770 0.754 0.755 0.144
0.3 0.926 0.929 0.933 0.190 0.940 0.942 0.936 0.191

0.4
0.1 0.276 0.272 0.276 0.095 0.268 0.252 0.247 0.095
0.2 0.555 0.559 0.546 0.135 0.547 0.544 0.542 0.144
0.3 0.781 0.780 0.779 0.190 0.783 0.779 0.785 0.191

(n, p) = (400, 5000)
0.2 0 0.067 0.062 0.066 0.068 0.067 0.065 0.065 0.069
0.4 0 0.068 0.065 0.064 0.068 0.061 0.065 0.062 0.069

0

0.2
0.1 0.788 0.794 0.784 0.120 0.797 0.794 0.796 0.126
0.2 0.993 0.992 0.992 0.202 0.992 0.992 0.991 0.204
0.3 1.000 1.000 1.000 0.333 1.000 1.000 1.000 0.335

0.4
0.1 0.521 0.519 0.529 0.120 0.527 0.515 0.513 0.126
0.2 0.906 0.912 0.915 0.202 0.919 0.914 0.910 0.204
0.3 0.995 0.994 0.996 0.333 0.992 0.994 0.992 0.335

50

0.2
0.1 0.585 0.572 0.587 0.341 0.599 0.593 0.595 0.357
0.2 0.939 0.941 0.943 0.585 0.942 0.946 0.941 0.593
0.3 0.993 0.994 0.994 0.758 0.996 0.998 0.997 0.771

0.4
0.1 0.362 0.364 0.382 0.341 0.366 0.360 0.359 0.357
0.2 0.742 0.741 0.744 0.585 0.747 0.748 0.743 0.593
0.3 0.931 0.937 0.939 0.758 0.942 0.941 0.942 0.771

(n, p) = (800, 5000)
0.2 0 0.057 0.058 0.057 0.068 0.058 0.052 0.056 0.062
0.4 0 0.058 0.057 0.057 0.068 0.059 0.059 0.059 0.062

0

0.2
0.1 0.959 0.959 0.958 0.145 0.951 0.957 0.954 0.127
0.2 1.000 1.000 1.000 0.229 1.000 1.000 1.000 0.201
0.3 1.000 1.000 1.000 0.383 1.000 1.000 1.000 0.345

0.4
0.1 0.745 0.763 0.747 0.145 0.758 0.763 0.753 0.127
0.2 0.992 0.994 0.995 0.229 0.993 0.993 0.993 0.201
0.3 1.000 1.000 1.000 0.383 1.000 1.000 1.000 0.345

50

0.2
0.1 0.849 0.839 0.841 0.325 0.857 0.858 0.866 0.332
0.2 0.999 0.999 0.999 0.583 1.000 1.000 0.999 0.596
0.3 1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.792

0.4
0.1 0.554 0.551 0.551 0.325 0.568 0.559 0.562 0.332
0.2 0.947 0.951 0.951 0.583 0.955 0.952 0.952 0.596
0.3 0.997 0.998 0.999 0.778 0.998 0.999 0.997 0.792
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Table 2. Empirical power of the RP, multi-RP, S-RP, and RCV tests at the significance
level 0.05 when ε ∼

√
3/5t(5).

M ρ ||β||22
Z ∼ U(−

√
3,
√

3) Z ∼ N (0, 1)
RP multi-RP S-RP RCV RP multi-RP S-RP RCV

(n, p) = (300, 3000)
0.2 0 0.062 0.059 0.055 0.064 0.052 0.060 0.063 0.066
0.4 0 0.063 0.062 0.062 0.064 0.066 0.066 0.071 0.066

0

0.2
0.1 0.637 0.646 0.640 0.118 0.639 0.648 0.648 0.117
0.2 0.947 0.935 0.952 0.120 0.951 0.958 0.956 0.204
0.3 0.993 0.994 0.995 0.326 0.995 0.996 0.995 0.332

0.4
0.1 0.452 0.441 0.431 0.118 0.464 0.459 0.463 0.117
0.2 0.829 0.821 0.834 0.120 0.826 0.829 0.835 0.204
0.3 0.971 0.967 0.966 0.326 0.968 0.969 0.967 0.332

50

0.2
0.1 0.381 0.381 0.380 0.097 0.390 0.390 0.400 0.095
0.2 0.757 0.762 0.754 0.142 0.753 0.748 0.735 0.132
0.3 0.931 0.927 0.926 0.190 0.925 0.925 0.921 0.182

0.4
0.1 0.271 0.260 0.262 0.097 0.273 0.272 0.273 0.095
0.2 0.539 0.538 0.548 0.142 0.547 0.552 0.554 0.132
0.3 0.788 0.780 0.778 0.190 0.778 0.783 0.789 0.182

(n, p) = (400, 5000)
0.2 0 0.066 0.061 0.060 0.071 0.065 0.067 0.064 0.066
0.4 0 0.071 0.062 0.064 0.071 0.064 0.064 0.063 0.066

0

0.2
0.1 0.788 0.788 0.798 0.124 0.790 0.785 0.796 0.131
0.2 0.993 0.990 0.991 0.215 0.991 0.993 0.993 0.208
0.3 1.000 1.000 1.000 0.351 1.000 1.000 1.000 0.349

0.4
0.1 0.533 0.535 0.523 0.124 0.533 0.533 0.548 0.131
0.2 0.914 0.913 0.909 0.215 0.905 0.911 0.909 0.208
0.3 0.992 0.993 0.992 0.351 0.991 0.993 0.992 0.349

50

0.2
0.1 0.588 0.599 0.592 0.345 0.589 0.596 0.596 0.361
0.2 0.937 0.939 0.940 0.592 0.942 0.946 0.947 0.608
0.3 0.995 0.993 0.994 0.757 0.997 0.997 0.998 0.758

0.4
0.1 0.372 0.388 0.367 0.345 0.367 0.359 0.373 0.361
0.2 0.757 0.750 0.740 0.592 0.738 0.741 0.754 0.608
0.3 0.932 0.936 0.936 0.757 0.935 0.939 0.934 0.758

(n, p) = (800, 5000)
0.2 0 0.060 0.057 0.059 0.061 0.051 0.054 0.051 0.066
0.4 0 0.058 0.055 0.059 0.061 0.061 0.055 0.051 0.066

0

0.2
0.1 0.957 0.955 0.957 0.128 0.961 0.962 0.960 0.127
0.2 1.000 0.999 1.000 0.212 1.000 1.000 1.000 0.201
0.3 1.000 1.000 1.000 0.366 1.000 1.000 1.000 0.349

0.4
0.1 0.742 0.737 0.744 0.128 0.757 0.755 0.757 0.127
0.2 0.995 0.992 0.991 0.212 0.994 0.992 0.993 0.201
0.3 1.000 1.000 1.000 0.366 1.000 1.000 1.000 0.349

50

0.2
0.1 0.837 0.832 0.834 0.338 0.866 0.864 0.868 0.345
0.2 0.999 0.999 0.998 0.587 0.999 0.999 0.999 0.596
0.3 1.000 1.000 1.000 0.791 1.000 1.000 1.000 0.784

0.4
0.1 0.541 0.551 0.553 0.338 0.562 0.573 0.571 0.345
0.2 0.947 0.942 0.942 0.587 0.948 0.940 0.948 0.596
0.3 0.999 0.998 0.998 0.791 0.997 0.999 0.998 0.784
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Table 3. The p-values of the proposed tests and the RCV test for example 1.

H0 : β = 0 vs H1 : β 6= 0 Hpart,0 : β2 = 0 vs Hpart,1 : β2 6= 0

Tests RP multi-RP S-RP RCV RP multi-RP S-RP

p-value 0.00 0 0.00 0.00 0.73 0.61 0.65

5.2.1. Example 1

Here, We consider a real data set of riboflavin (vitamin B2) production by

bacillus subtilis. The data were analyzed by van de Geer et al. (2014) and are

available in the R package “hdi.” The real-valued response variable is the loga-

rithm of the riboflavin production rate, and there are p = 4,088 covariates (genes)

measuring the logarithm of the expression levels of 4,088 genes. These measure-

ments are from n = 71 samples of genetically engineered mutants of bacillus

subtilis. We modeled the data using a high-dimensional linear model. The p-

values of the proposed tests and the RCV test are provided in Table 3. All the

tests reject the null hypothesis, indicating the considerable significance of gene

expressions in predicting the riboflavin production rate.

Then, we were interested in the significance of a partial gene expression.

Using the lasso method, we divided the coefficients into two parts, β1 and β2,

where the index of β2 corresponds to the index of the zero part in β̂Lasso. We

conducted testing for β2 and the results are shown in Table 3. The large p-values

indicate that Hpart,0 is accepted, which is consistent with the lasso result.

5.2.2. Example 2

We applied the proposed tests to a more recent data set, which is available for

download under accession number GSE50948 in the Gene Expression Omnibus

(GEO). In this data set, gene expression profiling was performed using RNA from

n = 114 samples of pretreated patients with HER2-positive (HER2+) tumors.

Because multiple probes might represent the same gene, the measurement for

each gene is from the probe with the highest interquartile range. After a natural

logarithm transformation, we obtained expression values of 20,592 genes. Prat et

al. (2014) implemented a researched-based prediction analysis of the microarray

50 (PAM50) subtype predictor to the data. They reported that the predominant

subtype within HER2+ disease is HER2-enriched (HER2-E) tumors, which have

been found to have a high expression of HER2-regulated genes (for example,

ERBB2, GRB7, and FGFR4). To gain a better understanding of the HER2-E

subtype, we studied the association between HER2-regulated genes and residual

genes, with ERBB2 as an example.
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Table 4. The p-values of the proposed tests and the RCV test for example 2.

H0 : β = 0 vs H1 : β 6= 0 Hpart,0 : β2 = 0 vs Hpart,1 : β2 6= 0

Tests RP multi-RP S-RP RCV RP multi-RP S-RP

p-value 0.00 0.00 0.00 0.00 0.42 0.47 0.64

Let the response variable be the gene expression level of ERBB2 and the

residual p = 20,591 gene expression levels be the covariates. Suppose that the

data follow a linear model. The RCV test and our proposed tests reported a

significant relationship by rejecting the null hypothesis, as shown in Table 4.

We moved on to identifying strongly associated genes based on the proposed

tests and the lasso estimation. Let the regression coefficient corresponding to

the zeros in the lasso estimator be denoted as β2. The proposed tests for the

testing problem of this partial regression coefficient were conducted. The p-

values of the global and partial hypothesis testing in the table suggest that genes

with nonzero coefficients, namely, ESR1, MAP4K3, and TLK1, have significant

effects on the gene expression of ERBB2, some of which have already been shown

to be important to breast cancer. For example, Prat et al. (2014) indicated

that a lower expression of the luminal-related gene ESR1 is one of important

characteristics of HER2-enriched (HER2-E) tumors. Gamez-Pozo et al. (2014)

found the gene expression of MAP4K3 to be related to the PI3K pathway, which

is strongly associated with the response to trastuzumab in HER2 breast cancer.

Consequently, the new testing procedures can be helpful in confirming existing

knowledge and making new discoveries.

6. Conclusion

We have proposed a new testing procedure for hypothesis testing in a high-

dimensional linear regression, which involves applying a random projection and

then working with the classical F-test. The use of a random projection contributes

to the feasible replacement of high-dimensional covariates with their projected

versions. Our test is simple, both in form and computation. In addition, we

do not assume any explicit relationship between n and p, which indicates that

our test accommodates extremely high-dimensional settings. The asymptotic

null distribution and power function are derived when (n, p) → ∞. To show

the advantage of the new test, we compare it with a powerful high-dimensional

test proposed by Cui, Guo and Zhong (2018). We find a sufficient condition

that ensures our test outperforms the competing test. Our discussion provides a

specific suggestion for the choice of ρ in different situations. Next, we extended
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the discussion to include testing a partial linear regression coefficient, proposing

another test based on the same idea and deriving its asymptotic distribution.

Numerical simulations and applications to real data illustrate the finite-sample

performance of the proposed tests and demonstrate the feasible use of different

random projections.

Supplementary Material

The online Supplementary Material contains proofs of the lemmas and the-

orems, as well as additional numerical results.
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