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A Notations

For the readers’ convenience, we provide a list of notations below. We will also restate these

notation when they first appear in the proof.

• XS,t for some set S Ă t1, ¨ ¨ ¨ , Ku: XS,t “ pXk,tqkPS.

• Xk,s:t: Xk,s:t “ pXk,rqsďrďt.

• TA: an arbitrary sequential procedure.

• SA
t : The set of active streams at time t given by procedure TA.

• FA
t : σ-field of information obtained up to time t following TA.

• WA
k,t: posterior probability Ppτk ă t|FA

t q at the k-th stream following TA at time t.

• WA
S,t for some set S Ă t1, ¨ ¨ ¨ , Ku: WA

S,t “ pW
A
k,tqkPS.

• T˚: the proposed sequential procedure.

• S˚t , F˚t , W ˚
k,t, W

˚
S,t are defined similarly for procedure T˚.

• TAPt0 : the sequential procedure that takes the same steps as TA up to time t0 (meaning

S
APt0
t “ SA

t for 1 ď t ď t0) and updates by Algorithm 1 from time t0 ` 1 and onward.

• SAPt0
t , FAPt0

t , W
APt0
k,t , W

APt0
S,t are defined similarly for procedure TAPt0 .

• d
“: equal in distribution.

• ∅∅∅: a vector with zero length.

• dim: length of a vector, where dimp∅∅∅q “ 0.

• Z „ Np0, 1q: the notation ‘„’ means that the left side follows the distribution on the

right side.

B Proof Sketch

In this section, we discuss the main steps and techniques for proving Theorem 6 through

an induction argument. Its proof is involved, relying on some monotone coupling results on

stochastic processes living in a special partially ordered space. In what follows, we give a

sketch of the proof to provide more insights into the proposed procedure. When s “ 0, it
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is trivial that (5.2) holds. The induction is to show that for any TA P Tα and any t0, (5.2)

holds for s “ s0 ` 1, assuming that it holds for s ď s0. The induction step is proved by the

following three steps.

1. Show that TAPt0`1 is ‘better’ than TA conditional on FA
t0

.

2. Show that TAPt0 is ‘better’ than TAPt0`1 conditional on FA
t0

.

3. Show that TAPt0 is ‘better’ than TA conditional on FA
t0

by combining the first two

steps.

Here, we say a procedure is ‘better than’ the other, if its conditional expectation of the size

of index set at time t0`s`1 is no less than that of the other, given the information filtration

FA
t0

. Roughly, we prove the first step by replacing t0 with t0` 1 in the induction assumption

and taking conditional expectation given FA
t0

, and prove the third step by combining the first

and second steps. The main technical challenge lies in the second step, for which we develop

several technical tools. Among these tools, an important one is the following monotone

coupling result regarding a special partial order relationship.

We define a partially ordered space pSo,ďq as follows. Let

So “
K
ď

k“1

 

v “ pv1, ¨ ¨ ¨ , vkq P r0, 1s
k : 0 ď v1 ď ¨ ¨ ¨ vk ď 1

(

Y t∅∅∅u,

where ∅∅∅ represents a vector with zero length. For u P So, let dimpuq be the length of the

vector u.

Definition 1. For u,v P So, we say u ď v if dimpuq ě dimpvq and ui ď vi for i “

1, ..., dimpvq. In addition, we say u ď ∅∅∅ for any u P So.

To emphasize the dependence on the sequential procedure, we use SA
t and FA

t to denote

the index set and the information filtration at time t given by the sequential procedure TA.

We further define WA
k,t “ P

`

τk ă t | FA
t

˘

. Similarly, we define the index set S
APt0
t , infor-

mation filtration FAPt0
t , and posterior probability W

APt0
k,t given by the sequential procedure

TAPt0 . For any vector v “ pv1, ¨ ¨ ¨ , vmq, we use the notation rvs “ pvp1q, ¨ ¨ ¨ , vpmqq for its

order statistic. In addition, let r∅∅∅s “ ∅∅∅.

Proposition B.1. Let txt, st, 1 ď t ď t0u be any sequence in the support of the stochastic

process
 

pXk,tqkPSA
t
, SA

t , 1 ď t ď t0
(

following a sequential procedure TA P Tα. Then, there
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exists a coupling of So-valued random variables pxW,xW 1q such that

xW
d
“

„

´

W
APt0
k,t0`1

¯

kPS
APt0
t0`1


ˇ

ˇ

ˇ

ˇ

!

pXk,tqkPSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

)

,

xW 1 d
“

„

´

W
APt0`1

k,t0`1

¯

kPS
APt0`1

t0`1


ˇ

ˇ

ˇ

ˇ

!

pXk,tqkPSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

)

,

and xW ď xW 1 a.s., where
d
“ denotes that random variables on both sides are identically

distributed.

We clarify that by the above proposition, the resulting xW and xW 1 are defined on the

same probability space. Let

Ys “

„

´

W
APt0
k,t0`s

¯

kPS
APt0
t0`s



P So.

Under model Ms, the stochastic process Ys is stochastically monotone in that the following

monotone coupling result holds.

Proposition B.2. Suppose that model Ms holds. Then for any y,y1 P So such that y ď y1,

there exists a coupling ppYs, pY
1
s q, s “ 0, 1, ..., satisfying

1. tpYs : s ě 0u has the same distribution as the conditional process tYs : s ě 0u given

Y0 “ y, and tpY 1s : s ě 0u has the same distribution as the conditional process tYs : s ě

0u given Y0 “ y1.

2. pYs ď pY 1s , a.s. for all s ě 0.

Moreover, the process ppYs, pY
1
s q does not depend on TA, t0, or the information filtration FA

t0
.

Roughly, Proposition B.1 shows that the sequential procedure TAPt0 tends to have a

stochastically smaller detection statistic, in terms of the partial order ď, than that of TAPt0`1

at time t0 ` 1, and thus tends to keep more active streams. Proposition B.2 further shows

that this trend will be carried over to any future time, including time t0` s` 1. The second

step of induction is proved by formalizing this heuristic.

C Proof of Theorem 6

Theorem 6. Suppose that model Ms holds. For any t0, s ě 0 and any sequential detection

procedure TA P Tα, let FA
t be the information filtration and SA

t be the set of active streams
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at time t given by TA. Then,

E
“

|SA
t0`s

|
ˇ

ˇFA
t0

‰

ď E
”

|S
APt0
t0`s |

ˇ

ˇ

ˇ
FA
t0

ı

a.s.

Proof of Theorem 6. We will prove the theorem by inducting on s.

For the base case (s “ 0) the theorem is obviously true for all t0 and all TA P Tα as the

both sides of (5.2) are exactly the same.

We will prove the induction step in the rest of the proof. Assume (5.2) is true for any

strategy TA P Tα and any t0, for some s “ s0. Our goal is to prove that it is also true

for any t0, for s “ s0 ` 1, using the following steps, where we recall that TAPt0 is defined

as the sequential procedure that takes the same steps as TA up to time t0 and updates by

Algorithm 1 from time t0 ` 1 and onward, and the sequential procedure TAPt0`1 is defined

similarly.

Step 1: comparing TAPt0`1 and TA. For s “ s0 ` 1, since we assume (5.2) is true for

all t0, we could replace t0 by t0 ` 1 and s by s0 in (5.2) and arrive at

E
”

ˇ

ˇSA
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0`1

ı

ď E
”

ˇ

ˇS
APt0`1

t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0`1

ı

a.s.

Taking conditional expectation E
“

¨|FA
t0

‰

on both sides, we arrive at

E
”

ˇ

ˇSA
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

ď E
”

ˇ

ˇS
APt0`1

t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

a.s. (C.2)

Step 2: comparing TAPt0`1 and TAPt0 . First, define a function φt,s : So Ñ R,

φt,spuq “ E
”

|SAPt
t`s |

ˇ

ˇ

ˇ

“

WAPt
SAPt
t ,t

‰

“ u
ı

“ E
”

dim
`“

WAPt
SAPt
t`s ,t`s

‰˘

ˇ

ˇ

ˇ

“

WAPt
SAPt
t ,t

‰

“ u
ı

(C.3)

for t, s ě 0. Here, for a set S, and time points s and t, WAPt
S,s “

`

WAPt
k,s

˘

kPS
, where

WAPt
k,s “ P

´

τk ă s
ˇ

ˇ

ˇ
FAPt
s

¯

.

From Proposition B.2, we can see that φt,spuq does not depend on the sequential procedure

TA and the value of t. Thus, by replacing TA with TAPt0 , t with t0 ` 1, and s with s0 in

(E.2), we obtain

φt0`1,s0puq “ E
”

dim
`“

W
APt0

S
APt0
t0`s0`1,t0`s0`1

‰˘

ˇ

ˇ

ˇ

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

“ u
ı

. (C.4)

Here, to see the superscript of the process in the above equation is APt0 , we used the fact

that if we follow the procedure TAPt0 and switch to the proposed procedure at time t0 ` 1,
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then the overall sequential procedure is still TAPt0 .

Also from Proposition B.2, we can see that for any u ď u1 P So, there exists a coupling

ppYs, pY
1
s q such that pYs has the same distribution as

“

WAPt
SAPt
t`s ,t`s

‰

given
“

WAPt
SAPt
t ,t

‰

“ u, pY 1s has

the same distribution as
“

WAPt
SAPt
t`s ,t`s

‰

given
“

WAPt
SAPt
t ,t

‰

“ u1, and pYs ď pY 1s a.s. Thus,

φt,spuq “ E
`

dimppYsq
˘

and φt,spu
1
q “ E

`

dimppY 1s q
˘

.

According to the definition of the partial relationship ‘ď’, pYs ď pY 1s implies dimppYsq ě

dimppY 1s q. Combining this result with the above display, we conclude that φt,spuq ě φt,spu
1q

for any u ď u1 P So.
Next, we write E

”

ˇ

ˇS
APt0`1

t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

and E
”

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

in terms of the conditional ex-

pectation involving the function φt,s. We start with E
”

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

. By the iterative law

of conditional expectation and (C.4), we obtain

E
”

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

“E
„

E
"

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

*

ˇ

ˇ

ˇ
FA
t0



“E
„

E
"

dim
`

rW
APt0

S
APt0
t0`s0`1,t0`s0`1

‰˘

ˇ

ˇ

ˇ

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

*

ˇ

ˇ

ˇ
FA
t0



“E
„

φt0`1,s0

´

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

¯ˇ

ˇ

ˇ
FA
t0



.

According to the definition of the information filtration FA
t0

, we further write the above

conditional expectation as

E
”

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

“ E
„

φt0`1,s0

´

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

¯
ˇ

ˇ

ˇ

 

SA
r , Xk,r, k P S

A
r , 1 ď r ď t0

(



. (C.5)

Similarly, we have

E
”

ˇ

ˇS
APt0`1

t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

“ E
„

φt0`1,s0

´

“

W
APt0`1

S
APt0`1

t0`1 ,t0`1

‰

¯
ˇ

ˇ

ˇ

 

SA
r , Xk,r, k P S

A
r , 1 ď r ď t0

(



. (C.6)

We proceed to a comparison between (C.5) and (C.6). According to Proposition B.1, for each

sequence txr, sr, 1 ď r ď t0u that is in the support of the process tXSA
r ,r
, SA

r , 1 ď r ď t0u

there exists a coupling pxW,xW 1q such that

xW
d
“rW

APt0

S
APt0
t0`1 ,t0`1

s

ˇ

ˇ

ˇ
tXSA

r ,r
“ xr, S

A
r “ sr, 1 ď r ď t0u,
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xW 1 d
“rW

APt0`1

S
APt0`1

t0`1 ,t0`1
s

ˇ

ˇ

ˇ
tXSA

r ,r
“ xr, S

A
t “ sr, 1 ď r ď t0u,

and
xW ď xW 1 a.s.,

where ‘
d
“’ means two random variables on both sides have the same distribution. Thus,

E
„

φt0`1,s0

´

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

¯
ˇ

ˇ

ˇ
XSA

r ,r
“ xr, S

A
r “ sr, 1 ď r ď t0



“ Eφt0`1,s0
`

xW
˘

(C.7)

and

E
„

φt0`1,s0

´

“

W
APt0`1

S
APt0`1

t0`1 ,t0`1

‰

¯
ˇ

ˇ

ˇ
XSA

r ,r
“ xr, S

A
r “ sr, 1 ď r ď t0



“ Eφt0`1,s0
`

xW 1
˘

. (C.8)

On the other hand, note that we have shown φt0`1,s0puq ě φt0`1,s0pu
1q for any u ď u1 P So

and xW ď xW 1 a.s. by the coupling. Thus,

φt0`1,s0pxW q ě φt0`1,s0pxW
1
q a.s.

Combining the above inequality with (C.7) and (C.8), we arrive at

E
„

φt0`1,s0

´

“

W
APt0

S
APt0
t0`1 ,t0`1

‰

¯
ˇ

ˇ

ˇ
XSA

r ,r
“ xr, S

A
r “ sr, 1 ď r ď t0



ěE
”

φt0`1,s0

´

“

WA
SA
t0`1,t0`1

‰

¯
ˇ

ˇ

ˇ
XSA

r ,r
“ xr, S

A
r “ sr, 1 ď r ď t0

ı

for each sequence txr, sr, 1 ď r ď t0u that is in the support of the process tXSA
r ,r
, SA

r , 1 ď

r ď t0u. Comparing the above inequality with (C.5) and (C.6), we conclude that

E
”

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

ě E
”

ˇ

ˇS
APt0`1

t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

a.s. (C.9)

Step 3: combining results from Steps 1 and 2. Combining (C.2) and (C.9), we obtain

E
”

ˇ

ˇSA
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

ď E
”

ˇ

ˇS
APt0
t0`s0`1

ˇ

ˇ

ˇ

ˇ

ˇ
FA
t0

ı

a.s., (C.10)

which implies that (5.2) holds for arbitrary TA P Tα, t0, and s “ s0 ` 1. This completes the

induction.

Remark C.1. Proposition B.2 is used in Step 2 of the above proof, where we only use the

property that pYs ď pY 1s is independent of t0 and TA. The independence between ppYs, pY
1
s q and

FA
t0

is an additional result that further characterizes the coupling process. We did not use
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this additional property directly in the proof.

D Proof of Theorems 1 and 5

It suffices to prove Theorem 5, as Theorem 1 is straightforwardly implied by Theorem 5.

Theorem 5. Let TA P Tα be an arbitrary sequential procedure. Further let TAPt0 and TAPt0`1

be the switching procedures described above, with switching time t0 and t0 ` 1, respectively,

for some t0 ě 0. Then, TAPt0 ,TAPt0`1 P Tα and under model Ms

E
`

UtpTA
q
˘

ď E
`

UtpTAPt0`1q
˘

ď E
`

UtpTAPt0 q
˘

ď E pUtpT˚qq ,

for all t “ 1, 2, ¨ ¨ ¨ .

Proof of Theorem 5. First, note that TA P Tα and TAPt0 agrees with TA P Tα up to time t0.

Thus, TAPt0 control the LFNR to be no greater than α from time 1 to t0. Also, according

to Proposition 1, TAPt0 controls the LFNR at level α from time t0 ` 1 and onward. Thus,

TAPt0 P Tα. Similarly, TAPt0`1 P Tα.

Applying Theorem 6 but replacing t0 by t0 ` 1, and taking expectation on both sides of

the inequality, we obtain

E|SA
t0`1`s

| ď E|SAPt0`1

t0`1`s
|

for every t0 ě 0 and s ě 0. That is, for every t ě t0 ` 1,

E|SA
t | ď E|SAPt0`1

t |.

For t ă t0 ` 1, as TA and TAPt0`1 share the same index set, we have

E|SA
t | “ E|SAPt0`1

t |.

Combining the above inequalities, we obtain

E|SA
t | ď E|SAPt0`1

t |

for all t ě 0. This further implies

EtUtpTA
qu “

t
ÿ

s“1

E|SA
s | ď

t
ÿ

s“1

E|SAPt0`1
s | “ EtUtpTAPt0`1qu.
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This proves the inequality for comparing procedures TA and TAPt0`1 . We then compare

TAPt0`1 and TAPt0 , based on the same arguments above except that we replace TA by

TAPt0`1 , and replace TAPt0`1 by TAPt0 . We obtain

EtUtpTAPt0`1qu ď EtUtpTAPt0 qu

for all t ě 0.

Finally, we compare TAPt0 and T˚ “ TAP0 using a similar argument, which gives

EtUtpTAPt0 qu ď EtUtpT˚qu.

E Proof of Theorem 4

First, by Theorem 6, we directly see that Et|SA
t |u ď Et|S˚t |u, for any sequential proce-

dure TA P Tα. Thus, EpCDtpT˚qq “ K ´ E|S˚t | ď EpCDtpTAqq, which further implies

EpCDtpT˚qq “ infTPTα EpCDtpTqq.
We proceed to the analysis of RLtpTq. By interchanging the order of double summation,

we have

RLtpTq “
K
ÿ

k“1

pTk^τk^tq “
K
ÿ

k“1

t
ÿ

s“1

1ps ď Tk^τkq “
t
ÿ

s“1

K
ÿ

k“1

1ps ď Tk^τkq “
t
ÿ

s“1

ÿ

kPSs

t1´1pτk ă squ

which leads to

EtRLtpTqu “
t
ÿ

s“1

E
“

ÿ

kPSs

t1´ 1pτk ă squ
‰

“

t
ÿ

s“1

E
”

E
“

ÿ

kPSs

t1´ 1pτk ă squ
‰

|Fs
ı

.

Recall that Wk,s “ Ppτk ă s|Fsq and Ss P Fs. The above display yields

EtRLtpTqu “
t
ÿ

s“1

E
 

ÿ

kPSs

p1´Wk,sq
(

.

From the above equation, we can see that in order to show EtRLtpT˚qu “ supTPTα EtRLtpTqu,
it suffices to show E

 
ř

kPSt
p1 ´Wk,tq

(

is maximized for every t “ 1, 2, ¨ ¨ ¨ , which follows

directly from the following extension of Theorem 6.

Proposition E.1. Suppose that model Ms holds. For any t0, s ě 0 and any sequential

detection procedure TA P Tα, let FA
t be the information filtration and SA

t be the set of active
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streams at time t given by TA. Then,

E
”

ΨprWA
SA
t0`s

,t0`s
sq

ˇ

ˇ

ˇ
FA
t0

ı

ď E
„

ΨprW
APt0

S
APt0
t0`s

,t0`s
sq

ˇ

ˇ

ˇ

ˇ

FA
t0



a.s.,

where Ψ : So Ñ R is defined as Ψpwq “
řm
k“1p1´ wkq for w “ pw1, ¨ ¨ ¨ , wmq P So.

In the rest of the section, we provide the proof of Proposition E.1.

Proof of Proposition E.1. The proof of Proposition E.1 is similar to that of Theorem 6. We

will only state the main differences and omit the repetitive details.

First, by replacing |SA
t

ˇ

ˇ with ΨprWA
SA
t ,t
sq for t taking different values in the proof of

Theorem 6, we obtain the following inequality that is similar to (C.2)

E
”

ΨprWA
SA
t0`s0`1,t0`s0`1

sq

ˇ

ˇ

ˇ
FA
t0

ı

ď E
”

ΨpW
APt0`1

St0`s0`1,t0`s0`1

ˇ

ˇ

ˇ
FA
t0

ı

a.s. (E.1)

for all t0 and s0. Next, we define a function rφt,s : So Ñ R,

rφt,spuq “ E
”

ΨprWAPt
SAPt
t`s ,t`s

sq

ˇ

ˇ

ˇ

“

WAPt
SAPt
t ,t

‰

“ u
ı

(E.2)

for t, s ě 0. Then, we replace the φ with rφ in the proof of Theorem 6 and obtain the following

inequality that is similar to (C.9).

E
„

ΨprW
APt0

S
APt0
t0`s0`1,t0`s0`1

sq

ˇ

ˇ

ˇ
FA
t0



ě E
„

ΨprW
APt0`1

S
APt0`1

t0`s0`1,t0`s0`1
sq

ˇ

ˇ

ˇ
FA
t0



a.s. (E.3)

We point out that to arrive at the above inequality, the following property about Ψ is used:

Ψpw1q ď Ψpwq for any w,w1 P So satisfying w ď w1.

Combining (E.1) and (E.3), we obtain

E
”

ΨprWA
SA
t0`s0`1,t0`s0`1

sq

ˇ

ˇ

ˇ
FA
t0

ı

ď E
„

ΨprW
APt0

S
APt0
t0`s0`1,t0`s0`1

sq

ˇ

ˇ

ˇ
FA
t0



a.s.,

which extends (C.10) and completes the proof.

F Proof of Propositions B.1 and B.2

The proof of Propositions B.1 and B.2 is involved. We will first introduce some concepts

in stochastic ordering, followed by several useful lemmas, and then present the proof of the

propositions.
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F.1 Stochastic ordering

We first review a few important concepts and classic results on partially ordered spaces.

More details about stochastic ordering and coupling can be found in Kamae et al. (1977);

Lindvall (1999, 2002); Thorisson (2000).

Definition 2 (Partially Ordered Space (pospace)). A space pS,ďq is said to be a partially

ordered space (or pospace) if ď is a partial order relation over the topological space S and

the set tpx, yq P S2 : x ď yu is a closed subset of S2.

Definition 3 (Increasing functions over a partially ordered space). Let pS1,ďS1q and pS2,ďS2q

be partially ordered polish spaces. A map g : S1 Ñ S2 is said to be increasing if gpuq ďS2 gpvq

for all u ďS1 v with u, v P S1.

Definition 4 (Stochastic ordering of real-valued random variables). Let X and Y be two

random variables, we say X is stochastically less than or equal to Y , if PpX ě xq ď PpY ě xq

for all real number x. In this case, we write X ďst Y .

The following statements give some equivalent definitions for X ďst Y

Fact 1. The following statements are equivalent.

1. X ďst Y .

2. For all increasing, bounded, and measurable functions g : RÑ R, EpgpXqq ď EpgpY qq.

3. There exists a coupling p pX, pY q such that pX
d
“X, pY

d
“Y , and

pX ď pY a.s.

Here,
d
“ denotes that the random variables on both sides have an identical distribution.

In particular, the equivalence between 1 and 3 is known as the Strassen’s Theorem (Strassen,

1965).

Definition 5 (Stochastic ordering on a partially ordered polish space). Let pS,ďq be a

partially ordered polish space, and let X and Y be S-valued random variables. We say Y

stochastically dominates X, denoted by X ďst Y if for all bounded, increasing, and measur-

able function g : S Ñ R, EpgpXqq ď EpgpY qq.

Fact 2 (Strassen’s theorem for polish pospace, Theorem 2.4 in Lindvall (2002)). Let pS,ďq
be a polish partially ordered space, and let X and Y be S-valued random variables. Then,

X ďst Y if and only if there exists a coupling p pX, pY q such that pX
d
“X, pY

d
“Y and pX ď pY a.s.

12



Definition 6 (Stochastic dominance for Markov kernels). Let K and rK be transition kernels

for Markov chains over a partially ordered polish space pS,ďq. The transition kernel rK is

said to stochastically dominate K if

x ď y ùñ Kpx, ¨q ďst
rKpy, ¨q.

In particular, if the above is satisfied for the same kernel K “ rK, then we say K is stochas-

tically monotone.

Fact 3 (Strassen’s theorem for Markov chains over a polish pospace). Let tXtu and tYtu be

Markov chains over a partially ordered polish space, pS,ďq, with transition kernels K and rK

where rK stochastically dominates K. Then, for all initial points x0 ď y0, there is a coupling

tp pXt, pYtqu of tXtu starting at x0 and tYtu starting at y0 such that

pXt ď pYt @t a.s.

Fact 3 is a special case of Theorem 5.8 in Lindvall (2002).

F.2 Stochastic ordering and Markov chains on Su and So
In this section, we provide some supporting lemmas regarding properties of the partial order

relationship defined in Section B, and show stochastic ordering of several Markov chains.

The proof of these lemmas is given in Section F.4.

Recall that in Section B, we define a space

So “
K
ď

k“1

!

v “ pv1, ¨ ¨ ¨ , vkq P r0, 1s
k : 0 ď v1 ď ¨ ¨ ¨ vk ď 1

)

Y t∅∅∅u.

Here, we also define a space with unordered elements.

Su “
K
ď

k“1

r0, 1sk Y t∅∅∅u.

We first present a lemma showing that the space pSo,ďq is a polish partial order space.

Lemma F.1. pSo,ďq is a partially ordered space. In addition, So is a polish space equipped
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with the metric

dpu,vq “

$

’

’

’

&

’

’

’

%

max1ďmďdimpuq |um ´ vm| if dimpuq “ dimpvq ě 1

0 if u “ v “ ∅∅∅

2 if dimpuq ‰ dimpvq

for u,v P So.

We define mappings Io : So Ñ t0, ¨ ¨ ¨ , Ku and Ho : So Ñ So as follows. For any u P So,
define

Iopuq “

$

&

%

sup
!

n :
řn
i“1 ui ď αn, n P t0, ..., dimpuqu

)

if dimpuq ě 1,u “ pu1, ..., udimpuqq

0 if dimpuq “ 0,

(F.1)

and

Hopuq “

$

&

%

pu1, ¨ ¨ ¨ , uIopuqq if Iopuq ě 1,

∅∅∅ otherwise.

The mapping Ho is closely related to the one-step update rule in Algorithm 1, as summarized

in the next lemma.

Lemma F.2. If we input pWk,tqkPSt “ u and an index set St with |St| “ dimpuq in Algo-

rithm 1, then the output St`1 satisfies

|St`1| “ Iopuq and rpWk,tqkPSt`1s “ Hoprusq.

Other compound sequential detection rules in Tα are characterized through the next

lemma.

Lemma F.3. T “ pT1, ¨ ¨ ¨ , TKq P Tα if and only if

T P T and
K
ÿ

k“1

1pTk ą tqWk,t ď α ¨
K
ÿ

k“1

1pTk ą tq for t “ 0, 1, 2, ¨ ¨ ¨

The above expression is equivalent to

St`1 is Ft measurable , St`1 Ă St,
ÿ

kPSt`1

Wk,t ď α ¨ |St`1|

for t “ 0, 1, 2, ¨ ¨ ¨ , and Tk “ suptt : k P Stu.
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The next lemma compares the second statement in the above lemma with the output of

the function Ho.

Lemma F.4. Let u “ pu1, ¨ ¨ ¨ , umq P Su with dimpuq “ m ě 1. Let k1, ¨ ¨ ¨ , kl P t1, ¨ ¨ ¨ ,mu

be distinct and satisfy
l
ÿ

i“1

uki ď αl.

Then, Hoprusq ď rpuk1 , ¨ ¨ ¨ , uklqs. Moreover, if Hoprusq “ ∅∅∅, then for any S Ă t1, ¨ ¨ ¨ ,mu

with |S| ě 1,
ř

iPS ui ą α|S|.

Lemma F.5. For any u ď v P So, Hopuq ď Hopvq. That is, the mapping Hopuq is increasing

in u.

Next, we present several lemmas on the stochastic ordering of random variables and

Markov chains. We start with a simple but useful result regarding the stochastic monotonic-

ity of a likelihood ratio under a mixture model.

Lemma F.6. Let ppxq and qpxq be two density functions with respect to some baseline

measure µ and assume that pp¨q and qp¨q have the same support. Let Lpxq “ qpxq
ppxq

be the

likelihood ratio. For δ P r0, 1s, let Zδ be a random variable with the density function δq `

p1´ δqp and Lδ “ LpZδq. Then, for 0 ď δ1 ă δ2 ď 1, we have

Lδ1 ďst Lδ2 .

This result is intuitive: if we have more weights in q for the mixture distribution, then

the likelihood ratio will be larger, giving more evidence in favor of q.

Lemma F.7. Assume model Ms holds. Let Vk,t “ P pτk ă t|Xk,1, ¨ ¨ ¨ , Xk,tq. Then,

Vk,0 “ 0 and Vk,t`1 “
qpXk,t`1q{ppXk,t`1q

p1´ θqp1´ Vk,tq{pθ ` p1´ θqVk,tq ` qpXk,t`1q{ppXk,t`1q
. (F.2)

Moreover, tVk,tut“0,1,¨¨¨ are independent and identically distributed processes for different k.

Lemma F.8. Assume model Ms holds. Let δk,t “ P pτk ď t|Xk,1, ¨ ¨ ¨ , Xk,tq, then

δk,t “ θ ` p1´ θqVk,t,

where Vk,t is defined in (F.2).
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Lemma F.9. Under model Ms, the process tV1,tutě0 defined in (F.2) is a homogeneous

Markov chain. In addition, its transition kernel is stochastically monotone. We will later

refer to this transition kernel as Kp¨, ¨q.

Lemma F.10. For any t ě 1 and TA, rWA
SA
t`1,t`1

s is conditionally independent of FA
t given

rWA
SA
t`1,t

s. Moreover, the conditional density of
“

WA
SA
t`1,t`1

‰

at v given
“

WA
SA
t`1,t

‰

“ u P So is

Kapu,vq :“

$

’

’

’

&

’

’

’

%

ř

πPPdimpuq

śdimpuq
l“1 Kpul, vπplqq if dimpuq “ dimpvq ě 1,

1 if dimpuq “ dimpvq “ 0,

0 otherwise,

where Pm denotes the set of all permutations over t1, ¨ ¨ ¨ ,mu.

Lemma F.11. For each u P So with dimpuq “ m ě 1, generate an So-valued random

variable V as follows,

1. For each k P t1, ¨ ¨ ¨ ,mu, generate Zk „ Kpuk, ¨q independently for different k.

2. Let V “ rpZ1, ..., Zmqs.

In addition, if m “ 0, we let V “ ∅∅∅. Then, V „ Kapu, ¨q.

Lemma F.12. For u,u1 P So with u ď u1, we have Kapu, ¨q ďst Kapu
1, ¨q.

Lemma F.13. For any t, s ě 0 and TA,
“

WAPt
SAPt
t`s`1,t`s`1

‰

is conditionally independent of

FAPt
t`s given

“

WAPt
SAPt
t`s ,t`s

‰

. Moreover, the conditional density of
“

WAPt
SAPt
t`s`1,t`s`1

‰

at v given
“

WAPt
SAPt
t`s ,t`s

‰

“ u P So is

Kopu,vq :“ KapHopuq,vq “

$

’

’

’

&

’

’

’

%

ř

πPPIopuq

śIopuq
l“1 KpHopuql, vπplqq if dimpvq “ Iopuq ě 1

1 if dimpvq “ Iopuq “ 0

0 otherwise,

where Pm denotes the set of all permutations over t1, ¨ ¨ ¨ ,mu.

Remark F.1. There is a key difference between Lemma F.10 and Lemma F.13, though they

may look similar at a first glance. In Lemma F.10, we consider the conditional distribution of
“

WA
SA
t`1,t`1

‰

given
“

WA
SA
t`1,t

‰

, where the index set SA
t`1 is the same for the two random vectors.
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In Lemma F.13, we consider the conditional distribution of
“

WAPt
SAPt
t`s`1,t`s`1

‰

given
“

WAPt
SAPt
t`s ,t`s

‰

,

where the two random vectors are associated with two different index sets SAPt
t`s`1 and SAPt

t`s .

This difference reflects a key difference between the proposed one-step update rule and an

arbitrary procedure.

Lemma F.14. For each u P So and m “ Iopuq, generate an So-valued random variable V

as follows,

1. For each k P t1, ¨ ¨ ¨ ,mu, generate Zk „ KpHopuqk, ¨q independently for different k.

2. Let V “ rpZ1, ..., Zmqs.

In addition, if m “ 0, we let V “ ∅∅∅. Then, V „ Kopu, ¨q.

F.3 Proof of Propositions B.1 and B.2

Proposition B.1. Let txt, st, 1 ď t ď t0u be any sequence in the support of the stochastic

process
 

pXk,tqkPSA
t
, SA

t , 1 ď t ď t0
(

following a sequential procedure TA P Tα. Then, there

exists a coupling of So-valued random variables pxW,xW 1q such that

xW
d
“

„

´

W
APt0
k,t0`1

¯

kPS
APt0
t0`1

ˇ

ˇ

ˇ

ˇ

!

pXk,tqkPSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

)

,

xW 1 d
“

„

´

W
APt0`1

k,t0`1

¯

kPS
APt0`1

t0`1


ˇ

ˇ

ˇ

ˇ

!

pXk,tqkPSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

)

,

and xW ď xW 1 a.s., where
d
“ denotes that random variables on both sides are identically

distributed.

Proof of Proposition B.1. First, given
 

XSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

(

,
“

WA
SA
t0
,t0

‰

is deter-

mined. To simplify the notation, we assume WA
SA
t0
,t0
“ wt0 P Su given

 

XSA
t
“ xt, S

A
t “

st, 1 ď t ď t0
(

.

In addition,
“

WA
SA
t0`1,t0

‰

is determined by
 

XSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

(

and the

sequential procedure TA. To simplify the notation, we assume
“

WA
SA
t0`1,t0

‰

“ w˚
t0`1

P So
given tXSA

t
“ xt, S

A
t “ st, 1 ď t ď t0u. We clarify that w˚

t0`1
is a deterministic (and

measurable) function of xt, st for 1 ď t ď t0 (depending on the sequential procedure TA).

According to Lemma F.10 (replacing t by t0), the conditional distribution of
“

WA
SA
t0`1,t0`1

‰

given
 

XSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

(

is the same as the conditional distribution given
“

WA
SA
t0`1,t0

‰

“ w˚
t0`1

. Moreover, the conditional density is Kapw
˚
t0`1

, ¨q.
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We perform a similar analysis by replacing TA by TAPt0 in the above analysis. We

denote
“

W
APt0

S
APt0
t0`1 ,t0

‰

“ wt0`1 and obtain that the conditional density of
“

W
APt0

S
APt0
t0`1 ,t0`1

‰

given
 

XSA
t
“ xt, S

A
t “ st, 1 ď t ď t0

(

is Kapwt0`1, ¨q.

According to the above analysis and Strassen Theorem for pospace (Fact 2), to prove the

proposition, it is sufficient to show Kapwt0`1, ¨q ďst Kapw
˚
t0`1

, ¨q. By Lemma F.12, we have

Kapu, ¨q ďst Kapu
1, ¨q for any u ď u1 P So. Thus, it is sufficient to show that wt0`1 ď w˚

t0`1
.

Now we compare wt0`1 and w˚
t0`1

. According to the definition of TAPt0 and Lemma F.2,

we know wt0`1 “ Hoprwt0sq. There are two cases: 1) w˚
t0`1

“ ∅∅∅, and 2) w˚
t0`1

‰ ∅∅∅.
We analyze these cases separately. For the first case, wt0`1 ď w˚

t0`1
by definition of the

partial order. For the second case, according to Lemma F.3 and Lemma F.4, we can see

that wt0`1 “ Hoprwt0sq ‰ ∅∅∅. Write wt0 “ pwt0,1, ¨ ¨ ¨ , wt0,mq for some m, then w˚
t0`1

can be

written as w˚
t0`1

“ pwt0,k1 , ¨ ¨ ¨ , wt0,klq for some distinct k1, ¨ ¨ ¨ , kl P t1, ¨ ¨ ¨ ,mu. According

to Lemma F.3, for TA to control LFNR at time t0`1, w˚
t0`1

satisfies
řl
i“1wt0,ki ď αl. Thus,

according to Lemma F.4, wt0`1 “ Hoprwt0sq ď rw˚
t0`1

s “ w˚
t0`1

.

Proposition B.2. Suppose that model Ms holds. Then for any y,y1 P So such that y ď y1,

there exists a coupling ppYs, pY
1
s q, s “ 0, 1, ..., satisfying

1. tpYs : s ě 0u has the same distribution as the conditional process tYs : s ě 0u given

Y0 “ y, and tpY 1s : s ě 0u has the same distribution as the conditional process tY 1s : s ě

0u given Y0 “ y1.

2. pYs ď pY 1s , a.s. for all s ě 0.

Moreover, the process ppYs, pY
1
s q does not depend on TA, t0, or the information filtration FA

t0
.

Proof of Proposition B.2. Recall Ys “

„

´

W
APt0
k,t0`s

¯

kPS
APt0
t0`s



. By letting t “ t0 in Lemma F.13,

we obtain that tYsusě0 is a homogeneous Markov chain, whose transition kernel is Ko, which

is independent of the sequential procedure TA, t0, and the information filtration FA
t0

. For

the rest of the proof, according to Definition 6 and Fact 3, it is sufficient to show that Ko

is stochastically monotone. That is, Kopu, ¨q ďst Kopu
1, ¨q for any u,u1 P So with u ď u1.

Thus, it is sufficient to show that for all u ď u1 there exists a coupling ppV , pV 1q such that
pV „ Kopu, ¨q, pV

1 „ Kopu
1, ¨q and pV ď pV 1 a.s. In what follows, we construct such a coupling.

For u ď u1 with u,u1 P So, we know that Hupuq ď Hupu
1q by Lemma F.5. By the

definition of the partial order, this implies that dimpHupu
1qq ď dimpHupuqq and Hupuqk ď

Hupu
1qk for each 1 ď k ď dimpHupu

1qq. By Lemma F.9, this further implies

KpHupuqk, ¨q ďst KpHupu
1
qk, ¨q
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for k “ 1, ..., dimpHupu
1qq. Thus, by Strassen’s Theorem for random variables (Fact 1), this

implies that there exists a coupling p pZk, pZ
1
kq such that

pZk „ KpHupuqk, ¨q, pZ
1
k „ KpHupu

1
qk, ¨q, and pZk ď pZ 1k a.s.

for k “ 1, ..., dimpHupu
1qq. In addition, we choose the coupling so that p pZk, pZ

1
kq are indepen-

dent for different k. For dimpHupu
1qq ă k ď dimpHupuqq, we construct pZk „ KpHupuqk, ¨q

so that pZk’s are independent for different k. Let pZ “ p pZ1, ¨ ¨ ¨ , pZdimpHupuqqq and pZ 1 “

p pZ 11, ¨ ¨ ¨ ,
pZ 1dimpHupu1qq

q.

For this coupling, it is easy to verify

dimp pZq ě dimp pZ 1q and pZk ď pZ 1k for 1 ď k ď dimp pZ 1q a.s.

Thus, r pZs ď r pZ 1s a.s. Let pV “ r pZs and pV 1 “ r pZ 1s. Then, our coupling ppV , pV 1q gives

pV ď pV 1 a.s.

On the other hand, by Lemma F.14, we have

pV „ Kopu, ¨q and pV 1 „ Kopu
1, ¨q.

Therefore,

Kopu, ¨q ďst Kopu
1, ¨q.

F.4 Proof of supporting lemmas in Section F.2

Lemma F.1. pSo,ďq is a partially ordered space. In addition, So is a polish space equipped

with the metric

dpu,vq “

$

’

’

’

&

’

’

’

%

max1ďmďdimpuq |um ´ vm| if dimpuq “ dimpvq ě 1

0 if u “ v “ ∅∅∅

2 if dimpuq ‰ dimpvq

for u,v P So.

Proof of Lemma F.1. First, So is the union of polish spaces tu “ pu1, ¨ ¨ ¨ , umq : 0 ď u1 ď

¨ ¨ ¨ ď um ď 1u and t∅∅∅u. Thus, it is also a polish space. Second, it is straightforward to
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verify that dpu,vq is a metric defined over So.
Now, we verify that the partial order relationship ď is closed over So. To see this, let

u,v P So satisfying u ­ď v. There are two cases: 1) dimpuq ă dimpvq, or 2) dimpuq ě dimpvq

and there exists m P t1, ¨ ¨ ¨ , dimpvqu such that um ą vm. Let Bdpu, δq and Bdpv, δq be d-

balls centering at u and v with δ chosen according to different cases: δ “ 1{2 for the first

case; and δ “ um´vm
4

for the second case. Then, it is easy to verify that for all u1 P Bdpu, δq

and v1 P Bdpv, δq, we have u1 ­ď v1. That is, the partial order relationship ď is closed over

So.

Lemma F.2. If we input pWk,tqkPSt “ u and an index set St with |St| “ dimpuq in Algo-

rithm 1, then the output St`1 satisfies

|St`1| “ Iopuq and rpWk,tqkPSt`1s “ Hoprusq.

Proof of Lemma F.2. If u “ ∅∅∅, then rus “ ∅∅∅ and |St| “ 0. This implies Ioprusq “ 0 and

Hoprusq “ ∅∅∅. In the rest of the proof we assume that u ‰ ∅∅∅. By Step 1 of Algorithm 1,

we obtain that rus “ pWk1,t, ¨ ¨ ¨ ,Wk|St|,t
q where St “ tk1, ¨ ¨ ¨ , k|St|u and Wk1,t ď ¨ ¨ ¨Wk|St|,t

.

According to Step 2 and 3 of the algorithm and the definition of Ioprusq in (F.1), the largest

n making Rn ď α is Ioprusq and Hoprusq “ rpWk,tqkPSt`1s.

Lemma F.3. T “ pT1, ¨ ¨ ¨ , TKq P Tα if and only if

T P T and
K
ÿ

k“1

1pTk ą tqWk,t ď α ¨
K
ÿ

k“1

1pTk ą tq for t “ 0, 1, 2, ¨ ¨ ¨

The above expression is equivalent to

St`1 is Ft measurable , St`1 Ă St,
ÿ

kPSt`1

Wk,t ď α ¨ |St`1|

for t “ 0, 1, 2, ¨ ¨ ¨ , and Tk “ suptt : k P Stu.

Proof of Lemma F.3. By definition and the Ft measurability of St`1,

LFNRt`1pTq “ E

«

ř

kPSt`1
1pτk ă tq

|St`1| _ 1

ˇ

ˇ

ˇ
Ft

ff

“

ř

kPSt`1
Ppτk ă t|Ftq

|St`1| _ 1
“

ř

kPSt`1
Wk,t

|St`1| _ 1
.

Thus, T P Tα if and only if
ř

kPSt`1
Wk,t

|St`1| _ 1
ď α a.s.,
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which is equivalent to
ÿ

kPSt`1

Wk,t ď α|St`1| a.s.,

for every t.

Lemma F.4. Let u “ pu1, ¨ ¨ ¨ , umq P Su with dimpuq “ m ě 1. Let k1, ¨ ¨ ¨ , kl P t1, ¨ ¨ ¨ ,mu

be distinct and satisfy
l
ÿ

i“1

uki ď αl.

Then, Hoprusq ď rpuk1 , ¨ ¨ ¨ , uklqs. Moreover, if Hoprusq “ ∅∅∅, then for any S Ă t1, ¨ ¨ ¨ ,mu

with |S| ě 1,
ř

iPS ui ą α|S|.

Proof of Lemma F.4. We first prove the ‘Moreover’ part of the lemma by contradiction. If

on the contrary Hoprusq “ ∅∅∅ and there exists a non-empty set S Ă t1, ¨ ¨ ¨ ,mu such that
ř

iPS ui ď α|S|, then there exists i P S such that ui ď α. This further implies rus1 ď ui ď α

and Ioprusq ě 1, which contracts with the assumption Hoprusq “ ∅∅∅.

We proceed to the proof of the rest of the lemma. We first prove that l in the lemma satis-

fies l ď Ioprusq. To see this, recall that prus1, ¨ ¨ ¨ , rusmq is the order statistic of pu1, ¨ ¨ ¨ , umq.

Thus,
l
ÿ

i“1

rusi ď
l
ÿ

i“1

uki ď αl. (F.3)

Recall Ioprusq “ suptn :
řn
i“1rusi ď αn, n P t0, ¨ ¨ ¨ ,muu. Thus, (F.3) implies l ď Ioprusq.

Next, we prove that Hoprusq ď rpuk1 , ¨ ¨ ¨ , uklqs. Without loss of generality, assume

uk1 , ¨ ¨ ¨ , ukl are ordered. That is, uk1 ď ¨ ¨ ¨ ď ukl and rpuk1 , ¨ ¨ ¨ , uklqs “ puk1 , ¨ ¨ ¨ , uklq. Then,

according to the definition of the order statistic rus, we have rusi ď uki for i “ 1, ¨ ¨ ¨ , l.

Recall Hoprusq “ prus1, ¨ ¨ ¨ , rusIopuqq. This implies Hoprusq ď rpuk1 , ¨ ¨ ¨ , uklqs.

Lemma F.5. For any u ď v P So, Hopuq ď Hopvq. That is, the mapping Hopuq is increasing

in u.

Proof of Lemma F.5. If v “ ∅∅∅, then Hopvq “ ∅∅∅ and Hopuq ď ∅∅∅ “ Hopvq by the def-

inition of the partial order. In the rest of the proof we assume dimpvq ě 1 and v “

pv1, ¨ ¨ ¨ , vdimpvqq. As we assumed u ď v, this implies dimpuq ě dimpvq ě 1. We further

denote u “ pu1, ¨ ¨ ¨ , udimpuqq

We first show that if
řL`1
i“1 vi ď αpL ` 1q for some L, then

řL
i“1 vi ď αL. That is,

p
řL
i“1 viq{L is increasing in L. To see this, consider two cases. If vL`1 ď α, then v1 ď ¨ ¨ ¨ ď

vL ď α and thus
řL
i“1 vi ď αL. If vL`1 ą α, then

řL
i“1 vi ď

řL`1
i“1 vi ´ α ď αL. This result

implies that
řL
i“1 vi ď αL for all 1 ď L ď Iopvq.
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Now we show that Iopuq ě Iopvq by contradiction. If on the contrary Iopuq ă Iopvq, then

Iopuq ` 1 ď Iopvq ď dimpvq and

Iopuq`1
ÿ

i“1

ui ď

Iopuq`1
ÿ

i“1

vi ď αpIopuq ` 1q.

This contradicts with the definition of Iopuq. Therefore, Iopuq ě Iopvq.

We proceed to showing Hopuq ď Hopvq. By the definition of Ho, we have Hopuq “

pu1, ¨ ¨ ¨ , uIopuqq and Hopvq “ pv1, ¨ ¨ ¨ , vIopvqq. Since we assume u ď v, we have ui ď vi for all

i “ 1, ¨ ¨ ¨ , Iopvq. This shows that Hopuq ď Hopvq.

Lemma F.6. Let ppxq and qpxq be two density functions with respect to some baseline

measure µ and assume that pp¨q and qp¨q have the same support. Let Lpxq “ qpxq
ppxq

be the

likelihood ratio. For δ P r0, 1s, let Zδ be a random variable with the density function δq `

p1´ δqp and Lδ “ LpZδq. Then, for 0 ď δ1 ă δ2 ď 1, we have

Lδ1 ďst Lδ2 .

Proof of Lemma F.6. Let g be a bounded increasing function. Then,

EgpLδ2q ´ EgpLδ1q

“EZ„δ2q`p1´δ2qpg
`

LpZq
˘

´ EZ„δ1q`p1´δ1qpg
`

LpZq
˘

“δ2EZ„qg
`

LpZq
˘

` p1´ δ2qEZ„pg
`

LpZq
˘

´
 

δ1EZ„qg
`

LpZq
˘

` p1´ δ1qEZ„pg
`

LpZq
˘(

“pδ2 ´ δ1q
 

EZ„qg
`

LpZq
˘

´ EZ„pg
`

LpZq
˘(

.

Note that LpZq “ qpZq{ppZq and EZ„qg
`

LpZq
˘

“ EZ„p
 

LpZqg
`

LpZq
˘(

. Thus, the above

display can be further written as

EgpLδ2q ´ EgpLδ1q “ pδ2 ´ δ1qEZ„p
 `

LpZq ´ 1
˘

g
`

LpZq
˘(

.

For notational simplicity, let Y “ LpZq with Z „ p. Then, EpY q “ 1 and the above display

implies

EgpLδ2q ´ EgpLδ1q “ pδ2 ´ δ1qE tpY ´ 1qgpY qu “ pδ2 ´ δ1qE tpY ´ 1qpgpY q ´ gp1qqu ě 0.

The last inequality in the above display is due to the fact that pY ´ 1qpgpY q ´ gp1qq ě 0
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for all increasing function g. We remark that it is also a special case of Harris inequality

(Harris, 1960).

Lemma F.7. Assume model Ms holds. Let Vk,t “ P pτk ă t|Xk,1, ¨ ¨ ¨ , Xk,tq. Then,

Vk,0 “ 0 and Vk,t`1 “
qpXk,t`1q{ppXk,t`1q

p1´ θqp1´ Vk,tq{pθ ` p1´ θqVk,tq ` qpXk,t`1q{ppXk,t`1q
. (F.2)

Moreover, tVk,tut“0,1,¨¨¨ are independent and identically distributed processes for different k.

Proof of Lemma F.7. First, it is easy to see that tVk,susě0 are independent and identically

distributed processes for different k. For the rest of the proof, it is sufficient to prove the

lemma for k “ 1. For the ease of exposition, we use the notation Xk,s:t to denote pXk,rqsďrďt.

First, P pτ1 ă 0|X1,1:0q “ Ppτ1 ă 0q “ 0 “ V0. Thus, it is sufficient to verify the update rule

for V1,t. A direct calculation gives

Ppτ1 ď t´ 1|X1,1:tq

“

řt´1
s“0 Ppτ1 “ sq

śs
r“1 ppX1,rq

śt
r“s`1 qpX1,rq

řt´1
s“0 P pτ1 “ sq

śs
r“1 ppX1,rq

śt
r“s`1 qpX1,rq ` P pτ1 ě tq

śt
r“1 ppX1,rq

“

řt´1
s“0 θp1´ θq

sL1,ps`1q:t
řt´1
s“0 θp1´ θq

sL1,ps`1q:t ` p1´ θqt

“
Q1,t

Q1,t ` p1´ θqt

where we write Lk,ps`1q:t :“
śt

r“s`1
qpXk,rq

ppXk,rq
, the likelihood ratio between pp¨q and qp¨q based

on the data X1,ps`1q:t, and Q1,t “
řt´1
s“0 θp1´ θq

sL1,ps`1q:t. Then,

Q1,t “
p1´ θqtPpτ1 ď t´ 1|X1,1:tq

1´ Ppτ1 ď t´ 1|X1,1:tq
.

Note that

Q1,t`1 “

t
ÿ

s“0

θp1´ θqsL1,ps`1q:t`1 “ qpX1,t`1q{ppX1,t`1q
 

θp1´ θqt `Q1,t

(

.
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Thus,

Ppτ1 ď t|X1,1:t`1q

“
Q1,t`1

Q1,t`1 ` p1´ θqt`1

“
qpX1,t`1q{ppX1,t`1q tθp1´ θq

t `Q1,tu

qpX1,t`1q{ppX1,t`1q tθp1´ θqt `Q1,tu ` p1´ θqt`1

“
qpX1,t`1q{ppX1,t`1q

qpX1,t`1q{ppX1,t`1q ` p1´ θq{ tθ ` p1´ θq´tQ1,tu

“
qpX1,t`1q{ppX1,t`1q

qpX1,t`1q{ppX1,t`1q ` p1´ θq{
!

θ ` Ppτ1ďt´1|X1,1:tq

1´Ppτ1ďt´1|X1,1:tq

) .

We complete the proof by simplifying the above result.

Lemma F.8. Assume model Ms holds. Let δk,t “ P pτk ď t|Xk,1, ¨ ¨ ¨ , Xk,tq, then

δk,t “ θ ` p1´ θqVk,t,

where Vk,t is defined in (F.2).

Proof of Lemma F.8. By symmetry, it is sufficient to prove the lemma for k “ 1. Recall

Lk,ps`1q:t “
śt

r“s`1
qpXk,rq

ppXk,rq
and Qk,t “

řt´1
s“0 θp1´ θq

sL1,ps`1q:t.

A direct calculation using Bayes formula gives

δk,t “

řt´1
s“0 Ppτ1 “ sq

śs
r“1 ppX1,rq

śt
r“s`1 qpX1,rq ` P pτ1 “ tq

śt
r“1 ppX1,rq

řt´1
s“0 P pτ1 “ sq

śs
r“1 ppX1,rq

śt
r“s`1 qpX1,rq ` P pτ1 ě tq

śt
r“1 ppX1,rq

“

řt´1
s“0 θp1´ θq

sL1,ps`1q:t ` θp1´ θq
t

řt´1
s“0 θp1´ θq

sL1,ps`1q:t ` p1´ θqt

“
Q1,t ` θp1´ θq

t

Q1,t ` p1´ θqt

“V1,t ` θp1´ V1,tq

“θ ` p1´ θqV1,t.

Lemma F.9. Under model Ms, the process tV1,tutě0 defined in (F.2) is a homogeneous

Markov chain. In addition, its transition kernel is stochastically monotone. We will later

refer to this transition kernel as Kp¨, ¨q.

Proof of Lemma F.9. We first study the conditional distribution ofX1,t`1 given V1,0, ¨ ¨ ¨ , V1,t.

According to the change point modelMs, we know that X1,t`1 is conditionally independent
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of V1,0, ¨ ¨ ¨ , V1,t given the event tτ1 ď tu. That is, given V1,0, ¨ ¨ ¨ , V1,t, the conditional density

function of X1,t`1 is δ1,tqpxq ` p1 ´ δ1,tqppxq, which depends on X1,1, ¨ ¨ ¨ , X1,t only through

V1,t.

Let the function Lpxq :“ qpxq{ppxq and let Lk,t`1 :“ qpXk,t`1q{ppXk,t`1q. Then, L1,t`1 “

LpX1,t`1q, whose conditional distribution given V1,0, ¨ ¨ ¨ , V1,t only depends on V1,t. According

to the iteration (F.2), this implies that the process tV1,tutě0 is a Markov process. Note

that δ1,t and the iteration (F.2) depend on t only through V1,t. Thus, this Markov chain

is a homogeneous Markov chain. We now show that its transition kernel is stochastically

monotone.

Let δpxq “ θ ` p1 ´ θqx. For x P p0, 1q, we consider the following steps of generating a

random variable V pxq.

1. Generate Zpxq with the density δpxqqp¨q ` p1´ δpxqqpp¨q.

2. Let

V pxq “
LpZpxqq

LpZpxqq ` p1´ θqp1´ xq{pθ ` p1´ θqxq
.

From the iteration (F.2) and X1,t`1|Vt “ x „ p1´ δpxqqqp¨q ` δpxqpp¨q, we can see that V pxq

has the same distribution as that of V1,t`1 given V1,t “ x. In other words, V pxq has the

density function Kpx, ¨q.

Now we show that Kpx, ¨q ďst Kpx
1, ¨q for any 0 ă x ď x1 ă 1 by coupling. Specifically,

since δpxq is increasing in x, δpxq ď δpx1q. Then, by Lemma F.6, we know LpZpxqq ďst

LpZpx1qq. According to the Strassen Theorem for random variables (Fact 1), there exists

a coupling ppL, pL1q, such that pL
d
“LpZpxqq, pL1

d
“LpZpx1qq and pL ď pL1 a.s. Then, let pV “

pL
pL`p1´θqp1´xq{pθ`p1´θqxq

d
“V pxq and pV 1 “

pL1

pL1`p1´θqp1´x1q{pθ`p1´θqx1q

d
“V px1q.

Because pL ď pL1 and x ď x1,

pV “
pL

pL` p1´ θqp1´ xq{pθ ` p1´ θqxq

ď
pL1

pL1 ` p1´ θqp1´ xq{pθ ` p1´ θqxq

ď
pL1

pL1 ` p1´ θqp1´ x1q{pθ ` p1´ θqx1q

“ pV 1 a.s.

That is, pV ď pV 1 a.s., and ppV , pV 1q is a coupling of pV pxq, V px1qq. Thus, V pxq ďst V px
1q and

so is Kpx, ¨q ďst Kpx
1, ¨q.
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Lemma F.10. For any t ě 1 and TA, rWA
SA
t`1,t`1

s is conditionally independent of FA
t given

rWA
SA
t`1,t

s. Moreover, the conditional density of
“

WA
SA
t`1,t`1

‰

at v given
“

WA
SA
t`1,t

‰

“ u P So is

Kapu,vq :“

$

’

’

’

&

’

’

’

%

ř

πPPdimpuq

śdimpuq
l“1 Kpul, vπplqq if dimpuq “ dimpvq ě 1,

1 if dimpuq “ dimpvq “ 0,

0 otherwise,

where Pm denotes the set of all permutations over t1, ¨ ¨ ¨ ,mu.

Proof of Lemma F.10. First, if dimpuq “ 0, then u “ ∅∅∅, and
“

WA
SA
t`1,t

‰

“ u means that

SA
t`1 “ H. Thus, the conditional distribution of

“

WA
SA
t`1,t`1

‰

given
“

WA
SA
t`1,t

‰

“ u is a point

mass at ∅∅∅, and Kap∅∅∅,∅∅∅q “ 1. In the rest of the proof, we focus on the case that u ‰ ∅∅∅.

We start with deriving the conditional density of WA
SA
t`1,t`1

at v P Su given XSA
1 ,1

“

x1, S
A
1 “ s1, ¨ ¨ ¨ , XSA

t ,t
“ xt, S

A
t “ st, S

A
t`1 “ st`1 and WA

SA
t`1,t

“ u for some x1, ¨ ¨ ¨ , xt and

s1, ¨ ¨ ¨ , st`1, and u P Su. Clearly, the conditional density is 0 when dimpuq ‰ dimpvq, and

is arbitrary when dimpuq ‰ |st`1| (the density of the random variable being conditional on

is zero). Thus, we will focus on the case where dimpuq “ dimpvq “ |st`1| “ m for some

m P t1, ¨ ¨ ¨ , Ku, and we will write u “ pu1, ¨ ¨ ¨ , umq and v “ pv1, ¨ ¨ ¨ , vmq.

Note that given SA
t`1 “ st`1,W

A
SA
t`1,t

“ u, WA
k,t`1’s are independent for different k P st`1.

Moreover, given SA
t`1 “ st`1,W

A
SA
t`1,t

“ u, WA
k,t`1 is the same as Vk,t`1 (defined in (F.2)) for

k P st`1, and is independent of XSA,1 “ x1, S
A “ s1, ¨ ¨ ¨ , XSA,t “ xt and SA

t “ st. Thus,

WA
SA
t`1,t

is conditionally independent of FA
t given SA

t`1 “ st`1,W
A
SA
t`1,t

“ u, and its conditional

density (by Lemma F.9) is
m
ź

l“1

Kpul, vlq,

Because
“

WA
SA
t`1,t

‰

is the order statistic of WA
SA
t`1,t

, we further obtain its conditional density

at v P So given SA
t`1 “ st`1,W

A
SA
t`1,t

“ u,

ÿ

πPPm

m
ź

l“1

Kpul, vπplqq “
ÿ

πPPm

m
ź

l“1

Kprusl, vπplqq “ Kaprus,vq,

for v P So with dimpvq “ m. Observe that the above function is independent of st`1 for

|st`1| “ m and depend on u only through its order statistic rus. Thus, we further conclude

that
“

WA
SA
t`1,t`1

‰

is conditionally independent of FA
t given

“

WA
SA
t`1,t

‰

“ u P So satisfying

dimpuq “ m, and its conditional density is Kapu, ¨q.

Lemma F.11. For each u P So with dimpuq “ m ě 1, generate an So-valued random
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variable V as follows,

1. For each k P t1, ¨ ¨ ¨ ,mu, generate Zk „ Kpuk, ¨q independently for different k.

2. Let V “ rpZ1, ..., Zmqs.

In addition, if m “ 0, we let V “ ∅∅∅. Then, V „ Kapu, ¨q.

Proof of Lemma F.11. The lemma is obviously true when m “ 0. When m ě 1, let z “

pz1, ¨ ¨ ¨ , zmq. By step 1, the joint density for pZ1, ¨ ¨ ¨ , Zmq at z is

m
ź

i“1

Kpui, ziq.

By step 2, V is the order statistic of pZ1, ¨ ¨ ¨ , Zmq. Thus, its density is

ÿ

πPPm

m
ź

i“1

Kpui, zπpiqq “ Kapu, zq.

Lemma F.12. For u,u1 P So with u ď u1, we have Kapu, ¨q ďst Kapu
1, ¨q.

Proof of Lemma F.12. The lemma is obvious if u1 “ ∅∅∅. In what follows, we assume

dimpu1q “ m1 ě 1 and dimpuq “ m. Then, u ď u1 means m ě m1 ě 1 and ul ď u1l
for 1 ď l ď m1. Let pZ1, Z

1
1q, ¨ ¨ ¨ pZm, Z

1
mq be independent random vectors such that

Zl „ Kpul, ¨q, Z
1
l „ Kpu1l, ¨q and Zl ď Z 1l a.s. Such random vectors exists because of Strassen

Theorem and Lemma F.9 that the kernel Kp¨, ¨q is stochastically monotone. In addition, for

m ă l ď m1, let Z 1l „ Kpu1l, ¨q be independent random variables.

Let Z “ pZ1, ¨ ¨ ¨ , Zmq „ Kapu, ¨q, Z
1 “ pZ 11, ¨ ¨ ¨ , Z

1
m1q, V “ rZs and V 1 “ rZ 1s. Then,

V ď V 1 a.s. On the other hand, by Lemma F.11, we have

V „ Kapu, ¨q and V 1 „ Kapu
1, ¨q,

and V ď V 1 a.s. By Fact 2, the existence of such a coupling implies Kapu, ¨q ďst Kapu
1, ¨q.

Lemma F.13. For any t, s ě 0 and TA,
“

WAPt
SAPt
t`s`1,t`s`1

‰

is conditionally independent of

FAPt
t`s given

“

WAPt
SAPt
t`s ,t`s

‰

. Moreover, the conditional density of
“

WAPt
SAPt
t`s`1,t`s`1

‰

at v given
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“

WAPt
SAPt
t`s ,t`s

‰

“ u P So is

Kopu,vq :“ KapHopuq,vq “

$

’

’

’

&

’

’

’

%

ř

πPPIopuq

śIopuq
l“1 KpHopuql, vπplqq if dimpvq “ Iopuq ě 1

1 if dimpvq “ Iopuq “ 0

0 otherwise,

where Pm denotes the set of all permutations over t1, ¨ ¨ ¨ ,mu.

Proof of Lemma F.13. Apply Lemma F.10 by replacing TA by TAPt and t by t`s, we obtain

that
“

WAPt
SAPt
t`s`1,t`s`1

‰

is conditionally independent of FAPt
t`s given

“

WAPt
SAPt
t`s`1,t`s

‰

. On the other

hand, according to the one-step update rule in Algorithm 1 and Lemma F.2, we can see

that
“

WAPt
SAPt
t`s`1,t`s

‰

“ Ho

´

“

WAPt
SAPt
t`s ,t`s

‰

¯

. Therefore, we further obtain that
“

WAPt
SAPt
t`s`1,t`s`1

‰

is

conditionally independent of FAPt
t`s given

“

WAPt
SAPt
t`s ,t`s

‰

.

We proceed to derive its conditional density at v given
“

WAPt
SAPt
t`s ,t`s

‰

“ u. We first notice

that dimpvq “ |SAPt
t`s`1| “ Iopuq (by Lemma F.2). Thus, the conditional density is zero when

dimpvq ‰ Iopuq. For dimpvq “ Iopuq, by Lemma F.10 and the above analysis, the conditional

density is

KapHopuq,vq “
ÿ

πPPIopuq

Iopuq
ź

l“1

KpHopuql, vπplqq “ Kopu,vq.

This completes the proof of the lemma.

Lemma F.14. For each u P So and m “ Iopuq, generate an So-valued random variable V

as follows,

1. For each k P t1, ¨ ¨ ¨ ,mu, generate Zk „ KpHopuqk, ¨q independently for different k.

2. Let V “ rpZ1, ..., Zmqs.

In addition, if m “ 0, we let V “ ∅∅∅. Then, V „ Kopu, ¨q.

Proof of Lemma F.14. The lemma is a direct application of Lemma F.11 and Kopu,vq “

KapHopuq, vq.
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G Proof of Lemma 1 and Propositions 1 - 3

Lemma 1. Under model Ms, Wk,0 “ 0 for 1 ď k ď K and Wk,t can be computed using the

following update rule for 1 ď k ď K,

Wk,t`1 “

$

&

%

qpXk,t`1q{ppXk,t`1q

p1´θqp1´Wk,tq{pθ`p1´θqWk,tq`qpXk,t`1q{ppXk,t`1q
for 1 ď t ď Tk ´ 1,

Wk,Tk for t ě Tk.

Proof of Lemma 1. For each k P St`1, according to the independence assumption for model

Ms,

Wk,t`1 “ Ppτk ă t` 1|Ft`1q “ Ppτk ă t` 1|Xk,1:t`1q.

On the other hand, according to Lemma F.7, we have

Ppτk ă t` 1|Xk,1:t`1q “
qpXk,t`1q{ppXk,t`1q

p1´ θqp1´Wk,tq{pθ ` p1´ θqWk,tq ` qpXk,t`1q{ppXk,t`1q
.

Thus, for k P St`1,

Wk,t`1 “
qpXk,t`1q{ppXk,t`1q

p1´ θqp1´Wk,tq{pθ ` p1´ θqWk,tq ` qpXk,t`1q{ppXk,t`1q
. (G.1)

Note that k P St`1 is equivalent to Tk ě t ` 1. Thus, (G.1) holds for 1 ď t ď Tk ´ 1.

Moreover, for t ě Tk,

Wk,t`1 “ Ppτk ă t` 1|Ft`1q “ Ppτk ă t|X1,1:Tk , Tkq “ Wk,Tk .

This completes our proof.

We proceed to the proofs of propositions.

Proposition 1. Suppose that we obtain the index set St`1 using Algorithm 1, given the index

set St and information filtration Ft at time t. Then the LFNR at time t` 1 satisfies

E

˜

ř

kPSt`1
1 pτk ă tq

|St`1| _ 1

ˇ

ˇFt

¸

ď α.

Proof of Proposition 1. First, it is easy to see that St`1 obtained from Algorithm 1 is Ft
measurable. Thus,

E

˜

ř

kPSt`1
1 pτk ă tq

|St`1| _ 1

ˇ

ˇFt

¸

“

ř

kPSt`1
Wk,t

|St`1| _ 1
.
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On the other hand, according to the second and third steps of the algorithm,

ř

kPSt`1
Wk,t

|St`1| _ 1
“ Rn ď α.

Therefore, E
´

ř

kPSt`1
1pτkătq

|St`1|_1

ˇ

ˇFt
¯

ď α.

Proposition 2. Let T˚ be defined in Algorithm 2. Then, T˚ P Tα.

Proof of Proposition 2. This proposition is proved by combining the results of Proposition 1

and Lemma F.3.

Proposition 3. Given LFNR level α and information filtration Ft, the index set St`1 given

by Algorithm 1 is locally optimal at time t` 1.

Proof of Proposition 3. Let St`1 be the index set obtained by Algorithm 1. By Lemma F.2,

|St`1| “ IoprWSt,tsq and rWSt`1,ts “ HoprWSt,tsq. There are two cases: 1) |St`1| “ 0, and

2) |St`1| “ n ě 1. For the first case, rWSt`1,ts “ ∅∅∅. Note that E
´

ř

kPS 1pτkătq

|S|_1

ˇ

ˇFt
¯

“
ř

kPSWk,t

|S|_1
. By the ‘Moreover’ part of Lemma F.4, we can see that the only set S satisfying

E
´

ř

kPS 1pτkătq

|S|_1

ˇ

ˇFt
¯

ď α is S “ H. That is |S| “ 0. Thus, |St`1| ě |S|.

For the second case where |St`1| “ n ě 1 and any set |S| satisfying E
´

ř

kPS 1pτkătq

|S|_1

ˇ

ˇFt
¯

ď

α, we use Lemma F.4 again and obtain that rWSt`1,ts “ HoprWSt,tsq ď rWS,ts. This implies

|St`1| “ dimprWSt`1,tsq ě dimprWS,tsq “ |S|.

H Proof of Theorem 2 and Theorem 3

H.1 Proof of Theorem 2

Theorem 2. Assume that modelMs holds and Assumption A1 is satisfied. To emphasize the

dependence on K, we denote the proposed procedure by T˚K, the corresponding information

filtration at time t by F˚K,t, and the index set at time t by S˚K,t. Then, the following results

hold for each t ě 1.

1. limKÑ8
pλK,t “ λt a.s., where pλK,t “ max

 

Wk,t : k P S˚K,t`1
(

is the threshold used by

T˚K.
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2. limKÑ8 LFNRt`1pT˚Kq “ E
´

Vt

ˇ

ˇ

ˇ
Vs ď λs, 0 ď s ď t

¯

, a.s. Moreover,

E
´

Vt

ˇ

ˇ

ˇ
Vs ď λs, 0 ď s ď t

¯

“

$

&

%

1´ p1´ θqt, t ă logp1´αq
logp1´θq

,

α, t ě logp1´αq
logp1´θq

.

3. limKÑ8K
´1|S˚K,t`1| “ P pV1 ď λ1, ¨ ¨ ¨ , Vt ď λtq a.s.

We start with a lemma that is useful for the proof of Theorem 2. Its proof is provided

in Section H.3.

Lemma H.1. Under model Ms and Assumption A1, we have the following results.

1. For each t ě 1, pV1, ¨ ¨ ¨ , Vtq has a continuous and strictly positive joint density function

over p0, 1qt (with respect to the Lebesgue measure).

2. For any pv1, ¨ ¨ ¨ , vtq P p0, 1q
t, PpV1 ď v1, ¨ ¨ ¨ , Vt ď vtq ą 0.

3. For any pv1, ¨ ¨ ¨ , vtq P p0, 1q
t, the conditional distribution of Vt`1 given V1 ď v1, ¨ ¨ ¨ , Vt ď

vt has a continuous and positive density function over p0, 1q.

Proof of Theorem 2. For a sufficiently large t0 (t0 ą t), let P˚ denote the probability measure

for pV1, ¨ ¨ ¨ , Vt0q, and let Q be an arbitrary probability measure for a t0-dimensional random

vector. We define several mappings iteratively as follows. We initialize the mapping Λ0pQq “
1 for every Q. Then, for t ě 1, define

Dtpλ,Qq “ Q pVt ď λ,Vt´1 ď Λt´1pQqq ,

Ntpλ,Qq “ EQ rVt1 tVt ď λ,Vt´1 ď Λt´1pQqus ,

Gtpλ,Qq “
Ntpλ,Qq
Dtpλ,Qq

“ EQ rVt|Vt ď λ,Vt´1 ď Λt´1pQqs ,

and

ΛtpQq “ sup tλ : Gtpλ,Qq ď α and λ P r0, 1su .

In the above equations, we use notation Vt “ pV1, ¨ ¨ ¨ , Vtq and ΛtpQq “ pΛ1pQq, ¨ ¨ ¨ ,ΛtpQqq.
In addition, tVt ď ΛtpQqu denotes the event tV1 ď Λ1pQq, ¨ ¨ ¨ , Vt ď ΛtpQqu.

The next lemma, whose proof is given in Section H.3, provides results about the above

mappings. For two probability measures Q and Q1 for a t0-dimensional random vector Vt,

their sup-norm is defined as }Q´Q1}8 “ supvPRt0 |QpVt ď vq´Q1pVt ď vq|. Then, we say a

mapping fpQ1q is sup-norm continuous at Q1 “ Q if limδÑ0 supQ1:}Q1´Q}8ďδ |fpQ
1q´fpQq| “ 0.
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Lemma H.2. For each 1 ď t ď t0, we have the following results.

1. For any fixed Q, Gtpλ,Qq is non-decreasing in λ. Moreover, Gtpλ,P˚q is strictly in-

creasing in λ P p0, 1s under Assumption A1.

2. For any fixed λ P p0, 1s, Dtpλ,Qq, Ntpλ,Qq, and Gtpλ,Qq are sup-norm continuous in

Q at Q “ P˚ under Assumption A1.

3. ΛtpQq is sup-norm continuous at Q “ P˚ under Assumption A1. In addition, ΛtpP˚q ą
0.

By definition, λt “ ΛtpP˚q, where P˚ denotes the true probability measure of pV1, ¨ ¨ ¨ , Vt0q.

On the other hand, define the empirical measure (recall Vk,t “ Ppτk ă t|Xk,1, ¨ ¨ ¨ , Xk,tq)

PK “
1

K

K
ÿ

k“1

δpVk,1,¨¨¨ ,Vk,t0 q.

It is not hard to verify that
pλK,t “ ΛtpPKq.

Now we are able to prove the first part of theorem. Let

C “
 

p´8,xs : x P Rt0
(

where p´8,xs denotes the set p´8, x1s ˆ ¨ ¨ ¨ ˆ p´8, xt0s. It is known that C is a Vapnik-

Čhervonenkis class and thus, limKÑ8 supCPC |PKpVt0 P Cq ´ P˚pVt0 P Cq| “ 0 a.s. (see,

e.g., Shorack and Wellner (2009)). In other words,

lim
KÑ8

}PK ´ P˚}8 “ 0 a.s. (H.1)

This result combined with the third statement of Lemma H.2 implies

lim
KÑ8

ΛtpPKq “ ΛtpP˚q a.s.

That is, limKÑ8
pλK,t “ λt a.s. This completes our proof for the first statement of the

theorem. We proceed to the second and third statements of the theorem. Let

JtpQq “ EQ pVt1 tVt ď ΛtpQquq and HtpQq “ Q pVt ď ΛtpQqq .

We can see that the mapping Ht is the composition of Dtp¨,Qq and ΛtpQq. According to

Lemma H.1 and Lemma H.2, both mappings are sup-norm continuous at Q “ P˚, and as a
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result, their composition HtpQq is also sup-norm continuous at Q “ P˚. Similarly, according

to Lemma H.1 and Lemma H.2, we can also see that JtpQq is sup-norm continuous at Q “ P˚.
These results, combined with (H.1), give

lim
KÑ8

HtpPKq “ HtpP˚q a.s., (H.2)

and

lim
KÑ8

JtpPKq “ JtpP˚q a.s. (H.3)

Note that

HtpPKq “ K´1
|S˚t`1| and

JtpPKq
HtpPKq

“ EpFNPt`1pTq|Ftq. (H.4)

(H.2), (H.3), and (H.4) together complete the second and third statements of the theorem.

In the rest of the proof, we show that (4.2) holds.

We first show that for t ď L :“ logp1´αq
logp1´θq

, λt “ 1. We show this by induction. For t “ 0,

λ0 “ 1 by definition. Assume that for some t ě 1, λ0 “ ¨ ¨ ¨ “ λt´1 “ 1, then

Gtpλ,P˚q “ E rVt|Vt ď λ,Vt´1 ď Λt´1pP˚qs “ E rVt|Vt ď λs .

In addition, Gtp1,P˚q “ EpVtq “ Ppτ1 ă tq “ 1´ p1´ θqt ď α for t ď L. By Lemma H.2, we

know that Gtpλ,P˚q is increasing in λ. Thus,

λt “ sup tλ : Gtpλ,P˚q ď α and λ P r0, 1su “ 1.

This completes the induction. As a result, for 1 ď t ď L, E rVt|Vt ď λt,Vt´1 ď λt´1s “

Gtp1,P˚q “ 1´ p1´ θqt.

We proceed to the proof of (4.2) for t ě L. Note that Ntpλ,P˚q and Dtpλ,P˚q are

continuous in λ P p0, 1q (note that Vt has a joint probability density function by Lemma H.1).

Moreover, by Lemma H.2 and Lemma H.1, Dtpλ,P˚q ą 0 for λ ą 0. Thus, for each t,

Gtpλt,P˚q “ α is equivalent to

Gtp1,P˚q ě α. (H.5)

We will show (H.5) t ą L by induction. Let tLu be the largest integer smaller or equal to L.

According to the definition of L, we can see that

GtLu`1p1,P˚q “ EpVtLu`1q “ 1´ p1´ θqtLu`1
ą α.

This proves the base case for the induction.
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Assume that for 1 ď s ď t´ 1, Gsp1,P˚q ą α. Then,

Gtp1,P˚q “ E rVt|Vt´1 ď λt´1s “ E rEpVt|X1,1:t´1q|Vt´1 ď λt´1s , (H.6)

where λt´1 “ pλ1, ¨ ¨ ¨ , λt´1q. On the other hand,

EpVt|X1,1:t´1q

“E rP pτ1 ă t|X1,1:tq|X1,1:t´1s

“P pτ1 ă t|X1,1:t´1q

“P pτ1 ď t´ 1|X1,1:t´1q

“δ1,t´1

“θ ` p1´ θqVt´1,

where the last two equations are due to Lemma F.8. The above display and (H.6) give

Gtp1,P˚q “ E rθ ` p1´ θqVt´1|Vt´1 ď λt´1s “ θ ` p1´ θqE rVt´1|Vt´1 ď λt´1s .

By induction assumption, we have

E rVt´1|Vt´1 ď λt´1s “ α.

The above two equations give

Gtp1,P˚q “ θ ` p1´ θqα ą α.

This completes our proof.

Remark H.1. A key observation in the above proof is that pλK,t “ ΛtpPKq while λt “ ΛtpP˚q,
where PK is the empirical measure and P˚ is the underlying probability measure of the pro-

cess tVk,tu1ďtďt0. Thus, to show that pλK,t converges to λt (i.e., ΛtpPKq converges to ΛtpP˚q),

it suffices to show that the functional Λtp¨q is continuous and the empirical measure PK
converges to P˚ in some sense as K Ñ 8. In the proof, the above heuristics are justi-

fied through Vapnik-Čhervonenkis (VC) theory. In particular, as a standard result in VC

theory, the empirical measure converges to the underlying measure uniformly over the set

C “ tp´8,xs : x P Rt0u. That is, PK converges to P˚ in } ¨ }8 norm almost surely. The sup-

porting lemma (Lemma H.2) is mainly arguing that the functional of interest is continuous

under this norm.

Moreover, VC theory and theory of empirical processes in general are helpful in under-

34



standing the convergence of empirical measure over general probability spaces. Based on VC

theory, many additional results (e.g., convergence rate) can be developed in addition to the

uniform convergence result over the set C mentioned above. We refer the readers to the book

(Shorack and Wellner, 2009) and references therein for a comprehensive review.

H.2 Proof of Theorem 3

Theorem 3. Suppose that data follow a special case of the model given in Example 1 when

η “ 1 and τ0 „ Geompθq, and Assumption A2 holds. Let

Wt “ P
´

τ0 ă t
ˇ

ˇ

ˇ
Xk,s, 1 ď k ď K, 1 ď s ď t

¯

,

and

T “ mintt : Wt ą αu.

Then, T˚K “ pT, ¨ ¨ ¨ , T q. Moreover, the following asymptotic results hold.

1. limKÑ8pT ´ τ0q “ 1 a.s.,

2. limKÑ8 LFNRt`1pT˚Kq “ 0 a.s.,

3. limKÑ8K
´1|S˚K,t`1| “ 1pτ0 ě tq a.s.

Proof of Theorem 3. We first note that under the model considered in this theorem, W1,t “

¨ ¨ ¨ “ WK,t “ Ppτ0 ă t|Ftq. Thus, according to T˚, if W1,t ď α, then
ř

kPSt
Wt,k ď α|St|, and

St`1 “ St. Moreover, if for some t such that St “ t1, ¨ ¨ ¨ , Ku and W1,t`1 ą α, then for any

S ‰ H,
ř

kP|S|Wk,t`1 “ Wk,t`1|S| ą α|S|, and thus St`1 “ H. Thus, T˚ “ pT, ¨ ¨ ¨ , T q. In

other words, St “ t1, ¨ ¨ ¨ , Ku for t ď T and St “ H for t ą T .

Note that for t ď T , Ft “ σptWk,su, 1 ď s ď t, 1 ď k ď Kq. Let ĂWk,t “ Ppτ0 ă t|Xk,s, 1 ď

k ď K, 1 ď s ď tq, which is the conditional probability without deactivating any stream.

Then, Wk,t “ ĂWk,t for t ď T where we recall T “ inftt : ĂW1,t ą αu. We have

ĂWk,t “

řt´1
s“0 θp1´ θq

s
śt

r“s`1

śK
k“1 qpXk,rq{ppXk,rq

řt´1
s“0 θp1´ θq

s
śt

r“s`1

śK
k“1 qpXk,rq{ppXk,rq ` p1´ θqt

“

řt´1
s“0 θp1´ θq

s expt
řK
k“1 lk,s,tu

řt´1
s“0 θp1´ θq

s expt
řK
k“1 lk,s,tu ` p1´ θq

t
,

(H.7)

where we define lk,s,t “
řt
r“s`1 logpqpXk,rq{ppXk,rqq.
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For each u P Z` Y t0u, let Au “ tτ0 “ uu. By the strong law of large numbers, under

Assumption A2,

P

˜

lim
KÑ8

1

K

K
ÿ

k“1

lk,s,t “ Epl1,s,t|τ0 “ uq
ˇ

ˇ

ˇ
Au

¸

“ 1 (H.8)

for each s, t, u P Z` Y t0u with s ă t. In particular,

Epl1,s,t|τ0 “ uq “

$

&

%

´pt´ sqEZ1„p logpppZ1q{qpZ1qq ă 0 if t ď u

EZ2„q logpqpZ2q{ppZ2qq ą 0 if t “ u` 1 and s “ u.

Thus, for each s ă t ď u we have

P

˜

lim
KÑ8

K
ÿ

k“1

lk,s,t “ ´8
ˇ

ˇ

ˇ
Au

¸

“ 1, (H.9)

and for t “ u` 1 “ s` 1,

P

˜

lim
KÑ8

K
ÿ

k“1

lk,s,t “ 8
ˇ

ˇ

ˇ
Au

¸

“ 1.

According to (H.7), (H.8) and (H.9), we have that for each t ď u

P
´

lim
KÑ8

ĂWk,t “ 0
ˇ

ˇ

ˇ
Au

¯

“ 1.

Moreover, for t ě u` 1,

P
´

lim
KÑ8

ĂWk,t “ 1
ˇ

ˇ

ˇ
Au

¯

“ 1.

Combining the above two equations for different u P Z` Y t0u, we arrive at

P
´

lim
KÑ8

ĂWk,t “ 1pt ě τ0 ` 1q
¯

“ 1.

In other words,

lim
KÑ8

ĂW1,t “ 1pt ě τ0 ` 1q a.s.

Now we turn to the analysis of Wk,t and St for the proposed procedure. Let ω be a sample

path with limKÑ8
ĂWk,tpωq “ 1pt ě τ0pωq ` 1q for all t “ 1, 2, ¨ ¨ ¨ . Then, there exists K0pωq

large enough such that ĂW1,tpωq ă α for t ď τ0pωq and ĂW1,τ0pωq`1pωq ą α for all K ě K0pωq.

Then, we have T pωq “ inftt : ĂW1,tpωq ą αu “ τ0pωq ` 1. Note that the set of such sample
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path ω has a probability of one. Thus,

lim
KÑ8

pT ´ τ0q “ 1 and lim
KÑ8

Wk,t “ 0 for t ď τ0 a.s.

This proves the first statement of the theorem. For the second statement, we have

lim
KÑ8

E pFNPt`1pT˚q|Ftq “ lim
KÑ8

řK
k“1 1pT ą tqWk,t

t
řK
k“1 1pT ą tqu _ 1

“ lim
KÑ8

Wk,t1pT ą tq “ 0 a.s.

For the third statement, we have

lim
KÑ8

K´1
|St`1| “ lim

KÑ8
1pT ą tq “ 1pτ0 ě tq a.s.

H.3 Proof of supporting lemmas in Section H.1

Lemma H.1. Under model Ms and Assumption A1, we have the following results.

1. For each t ě 1, pV1, ¨ ¨ ¨ , Vtq has a continuous and strictly positive joint density function

over p0, 1qt (with respect to the Lebesgue measure).

2. For any pv1, ¨ ¨ ¨ , vtq P p0, 1q
t, PpV1 ď v1, ¨ ¨ ¨ , Vt ď vtq ą 0.

3. For any pv1, ¨ ¨ ¨ , vtq P p0, 1q
t, the conditional distribution of Vt`1 given V1 ď v1, ¨ ¨ ¨ , Vt ď

vt has a continuous and positive density function over p0, 1q.

Proof of Lemma H.1. Note that the second statement of the lemma is obvious given the first

statement, and the third statement is a straightforward application of a combination of the

first and second statements. Thus, it suffices to show the first statement of the lemma. In

what follows, we prove the first statement by induction.

For Z1 follow the density function pp¨q, Z2 follows the density function qp¨q, let f1p¨q and

f2p¨q be the density functions of qpZ1q{ppZ1q and qpZ2q{ppZ2q. By Assumption A1, fipzq ą 0

for all z ą 0 and i “ 1, 2.

For t “ 1, under the model Ms, X1,1 follows the mixture density p1 ´ θqpp¨q ` θqp¨q.

Thus, qpX1,1q{ppX1,1q has the density function p1´ θqf1` θf2, which is strictly positive and

continuous over R`. Note that V1 “
qpX1,1q{ppX1,1q

p1´θq{θ`qpX1,1q{ppX1,1q
. By standard calculation of density

of random variable after transformation, we can see that the density of V1 is

fV1pvq “
c

p1´ vq2

"

p1´ θqf1

ˆ

cv

1´ v

˙

` θf2

ˆ

cv

1´ v

˙*

, (H.10)
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where c “ p1´ θq{θ. This density function is strictly positive and continuous for v P p0, 1q.

Assume the induction assumption that the joint density for pV1, ¨ ¨ ¨ , Vtq, denoted by

fV1,¨¨¨ ,Vtpv1, ¨ ¨ ¨ , vtq, is strictly positive and continuous over p0, 1qt. We proceed to showing

fV1,¨¨¨ ,Vt`1pv1, ¨ ¨ ¨ , vt`1q is strictly positive and continuous over p0, 1qt`1. Recall that Vt`1 “
qpXt`1,1q{ppXt`1,1q

p1´θqp1´Vtq{pθ`p1´θqVtq`qpX1,1q{ppX1,1q
. With a similar derivation as that for (H.10), we have the

conditional density of Vt`1 given V1 “ v1, ¨ ¨ ¨ , Vt “ vt is

fVt`1|V1“v1,¨¨¨ ,Vt“vtpvq

“
ct

p1´ vq2

"

p1´ θtqf1

ˆ

ctv

1´ v

˙

` θtf2

ˆ

ctv

1´ v

˙*

,

where we define ct “
p1´θqp1´vtq
θ`p1´θqvt

ą 0 and θt “ Ppτ1 ď t|V1 “ v1, ¨ ¨ ¨ , Vt “ vtq “ vtp1 ´

θq ` θ P p0, 1q. It is easy to see that both ct and θt are continuous in vt. As a result,

fVt`1|V1“v1,¨¨¨ ,Vt“vtpvt`1q is strictly positive and is continuous in v1, ¨ ¨ ¨ , vt`1 for v1, ¨ ¨ ¨ , vt`1 P

p0, 1q and so is fV1,¨¨¨ ,Vt`1pv1, ¨ ¨ ¨ , vt`1q “ fV1,¨¨¨ ,Vtpv1, ¨ ¨ ¨ , vtqfVt`1|V1“v1,¨¨¨ ,Vt“vtpvt`1q. This

completes our induction and the proof of the lemma.

Lemma H.2. For each 1 ď t ď t0, we have the following results.

1. For any fixed Q, Gtpλ,Qq is non-decreasing in λ. Moreover, Gtpλ,P˚q is strictly in-

creasing in λ P p0, 1s under Assumption A1.

2. For any fixed λ P p0, 1s, Dtpλ,Qq, Ntpλ,Qq, and Gtpλ,Qq are sup-norm continuous in

Q at Q “ P˚ under Assumption A1.

3. ΛtpQq is sup-norm continuous at Q “ P˚ under Assumption A1. In addition, ΛtpP˚q ą
0.

Proof of Lemma H.2. For t “ 0, 1, ¨ ¨ ¨ and λ ă λ1, let rV be a random variable following the

same distribution as Vt|Vt´1 ď Λt´1pQq. Then, by the definition of conditional expectation,

we have

Gt pλ
1,Qq ´Gt pλ,Qq

“Z´1
”

EQ

´

rV 1
!

rV ď λ1
)¯

Q
´

rV ď λ
¯

´ EQ

´

rV 1
!

rV ď λ
)¯

Q
´

rV ď λ1
¯ı

“Z´1
”

EQ

´

rV 1
!

λ ă rV ď λ1
)¯

Q
´

rV ď λ
¯

´ EQ

´

rV 1
!

rV ď λ
)¯

Q
´

λ ă rV ď λ1
¯ı

where Z “ Q
´

rV ď λ
¯

Q
´

rV ď λ1
¯

. Let rV 1 be an independent copy of rV , then the above
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display implies

Gt pλ
1,Qq ´Gt pλ,Qq

“Z´1
”

EQ

´

rV 11
!

λ ă rV 1 ď λ1, rV ď λ
)¯

´ EQ

´

rV 1
!

λ ă rV 1 ď λ1, rV ď λ
)¯ı

“Z´1EQ

”´

rV 1 ´ rV
¯

1
!

λ ă rV 1 ď λ1, rV ď λ
)ı

,

(H.11)

Because
´

rV 1 ´ rV
¯

1
!

λ ă rV 1 ď λ1, rV ď λ
)

ě 0, Gt pλ
1,Qq ´ Gt pλ,Qq ě 0 from the above

display.

In what follows, we use induction to prove the rest of the lemma. Namely, for λ P p0, 1q,

we will prove the following statements for t “ 1, 2, ¨ ¨ ¨ , t0:

Gtpλ,P˚q is strictly increasing in λ; (H.12)

Dtpλ,Qq, Ntpλ,Qq, and Gtpλ,Qq are sup-norm continuous at Q “ P˚; (H.13)

ΛtpQq is sup-norm continuous at Q “ P˚. (H.14)

We start with the base case that t “ 1. In this case, the conditional distribution

V1|V0 ď Λ0pQq is the same as the unconditional distribution of V1 for any Q. Accord-

ing to Lemma H.1, V1 has a strictly positive and continuous density function over p0, 1q

under P˚. Thus, P˚
´´

rV 1 ´ rV
¯

1
!

λ ă rV 1 ď λ1, rV ď λ
)

ě 0
¯

ą 0 for rV and rV 1 are identi-

cally distributed as V1. According to (H.11), G1pλ
1,P˚q ´G1pλ,P˚q ą 0. That is, G1pλ,P˚q

is strictly increasing in λ. This proves the base case for (H.12). For (H.13) and (H.14) the

proof of the base cases is similar to that of the induction given below. Thus, we omit the

proof for their base cases here.

Now we assume that (H.12), (H.13), and (H.14) hold for t “ 1, 2, ¨ ¨ ¨ , s´ 1. We proceed

to prove these equations for t “ s. First, note that Vt|Vt´1 ď Λt´1pP˚q has a continuous and

strictly positive density function over p0, 1q. Thus, (H.12) is proved by combining (H.11)

with similar arguments as those for the base case where t “ 1.

Proof of (H.13) for t “ s. By the induction assumption, Λ1pQq, ¨ ¨ ¨ ,Λs´1pQq is sup-

norm continuous in Q at Q “ P˚. This implies that pλ,Λs´1pQqq, a vector-valued map-

ping, is also sup-norm continuous in Q at Q “ P˚. On the other hand, pλ,Λs´1pP˚qq P
p0, 1ss by induction assumptions, and Vt has a continuous joint probability cumulative

function at pλ,Λs´1pP˚qq (by Lemma H.1). Combining these results, we can see that

P˚ pVs ď λ,Vs´1 ď Λs´1pQqq is sup-norm continuous at Q “ P˚.

39



Now we analyze the mapping Dspλ,Qq “ Q pVs ď λ,Vs´1 ď Λs´1pQqq.

|Dspλ,Qq ´Dspλ,P˚q|

“ |Q pVs ď λ,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď λ,Vs´1 ď Λs´1pP˚qq|

ď |Q pVs ď λ,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď λ,Vs´1 ď Λs´1pQqq|

` |P˚ pVs ď λ,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď λ,Vs´1 ď Λs´1pP˚qq|

ď}Q´ P˚}8
` |P˚ pVs ď λ,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď λ,Vs´1 ď Λs´1pP˚qq| .

Therefore,

lim sup
}Q´P˚}8Ñ0

|Dspλ,Qq ´Dspλ,P˚q|

“ lim
}Q´P˚}8Ñ0

}Q´ P˚}8

` lim
}Q´P˚}8Ñ0

|P˚ pVs ď λ,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď λ,Vs´1 ď Λs´1pP˚qq|

“0.

That is, Dspλ,Qq is sup-norm continuous at P˚. Moreover, by Lemma H.1 and pλ,Λs´1pP˚qq P
p0, 1ss, we have Dspλ,P˚q ą 0. This further implies that Dspλ,Qq´1 is also sup-norm con-

tinuous at P˚.
We proceed to the analysis of Nspλ,Qq. We have

Nspλ,Qq “EQ rVs1 tVs ď λ,Vs´1 ď Λs´1pQqus

“EQ

„
ż 1

0

1tr ă Vsudr1 tVs ď λ,Vs´1 ď Λs´1pQqu


“

ż 1

0

Q pr ă Vs ď λ,Vs´1 ď Λs´1pQqq dr

“Q pVs ď λ,Vs´1 ď Λs´1pQqq

´

ż λ

0

Q pVs ď r,Vs´1 ď Λs´1pQqq dr

“Dspλ,Qq ´
ż λ

0

Dspr,Qqdr.

(H.15)

We have already shown that the first term Dspλ,Qq on the right-hand side of the above
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display is sup-norm continuous at P˚. We take a closer look at the second term,

ˇ

ˇ

ˇ

ˇ

ż λ

0

Dspr,Qqdr ´
ż λ

0

Dspr,P˚qdr
ˇ

ˇ

ˇ

ˇ

ď

ż λ

0

|Q pVs ď r,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď r,Vs´1 ď Λs´1pQqq| dr

`

ż λ

0

|P˚ pVs ď r,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď r,Vs´1 ď Λs´1pP˚qq| dr

ď}Q´ P˚}8

`

ż λ

0

|P˚ pVs ď r,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď r,Vs´1 ď Λs´1pP˚qq| dr.

(H.16)

Since Λs´1pQq is sup-norm continuous at Q “ P˚, for any ε ą 0, there exists δ ą 0 such

that }Q ´ P˚}8 ď δ implies }Λs´1pQq ´ Λs´1pP˚q} ď ε. Then, for each r P r0, 1s and

}Q´ P˚}8 ď δ, }pr,Λs´1pQqq ´ pr,Λs´1pP˚qq} ď ε, and

sup
}Q´P˚}ďδ

|P˚ pVs ď r,Vs´1 ď Λs´1pQqq ´ P˚ pVs ď r,Vs´1 ď Λs´1pP˚qq|

ď sup
}vs´v1s}ďε,vs,v

1
sPr0,1s

s

|P˚ pVs ď vsq ´ P˚ pVs ď v1sq| .
(H.17)

By Lemma H.1, Vs has a continuous density function. Thus, its cumulative distribution

function, P˚ pVs ď vsq, is continuous over r0, 1ss. As r0, 1ss is compact, this continuity

implies that the cumulative distribution is also uniformly continuous over r0, 1ss. That is,

for any ε1 small enough, there is ε ą 0, such that

sup
}vs´v1s}ďε,vs,v

1
sPr0,1s

s

|P˚ pVs ď vsq ´ P˚ pVs ď v1sq| ď ε1.

Combine the above inequality with (H.16) and (H.17), we can see that for any ε1 ą 0, there

is 0 ă δ ă ε1 such that for }Q´ P˚}8 ď δ,

ˇ

ˇ

ˇ

ˇ

ż λ

0

Dspr,Qqdr ´
ż λ

0

Dspr,P˚qdr
ˇ

ˇ

ˇ

ˇ

ď δ ` ε1 ď 2ε1.

Therefore,
şλ

0
Dspr,Qqdr is sup-norm continuous at Q “ P˚. This result, combined with

(H.15), shows that Nspλ,Qq is sup-norm continuous at Q “ P˚.
Finally, the sup-norm continuity ofGspλ,Qq is implied by that ofDspλ,Qq´1 andNspλ,Qq

for λ P p0, 1s.

Proof of (H.14) for t “ s. Recall ΛspQq “ sup tλ : Gspλ,Qq ď α and λ P r0, 1su . We
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discuss two cases.

Case 1: ΛspP˚q “ 1. For any sufficiently small ε ą 0, by the strict increasing property

of Gspλ,P˚q there exists ε1 ą 0 such that Gspλ
1,P˚q ă GspΛspP˚q,P˚q ´ 2ε1 for all λ1 ď

ΛspP˚q ´ ε. On the other hand, according to the sup-norm continuity of GspΛspP˚q ´ ε,Qq
at Q “ P˚, there exists δ ą 0 such that |GspΛspP˚q ´ ε,Qq ´GspΛspP˚q ´ ε,P˚q| ď ε1 for all

}Q´ P˚}8 ď δ. Then, for all }Q´ P˚}8 ď δ and λ1 ď ΛspP˚q ´ ε, we have

Gspλ
1,Qq

ďGspΛspP˚q ´ ε,Qq

ďGspΛspP˚q ´ ε,P˚q ` |GspΛspP˚q ´ ε,Qq ´GspΛspP˚q ´ ε,P˚q|

ďGspΛspP˚q ´ ε,P˚q ` ε1
ďGspΛspP˚q,P˚q ´ ε1
ďα ´ ε1.

This implies 1´ ε “ ΛspP˚q ´ ε ď ΛspQq ď 1 for all }Q´ P˚}8 ď δ.

Case 2: ΛspP˚q ă 1. Using similar arguments as those for the Case 1, we arrive at that

for any ε ą 0 there exists δ ą 0 such that ΛspP˚q ´ ε ď ΛspQq for all }Q ´ P˚}8 ď δ. We

proceed to an upper bound of ΛspQq.
Note that in this case, GspΛspP˚q,P˚q “ α. According to the definition of ΛspP˚q, for

any ε ą 0, then there exists ε1 ą 0 such that Gspλ
1,P˚q ą α ` 2ε1 for all λ1 ě ΛspP˚q ` ε.

On the other hand, according to the sup-norm continuity of GspΛspP˚q ` ε,Qq at Q “ P˚,
there exists δ such that |GspΛspP˚q ` ε,Qq ´GspΛspP˚q ` ε,P˚q| ď ε1 for all }Q´ P˚}8 ď δ.

Then, for all }Q´ P˚}8 ď δ and λ1 ą ΛspP˚q ` ε, we have

Gspλ
1,Qq

ěGspΛspP˚q ` ε,Qq

ěα ` 2ε1 ´ |GspΛspP˚q ` ε,Qq ´GspΛspP˚q ` ε,P˚q|

ěα ` ε1.

This implies that for λ1 ą ΛspP˚q ` ε and }Q ´ P˚}8 ď δ, Gspλ
1,Qq ą α. Thus, ΛspQq ď

ΛspP˚q ` ε for }Q ´ P˚}8 ď δ. Combining the upper bound and lower bound of ΛspQq, we

arrive at

|ΛspQq ´ ΛspP˚q| ď ε

for }Q´ P˚}8 ď δ.

This completes the proof of (H.14).
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Finally, we show ΛtpP˚q ą 0. This is true because Gtpλ,P˚q is continuous and strictly

increasing in λ and limλÑ0`Gtpλ,P˚q “ 0 ă α.

I Calculations for Example 3

We start with calculating P pτk “ 0|Xk,1 “ xk,1, ¨ ¨ ¨ , Xk,t “ xk,tq. Let t1 “ t4 “ 3 and t2 “

t3 “ 1. Under the model specified in the example, we have τk “ 0 or τk “ tk a.s. for

k “ 1, ¨ ¨ ¨ , 4. As a result, we have

Ppτk ď t´ 1|Xk,1 “ xk,1, ¨ ¨ ¨ , Xk,t “ xk,tq “ 1

for t ě tk ` 1.

To simplify the calculation for the other cases, we first prove the following auxiliary result:

under the model specified in this example, for any xk,1, ¨ ¨ ¨ , xk,t P t0, 1u and 0 ď t ď tk,

P pτk ď t´ 1|Xk,1 “ 0, ¨ ¨ ¨ , Xk,t “ 0q

ďP pτk ď t´ 1|Xk,1 “ xk,1, ¨ ¨ ¨ , Xk,t “ xk,tq

ďP pτk ď t´ 1|Xk,1 “ 1, ¨ ¨ ¨ , Xk,t “ 1q .

(I.1)

Indeed, direct calculation gives

P pτk ď t´ 1|Xk,1 “ xk,1, ¨ ¨ ¨ , Xk,t “ xk,tq

“
Ppτk “ 0qp0.51q

řt
s“1 xk,tp0.49qt´

řt
s“1 xk,t

Ppτk “ 0qp0.51q
řt
s“1 xk,tp0.49qt´

řt
s“1 xk,t ` Ppτk “ tkqp0.5qt

.
(I.2)

The above display is monotonically increasing in
řt
s“1 xk,t. Thus, (I.1) is proved.

Let ĂWk,t :“ P pτk ď t´ 1|Xk,1 “ xk,1, ¨ ¨ ¨ , Xk,t “ xk,tq. Using (I.1) and (I.2), we obtain

that for 0 ď t ď tk,

ĂWk,t P

„

Ppτk “ 0qp0.49qt

Ppτk “ 0qp0.49qt ` Ppτk “ tkqp0.5qt
,

Ppτk “ 0qp0.51qt

Ppτk “ 0qp0.51qt ` Ppτk “ tkqp0.5qt



.

Plugging Ppτk “ 0q and Ppτk “ tkq “ 1´Ppτk “ 0q into the above equations, we obtain that
ĂWk,t “ 1 for t ě 4, and for 0 ď t ď 3, the a.s. range of ĂWk,ts are given below (numbers are
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rounded to the third decimal place).

ĂWk,t P t “ 1 t “ 2 t “ 3

k “ 1 r0.098, 0.102s r0.096, 0.104s r0.095, 0.105s

k “ 2 r0.395, 0.405s t1u t1u

k “ 3 r0.425, 0.435s t1u t1u

k “ 4 r0.545, 0.555s r0.540, 0.560s r0.535, 0.565s

With these numbers, the following inequalities can be verified.

ĂW1,1 ă α ă ĂW2,1 ă ĂW3,1 ă ĂW4,1,

1

3
pĂW1,1 `ĂW2,1 `ĂW3,1q ď 0.314 ă α “ 0.34,

1

3
pĂW1,1 `ĂW2,1 `ĂW4,1q ě 0.346 ą α

1

2
pĂW1,1 `ĂW4,1q ď 0.329 ă α.

The above inequalities implies that ErFNP2pTq|F1s ď α is equivalent to

S2 P
 

t1, 2, 3u, t1, 2u, t1, 3u, t1, 4u, t1u,H
(

.

Now we consider S3. We can verify the following inequalities.

ĂW1,2 ă α ă ĂW4,2 ă ĂW2,2 “ ĂW3,2,

1

2
pĂW1,2 `ĂW2,2q “

1

2
pĂW1,2 `ĂW3,2q ě 0.548 ą α

1

2
pĂW1,2 `ĂW4,2q ď 0.332 ă α.

The above inequalities implies that ErFNP3pTq|F2s ď α is equivalent to that S3 Ă S2 and

S3 P
 

t1, 4u, t1u,H
(

.

Similarly, for S4, we have

ĂW1,3 ă α ă ĂW4,3 ă ĂW2,3 “ ĂW3,3,

1

2
pĂW1,2 `ĂW2,2q “

1

2
pĂW1,2 `ĂW3,2q ě 0.547 ą α

1

2
pĂW1,2 `ĂW4,q ď 0.336 ă α.
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This implies that ErFNP4pTq|F3s ď α is equivalent to that S4 Ă S3 and

S4 P
 

t1, 4u, t1u,H
(

.

Finally, since ĂWk,t “ 1 for all t ě 4 and k “ 1, ¨ ¨ ¨ , 4, we obtain St “ H for t ě 5.

Enumerating all the index sets satisfying the constraint, we obtain that supTPTα EpU2pTqq “
7 and the maximum achieved if and only if S1 “ t1, 2, 3, 4u and S2 “ t1, 2, 3u. In addi-

tion, supTPTα EpU4pTqq “ 10 and the maximum is achieved if and only if S1 “ t1, 2, 3, 4u,

S2 “ t1, 4u, S3 “ t1, 4u and S4 “ t1, 4u. However, these two maxima cannot be achieved at

the same time as they require different choices of S2.
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