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(I Calculations for Example (3|




A Notations

For the readers’ convenience, we provide a list of notations below. We will also restate these

notation when they first appear in the proof.
o Xg, for some set S < {1,--- , K}: Xgt = (Xpt)kes-
L4 Xk:,s:t3 Xk,s:t = (Xk:,r)s<r<t-
e TA: an arbitrary sequential procedure.
o SA: The set of active streams at time t given by procedure T#.
o FA: o-field of information obtained up to time ¢ following T4.
o W& posterior probability P(r, < t|F{*) at the k-th stream following T* at time ¢.
o W, for some set S < {1,---, K}: Wg, = (W& )res-
e T*: the proposed sequential procedure.
o Sf, Fif, Wiy, Wi, are defined similarly for procedure T*.

e TAP#w: the sequential procedure that takes the same steps as T up to time ¢, (meaning
SPP — SA for 1 <t < ty) and updates by Algorithm [1] from time ¢y + 1 and onward.

AP AP AP AP .
o S FoU W W, are defined similarly for procedure TAPt.

o L. equal in distribution.
e @: a vector with zero length.
e dim: length of a vector, where dim(9) = 0.

e Z ~ N(0,1): the notation ‘~” means that the left side follows the distribution on the
right side.

B Proof Sketch

In this section, we discuss the main steps and techniques for proving Theorem [6] through
an induction argument. Its proof is involved, relying on some monotone coupling results on
stochastic processes living in a special partially ordered space. In what follows, we give a

sketch of the proof to provide more insights into the proposed procedure. When s = 0, it



is trivial that (5.2) holds. The induction is to show that for any T4 € 7, and any t,, (5.2)
holds for s = sy + 1, assuming that it holds for s < sg. The induction step is proved by the

following three steps.
1. Show that TAPw+1 is ‘better’ than T* conditional on F2.
2. Show that TAP® is ‘better’ than TAPw+ conditional on F2.

3. Show that TAPw is ‘better’ than T conditional on .7-"{3 by combining the first two
steps.

Here, we say a procedure is ‘better than’ the other, if its conditional expectation of the size
of index set at time ty+ s+ 1 is no less than that of the other, given the information filtration
]-",f)‘. Roughly, we prove the first step by replacing ¢y, with ¢y + 1 in the induction assumption
and taking conditional expectation given .7-‘;3, and prove the third step by combining the first
and second steps. The main technical challenge lies in the second step, for which we develop
several technical tools. Among these tools, an important one is the following monotone
coupling result regarding a special partial order relationship.

We define a partially ordered space (S,, <) as follows. Let

K
SOZU{V:(UIJ'”7Uk)e[071]k20<1j1<”.vk<1}u{g}’

k=1

where @ represents a vector with zero length. For u € S,, let dim(u) be the length of the

vector u.

Definition 1. For u,v € S,, we say u < v if dim(u) > dim(v) and w; < v; fori =

1,...,dim(v). In addition, we say u < & for anyu e S,.

To emphasize the dependence on the sequential procedure, we use S and FA to denote
the index set and the information filtration at time ¢ given by the sequential procedure T4.
We further define Wf, = P (7, < ¢ | F2). Similarly, we define the index set S infor-
mation filtration EAPtO, and posterior probability W,;A;Pto given by the sequential procedure
TAPt. For any vector v = (v, -+ ,vn), we use the notation [v] = (v(1),- -+ ,vam)) for its
order statistic. In addition, let [&] = &.

Proposition B.1. Let {z,s;,1 <t < to} be any sequence in the support of the stochastic

process {(Xm)keStA, SA1<t< to} following a sequential procedure TA € T,. Then, there



exists a coupling of S,-valued random variables (171\/, I//I\/’) such that

174 AP, 4
W= l(Wk’tgﬁl) AP‘O] ‘{(Xk’t>k65f = T, St =5,1<t< to} ,
keStOH
/\/i APt +1 _ A B
W'= [(Wk,toﬁ )keSAptoﬂ] {(Xk’vt)kesgi =24, 80 = 5,1 <t < to} ,
to+1

and W < W a.s., where L denotes that random variables on both sides are wdentically
distributed.

We clarify that by the above proposition, the resulting W and W' are defined on the

same probability space. Let

APy,
YS = [(Wk’t0+s>k€SAP‘0:| € 80.

to+s

Under model Mj, the stochastic process Y is stochastically monotone in that the following

monotone coupling result holds.

Proposition B.2. Suppose that model Mg holds. Then for any y,y’ € S, such thaty <y’,
there exists a coupling (}A/S, ?S’), s =0,1,..., satisfying

1. {}A/S s = 0} has the same distribution as the conditional process {Ys : s = 0} given
Yo =1y, and {}A/S’ : s = 0} has the same distribution as the conditional process {Ys : s =

0} given Yo =y’.
2. Y, < }A/S’, a.s. for all s = 0.
Moreover, the process (1?;,?8’) does not depend on T4, ty, or the information filtration ]:{3~

Roughly, Proposition shows that the sequential procedure TAF# tends to have a
stochastically smaller detection statistic, in terms of the partial order <, than that of TAPt+1
at time ¢ty + 1, and thus tends to keep more active streams. Proposition further shows
that this trend will be carried over to any future time, including time to + s + 1. The second

step of induction is proved by formalizing this heuristic.

C Proof of Theorem

Theorem 6. Suppose that model M holds. For any tg,s = 0 and any sequential detection

procedure TA € T, let FA be the information filtration and SA be the set of active streams



at time t given by TA. Then,

B[54, )IF4] <E|I1sa5e]| 7,

4 s

Proof of Theorem [0 We will prove the theorem by inducting on s.

For the base case (s = 0) the theorem is obviously true for all ¢, and all TA € 7, as the
both sides of are exactly the same.

We will prove the induction step in the rest of the proof. Assume is true for any
strategy TA € 7T, and any ty, for some s = sy. Our goal is to prove that it is also true
for any tg, for s = sy + 1, using the following steps, where we recall that TAPw is defined
as the sequential procedure that takes the same steps as T up to time ty and updates by
Algorithm [1] from time ¢y + 1 and onward, and the sequential procedure TAFw+1 is defined

similarly.

Step 1: comparing TAP«w+1 and TA. For s = 543 + 1, since we assume (5.2)) is true for
all ¢y, we could replace ty by to + 1 and s by sq in (5.2)) and arrive at

A APt0+1
[’SO+SO+1“‘Ft0+1:| ~= I:} to+so+1 t0+1 a.S.

Taking conditional expectation K [[ﬁﬂ on both sides, we arrive at

B (|88 |72 ] < E[|SATa]|FA] as (€2)

Step 2: comparing TAPw+1 and TAPw. First, define a function ¢, : S, — R,

oro(w) = E||SAT|[W2E. ] = u| = E[dim (W2E., D|Wek ] =u| (€3
for t,s = 0. Here, for a set S, and time points s and ¢, WAPt = (WAPt)keS, where

W,ﬁ‘SP‘ =P (Tk < S‘f?Pt
From Proposition [B.2] we can see that ¢, ;(u) does not depend on the sequential procedure
TA and the value of t. Thus, by replacing TA with TAP®, ¢t with t, + 1, and s with sy in

(E.2]), we obtain

Dror1,50(W) = E[dim (W Gar, ) \ (WG ] = u]. (C.4)

St0+30+17t0+50+1 St +1 Jto+1

Here, to see the superscript of the process in the above equation is AP, we used the fact

that if we follow the procedure TAP% and switch to the proposed procedure at time ¢, + 1,



then the overall sequential procedure is still TAP¢.
Also from Proposition [B.2, we can see that for any u < u’ € S,, there exists a coupling

(1?;, ! /) such that Y, has the same distribution as [W;f;ﬂ e | given [Wé’fi{ | =, ?S’ has

the same distribution as [W’fg{ e ] given [W:,f;ﬁ t] =u/, and Y, < Y;’ a.s. Thus,
t+ ) t )

¢rs(u) = E(dim(Y)) and ¢,,(u') = E(dim(Y?)).

According to the definition of the partial relationship ‘<, Y, < }A/S’ implies dim(f/s) >
dim(Y?). Combining this result with the above display, we conclude that ¢,(u) > ¢, (u')
for any u < u’ € S,.

Next, we write E U GAPH

to+so+1

]-"A] and E [‘S,f;‘_l:;g H“E‘g‘] in terms of the conditional ex-

pectation involving the function ¢, ;. We start with E [‘S{;ﬁg +1}‘~7‘—i[3]' By the iterative law

of conditional expectation and ((C.4]), we obtain

APt() A APtO APto A
E [‘Sto+80+1’lf;fo] o { 0+80+1‘ APt ‘Fto

Siot1 7t0+1

e fan 2 D, 1H6]

f0+so+17t0+80+1 o1

=K :</5t0+1,so ([Wﬁiﬂﬂ t0+1]> “7'—{3] .

St +1

According to the definition of the information filtration .7-"{3, we further write the above

conditional expectation as

E||shvsalFe| - E lqzsml,so (s, J[{SAXerkesti<r< to}] . (C5)

t+17

Similarly, we have

} APt0+1
to+so+1

AP,

] —E [¢t0+1750<[W ot ]) ‘{Sﬁ,Xk,r, keSA1<r< to}] . (C.6)
St0+1 Jto+1

We proceed to a comparison between (C.5)) and (C.6). According to Proposition[B.1], for each

sequence {z,,s,,1 < r < to} that is in the support of the process {Xsﬁvr,Sf‘, 1 <r <t}

there exists a coupling (W, W’ ) such that

7> d AP A
WL AR I{XSA — 1, SA = s, 1 <1 <to),
St +107t0+1



i1 d APy 41 A
W'=|W AP U Xsa, = 20, 57 = 80,1 <7 < o},
St0+1 to+1

and
W< W as.,
where ‘£’ means two random variables on both sides have the same distribution. Thus,
APto _ A _ - fn
E l(btoJrl,so ([W APy ]) ‘XS;’\,T = Tr, Sr = Sr, I<r< tO] - Ed)toJrl,So (W) (C7)
St0+1 Jto+1
and

E l¢t0+1,so ([W;*Aitfoj ]) ’Xs:*m =2,,5% =5,,1<r< to] = Ediy+1,5 (W’). (C.8)

to+1 sto+1

On the other hand, note that we have shown ¢g41.5,(1) = Gry11.5,(0) for any u < u’ € S,
and W < W' ass. by the coupling. Thus,

—~~

¢to+17so(w> = dry 1.5, (W) aus.

Combining the above inequality with (C.7) and (C.8)), we arrive at

E |:¢t0+1730 <[W;f;’ttoo ]) ‘XS,{*,T = Ty, S:& = Sr, 1<r< t0:|

to+1 Jto+1

>E [ 11,00 ([

— A _
t0+17t0+1]> ‘XS?AJ' = Tr, ST‘ = Sr; 1 STS t0:|

for each sequence {z,,s,,1 < r < to} that is in the support of the process {Xga ,, SA 1<
r < to}. Comparing the above inequality with (C.5)) and (C.6)), we conclude that

AP, A AP +1
E [‘Sto+80+1"]:to] > E [’St0+so+1

.7-;‘3] a.s. (C.9)
Step 3: combining results from Steps 1 and 2. Combining (C.2)) and (C.9]), we obtain

0

E (|58l 7| <E[IshT0 0|78 ] as. (C.10)

which implies that (5.2]) holds for arbitrary T# € T, to, and s = sy + 1. This completes the

induction. O

Remark C.1. Proposition[B.4 is used in Step 2 of the above proof, where we only use the
property that Y, < XA/S’ is independent of ty and TA. The independence between (375,375/) and

f;g‘ is an additional result that further characterizes the coupling process. We did not use



this additional property directly in the proof.

D Proof of Theorems 1 and 5

It suffices to prove Theorem [3] as Theorem [I]is straightforwardly implied by Theorem [5]

Theorem 5. Let T4 € T, be an arbitrary sequential procedure. Further let TAPt and TAPto+1

be the suntching procedures described above, with switching time to and ty + 1, respectively,
for some ty = 0. Then, TAPw TAPw+1 e T and under model M,

E (Uy(T#)) < E (U(T*P%+1)) < E (U(T*P%)) < E (U(T*)),

forallt=1,2,---.

Proof of Theorem[J. First, note that T# € T, and TAP agrees with T4 € T, up to time .
Thus, TAP® control the LENR to be no greater than o from time 1 to to. Also, according
to Proposition , TAPu« controls the LENR at level a from time tq + 1 and onward. Thus,
TAPw% ¢ T,. Similarly, TAPw+1 e T,

Applying Theorem [6] but replacing ¢y by to + 1, and taking expectation on both sides of

the inequality, we obtain

AP
E|Siy14sl < ElSiiys |

for every to = 0 and s > 0. That is, for every t > ¢y + 1,
E|SA| < B[S+,

For t < ty+ 1, as TA and TAPw+1 share the same index set, we have
E[SP| = ES7T0

Combining the above inequalities, we obtain
E|SA| < B|S/ |

for all ¢ = 0. This further implies

t t
E{Ut(TA)} — Z E|S;A| < Z E‘SSAPtoH| _ E{Ut(TAPtoﬂ)}.

s=1 s=1



This proves the inequality for comparing procedures T4 and TAPw+1. We then compare
TAPw+1 and TAPw, based on the same arguments above except that we replace T by

TAPw+1 and replace TAPw+1 by TAPw . We obtain
E{Uy(TAP0r1)} < E{U,(TAP)}

for all t = 0.

Finally, we compare TAP% and T* = TAFo using a similar argument, which gives

E{U(T*")} < E{U(T")}.

E Proof of Theorem 4

First, by Theorem [6| we directly see that E{|SA|} < E{|S#|}, for any sequential proce-
dure T4 € 7,. Thus, E(CDy(T*)) = K — E|S}| < E(CDy(T#)), which further implies
E(CD¢(T*)) = infrer, E(CDy(T)).

We proceed to the analysis of RL;(T). By interchanging the order of double summation,

we have

=
M“

RL,(T

Z]l Ty ATE)

1s=1 s

k/\Tk/\t =

HMN

K t
Z]l k/\Tk ZZ k<8
s=1keS,

k 1k=1

which leads to

E{RLm)}_Z [ {1 - 1(n < 9)} :Z[ 2{1—1(Tk<s)}]\fs].

s=1 keSs keSs

Recall that Wy, s = P(m < s|Fs) and Ss € Fs. The above display yields

E{RL(T ZE{ D= W)}

s=1 keSs

From the above equation, we can see that in order to show E{RL;(T*)} = supp.r, E{RL(T)},
it suffices to show E{ s, (1 — Wi.)} is maximized for every t = 1,2,---, which follows

directly from the following extension of Theorem [6]

Proposition E.1. Suppose that model My holds. For any to,s = 0 and any sequential

detection procedure T € T,, let FA be the information filtration and S be the set of active

10



streams at time t given by TA. Then,

,to-i-s])

E [W([W;A

A APy,
to+s ]:to:l <k lw([WS%itf 7to-i-s])

A
EO] a.s.,

where U : S, — R is defined as W(w) = 3" (1 —wy) for w = (wy, -+ ,wy) €S,.
In the rest of the section, we provide the proof of Proposition [E.1]

Proof of Proposition[E. 1. The proof of Proposition is similar to that of Theorem [6] We
will only state the main differences and omit the repetitive details.

First, by replacing [S#| with \I/([Wé}t]) for ¢ taking different values in the proof of
Theorem @, we obtain the following inequality that is similar to

AP,
E [\I]([WS%)+SO+1,to+so+l]) "T_;)&] < E [Q(Wstoﬂ;-lhto-&-so-&-l ftlt?] a.8. (El)
for all ¢ty and sg. Next, we define a function ggt,s : S, — R,
e _ APt APt —
Buo(w) = E[W(WAE | D)|[WaE ] =l (E.2)

for t,s = 0. Then, we replace the ¢ with (Z in the proof of Theorem @ and obtain the following
inequality that is similar to (C.9)).

E [oov e b

St0+50+17t0+80+1

]-"A] a.s. (E.3)

to

f;:] >E l‘lf<[W‘°zii“;i

St0+so+1,t0+50+1 ‘

We point out that to arrive at the above inequality, the following property about ¥ is used:

U(w') < ¥(w) for any w,w’ € S, satisfying w < w'.

Combining (E.1) and (E.3), we obtain

A A APy, A
= [\D([WSQHMMOJFSO“])‘}—to] <E [qj([WS:)ig%+l,to+so+l]) ‘7:’50] a5
which extends ((C.10|) and completes the proof. O

F Proof of Propositions and

The proof of Propositions and is involved. We will first introduce some concepts
in stochastic ordering, followed by several useful lemmas, and then present the proof of the

propositions.

11



F.1 Stochastic ordering

We first review a few important concepts and classic results on partially ordered spaces.
More details about stochastic ordering and coupling can be found in |Kamae et al. (1977));
Lindvall (1999, |2002); [Thorisson| (2000).

Definition 2 (Partially Ordered Space (pospace)). A space (S, <) is said to be a partially
ordered space (or pospace) if < is a partial order relation over the topological space S and
the set {(x,y) € 8* : x < y} is a closed subset of S?.

Definition 3 (Increasing functions over a partially ordered space). Let (S1, <s,) and (Sa, <s,)
be partially ordered polish spaces. A map g : S — Sy is said to be increasing if g(u) <s, g(v)

for all u <s, v with u,v € S;.

Definition 4 (Stochastic ordering of real-valued random variables). Let X and Y be two
random variables, we say X is stochastically less than or equal to Y, if P(X > z) < P(Y = )

for all real number x. In this case, we write X <4 Y.
The following statements give some equivalent definitions for X <, Y
Fact 1. The following statements are equivalent.
1. X <4Y.
2. For all increasing, bounded, and measurable functions g : R — R, E(g(X)) < E(g(Y)).

3. There exists a coupling ()?, EA/) such that XiX, ?iY, and

A~

)’(\'éY a.s.

Here, 2 denotes that the random variables on both sides have an identical distribution.

In particular, the equivalence between 1 and 3 is known as the Strassen’s Theorem (Strassen,

1965).

Definition 5 (Stochastic ordering on a partially ordered polish space). Let (S,<) be a
partially ordered polish space, and let X and Y be S-valued random wvariables. We say Y
stochastically dominates X, denoted by X <4 Y if for all bounded, increasing, and measur-
able function g : S — R, E(g(X)) < E(g9(Y)).

Fact 2 (Strassen’s theorem for polish pospace, Theorem 2.4 in [Lindvall (2002)). Let (S, <)
be a polish partially ordered space, and let X and Y be S-valued random variables. Then,
X <4 Y if and only if there exists a coupling ()A(, lA/) such that )?iX, VLV and X <Y as.

12



Definition 6 (Stochastic dominance for Markov kernels). Let K and K be transition kernels
for Markov chains over a partially ordered polish space (S,<). The transition kernel K is

said to stochastically dominate K if
Ty = K(CL’,) st [N{(yv)

In particular, if the above is satisfied for the same kernel K = IN(, then we say K s stochas-

tically monotone.

Fact 3 (Strassen’s theorem for Markov chains over a polish pospace). Let {X;} and {Y;} be
Markov chains over a partially ordered polish space, (S, <), with transition kernels K and K
where K stochastically dominates K. Then, for all initial points o < yo, there is a coupling
{()/(\'t, fft)} of {Xi} starting at xo and {Y;} starting at yo such that

)A(t < fft vVt a.s.
Fact [3|is a special case of Theorem 5.8 in Lindvall| (2002).
F.2 Stochastic ordering and Markov chains on S, and &,

In this section, we provide some supporting lemmas regarding properties of the partial order
relationship defined in Section and show stochastic ordering of several Markov chains.
The proof of these lemmas is given in Section [F.4]

Recall that in Section B we define a space

K
S, = U{V: (v, ) e [0,1]F:0< vy < -y < 1}u{®}.
k=1
Here, we also define a space with unordered elements.
K
Su = JI0,1]* U {a}.
k=1

We first present a lemma showing that the space (S,, <) is a polish partial order space.

Lemma F.1. (S,, <) is a partially ordered space. In addition, S, is a polish space equipped

13



with the metric

MaXi<m<dim(u) |Um — Um|  4f dim(u) = dim(v) > 1
d(u,v) =140 ifu=v=g
2 if dim(u) # dim(v)

foru,vesS,.

We define mappings I, : S, — {0,--- , K} and H, : S, — S, as follows. For any u € S,,
define

() sup {n Dy u < anyn e {0, ...,dim(u)}} if dim(u) > 1,u = (u1, ..., Udim(u))
o\u) =
0 if dim(u) =0,
(F.1)
and
(ur, -y up@y) if I(a) > 1,

(7} otherwise.

Ho(u) =
The mapping H, is closely related to the one-step update rule in Algorithm[I], as summarized
in the next lemma.

Lemma F.2. If we input (Wii)res, = 1 and an index set Sy with |S;| = dim(u) in Algo-
rithm[1], then the output Sy satisfies

[Siva| = Lo(w) and [(Wii)kes,.,] = Ho([u])-

Other compound sequential detection rules in 7, are characterized through the next

lemma.

Lemma F.3. T = (T3, -+ ,Tk) € T, if and only if

K
TeTcde (Te > Wiy < - Y LT > t) fort =0,1,2, -
k=1

k=1

The above expression is equivalent to

Si11 s F; measurable , Siq < Sy, Z Wit < - |Sii1]

keSiy1

fort=20,1,2,---, and T, = sup{t : k € S}.

14



The next lemma compares the second statement in the above lemma with the output of
the function H,.

Lemma F.4. Let u = (u1, -+ ,uy) € Sy with dim(u) =m > 1. Let ky,--- ke {1l,--- ,m}
be distinct and satisfy

l
Z U, < al.
i=1

Then, Ho([u]) < [(ugy, -+ ,ug,)]. Moreover, if Hy([u]) = &, then for any S < {1,--- ,m}
with |S| =1, Y..qu; > fS)].

Lemma F.5. Foranyu < v e S,, Hy(u) < H,(v). That is, the mapping H,(u) is increasing

m u.

Next, we present several lemmas on the stochastic ordering of random variables and
Markov chains. We start with a simple but useful result regarding the stochastic monotonic-

ity of a likelihood ratio under a mixture model.

Lemma F.6. Let p(z) and q(x) be two density functions with respect to some baseline
measure | and assume that p(-) and q(-) have the same support. Let L(z) = ;1% be the
likelihood ratio. For § € |0,1], let Zs be a random variable with the density function 6q +
(1 =98)p and Ls = L(Zs). Then, for 0 < d; < 3 < 1, we have

L(51 <St L(52 .

This result is intuitive: if we have more weights in ¢ for the mixture distribution, then

the likelihood ratio will be larger, giving more evidence in favor of q.

Lemma F.7. Assume model M holds. Let Vi, = P (7, < t|Xp1, -+, Xgt). Then,

Q(Xk,t+1)/p(Xk,t+1)
(1—=0)1—Vir)/(0+ (1 —0)Vir) + ¢(Xi1)/P(Xpps1)

Vk,O =0 and Vk,t+1 = (F2)

Moreover, {Vii}i=o1.... are independent and identically distributed processes for different k.

Lemma F.8. Assume model Mg holds. Let 6y = P (1 < t|Xga,---, Xky), then
5k‘,t = 0 + (1 - 9)V]€7t,

where Vi, is defined in (F.2)).

15



Lemma F.9. Under model Mg, the process {Vii}i=o defined in (F.2)) is a homogeneous
Markov chain. In addition, its transition kernel is stochastically monotone. We will later

refer to this transition kernel as K(-,-).

Lemma F.10. For any t > 1 and T4, [W;A ] is conditionally independent of FA given

Tt
[Wsﬁrl:t]' Moreover, the conditional density of [WS;“H,tJrl] at v given [WS{‘H,t] =ues, is
dim(u . . .
S rebame LIt K (w,ve)  if dim(u) = dim(v) > 1,
Ky(u,v) =<1 if dim(u) = dim(v) = 0,
0 otherwise,
where P, denotes the set of all permutations over {1,--- m}.

Lemma F.11. For each u € S, with dim(u) = m > 1, generate an S,-valued random

variable V' as follows,
1. For each k € {1,--- ,m}, generate Zy ~ K (uyg,-) independently for different k.
2. Let V =1[(Z1,...., Zm)]

In addition, if m =0, we let V = @&. Then, V ~ K,(u,-).

Lemma F.12. For u,u’ € S, with u < o', we have K,(u,-) <4 K, (', -).

Lemma F.13. For any t,s > 0 and T4, [W;f;tt t+8+1] 1s conditionally independent of
t+s+1°
AP, AP, ” ; AP, -
Fist given [ng‘f;f,ws]' Moreover, the conditional density of [WS;“+11‘+1,t+s+1] at v given
AP ~
(Wi, J=ueS, is

t+s

Is(u . .
Srcpy, o LY K (Ho(W, o) if dim(v) = L(w) > 1
=0

K,(u,v) = Ko(Ho(w),v) = { 1 if dim(v) = I,(u)
0 otherwise,
where P, denotes the set of all permutations over {1,---  m}.

Remark F.1. There is a key difference between Lemmal[F.10 and Lemmal[F 13, though they
may look similar at a first glance. In Lemmal[F.10, we consider the conditional distribution of

[Wé“A t+1] given [WS‘,“A t], where the index set St{‘H is the same for the two random vectors.

t+1> t+1
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In LemmalF. 15, we consider the conditional distribution of [Wéﬁ’,ﬁ given [W;f;,i . ],
t+s+1° t+s 0TS
AP,

where the two random vectors are associated with two different index sets S{ﬁil and S{7,".

t+s+1]

This difference reflects a key difference between the proposed one-step update rule and an

arbitrary procedure.
Lemma F.14. For each u € S, and m = I,(u), generate an S,-valued random variable V
as follows,

1. For each k€ {1,--- ,m}, generate Z ~ K(H,(u),") independently for different k.

2. Let V =[(Z1,...., Zm)].

In addition, if m =0, we let V = @&. Then, V ~ K,(u,-).

F.3 Proof of Propositions and

Proposition B.1. Let {z,s;,1 <t < to} be any sequence in the support of the stochastic
process {(Xk,t)kesfa SA 1<t < to} following a sequential procedure T4 € T,. Then, there

exists a coupling of S,-valued random variables (17[\/, W’) such that

a AP
W= [(katorl)kes’m%] ‘{(Xk,t>kesg4 =1, 8 = 5,1 <t < to} 7

to+1
T d APy 41 _ A _
W - l(Wk,tO+l )keSAPtO+1] {(Xk‘,t)kesf - l‘ty St - St) 1 < t g tO} )
top+1

and W < W a.s., where L denotes that random variables on both sides are identically

distributed.

Proof of Proposition[B.1]. First, given {ng\ =2, SA = 5,1 <t < to}, [Wé}),to] is deter-
mined. To simplify the notation, we assume W%,to
si,1 <t <t}

In addition, [W&

tg+1°

sequential procedure T. To simplify the notation, we assume [Wé‘?A
to+1°

given {Xga = 2, S = 5,1 < t < to}. We clarify that wj , is a deterministic (and

= wy, € Sy given {XS;; = 1, SP =

to] is determined by {XS;; = 1,52 = 5,1 <t < to} and the

_ *
tO:I - Wt0+1 € SO

measurable) function of x;,s, for 1 < t < t; (depending on the sequential procedure T#).

According to Lemma [F.10| (replacing t by t,), the conditional distribution of [WAA ]

St to+1
ot+1’
given {X sA = x, SA = 5,1 <t < to} is the same as the conditional distribution given

A _ * o . . . * .
[WS%H,%] = w} 1. Moreover, the conditional density is Ka(w;} 1, -).
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We perform a similar analysis by replacing TA by TAPw in the above analysis. We

denote [Wﬁl;tt“ ] = wy,+1 and obtain that the conditional density of [W‘t&fﬁ ] given
St0+10 ;to St0+10 sto+1

{XStA =2y, S =5, 1 <t < o} is Ka(Wygs, ).

According to the above analysis and Strassen Theorem for pospace (Fact , to prove the
proposition, it is sufficient to show K (w41, ) <o Ka(W} ,1,-). By Lemma , we have
Ka(u, ) <o Ky(u',-) for any u < u’ € S,. Thus, it is sufficient to show that w; .1 < W} ;.

Now we compare wy,41 and wj ;. According to the definition of T4P* and Lemma ,
we know wy, 1 = Ho([wy,]). There are two cases: 1) wi ,, = &, and 2) w} | # @.
We analyze these cases separately. For the first case, wy 1 < wj | by definition of the

partial order. For the second case, according to Lemma and Lemma [F.4] we can see

that w1 = Ho([wy,]) # &. Write wy, = (wyg,1,- -+, Wyy,m) for some m, then wf | can be
written as W; | = (Wi ks Wik,) for some distinct ky, -+, k€ {1,--- ,m}. According
to Lemma , for T2 to control LFNR at time to + 1, wi  satisfies Zézl Wyy.k, < al. Thus,
according to Lemma Wigr1 = Ho([Wy]) < [W 1] = Wi 41 O

Proposition B.2. Suppose that model Mg holds. Then for anyy,y’ € S, such thaty <y,
there exists a coupling (?S, )A/s’), s =0,1,..., satisfying

1. {}A/S : s = 0} has the same distribution as the conditional process {Ys : s = 0} given
Yo =y, and {Y! : s = 0} has the same distribution as the conditional process {Y! : s >

0} given Yo =y'.
2. Y, < )A/S', a.s. for all s = 0.

Moreover, the process (}?;,}A/S’) does not depend on T4, ty, or the information filtration E‘(‘)‘

Proof of Proposition[B.2 Recall Y; = [(Wﬁ?ﬁs ] By letting ¢ = t; in Lemmal|F.13|

) APy,
keSy 1s

we obtain that {Y;}s>0 is a homogeneous Markov chain, whose transition kernel is K,, which

is independent of the sequential procedure TA, ¢4, and the information filtration ]-"g'(?. For
the rest of the proof, according to Definition [6] and Fact [3] it is sufficient to show that K,
is stochastically monotone. That is, K,(u, ) <4 K,(u’,-) for any u,u’ € S, with u < u’.
Thus, it is sufficient to show that for all u < u’ there exists a coupling (‘A/,‘A/’ ) such that
vV~ Ko(u, ), vV~ Ko(u', ) and V <V’ as. In what follows, we construct such a coupling.

For u < v’ with u,u’ € S,, we know that H,(u) < H,(u) by Lemma [F.5] By the
definition of the partial order, this implies that dim(H,(u’)) < dim(H,(u)) and Hy(u); <

H,(u')y, for each 1 < k < dim(H,(u')). By Lemma this further implies
K(Hy(w)g, ) <ot K(Ho(w)g, -)
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for k = 1,...,dim(H,(u’)). Thus, by Strassen’s Theorem for random variables (Fact [I]), this
implies that there exists a coupling (Ek, Z ..) such that

A~

Zi ~ K(Ho(Wy, ), Z ~ K(Hy(W)y,-), and Z), < Z, a.s.

for k =1,...,dim(H,(uv’)). In addition, we choose the coupling so that (Zg, 2,2) are indepen-
dent for different k. For dim(H,(u’)) < k < dim(H,(u)), we construct Ty ~ K(H,(a)g,-)
so that Zk’s are independent for different k. Let 7 = (21,"- ,th(Hu(u))) and 7' =

(Z1 s Zim(ra(ury)-
For this coupling, it is easy to verify

dim(Z) = dim(Z") and Z, < Z,, for 1 < k < dim(Z') a.s.

A~ A~

Thus, [2] < [2’] as. Let V = [Z] and V= [2’] Then, our coupling (V/, V') gives
V<V as.
On the other hand, by Lemma we have
V ~ Ko(u,-) and V' ~ K, (1, -).

Therefore,
Ko(ua ) <st Ko(ula )

F.4 Proof of supporting lemmas in Section

Lemma F.1. (S,,<) is a partially ordered space. In addition, S, is a polish space equipped

with the metric

MaXi<m<dim(u) |Um — Um|  4f dim(u) = dim(v) > 1
d(u,v) =10 fu=v=g
2 if dim(u) # dim(v)
foru,veS,.
Proof of Lemma[F.1]. First, S, is the union of polish spaces {u = (uy, -+ ,up) : 0 < u; <

- < uy < 1} and {@}. Thus, it is also a polish space. Second, it is straightforward to
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verify that d(u,v) is a metric defined over S,.

Now, we verify that the partial order relationship < is closed over S,. To see this, let
u,v € S, satisfying u € v. There are two cases: 1) dim(u) < dim(v), or 2) dim(u) > dim(v)
and there exists m € {1,--- ,dim(v)} such that u,, > v,,. Let By(u,d) and By(v,d) be d-
balls centering at u and v with ¢ chosen according to different cases: § = 1/2 for the first
case; and 0 = *m7*m for the second case. Then, it is easy to verify that for all u’ € By(u,0)
and v’ € By(v,d), we have u’ € v'. That is, the partial order relationship < is closed over
So. O

Lemma F.2. If we input (Wi t)res, = u and an index set Sy with |S;| = dim(u) in Algo-
rithm[1], then the output Sy satisfies

[Siva| = Lo(w) and [(Wii)kes,., ] = Ho([u])-

Proof of Lemmal[F.3 If u = &, then [u] = @ and |S;| = 0. This implies I,([u]) = 0 and
Hy([u]) = @. In the rest of the proof we assume that u # @. By Step 1 of Algorithm [1]
we obtain that [u] = (Wi, ¢, -, kat) where Sy = {ki, -+, ks, } and Wige < - Wi, -
According to Step 2 and 3 of the algorithm and the definition of I,([u]) in . the largest
n making R, < a is I,([u]) and Hy([u]) = [(Wik1)kes, 1] O

Lemma F.3. T = (T3, -+ ,Tk) € T, if and only if

K K
TeT and Z (Te > Wiy <o Y LTy > t) fort =0,1,2, -
k=1 k=1
The above expression is equivalent to

Sip1 18 Fy measurable , Sy 1 < Sy, Z Wit < - |Sii1]
keSiy1

fort=0,1,2,---, and T, = sup{t : k € S}.

Proof of Lemma[F.3. By definition and the F; measurability of S;1,

ZkeSH_l ]I(Tk < t)
|[Sta] v 1

P(7, < t|.F, %%
LFNR,(T) = E[ t] _ Dkesin Pk < UF)  Digesy W

S| v 1 - [Seqa| v 1

Thus, T € 7, if and only if
Zk€st+1 Wk:t

< .S.
‘St+1’\/1 X @ a.s.,
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which is equivalent to

2 Wit < afSia] a.s.,

keSit1

for every t. ]

Lemma F.4. Let u = (uy,- -+ ,up) € Sy with dim(u) =m > 1. Let ky,--- ke {1,--- ,m}
be distinct and satisfy

l
2 ug, < al.
i=1

Then, Ho([u]) < [(ugy, -+ ,ug,)]. Moreover, if Hy([u]) = &, then for any S < {1,--- ,m}
with |S| =1, Y. qu; > alS|.

Proof of Lemma |F.4. We first prove the ‘Moreover’ part of the lemma by contradiction. If
on the contrary H,([u]) = @ and there exists a non-empty set S < {1,---,m} such that
Dies Wi < afS|, then there exists ¢ € S such that u; < o. This further implies [u]; < u; < «
and I,([u]) = 1, which contracts with the assumption H,([u]) = @.

We proceed to the proof of the rest of the lemma. We first prove that [ in the lemma satis-
fies I < I,([u]). To see this, recall that ([u]y,-- -, [u]m) is the order statistic of (uy,- -, up).
Thus,

! l
Dl < > ug, < ol (F.3)
i=1 -

=1

Recall I,([u]) = sup{n: > [u], <an,ne {0, --,m}}. Thus, (F.3)) implies { < I,([u]).

Next, we prove that Ho([u]) < [(uk,, - ,ux,)]. Without loss of generality, assume
Uk, -+, uy, are ordered. That is, ug, < --- < wy, and [(ug,, - ,ug,)] = (U, -+, ug,). Then,
according to the definition of the order statistic [u], we have [u]; < wy, for i = 1,--- L.
Recall Hy([u]) = ([u]y,---, [u]z,)). This implies Hy([u]) < [(up,, - ug,)]- O

Lemma F.5. Foranyu < v e S,, Hy,(u) < H,(v). That is, the mapping H,(u) is increasing

m .

Proof of Lemmal[F.5 If v = &, then Hy(v) = @ and H,(u) < & = H,(v) by the def-
inition of the partial order. In the rest of the proof we assume dim(v) > 1 and v =
(V1, -+, Vdim(v)). As we assumed u < v, this implies dim(u) > dim(v) > 1. We further
denote u = (u1,- - , Udim(u))

We first show that if 37 v; < a(L + 1) for some L, then Y~ v, < aL. That is,
(Zle v;)/L is increasing in L. To see this, consider two cases. If vp41 < o, then v; < -+ <
vy, < « and thus ZiL=1 v; < al. If v > «, then ZiLzl v; < Zf:ll v; — a < aL. This result

implies that 3% v; < aL for all 1 < L < I,(v).
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Now we show that I,(u) = I,(v) by contradiction. If on the contrary I,(u) < I,(v), then
I,(u) + 1 < I,(v) < dim(v) and

Io(u)+1 Io(u)+1

Z u; < Z v; < a(l,(u) +1).

=1

This contradicts with the definition of I,(u). Therefore, I,(u) = I,(v).

We proceed to showing H,(u) < H,(v). By the definition of H,, we have H,(u) =
(u1, -, ug)) and Ho(v) = (v1,- - ,vp,(v)). Since we assume u < v, we have u; < v; for all
i=1,---,1,(v). This shows that H,(u) < Ho(v).

[

Lemma F.6. Let p(x) and q(z) be two density functions with respect to some baseline
measure j1 and assume that p(-) and q(-) have the same support. Let L(z) = % be the
likelihood ratio. For § € |0,1], let Zs be a random variable with the density function 6q +
(1 —=20)p and Ls = L(Zs). Then, for 0 < §; < 0o < 1, we have

L51 <St L62'
Proof of Lemma[F.0. Let g be a bounded increasing function. Then,

Eg(Ls,) —Eg(Ls,)
=E2s2q+(1-62p9 (L(Z)) — Bz 510+ (1-61p9 (L(Z))
=0E509(L(Z)) + (1 = 02)Ez,9(L(2Z))
—{61Ez9(L(2)) + (1 = 61)Ezpg(L(2)) }
=(02 = 01) {E2~q9(L(Z)) = Ez-p9(L(Z))} -

Note that L(Z) = ¢(Z)/p(Z) and E;.q9(L(Z)) = Ez, {L(Z)g(L(Z))}. Thus, the above
display can be further written as

Eg(Ls,) = Eg(Ls,) = (02 = 01)Ez+, { (L(2) - 1)g(L(2)) }

For notational simplicity, let Y = L(Z) with Z ~ p. Then, E(Y) = 1 and the above display

implies
Eg(Ls,) = Eg(Ls,) = (02 = 0)E{(Y = 1)g(Y)} = (02 = 0)E{(Y = 1)(9(Y) — g(1))} = 0.
The last inequality in the above display is due to the fact that (Y — 1)(g(Y) —g(1)) = 0
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for all increasing function g. We remark that it is also a special case of Harris inequality

(Harris, (1960). O

Lemma F.7. Assume model Mg holds. Let Vi.; = P (7, < t|Xg1, -+, Xgt). Then,

Q(Xk,t+1)/p(Xk,t+1)
(1=0)(1 = Vie)/(0 + (1 = ) Vi) + a( K1) /D(Xp41)

Vk,() =0 and ‘/k,t+1 = (FZ)

Moreover, {Vii}i—01,... are independent and identically distributed processes for different k.

Proof of Lemma[F.7. First, it is easy to see that {Vj s}s=0 are independent and identically
distributed processes for different k. For the rest of the proof, it is sufficient to prove the
lemma for k£ = 1. For the ease of exposition, we use the notation Xj ;. to denote (Xj,)s<r<t-
First, P (7 < 0|X1.1.0) = P(11 < 0) = 0 = Vp. Thus, it is sufficient to verify the update rule

for Vi 4. A direct calculation gives

]P)(Tl < t— 1’X1,1:t)

_ S oP(r =) TT_ p(X) T Toyyr a(X0s)

s P(ri = ) [ T2y P(X10) TTmir ¢(Xap) + P = ) [Ty (X1 s)
B Sz 0(1 = 0)*Ly (1)

S0 01— 0)*Ly (1y + (1 — 0)
_ Q1

Qi+ (1—0)

where we write Ly (ss1) := [ [1_yi, Zg’;:;, the likelihood ratio between p(-) and ¢(-) based

on the data X s11)4, and Q14 = Zij) O(1 — 0)°L1 (s41):¢- Then,

(]. — e)t]P)(Tl < t— 1‘X171:t)
1-]?(7'1 <t—1|X1,1:t) '

Qe =

Note that

t
Ql,t+1 = Z 9<1 - ‘9>3L1,(s+1):t+1 = Q<X1,t+1>/p(X1,t+1) {9(1 - e)t + Ql,t} .
s=0
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Thus,

P(r < /X1 1:041)
_ Q1641
Qip41 + (1 —0)tHL
_ q(X1,041)/P(X1e41) {0(1 — 0)" + Qu}
q(X1,041)/P(X1241) {0(1 = 0)" + Que} + (1 = 0)1F!
_ Q(Xl,t+1)/p(X1,t+1)
@(X1e41)/P(X141) + (1 = 0)/{0 + (1 = 0) 7' Q1)
q(X, t+1)/p(X1 t+1)

T1<t—1|X1,1:¢ '
A(X100)/p(X 1) + (1= 0)/ {0+ ZREta L

We complete the proof by simplifying the above result. O]

Lemma F.8. Assume model Mg holds. Let 6y = P (1p < t|Xga,---, Xky), then
5k‘,t - 0 + (]_ - Q)Vk,t;

where Vi, is defined in (F.2)).

Proof of Lemma[F.8. By symmetry, it is sufficient to prove the lemma for k = 1. Recall

Lk,(erl):t = an=5+1 ZE?::% and Qk,t = ZZ;%) 0(1 - Q)SLl,(erl):t'

A direct calculation using Bayes formula gives

SesoPlr = 8) [Ty p(X) [Tmpy a(X00) + Pl = ) [Ty p(X00)
Zt o P(r1 = ) T[Ty p(X0) TTcayr @(X10) + Pl = ) T2y p(Xas)
S0 001 = 0)" Ly (514 + 0(1 = 0)'
S0 01— 0)*Ly 1y + (1 — 0)

Qe+ 0(1-0)

kt =

a Q1+ (1 —0)
=V +0(1— Vi)

]
Lemma F.9. Under model M, the process {Vii}i=0 defined in (F.2) is a homogeneous

Markov chain. In addition, its transition kernel is stochastically monotone. We will later

refer to this transition kernel as K(-,-).

Proof of Lemma[F.g. We first study the conditional distribution of X ;1 given Vi g, -+, Vi,.
According to the change point model My, we know that X; ;41 is conditionally independent
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of Vig, -+, Vi, given the event {ry < t}. That is, given Vj g, - -, Vi, the conditional density
function of X ;11 is 614q(x) + (1 — 614)p(x), which depends on X y,---, X7, only through
Vi

Let the function L(z) := q(x)/p(z) and let Lyt := ¢(Xg1+1)/P(Xkt11). Then, Ly =
L(X1+41), whose conditional distribution given Vi g, - , V4 only depends on Vi ;. According
to the iteration , this implies that the process {Vi:}i=0 is a Markov process. Note
that 0;, and the iteration depend on t only through V;,. Thus, this Markov chain
is a homogeneous Markov chain. We now show that its transition kernel is stochastically
monotone.

Let 6(x) = 6 + (1 — 0)x. For x € (0,1), we consider the following steps of generating a

random variable V' (z).
1. Generate Z(x) with the density d(x)q(-) + (1 — d(z))p(-).
2. Let

L(Z(x))
L(Z(z)) + (1= 0)(1 —2)/(0 + (1 - 0)z)’

V(z) =

From the iteration and X,V =2 ~ (1 —0(2))q(-) + d(x)p(-), we can see that V(z)
has the same distribution as that of Vj .1 given Vi, = x. In other words, V(z) has the
density function K (z,-).

Now we show that K(z,-) <y K(2/,-) for any 0 < 2 < 2’ < 1 by coupling. Specifically,
since 0(z) is increasing in z, 6(z) < &(2/). Then, by Lemma [F.6] we know L(Z(z)) <y
L(Z(2')). According to the Strassen Theorem for random variables (Fact [1]), there exists
a coupling (L, L’), such that f/iL(Z(x)), f)’iL(Z(x’)) and L < L' a.s. Then, let V =

L d O % d ’
i+(1—0>(1—x>/(g+<1—g>x>:V(x) and V' = o iy &)
Because L < L' and z < 2/,
‘7 _ L
T+(1—-0)1—-2)/0+(1—0))
E/
< =
T+ (1—0)(1—2)/0+(1-0))
E/
< =
L'+(1-60)(1—2)/(0+ (1—80))
— V' as.

A~

That is, V < V' as., and (‘A/, V') is a coupling of (V(z),V(2")). Thus, V(z) < V(2’) and
sois K(z, ) <4 K(2/,-). O
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Lemma F.10. For any t > 1 and T4, [W;‘i“ﬂ,tﬂ] is conditionally independent of FA given
[W s t] Moreover, the conditional density of [WSAHJ:H] at v given [W5f+17t] =ueds, is
dim . . .
b Lt Ky vn) if dim(u) = dim(v) > 1,
Ky(u,v) =<1 if dim(u) = dim(v) = 0,
0 otherwise,
where P, denotes the set of all permutations over {1,---  m}.

Proof of Lemma[F.10. First, if dim(u) = 0, then u = &, and [W " t] = u means that

St+17
SA | = &. Thus, the conditional distribution of [ng‘;l,tﬂ] given [W A t] = u is a point

St+l7

mass at &, and K, (9, &) = 1. In the rest of the proof, we focus on the case that u # @.

We start with deriving the conditional density of Ws at v e S, given X SAL =

A
Hl,1E+1

1, B =5, , Xy = zy, SP = s, S| = 5441 and Wstﬁl,t = u for some x1, - ,z; and

S1,-+ ,St11, and u € §,. Clearly, the conditional density is 0 when dim(u) # dim(v), and

is arbitrary when dim(u) # |s;;1| (the density of the random variable being conditional on

is zero). Thus, we will focus on the case where dim(u) = dim(v) = |s;41| = m for some
me{l,---, K}, and we will write u = (ug, - ,up) and v = (v, , vy,).

Note that given SA | = s;41, W%pt =u, W,ﬁﬂ’s are independent for different k € s, 1.
Moreover, given SA | = s;1, Wé}iut = u, Wkﬁﬂ is the same as Vj ;41 (defined in (F.2)) for
k € 5,11, and is independent of Xga ; = 21,58 = 59, , Xga,; = x; and SA = s;. Thus,
W SA Lt is conditionally independent of F* given Sfi; = s;41, WS‘% =W and its conditional

density (by Lemma [F.9) is

m
H K ul, ?)l
=1

Because [WSA t] is the order statistic of WSA , We further obtain its conditional density
t+1° t4+1°

at ve S, given S, = si1, Wha

t+10

:u’

Z HK(UhUvr(l)) = Z HK Z7U7r ) = Ka([u], v),

TEPm, =1 TE€EPm =1

for v e S, with dim(v) = m. Observe that the above function is independent of s;,1 for
|s¢+1] = m and depend on u only through its order statistic [u]. Thus, we further conclude
that [WSA P +1] is conditionally independent of FA given [WstAl,t] = u € S, satisfying
dim(u) = m, and its conditional density is K,(u,-). O

Lemma F.11. For each u € S, with dim(u) = m > 1, generate an S,-valued random
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variable V' as follows,
1. For each k€ {1,--- ,m}, generate Zy ~ K (ug,-) independently for different k.
2. LetV =1[(Z1,.... Zm)].

In addition, if m =0, we let V = @&. Then, V ~ K,(u,-).

Proof of Lemma |F.11. The lemma is obviously true when m = 0. When m > 1, let z =
(21, -+, 2m). By step 1, the joint density for (Z;,---,Z,,) at z is

=1

By step 2, V' is the order statistic of (Zy,---, Z,). Thus, its density is

Z HK(ui,zﬂ(i)) = K,(u, z).

weP, 1=1

Lemma F.12. For u,u’ € §, with u < v, we have K,(u,-) <4 K, (o', ).

Proof of Lemma[F.13 The lemma is obvious if u' = &. In what follows, we assume
dim(u’) = m’ > 1 and dim(u) = m. Then, u < v’ means m > m’ > 1 and u; < v
for 1 < 1 < m'. Let (Z1,2]), - (Zmn,Z],) be independent random vectors such that
Zy ~ K(uy,-), Z] ~ K(uj,-) and Z; < Z] a.s. Such random vectors exists because of Strassen
Theorem and Lemma that the kernel K(-,-) is stochastically monotone. In addition, for
m <l <m let Z] ~ K(uj,-) be independent random variables.

Let Z = (Zy,- , Zm) ~ Ku(u,), 2" = (Z},---,2!,), V = [Z] and V' = [Z’]. Then,
V < V' a.s. On the other hand, by Lemma [F.11} we have

V ~K,(u, ) and V' ~ K,(u', ),

and V < V" a.s. By Fact , the existence of such a coupling implies K, (u, -) <¢ K, (u',-). O

A APy
Lemma F.13. For any t,s = 0 and T4, [ng‘ﬁarl,wsﬂ

ftﬂft given [W;Aﬁi HS]. Moreover, the conditional density of [W;AP;{ et
t+s t+s+1°

] 1s conditionally independent of

] at v given
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(W2,

| =ues, is
t+svt s

Is(u . .
S repp g LIS K (Ho(W, vny) if dim(v) = Io(w) > 1
=0

Ko(u,v) := Ky(Ho(u),v) =<1 if dim(v) = I,(u)
0 otherwise,
where P, denotes the set of all permutations over {1,---  m}.

Proof of Lemma[F 13 Apply Lemma by replacing T by TAPt and ¢ by ¢+ s, we obtain
AP,
that [WS;?ZL,HSH Sﬁsil,tﬁ]' On the other

hand, according to the one-step update rule in Algorithm [I] and Lemma we can see
that [WAPt ] = H0<[W§‘;\Il){ o ]) Therefore, we further obtain that [WAPt ] is
t4s LTS

] is conditionally independent of Eﬁft given [WAI;J

AP AP
Sy shtts Sy b ttst+l

conditionally independent of .Eﬁfs’t given [W:AP;{ ", ]
t4s LTS
We proceed to derive its conditional density at v given [Wg‘j&t ", ] = u. We first notice
t+s s
that dim(v) = |SA | = I,(u) (by Lemma [F.2). Thus, the conditional density is zero when
dim(v) # I,(u). For dim(v) = I,(u), by Lemma and the above analysis, the conditional
density is
Io(u)
Ka<H0(u)7 V) = Z H K(Ho(u>l7 Uw(l)) = Ko<u7 V)'

ﬂ'EPIO(u) =1

This completes the proof of the lemma. O

Lemma F.14. For each u € S, and m = I,(u), generate an S,-valued random variable V

as follows,
1. For each k€ {1,--- ,m}, generate Z ~ K(H,(0)g,-) independently for different k.
2. LetV =[(Zy1,...., Zm)].

In addition, if m =0, we let V = @&. Then, V ~ K,(u,-).

Proof of Lemma[F.14 The lemma is a direct application of Lemma and K,(u,v) =
Ka(Ho(u),v). O
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G Proof of Lemma [1] and Propositions [1] -

Lemma 1. Under model Mg, Wy o =0 for 1 <k < K and Wy can be computed using the
following update rule for 1 < k < K,

4(Xpe,t41)/P(Xpe,t41) _
W, _ ) Q=0 (1-Wi )/ (0+(1=0)Wy 1) +a(Xk,t+1)/P(Xk,t+1) fOT I<t<Ti -1,
kt+1

Wi, fort = Ty.

Proof of Lemma(1 For each k € S;.1, according to the independence assumption for model
M,
Wk,tJrl = P(Tk <t+ 1’E+1) = P(Tk <t+ 1|Xk,1:t+1)~

On the other hand, according to Lemma |[F.7, we have

Q(Xk,t+1)/p(Xk,t+1)

P(ri <t + 1 Xp1:041) = (1=0)(1 —=Wie)/(0+ (1 —0)Wy,) + q(Xk,t+1)/p(Xk7t+1)'

Thus, for k € Si;q,

Q( Xpp11)/P( X t41)

Wit = 1-0)(1- kat)/(e +(1— Q)Wm) + Q(Xk,t+1)/p(Xk,t+1).

(G.1)

Note that k € Syyq is equivalent to T}, > t + 1. Thus, (G.1)) holds for 1 < t < T — 1.

Moreover, for t = Ty},
Wit = P(m <t + 1| F1) = P, < | X101, Tk) = Wiy, -
This completes our proof. O

We proceed to the proofs of propositions.

Proposition 1. Suppose that we obtain the index set Syq using Algorithm[1], given the index
set Sy and information filtration F; at time t. Then the LFNR at time t + 1 satisfies

1 <t
B (Zkest+1 (Tk )‘]__t> <a

|Sea| v 1

Proof of Proposition[]. First, it is easy to see that S;.; obtained from Algorithm [I] is F;

measurable. Thus,

S| v 1 N [Sesa| v 1

E (ZkeSHl 1 (Tk < t) ‘]__t) . ZkeSHl kat
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On the other hand, according to the second and third steps of the algorithm,

Zk€st+1 Wk7t

=R, <.
[Spea| v 1 “

Dkesy,q Lmk<t)

Therefore, E <W‘Ft) < o

Proposition 2. Let T* be defined in Algorithm[3. Then, T* € T,.

Proof of Proposition [ This proposition is proved by combining the results of Proposition
and Lemma [F.3] O

Proposition 3. Given LFNR level o and information filtration F, the index set Siy1 given

by Algorithm (1] is locally optimal at time t + 1.

Proof of Proposition[3 Let Siy1 be the index set obtained by Algorithm [I] By Lemma [F.2]
|Str1] = L([Ws,+]) and [We,,,+] = Ho([Ws,+]). There are two cases: 1) [Sit1| = 0, and

2) |Si41] = n = 1. For the first case, [Ws,,,:] = @. Note that E(Z’CES—T’“Q’]—Q =

[S|v1
%. By the ‘Moreover’ part of Lemma |[F.4], we can see that the only set S satisfying

E(%ﬁg\_ﬁk“’ﬂ) <ais S = . Thatis |S| = 0. Thus, |Si11] = |9].

For the second case where |S;1| =n > 1 and any set |S| satisfying E (W‘}O <
a, we use Lemma again and obtain that [Ws,,, ] = Ho([Ws,+]) < [Ws:]. This implies

S| = dim([Ws,.,, ,]) = dim([Ws,]) = [S]. =

H Proof of Theorem [2 and Theorem [3

H.1 Proof of Theorem [2

Theorem 2. Assume that model M holds and Assumption A1 is satisfied. To emphasize the
dependence on K, we denote the proposed procedure by T, the corresponding information
filtration at time t by Fi,, and the index set at time t by Sy ,. Then, the following results
hold for each t > 1

1. limg o XK,t = M\ a.s., where XKJ = max{Wm ke S}k(,t-i-l} 1s the threshold used by
T .
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2. limp_.oo LFNR41(T%) = E (V;

Vi< A, 0<5s< t) , a.s. Moreover,

1 _ 1 _ 9 t t < log(l—a)
E(W%<A8,0<s<t): (1=0Y, Tog(1-6)

log(1—a)

a, t= log(1-6) °

8 limg o K S5 0 =P (Vi< Ao, Vi< N) as.

We start with a lemma that is useful for the proof of Theorem [2] Its proof is provided
in Section

Lemma H.1. Under model M, and Assumption Al, we have the following results.

1. Foreacht =1, (Vi,---,V;) has a continuous and strictly positive joint density function

over (0,1)" (with respect to the Lebesgue measure).
2. For any (vy,--+ ,v) € (0, 1), P(V; < vy, , Vi < vy) > 0.

3. Forany (v, ,v) € (0,1), the conditional distribution of Vi1 given Vi < vy, -+, Vi <

vy has a continuous and positive density function over (0,1).

Proof of Theorem[3. For a sufficiently large to (to > t), let P* denote the probability measure
for (Vi,---,V,,), and let Q be an arbitrary probability measure for a to-dimensional random
vector. We define several mappings iteratively as follows. We initialize the mapping Ay(Q) =
1 for every Q. Then, for ¢t > 1, define

Di(NQ)=Q(V, <\ Vi1 <A1(Q),
N:(A, Q) =Eq [ViL{V; < A\, Vi1 < At (Q)}],
Nt()‘7@)

Gi(\,Q) = m =Eq [Vi|V: < A\, Vio1 < A1(Q)],

and

A (Q) =sup{A: G:(\,Q) < aand A€ [0,1]}.

In the above equations, we use notation Vy = (V1,--- , V;) and Ay(Q) = (A1(Q), -+ , A (Q)).
In addition, {V; < A;(Q)} denotes the event {V; < A1(Q),---,V; < A(Q)}.

The next lemma, whose proof is given in Section [H.3] provides results about the above
mappings. For two probability measures Q and Q' for a ¢y-dimensional random vector Vy,
their sup-norm is defined as |Q — Q'||s, = supyegto |Q(V: < v) —Q'(V; < v)|. Then, we say a
mapping f(Q') is sup-norm continuous at Q' = Q if lims_o SUpy. | —g.<s [F(Q) = f(Q)| = 0.
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Lemma H.2. For each 1 <t < ty, we have the following results.

1. For any fired Q, Gy(\, Q) is non-decreasing in A. Moreover, Gy(\,P*) is strictly in-

creasing in X\ € (0, 1] under Assumption Al.

2. For any fized A € (0,1], Dy(X\, Q), Ni(A\, Q), and Gi(\, Q) are sup-norm continuous in
Q at Q = P* under Assumption Al.

3. N(Q) is sup-norm continuous at Q = P* under Assumption Al. In addition, A(P*) >
0.

By definition, \; = A;(IP*), where P* denotes the true probability measure of (V, -+, V},).
On the other hand, define the empirical measure (recall Vi, = P(7, < | X1, -, X))

1 K
Px = E};é(vk,la"'avk,to)'

It is not hard to verify that
>\K7t - At(PK)

Now we are able to prove the first part of theorem. Let
C = {(—m,x|: xeR"}

where (—0, x| denotes the set (—o0,z1] x -+ x (=00, z4,]. It is known that C is a Vapnik-
Chervonenkis class and thus, limg_,. supgee |Px(Vy, € C) —P*(Vy, € C)| = 0 a.s. (see,
e.g., Shorack and Wellner| (2009)). In other words,

lim |Px —P*|, =0 a.s. (H.1)
K—w
This result combined with the third statement of Lemma implies

lim Ay(Pg) = Ay(P¥) a.s.

K—o0

That is, limg_, XK,t = )\ a.8. This completes our proof for the first statement of the

theorem. We proceed to the second and third statements of the theorem. Let

Ji(Q) = Eq (Vi1 {V: < A4(Q)}) and H:(Q) = Q (V: < A4(Q)).

We can see that the mapping H; is the composition of D,(-,Q) and A;(Q). According to
Lemma and Lemma [H.2] both mappings are sup-norm continuous at Q = P*, and as a
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result, their composition H;(Q) is also sup-norm continuous at Q = P*. Similarly, according
to Lemma[H.1]and Lemma[H.2] we can also see that .J;(Q) is sup-norm continuous at Q = P*.
These results, combined with (H.1]), give

lim Hy(Pyx) = H,(P*) a.s., (H.2)
K—oo
and
lim J;(Pg) = J;(P*) a.s. (H.3)
K—owo
Note that
Ji(Pg)

Hy(Px) = K'|Sf,| and = E(FNP 1 (T)|F). (H.4)

H(Pk)

(H.2), (H.3)), and (H.4)) together complete the second and third statements of the theorem.
In the rest of the proof, we show that (4.2]) holds.

We first show that for t < L := %, A+ = 1. We show this by induction. For ¢ = 0,

Ao = 1 by definition. Assume that for some t > 1, \g = --- = \;_1 = 1, then
G0 P) = E[Vi|Vi <\, Vit < Ay ()] = E[Vi|V; < A].

In addition, G¢(1,P*) =E(V;) =P(ri <t) =1— (1 —6)' < o for t < L. By Lemma [H.2] we
know that G(\,P*) is increasing in A. Thus,

At = sup {A: G¢(\,P*) < aand A€ [0,1]} = 1.

This completes the induction. As a result, for 1 < t < L, E[V{|V; < A\, Vi1 < Aiq] =
Gi(1,P*) =1—(1-0).

We proceed to the proof of for t = L. Note that N;(\,P*) and D,(\,P*) are
continuous in A € (0, 1) (note that V; has a joint probability density function by Lemma[H.1)).
Moreover, by Lemma and Lemma , Dy(\,P*) > 0 for A > 0. Thus, for each t,
Gi(A\, P*) = « is equivalent to

G(1,P*) = a. (H.5)

We will show (H.5) ¢t > L by induction. Let |L| be the largest integer smaller or equal to L.

According to the definition of L, we can see that
Grojn (LP*) = E(Vigr) = 1= (1 - ) > .

This proves the base case for the induction.
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Assume that for 1 < s <t —1, G4(1,P*) > . Then,
Gi(1L,P*) = E[Vi|Vii1 < A1) = E[E(Vi| X1 1:-1) | Vier < Ao, (H.6)
where A;_1 = (Mg, -+, \i_1). On the other hand,

E(Vi|X11:6-1)
=E [P (11 < t|X1,1:4)| X1,1:0-1]
=P (m <t|X11:0-1)
=P(r <t—1|X11.4-1)

=01,4-1

=0+ (1= 0)Vi,
where the last two equations are due to Lemma . The above display and give
Gu(L,P*)=E[0+ (1 —-0)Vie1|Vies < Aicq] =0+ (1 = O)E [Vie1| Vs < A
By induction assumption, we have
E[Vi1|Vioi < M) = .
The above two equations give
G{(1,P*) =60+ (1—-0)a > a.

This completes our proof. ]

Remark H.1. A key observation in the above proof is that XKt = N(Pg) while Ay = Ay(P*),
where P is the empirical measure and P* is the underlying probability measure of the pro-
cess {Viithi<t<ty- Thus, to show that XK’t converges to A (i.e., A{(Pr) converges to Ay(IP*)),
it suffices to show that the functional Ay(-) is continuous and the empirical measure Py
converges to P* in some sense as K — oo. In the proof, the above heuristics are justi-
fied through Vapnik-Chervonenkis (VC) theory. In particular, as a standard result in VC
theory, the empirical measure converges to the underlying measure uniformly over the set
C = {(—w,x] : x e R}, That is, Px converges to P* in | - |, norm almost surely. The sup-
porting lemma (Lemma 1s mainly arquing that the functional of interest is continuous
under this norm.

Moreover, VC' theory and theory of empirical processes in general are helpful in under-
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standing the convergence of empirical measure over general probability spaces. Based on VC
theory, many additional results (e.g., convergence rate) can be developed in addition to the
uniform convergence result over the set C mentioned above. We refer the readers to the book

(Shorack and Wellner, 2009) and references therein for a comprehensive review.

H.2 Proof of Theorem [3l

Theorem 3. Suppose that data follow a special case of the model given in Example |1 when
n =1 and 1y ~ Geom(0), and Assumption A2 holds. Let

WtzlP’(To<t}Xk,s,1<k:<K,lgsgt),

and
T = min{t : W; > a}.

Then, T4 = (T,--- ,T). Moreover, the following asymptotic results hold.
1. limg oo (T —79) =1 a.s.,
2. limg o0 LENR441(T%) =0 a.s.,
8 limg oo K7 Sk 0] = L(10 = t) a.s.

Proof of Theorem[3 We first note that under the model considered in this theorem, W, ; =
o= Wk, = P(r < t|F;). Thus, according to T, if W1, < «, then 3}, o Wi < a5, and
Si+1 = S;. Moreover, if for some ¢ such that S; = {1,---, K} and Wj,4; > a, then for any
S # &y Deisy Weas1 = Wiea|S| > alS], and thus Sy = &. Thus, T* = (7,---,T). In
other words, S; = {1,--- K} fort <T and S; = & fort > T.

Note that for t < T, F; = oc({Wis},1 <5 <t,1 <k < K). Let Wy = P(0 < t|Xps, 1 <
k < K,1 < s < t), which is the conditional probability without deactivating any stream.
Then, Wi, = WN/k,t for t < T where we recall T' = inf{¢ : I/IN/M > «}. We have

Wkt _ ZZ;}J (1 —0)° HZ:3+1 Hle q(Xr)/P( X )
L0001 = 0) T e Ty ¢(Xkr) /p(Xs) + (1= 6)
L0 = 0)* exp{ ) luse)
S0 0(1 = 0)7 exp{Y lise} + (1= 0)F

where we define Iy, 5, = Zt log(q(Xk.r)/p(Xkr))-

r=s+1

(H.7)
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For each w € Z, u {0}, let A, = {79 = u}. By the strong law of large numbers, under
Assumption A2,

([yinoo—Zlkst E(ly s¢|m0 = ‘A ) =1 (H.8)

for each s,t,u € Z, u {0} with s < ¢t. In particular,

—(t — s)Ez ~plog(p(Z1)/q(Z1)) <0 ift<u

E(l1’s7t|7'0 = u) =
Ez,~qlog(q(Z2)/p(Zs)) > 0 ift=u+1ands=u.

Thus, for each s <t < u we have

@iﬂw Ml = —oo‘A ) (H.9)

and fort =u+1=s5+1,

K
P (};133@2 lioss = oo‘Au> ~1.
k=1
According to (H.7)), (H.8) and (H.9)), we have that for each ¢t < u

IP’(hm Wkt_OAu>:1.

K—w

Moreover, for t > u + 1,

IP’(hm Wkt—lAu>=1.

K—o

Combining the above two equations for different u € Z, U {0}, we arrive at

]P(hm Wiy = 1(t > To+1))=1.

K—o0

In other words,
lim Wlt—]l( 0+ 1) a.

K—oo
Now we turn to the analysis of Wy, ; and .S for the proposed procedure. Let w be a sample
path with limg_,q Wk,t(w) = 1(t = 7o(w) + 1) for all t = 1,2,---. Then, there exists Ko(w)
large enough such that let(w) < a for t < 19(w) and Wl,m(w)ﬂ(w) > o for all K > Ky(w).
Then, we have T'(w) = inf{t : let(w) > a} = 19(w) + 1. Note that the set of such sample
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path w has a probability of one. Thus,

lim (T"— 1) =1 and lim Wy, =0 for t < 7 a.s.
K—o0 K—o

This proves the first statement of the theorem. For the second statement, we have

K
1T > W
lim E (FNP,{(T*)|%) = lim Z’;;l (L= OWes Wi (T > ) =0 as.
K0 Kow (YK T >t)}v1 Koo

For the third statement, we have

lim K'[S;4] = Aim U(T > 1) =170 > 1) as.
—0

Ko
O

H.3 Proof of supporting lemmas in Section
Lemma H.1. Under model M, and Assumption Al, we have the following results.

1. Foreacht =1, (Vi,---,V;) has a continuous and strictly positive joint density function

over (0,1)" (with respect to the Lebesque measure).
2. For any (vy,--+ ,v) € (0, 1), P(V; < vy, , Vi < vy) > 0.
3. For any (vy,--- ,v;) € (0,1), the conditional distribution of Viy1 given Vi < vy, -+, Vi <

vy has a continuous and positive density function over (0, 1).

Proof of Lemma[H.1. Note that the second statement of the lemma is obvious given the first
statement, and the third statement is a straightforward application of a combination of the
first and second statements. Thus, it suffices to show the first statement of the lemma. In
what follows, we prove the first statement by induction.

For Z; follow the density function p(-), Z5 follows the density function ¢(-), let fi(-) and
f2(+) be the density functions of ¢(Z1)/p(Z;) and q(Zs)/p(Z). By Assumption Al, f;i(z) > 0
forall z>0andi=1,2.

For t = 1, under the model My, X;; follows the mixture density (1 — 0)p(-) + q(-).

Thus, ¢(X1,1)/p(X11) has the density function (1 — ) f; + 0 f2, which is strictly positive and

9(X1,1)/p(X1,1)
(1-6)/60+q(X1,1)/p(X1,1) "

of random variable after transformation, we can see that the density of V; is

) = o (12 ) won (1) (1.10)
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where ¢ = (1 — 6)/6. This density function is strictly positive and continuous for v € (0, 1).

Assume the induction assumption that the joint density for (V4,---,V;), denoted by
fvi v (v1, -+ uy), 1s strictly positive and continuous over (0,1)". We proceed to showing
fvi Vipa (U1, -+« vp41) 18 strictly positive and continuous over (0,1)*'. Recall that Vi, =
(170)(17‘431;()(2?(11’17)0?‘(;??;&)1’1) mrxy- With a similar derivation as that for (H.10]), we have the
conditional density of V1 given V} = vy,--- ,V, = v, is

thH\Vl:vl,"' Vi=vt (U)

e f-oon (5 0 (1)

where we define ¢, = % > 0and 0, = Py < t|V4 = vy, , Vi = vy) = (1 —

0) + 6 € (0,1). It is easy to see that both ¢, and 6, are continuous in v;. As a result,

JVii1[Vi=or, Viev, (Ve41) 1s strictly positive and is continuous in vy, - -+, vy for vy, -+ v €
(07 1) and so Is fV1,"',Vt+1 (Ulv T 7Ut+1) = fV1,~",Vz (Ul’ U 7Ut)th+1|V1=v1,"',Vt=vt (Ut+1>' This
completes our induction and the proof of the lemma. O]

Lemma H.2. For each 1 <t < ty, we have the following results.

1. For any fired Q, Gi(\, Q) is non-decreasing in . Moreover, Gy(\,P*) is strictly in-

creasing in X\ € (0, 1] under Assumption Al.

2. For any fized X € (0,1], Dy(\,Q), Ny(\, Q), and G4(\, Q) are sup-norm continuous in
Q at Q = P* under Assumption Al.

3. N (Q) is sup-norm continuous at Q = P* under Assumption Al. In addition, A(P*) >
0.

Proof of Lemma[H.3 Fort =0,1,--- and A < X, let V be a random variable following the
same distribution as V;|V;—1 < A;_1(Q). Then, by the definition of conditional expectation,

we have

)
X e (V<) B (V{7 <ab)a(V<x)]
<f/<x})@(f/<A>—]E@<\7]1{X7</\}>@<A<17<X)]

where Z = Q (17 < )\> Q (17 < X). Let V' be an independent copy of ‘7, then the above
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display implies
G:(N,Q) -G (A, Q)
—z! [E@ (17’11 {A <V <N V< A}) ~Ey (17]1 {/\ <V <N V< A})] (H.11)
_ 7Kg [(f// - I7> 1 {A <V' <N, V< /\}] ,
Because (x'?' - 17) 1 {A <V <N V< A} >0, Gy (V,Q) — G, (\,Q) = 0 from the above

display.

In what follows, we use induction to prove the rest of the lemma. Namely, for A € (0,1),

we will prove the following statements for t =1,2,--- ,t,:
G¢(\,P*) is strictly increasing in ; (H.12)
Di(A\,Q), Ny(X\, Q), and G4(\, Q) are sup-norm continuous at Q = P*; (H.13)
A4+(Q) is sup-norm continuous at Q = P*. (H.14)
We start with the base case that ¢ = 1. In this case, the conditional distribution

V1lVo < Ao(Q) is the same as the unconditional distribution of V; for any Q. Accord-
ing to Lemma , V1 has a strictly positive and continuous density function over (0, 1)
under P*. Thus, P* ((‘N/’ — ‘7) 1 {)\ <V <N, V< )\} > 0) > 0 for V and V' are identi-
cally distributed as V;. According to (H.11), Gi(X,P*) — G1(A\,P*) > 0. That is, G1(\,P*)
is strictly increasing in A. This proves the base case for . For and the
proof of the base cases is similar to that of the induction given below. Thus, we omit the
proof for their base cases here.

Now we assume that (H.12|), (H.13|), and (H.14]) hold for ¢t =1,2,--- ;s — 1. We proceed

to prove these equations for ¢ = s. First, note that V4|V, ; < A;_;(IP*) has a continuous and

strictly positive density function over (0,1). Thus, (H.12) is proved by combining (H.11))
with similar arguments as those for the base case where t = 1.

Proof of for t = s. By the induction assumption, A;(Q), -, A;_1(Q) is sup-
norm continuous in Q at Q = P*. This implies that (A, A;_1(Q)), a vector-valued map-
ping, is also sup-norm continuous in Q at Q = P*. On the other hand, (A, A;_;(P*)) €
(0,1]* by induction assumptions, and V; has a continuous joint probability cumulative
function at (X, As_1(P*)) (by Lemma [H.I). Combining these results, we can see that
P* (Vs < A\, Vg1 < Ay_1(Q)) is sup-norm continuous at Q = P*.
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Now we analyze the mapping Dy(\, Q) = Q (V, < A\, Vo1 < A, 1(Q)).

[Ds(A, Q) — Dy(A, P*)]
=1Q(V; <A\, Vo1 <A (Q) —P*(V, <
<IQ(V, <A\ Vo1 <A (Q) —P*(V <

+[P* (Ve < A Ve < A1 (Q) — P*(V, <
<[Q - P*|o

+ P (Ve < AV S A (Q) = PF (Ve < A\ Vo < A (PY)].

Therefore,
limsup [Ds(\, Q) — Ds(\, P*)]
[Q—P* [0 —0
= lim [|Q—P*|4
[Q—P* o —0
g dim PV <A Ve < A(Q@) = P (Ve A Vi < A (PY))
=0.

That is, D,()\, Q) is sup-norm continuous at P*. Moreover, by Lemmal[H.1Jand (A, A,_ (P*)) €
(0,1]%, we have D,(\,P*) > 0. This further implies that Dy(\,Q)~! is also sup-norm con-
tinuous at P*.

We proceed to the analysis of Ng(\, Q). We have

N,(A\, Q) =Eq [V.1{V, <\, V.1 < A,1(Q)}]

1
=Eg [J I{r < Vi}drl {Vs < A\, V41 < As—l(Q)}]
0

1

=| Q(r<V,<\V, 1 <A, (Q))dr
; (H.15)

We have already shown that the first term Dy(A, Q) on the right-hand side of the above
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display is sup-norm continuous at P*. We take a closer look at the second term,

r Dy(r,Q)dr — f Dl B

f |@ L < At (Q) = P* (V, <7, Vot < Auy(Q)] dr
3l "B (V, < Vet < Aua (@) P (V, < 1, Ve < Ay @) (10)
<lQ-P*|..
+ J: P* (Vo <7 Vs < Au1(Q)) — P* (Vo < 7, Vi 1 < Au 1 (P*))] dr.

Since A;_1(Q) is sup-norm continuous at Q = P*  for any € > 0, there exists 6 > 0 such
that |Q — P*|,, < ¢ implies [As 1(Q) — A;_1(P*)| < e. Then, for each r € [0,1] and
|Q =Pl <6, [|(r, Asm1(Q)) — (1, Asmr (P))] < &, and

sup |P* (Vo <r, Ve <A1 (Q)) —P* (Vi <1, Ve < Ay (P))]
[Q-P*|<o

< sup IP* (V, < vg) — P* (V< V).

lvs=vil<e,vs,vie[0,1]

(H.17)

By Lemma V, has a continuous density function. Thus, its cumulative distribution
function, P* (V, < vy), is continuous over [0,1]*. As [0,1]® is compact, this continuity
implies that the cumulative distribution is also uniformly continuous over [0,1]*. That is,

for any €; small enough, there is € > 0, such that

sup IP* (V< v,) —P*(V, < V)| <eq.

lvs—=vil<e,vs,vie[0,1]°

Combine the above inequality with (H.16|) and (H.17)), we can see that for any €; > 0, there
is 0 < § < &1 such that for |Q — P*||,, <6,

A A
f Dy(r,Q)dr —J Dg(r,P*)dr
0 0

<5+€1<2€1.

Therefore, So (r,Q)dr is sup-norm continuous at Q = P*. This result, combined with

, shows that Ng(A, Q) is sup-norm continuous at Q = P*.

Finally, the sup-norm continuity of G (A, Q) is implied by that of D,(\, Q)™ and N,(\, Q)
for A € (0, 1].

Proof of for t = s. Recall A;(Q) = sup{\: Gs(\,Q) < aand A€ [0,1]}. We
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discuss two cases.

Case 1: A (P*) = 1. For any sufficiently small ¢ > 0, by the strict increasing property
of G5(\,P*) there exists €; > 0 such that Gy(N,P*) < Gs(As(P*),P*) — 2¢; for all N <
As(P*) — . On the other hand, according to the sup-norm continuity of G4(As(P*) — ¢, Q)
at Q = IP*, there exists 0 > 0 such that |Gs(As(P*) — e, Q) — G(As(P*) — ¢, P*)| < &4 for all
|Q —P*|x < 0. Then, for all [Q —P*||,, < and X < A4(P*) — €, we have

Gs(X, Q)
<G(As(P*) —¢,Q)
SG(A(PY) — &, P%) + |Go(As(P7) — £, Q) — Go(As(PF) — &, P7)]
<G (A(P*) — 6, P*) + &1
<G (A (P, P*) — &,
<a—¢€y

This implies 1 —e = Ay(P*) —e < A,(Q) < 1 for all [Q —P*|, <9

Case 2: A (P*) < 1. Using similar arguments as those for the Case 1, we arrive at that
for any € > 0 there exists § > 0 such that A,(P*) — e < A,(Q) for all |Q — P*|,, < §. We
proceed to an upper bound of A4(Q).

Note that in this case, G4(As(P*),P*) = a. According to the definition of As(P*), for
any € > 0, then there exists 1 > 0 such that G5(N,P*) > a + 2¢; for all X' = A (P*) + ¢
On the other hand, according to the sup-norm continuity of G4(As(P*) + ¢,Q) at Q = P*,
there exists ¢ such that |Gs(As(P*) +¢,Q) — Gs(As(P*) + &, P*)| < & for all |Q —P*|,, <
Then, for all [Q — P*|,, < d and X > A (P*) + &, we have

G.(N,Q)
=G(As(P*) +¢,Q)
Za+ 261 — |Go(As(PF) + £,Q) — Go(As(P7) + &, P7))|

Zo+ €.
This implies that for A > Ay (P*) + € and |Q — P*[, < 9, Gs(N,Q) > a. Thus, A,(Q) <
As(P*) + ¢ for |Q — P*|,, < d. Combining the upper bound and lower bound of As(Q), we

arrive at

|As(@) - As(]P)*)| ¢

for |[Q —P*||, <0
This completes the proof of (H.14]).
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Finally, we show A;(P*) > 0. This is true because G¢(A,[P*) is continuous and strictly
increasing in A and limy_,o+ G¢(A\,P*) =0 < a.
[l

I Calculations for Example

We start with calculating P (7, = 0| X1 = @g1, -+, Xgt = Tge). Let 6y = t4 = 3 and ¢, =
t3 = 1. Under the model specified in the example, we have 7, = 0 or 7, = t; a.s. for

k=1, ---,4. As a result, we have
Plr, <t —1Xpq1 =k, -, Xy = Tpr) = 1

for t >ty + 1.
To simplify the calculation for the other cases, we first prove the following auxiliary result:

under the model specified in this example, for any zy 1, , x5 € {0,1} and 0 < ¢ < tg,

P(Tk <t— 1|Xk71 = 0, 7Xk,t = 0)
P(r <t —1Xp1 = k1, Xpy = T (L.1)
P(Tk <t— 1|Xk71 = 1, ,X]Wg = 1)

N

N

Indeed, direct calculation gives

P(m <t —1/Xg1 =Tk, Xpt = Tht)
P(7 = 0)(0.51) %=1kt (0.49)t =1 Th (1.2)
P(7; = 0)(0.51)Z=1 %%+ (0.49)F Lsm1 ot + P(7y, = 1;,)(0.5)

The above display is monotonically increasing in Zi:l xpe. Thus, ([.1)) is proved.
Let WN/M = P(rm <t —1|Xp1=2k1, +, Xkt = Tgt). Using (L.1)) and (I.2)), we obtain
that for 0 <t < ty,

P(7, = 0)(0.49)" P(7, = 0)(0.51)"
P(Tk = O>(049)t + ]P(Tk = tk>(0.5)t7 P(Tk = O)(O51)t + ]P)(Tk = tk)(05)t .

Wk,t € |:

Plugging P(7, = 0) and P(7, = ;) = 1 — P(7x = 0) into the above equations, we obtain that

WN/k,t =1 for t > 4, and for 0 < t < 3, the a.s. range of kats are given below (numbers are
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rounded to the third decimal place).

Wi € t=1 t=2 t=3
k=1 |[0.098,0.102] [0.096,0.104] [0.095,0.105]
k=2 | [0.395,0.405] 1 1
k=3 |[0.425,0.435] {1} (1}
k=4 | [0.545,0.555] [0.540,0.560] [0.535,0.565]

With these numbers, the following inequalities can be verified.

Wl,l < o< W271 < W371 < W471,

1 ~ ~ ~
g(WLl + Wz,l + W371) <034 <a= 034,
1

B(Wl,l + V[N/z,1 + W4,1) > 0.346 >

%(VIN/M + W) <0.329 < a.
The above inequalities implies that E[FNPy(T)|F;] < « is equivalent to
Sy e {{1,2,3},{1,2},{1,3},{1,4}, {1}, &}
Now we consider S3. We can verify the following inequalities.

Wl,Q <a< W4,2 < Wz,z = sz,z,
1 [ad [ 1 —~ ~
§(W1,2 + Wap) = §(W172 + Ws2) = 0.548 > «

%(V’Vm + Wis) <0332 < a.
The above inequalities implies that E[FNP3(T)|F,]| < « is equivalent to that S3 < Sy and
Ss e {{1,4}, {1}, &}
Similarly, for Sy, we have

Wl,?) <a< sz,g < Wzs = W3,3,
1 [ [ 1 ~ ~
§(W172 + W272) = é(WLQ + W372> > 0.547 > «

1 ~  ~
§(W1,2 +W,) <0.336 < a.
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This implies that E[FNP,(T)|F3] < « is equivalent to that Sy < S5 and

Sy e {{1,4},{1}, &}

Finally, since I/IN/M =1forallt>4and k=1, ---,4, we obtain S; = ¢J for t > 5.
Enumerating all the index sets satisfying the constraint, we obtain that supp.- E(Uy(T)) =
7 and the maximum achieved if and only if S; = {1,2,3,4} and Sy = {1,2,3}. In addi-
tion, supper, E(Uy(T)) = 10 and the maximum is achieved if and only if S, = {1,2,3,4},
Se = {1,4}, S5 = {1,4} and Sy = {1,4}. However, these two maxima cannot be achieved at

the same time as they require different choices of S;.
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