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Abstract: We consider sequential change-point detection in parallel data streams,

where each stream has its own change point. Once a change is detected in a data

stream, this stream is deactivated permanently. The goal is to maximize the nor-

mal operation of the pre-change streams, while controlling the proportion of the

post-change streams among the active streams at all time points. Using a Bayesian

formulation, we develop a compound decision framework for this problem. A pro-

cedure is proposed that is uniformly optimal among all sequential procedures that

control the expected proportion of post-change streams at all time points. We also

investigate the asymptotic behavior of the proposed method when the number of

data streams grows large. Numerical examples are provided to illustrate the use

and performance of the proposed method.

Key words and phrases: Change-point detection, compound decision, false non-

discovery rate, large-scale inference, sequential analysis.

1. Introduction

Sequential change-point detection, which dates back to the pioneering work

of Page (1954, 1955), focuses on the early detection of distributional changes in

sequentially observed data. Methods for sequential change-point detection have

been applied widely in various fields, including engineering, education, medical di-

agnostics, and finance, among others, where a change point typically corresponds

to a deviation of a data stream from its “normal” state. The classical methods

for sequential change-point detection focus on detecting one or multiple changes

in a single data stream (Lorden (1971); Page (1954); Roberts (1966); Shewhart

(1931); Shiryaev (1963)). With advances in information technology, large-scale

streaming data have become more common, and many recent developments tend

to focus on change-point detection in multiple data streams (Chan (2017); Chen

and Zhang (2015); Chen (2019); Mei (2010); Xie and Siegmund (2013); Fellouris

and Sokolov (2016)).
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We consider sequential change-point detection in multiple parallel data str-

eams, where each stream has its own change point. Once a change is detected

in a data stream, this stream is deactivated permanently and its data are no

longer collected. The goal is to maximize the normal operation of the pre-change

streams, while controlling the proportion of the post-change streams among the

active ones at all time points. This problem is commonly encountered in the

real world. One such example is the monitoring of an item pool in standardized

educational testing (Choe, Zhang and Chang (2018); Cizek and Wollack (2016);

van der Linden and Lewis (2015); Veerkamp and Glas (2000)). In this application,

each item corresponds to a data stream. Data are collected sequentially from the

items’ use in test administrations over time. A change point occurs when an item

is leaked to future test takers. The goal is to detect and remove changed items in a

sequential fashion from an item pool that consists of hundreds or even thousands

of items. Once a change point is detected for an item, test administrators would

like to remove it from the item pool to ensure test fairness. On the other hand,

it is important to maximize the usage of each item before its leakage, owing to

the cost of developing new items. There are many other applications, including

multichannel spectrum sensing (Chen, Zhang and Poor (2020)) and credit card

fraud detection (Dal Pozzolo et al. (2018)).

Despite its wide application, this type of problem is rarely explored in the

literature on multi-stream sequential change-point detection. One exception is

Chen, Zhang and Poor (2020), who address a similar problem by proposing a

sequential version of the Benjamini–Hochberg FDR control procedure (Benjamini

and Hochberg (1995)) for detecting and deactivating post-change data streams.

However, no optimality theory is provided in Chen, Zhang and Poor (2020).

The challenges of developing optimality theory lie in the compound nature of

the FDR-type risk measure and the stochastic control component, owing to the

deactivation of data streams. In this study, we formulate the problem under

a compound decision theory framework and propose an optimal change-point

detection procedure. Our contributions are summarized below.

First, we formulate this problem under a Bayesian sequential change-point

detection setting, which generalizes the classical Bayesian setting for single-stream

change-point detection (Lai (2001)) to parallel streams. Moreover, we introduce

new performance metrics, borrowing ideas from compound decision theory for

multiple hypothesis testing (Benjamini and Hochberg (1995); Brown and Green-

shtein (2009); Cai, Sun and Wang (2019); Efron and Hastie (2016); Efron (2019);

Genovese and Wasserman (2002); Sun and Cai (2007); Zhang (2003)). Specif-

ically, we propose controlling a local false non-discovery rate (LFNR) at each
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time point, defined as the expected proportion of post-change streams among

the active ones under the current posterior measure. This metric adapts the

false non-discovery rate for multiple hypothesis testing (Genovese and Wasser-

man (2002)) to parallel-stream change-point detection. In addition, we introduce

a compound stream utilization measure that is closely related to the classical no-

tion of an average run length (Lorden (1971)). A compound sequential detection

procedure involves a trade-off between the LFNR and stream utilization at each

time point. Our objective is to maximize stream utilization, while controlling the

LFNR to be below a prespecified threshold all the time. Compared with classical

performance metrics for individual streams, the proposed metrics better evaluate

the risk of a sequential decision at an aggregate level, and thus are more suitable

for large-scale streaming data.

Second, we propose a sequential decision procedure that can control the

LFNR under any prespecified threshold. Under a class of Bayesian change-point

models, we show that this procedure is uniformly optimal among all sequential

detection procedures under the same LFNR constraint, in the sense that the

proposed procedure has the highest stream utilization at any time. Note that

this is a non-asymptotic result that applies to any finite number of data streams.

This implies that this compound change-point detection problem is special, in the

sense that a myopic decision rule that maximizes the next-step stream utilization

under the LFNR constraint is also uniformly optimal throughout time. This

phenomenon does not hold in general for stochastic control problems (Howard

(1960)). The proof of the uniform optimality result is nontrivial. As such, we

develop new mathematical tools, including a monotone coupling over a partially

ordered space (Thorisson (2000)) for comparing stochastic processes with different

dimensions, owing to the deactivation step. In addition to the nonasymptotic

optimality, we establish asymptotic theory to characterize the performance of

the proposed method when the number of data streams grows large.

The current setting is substantially different from most of existing works on

multi-stream sequential change-point detection, including Mei (2010), Xie and

Siegmund (2013), Chen and Zhang (2015), Chan (2017), Chen (2019), and Chen,

Wang and Samworth (2022). These works consider the detection of a single

change point, after which all (or part) of the data streams deviate from their

initial states. On the other hand, the current work detects multiple change points

in parallel streams. Because the dimension of the action space at each time point

grows exponentially with the number of data streams, the current problem tends

to be computationally and theoretically more challenging.
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2. Compound Sequential Change-point Detection

2.1. Bayesian change-point model for parallel streams

Consider, in total, K parallel data streams. For each k = 1, . . . ,K, the ob-

servations from the kth stream are Xk,t, t = 1, 2, . . .. Each stream k is associated

with a change point, denoted by τk, which takes a value in {0} ∪ {∞} ∪ Z+.

The random vector (τ1, . . . , τK) is assumed to follow a known prior distribution.

Given the change points, the data points Xk,t from the kth stream at time t

are independent for different t and k. It is further assumed that the pre- and

post-change distributions of Xk,t have the density functions pk,t(·) and qk,t(·),
respectively, with respect to some baseline measure µ. That is, Xk,t has the

following conditional density functions:

Xk,t | τ1, . . . , τK , {Xl,s; 1 ≤ l ≤ K, 1 ≤ s ≤ t− 1} ∼

{
pk,t if t ≤ τk,
qk,t if t > τk.

(2.1)

Remark 1. We assume that the prior distribution for the change points and the

pre- and post-change distributions are known, which is a standard assumption in

single-stream Bayesian sequential change detection (e.g., (Shiryaev (1963)). Sim-

ilar assumptions are adopted in recent developments on multi-stream sequential

multiple testing (Song and Fellouris (2019)) and multi-stream sequential change

detection (Chen, Zhang and Poor (2020)).

When these distributions are unknown, the current results provide the oracle

procedure and theoretical guidance for the development and analysis of sequen-

tial change detection procedures. In addition, the proposed procedure can be ex-

tended to handle the unknown distribution scenario by using an empirical Bayes

approach (see e.g., Efron (2008); Jiang and Zhang (2009); Robbins (1956); Zhang

(2003)). Alternatively, we can run the proposed procedure under the worst case

model, if such a model can be specified using domain knowledge. This procedure

will preserve some properties of the oracle procedure, when the change point

model enjoys certain stochastic ordering properties.

Equation (2.1) provides a general model for change points in parallel data

streams. It contains some commonly used models as special cases. We provide

two examples below.

Example 1 (A partially dependent model). Let τ0 be a nonnegative random

variable, and let τ1, . . . , τK be independent and identically distributed (i.i.d.)

conditional on τ0, with conditional distribution Pr (τk = m|τ0 = m) = η and

Pr (τk =∞|τ0 = m) = 1− η, for m = 0, 1, . . . and some parameter η ∈ [0, 1].
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This model describes the situation where there is a single change point for

all of the data streams. After the change point, all or part of the data streams

have a distributional change. If we further let pk,t be the density function of

the standard normal distribution N(0, 1), and let qk,t be the density function of

N(µ, 1), for some µ > 0, then this model becomes a Bayesian formulation of

the change-point models studied in Mei (2010), Xie and Siegmund (2013), and

Chan (2017). An interesting boundary case is η = 1, where all the change points

τ1 = · · · = τK are the same. This case can be viewed as a single change point

affecting all the data streams.

Example 2 (An i.i.d. change-point model). Assume that τ1, . . . , τK are i.i.d.

geometrically distributed random variables, with Pr(τk = m) = θ(1 − θ)m, for

m = 0, 1, . . . and θ ∈ (0, 1). In addition, assume that pk,t(x) = p(x) and qk,t(x) =

q(x), for all k, t, x. This model is referred to as modelMs in the rest of the paper.

Note that the geometric distribution assumption is commonly adopted in

Bayesian change-point detection (see, e.g., Tartakovsky, Nikiforov and Basseville

(2014)). We adopt this assumption for simplicity, because it leads to analytic

posterior probabilities, and point out that it can be relaxed to other known dis-

tributions. See Section 3.3 for a discussion about the calculation of the posterior

probabilities.

2.2. Compound sequential change-point detection

We now introduce a compound sequential change-point detection problem,

defined through an index set process, St ⊂ {1, . . . ,K}, where St indicates the set

of active streams at time t. Specifically, if k ∈ St, then stream k is active at time

t; otherwise, it is deactivated. We require the process to satisfy that St+1 ⊂ St,

for all t = 1, 2, . . ., meaning that a stream is not allowed to be re-activated once

turned off. This requirement is consistent with many real-world applications. For

example, in standardized educational testing, once an item is found to have been

leaked, it will be removed from the item pool permanently. At the beginning

of the data collection (i.e., t = 1), all the data streams are active, and thus

S1 = {1, . . . ,K}.
A sequential detection procedure St is defined together with an informa-

tion filtration, where the definition is inductive. We first let F1 = σ(Xk,1, k =

1, . . . ,K). Then, for any t > 1, we let Ft = σ(Ft−1, St, Xk,t, k ∈ St), where

St ⊂ {1, . . . ,K} is Ft−1 measurable. We say {Ft}t=1,2,... is the information

filtration, and the index set process {St}t≥1 describes a compound sequential

change-point detection procedure with respect to this information filtration.
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Sometimes, it is more convenient to represent the decision procedure by a

random vector T = (T1, . . . , TK), where Tk ∈ Z+ is defined as Tk = sup{t : k ∈
St}. It is easy to check that {Tk = t} ∈ Ft for all t, and thus Tk is a stopping

time under the filtration {Ft}t=1,2,.... The stopping time Tk indicates the time

up to which we collect data from the kth stream. In other words, starting from

time Tk + 1, the kth stream is deactivated and its data are no longer collected.

The index set at time t is given by St = {k : Tk ≥ t}.
The sigma field σ(Xk,s∧Tk , s ≤ t, k = 1, . . . ,K) is in Ft, meaning that our

information filtration at time t contains all the information from the streams when

they are active. In addition to the information from the observable data Xk,t,

the filtration Ft also contains information from the decision history, reflected by

the fact that Ss is measurable with respective to Ft, for all s ≤ t.
In what follows, we introduce two compound performance metrics for this

sequential decision problem.

2.3. LFNR

In this sequential decision problem, our primary goal is to control the propor-

tion of post-change streams among the active ones at any time, where a smaller

proportion indicates a better overall quality of the active streams. This propor-

tion can be viewed as a false non-discovery proportion (FNP), which is often

considered in multiple hypothesis testing (Genovese and Wasserman (2002)), but

defined at each time point under the current sequential setting. More precisely,

we define the FNP as

FNPt+1(T) =

∑
k∈St+1

1(τk < t)

|St+1| ∨ 1
=

∑K
k=1 1(Tk > t, τk < t){∑K
k=1 1(Tk > t)

}
∨ 1

, (2.2)

where t = 1, 2, . . ., a ∨ b = max(a, b) and |S| indicates the size of a set S. In this

definition, |St+1| represents the total number of active streams at time t+ 1, and∑
k∈St+1

1(τk < t) represents the total number of active post-change streams at

time t+ 1. By having “∨1” in the denominator, FNPt+1(T) is well defined, even

when |St+1| = 0. Finally, we let FNP1 = 0, as τk ≥ 0 for k = 1, 2, . . . ,K.

Ideally, we would like to control the FNP to be below an acceptable threshold

at any time point, which is not always possible because the change points are

unknown. As an alternative, we control the LFNR which can be viewed as the

best estimate of the FNP in the Bayesian sense. The LFNR is defined as

LFNRt+1(T) = E(FNPt+1(T) | Ft), t = 1, 2, . . . . (2.3)
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Because FNP1 = 0, LFNR1(T) is set to zero.

In what follows, we focus on the sequential change-point detection procedures

defined in Section 2.2 under the constraint that LFNRt(T) ≤ α, for all t, for

some prespecified level α (e.g., α = 1%). More precisely, for a given α ∈ (0, 1],

we consider the following class of compound sequential change-point detection

procedures that control the LFNR to be below or equal to α at any time, Tα =

{T ∈ T : LFNRt(T) ≤ α a.s., for all t = 1, 2, . . .}, where T denotes the entire set

of compound sequential change-point detection procedures.

We provide a few remarks. First, LFNRt+1(T) is a random variable, mea-

surable with respect to Ft. It depends on both the change-point model and the

detection procedure T. Second, it is easy to observe that E(FNPt(T)) ≤ α for

every t, for any T ∈ Tα. That is, the unconditional expectation of FNP is also

controlled at the same α level. Finally, by replacing τk < t with τk ≥ t and

St+1 with St \St+1 in the definition of the FNP, we can similarly define the false

discovery proportion (FDP) and local false discovery rate (LFDR) as FDPt+1 =

(|St \ St+1| ∨ 1)−1
∑

k∈St\St+1
1(τk ≥ t) and LFDRt+1 = E(FDPt+1(T)|Ft). The

main difference between false non-discovery rate-type and FDR-type risk mea-

sures is whether we focus on the remaining streams or the streams to be de-

activated. Specifically, the LFNR focuses on the remaining streams, and thus

is a preferred measure if the goal is to control the overall quality of the active

data streams (e.g., controlling the proportion of leaked items in the item pool of

an educational test). On the other hand, the LFDR is calculated based on the

streams to be detected and deactivated. It is thus a better metric if the goal is

to control the accuracy among the detected streams.

2.4. Stream utilization and optimality criteria

Given a level α, the class Tα has many elements. We propose comparing

them based on their overall use of the data streams. More precisely, we consider

the following measure:

Ut(T) =

t∑
s=1

|Ss| =
t∑

s=1

K∑
k=1

1(Tk ≥ s),

where T = (T1, . . . , TK) is a sequential change-point detection procedure and

Ut(T) is the total number of data points collected from the beginning to time t.

For two sequential procedures T and T′ in Tα, we say T is more efficient

than T′ at time t if E(Ut(T)) ≥ E(Ut(T′)). In addition, we say T is uniformly

more efficient than T′ if E(Ut(T)) ≥ E(Ut(T′)), for all t = 1, 2, . . .. Following the
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previous discussion, our goal becomes developing an efficient procedure in terms

of stream utilization, under the constraint that the LFNR is below a prespecified

α level all the time. Specifically, we consider the following two optimality criteria,

which will guide our development of the compound detection procedures discussed

in Section 3.

Definition 1 (Uniform optimality). We say a sequential change-point detection

procedure T ∈ Tα is uniformly optimal in Tα, if T is uniformly more efficient than

T′, for any T′ ∈ Tα. That is, E(Ut(T)) = supT′∈Tα E(Ut(T′)), for all t = 1, 2, . . ..

Ideally, we would like to find this uniformly optimal procedure. However,

such a procedure does not necessarily exist, because the most efficient procedure

at one time point may be less efficient than another procedure at a different time

point. Thus, we also consider a weaker version of optimality, which is referred to

as local optimality at a given time point.

Definition 2 (Local optimality). Given Ft at time t, we say the choice of St+1 ⊂
St is locally optimal at time t+ 1 if St+1 is Ft measurable, E(

∑
k∈St+1

1(τk < t)/

(|St+1| ∨ 1)
∣∣Ft) ≤ α, and |St+1| ≥ |S| a.s. for any other S ⊂ St that is also Ft

measurable and satisfies E(
∑

k∈S 1(τk < t)/(|S| ∨ 1)
∣∣Ft) ≤ α.

Note that the local optimality criterion only considers one step forward. A

procedure is locally optimal if it maximizes the stream utilization in the subse-

quent step. Achieving local optimality in each step does not necessarily lead to

uniform optimality, and a uniformly optimal procedure does not necessarily exist;

see Example 3 in Section 4.

We provide a discussion on the choice of the performance metric. The ex-

pected stream utilization measure is most sensible if the active streams have the

same utility at any time point, whether having changed or not. This approxi-

mately holds for the application to item pool monitoring in educational testing,

when the leaked items are only accessible by a small proportion of test takers, in

which case the utilities of the leaked and unleaked items are similar.

A closely related performance measure is the cumulative number of detections

CDt = K−|St| at each time point. This performance metric is sensible when each

detection (and thus deactivation) is associated with a fixed cost, in which case, the

goal becomes to minimize the total cost up to each time point. This metric may

also be sensible for applications to item pool monitoring in educational testing.

That is, once an item is deactivated, a new item needs to be developed as a

replacement, for which the cost is approximately the same across items.

In some applications, it may be more sensible to consider a performance

metric based on the utilization of pre-change streams, defined as RLt(T) =
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k=1(Tk ∧ τk ∧ t). The expectation of this metric can be viewed as an online-

and-compound version of the average run length to false alarm (Lorden (1971)),

a classical performance metric for sequential change detection.

As shown in Section 5, similar optimality results hold based on the perfor-

mance measures RLt(T) and CDt(T).

3. Proposed Method

3.1. One-step update rule

We first propose a one-step update rule for controlling the LFNR to be below

a prespecified level. Let a certain sequential change-point detection procedure be

implemented from time 1 to t, and let Ft be the current information filtration.

A one-step update rule decides the index set St+1 ⊂ St based on the up-to-date

information Ft, so that the LFNR at time t+1 is controlled below the prespecified

level α. This update rule tries to maximize the size of St+1 to optimize stream

utilization. The details of the proposed one-step update rule are provided in

Algorithm 1 below.

Algorithm 1. One-step update rule.

Input: Threshold α, the current index set St, and posterior probabilities (Wk,t)k∈St ,
where Wk,t = Pr(τk < t|Ft).

1: Sort the posterior probabilities in an ascending order. That is, Wk1,t ≤ Wk2,t ≤
· · · ≤ Wk|St|,t

, where St = {k1, . . . , k|St|}. To avoid additional randomness, when
there exists a tie (Wki,t = Wki+1,t), we require ki < ki+1.

2: For n = 1, . . . , |St|, define Rn =
∑n

i=1Wki,t/n. and define R0 = 0.
3: Find the largest n ∈ {0, 1, . . . , |St|} such that Rn ≤ α.

Output: St+1 = {k1, . . . , kn} if n ≥ 1 and St+1 = ∅ if n = 0.

This algorithm contains three steps. In the first step, the stream-specific

posterior probabilities are sorted in ascending order. We tend to select streams

with small posterior probabilities into St+1, because they are more likely to be

pre-change streams. In the second step, we calculate the cumulative averages

of the sorted posterior probabilities. Finally, we find the largest n such that

the corresponding cumulative average is no greater than α. The corresponding

streams are kept in St+1, and the rest are deactivated. The cumulative average

of the n streams gives the LFNR for St+1.

The proposed one-step update rule controls the LFNR under the general

model in (2.1), as formally described in Proposition 1.

Proposition 1. Suppose that we obtain the index set St+1 using Algorithm 1,

given the index set St and the information filtration Ft at time t. Then, the
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LFNR at time t+ 1 satisfies E(
∑

k∈St+1
1(τk < t)/(|St+1| ∨ 1)

∣∣Ft) ≤ α.
3.2. Proposed compound sequential change-point detection procedure

The proposed procedure adaptively applies the above one-step update rule.

That is, at each time point t, we select the active set St+1 using Algorithm 1,

given the information available at time t, including the current active set St and

the corresponding posterior probabilities (Wk,t)k∈St . This method is formally

described in Algorithm 2 below. We later refer to this procedure as T∗.

Algorithm 2. Proposed Procedure (T∗).
Input: Threshold α.
1: Let S1 = {1, . . . ,K} and Wk,1 = Pr(τk < 1|F1) for k ∈ S1.
2: For t = 1, 2, 3, . . ., input α, St and (Wk,t)k∈St to Algorithm 1, and obtain St+1 and
Wk,t+1 = Pr(τk < t + 1|Ft+1) for k ∈ St+1, where Ft+1 = σ(Ft, St+1, Xk,t+1, k ∈
St+1).

Output: {St}t=1,2,..., or equivalently, T∗ = (T1, . . . , TK), where Tk = sup{t : k ∈ St}.

Using of Proposition 1, it is easy to show that the proposed procedure controls

the LFNR at each step under the general change-point model described in (2.1).

This result is summarized in Proposition 2.

Proposition 2. Let T∗ be defined in Algorithm 2. Then, T∗ ∈ Tα.

3.3. Calculation of posterior probabilities

The proposed update rule relies on the posterior probability Wk,t = Pr(τk <

t|Ft), which is the conditional probability that the change point has occurred to

stream k before the current time point t. In general, this posterior probability de-

pends on data from all the streams. Thus its evaluation may be computationally

intensive when K is large and (τ1, . . . , τK) has a complex dependence structure.

In that case, a Markov chain Monte Carlo method may be needed to evaluate

this posterior probability. Under the special case of model Ms described in Ex-

ample 2, this posterior probability is easy to evaluate using an iterative update

rule, as given in Lemma 1 below.

Lemma 1. Under model Ms, described in Example 2, Wk,0 = 0 for 1 ≤ k ≤ K,

and Wk,t can be computed using the following update rule for 1 ≤ k ≤ K:

Wk,t+1 =


q(Xk,t+1)/p(Xk,t+1)

(1−θ)(1−Wk,t)/(θ+(1−θ)Wk,t)+q(Xk,t+1)/p(Xk,t+1)
if 1 ≤ t ≤ Tk − 1,

Wk,Tk if t ≥ Tk.
(3.1)
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Note that the iteration in the above lemma is a slight modification of a

classical result for Bayesian sequential change-point detection (Shiryaev (1963)).

Indeed, with a single data stream, the statistic Wk,t is known to be the test

statistic for the Shiryaev procedure, a sequential change-point detection proce-

dure that has been proven the Bayes rule for minimizing the average detection

delay, while controlling the probability of a false alarm. A slight difference here

is that Wk,t stays the same after Tk, owing to the control process that deactivates

the data streams.

4. Theoretical Results

4.1. Optimality results

In what follows, we establish optimality results for the proposed one-step

update rule and the proposed procedure T∗, under the optimality criteria given

in Section 2.4. The proposed update rule is locally optimal under the general

change-point model (2.1), following Definition 2 for local optimality.

Proposition 3. Given LFNR level α and information filtration Ft, the index set

St+1 given by Algorithm 1 is locally optimal at time t+ 1.

In general, having local optimality in each step does not necessarily lead

to uniform optimality, and a uniformly optimal procedure may not even exist.

However, Theorem 1 shows that a uniformly optimal procedure exists under

change-point model Ms and, furthermore, the proposed procedure is uniformly

optimal. In other words, in this case, a myopic decision rule that maximizes the

next-step stream utilization under the LFNR constraint is also uniformly optimal

throughout time.

Theorem 1. Under model Ms, the proposed method T∗ is uniformly optimal in

Tα.

Although model Ms seems relatively simple, the uniform optimality result

established in Theorem 1 is highly nontrivial and requires nonstandard technical

tools for the proof, such as the monotone coupling on a partially ordered space

for comparing stochastic processes of different dimensions. Part of the challenge

is from the compound nature of the problem. Below, we intuitively explain

why standard techniques for justifying the optimality of single-stream sequential

change-point detection methods do not apply to our problem. Heuristically, for

a given t, a larger value of Wk,t = Pr(τk ≤ t − 1|Ft) suggests a higher chance

that a change point has already taken place for the kth data stream. This is
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why the proposed procedure chooses to detect streams with the largest posterior

probabilities Wk,t. Indeed, this update rule has been proven to be optimal for a

single change detection problem under a Bayesian formulation (Shiryaev (1963)),

and is locally optimal according to Proposition 3. However, the local optimality

does not necessarily imply uniform optimality. To show uniform optimality, one

needs to look into the future. More specifically, we need to deal with the situation

where a large value of Wk,t is due to random noise, and the posterior probability

of the stream may become small at a future time point. In other words, sup-

posing that Wk1,t > Wk2,t, we need to show that it is more optimal to detect k1
than k2 at time t under our optimality criteria, even though Wk1,t+s < Wk2,t+s

can happen with high probability, for some s > 0. To establish the uniform op-

timality, we need the Wk,t process generated by the proposed procedure to have

some stochastically monotone property. A proof sketch for Theorem 1 and a com-

plete proof are given in the Supplementary Material, where some new techniques

are established for the monotone coupling of stochastic processes on a partially

ordered space.

In Theorem 1, the assumptions required by the model Ms may be relaxed.

By examining the current proof and the fact that the updating rule (3.1) for the

posterior probabilities can be extended to nongeometric priors, we believe that the

uniform optimality can still be proved if the change points are i.i.d. following some

prior distribution with support {0, 1, 2, . . . }, for example, a negative binomial

distribution. Similarly, the optimality results may be extended to the case where

pk,t = pt and qk,t = qt, for some time-dependent functions pt and qt. On the

other hand, we believe that it is necessary to assume the data streams {Xk,t}t≥1
are identically distributed for different k for the proposed method to be uniformly

optimal. Indeed, if the processes {Xk,t}t≥1 are not identically distributed, then

there may not exist a uniformly optimal procedure. One such example is given

below.

Example 3 (Non-existence of uniformly optimal procedure). Let K = 4 and τks

be independent, for k = 1, 2, 3, 4. The change-point distributions satisfy Pr(τk ≥
4) = 0, for k = 1, 2, 3, 4. For m = 0, 1, 2, 3 and k = 1, 2, 3, 4, the probabilities

Pr(τk = m) are given below. In addition, let Xk,t|t ≤ τk ∼ Bernoulli(0.5) and

Xk,t|t > τk ∼ Bernoulli(0.51) for k = 1, 2, 3, 4. Finally, we set α = 0.34.

This model is not in Ms, because the change points are not identically dis-

tributed. Enumerating all elements in Tα, we have

sup
T∈Tα

E (U2(T)) = 7 and sup
T∈Tα

E (U4(T)) = 10.
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Table 1.

Pr(τk = m) m = 0 m = 1 m = 2 m = 3
k = 1 0.1 0 0 0.9
k = 2 0.4 0.6 0 0
k = 3 0.43 0.57 0 0
k = 4 0.55 0 0 0.45

However, there is no such sequential procedure maximizing stream utilization at

both t = 2 and t = 4. Consequently, there does not exist a uniformly optimal

procedure in this example. The calculation for this example is provided in the

Supplementary Material.

Remark 2. Note that a similar algorithm can be given for controlling LFDRt,

while achieving a similar local optimality property. However, because the LFDR

is calculated based on the stopped data streams, rather than the active ones, the

current techniques for proving uniform optimality no longer apply. The theoret-

ical properties of the LFDR-control procedure are left for future investigation.

4.2. Asymptotic theory

In modern multi-stream change-point detection problems, the number of data

streams can be large. To enhance our understanding of the proposed method

in large-scale applications, we study the asymptotic properties of the proposed

method when the number of streams K goes to infinity.

We first study the structure of T∗ under modelMs. We define the following

process:

V0 = 0 and Vt+1 =
q(X1,t+1)/p(X1,t+1)

(1− θ)(1− Vt)/(θ + (1− θ)Vt) + q(X1,t+1)/p(X1,t+1)
,

where the parameter θ and the densities p(·) and q(·) are given by the modelMs.

We further define λ0 = 1 and

λt = sup
{
λ : λ ∈ [0, 1] and E(Vt | Vt ≤ λ, Vs ≤ λs, 0 ≤ s ≤ t− 1) ≤ α

}
, (4.1)

for t = 1, 2, . . . Theorem 2 shows that when K grows to infinity, the proposed

procedure T∗ converges to a limiting procedure T†, for which the choice of index

set S†t+1 is given by S†t+1 =
{
k ∈ S†t : Wk,t ≤ λt

}
. This suggests that when K is

large, we can replace the proposed procedure T∗ by the limiting procedure T†.
The latter is computationally faster, because the thresholds λt can be computed

offline and the updates for the streams can be computed in parallel. We make
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the following technical assumption.

A1. For Z1 following density function p(·) and Z2 following density function

q(·), the likelihood ratios q(Z1)/p(Z1) and q(Z2)/p(Z2) have continuous and

strictly positive density functions over R+ (with respect to the Lebesgue

measure).

The above assumption is easily satisfied by continuous random variables. For

example, it is satisfied when p(·) and q(·) are two normal density functions with

different means and/or variances.

Theorem 2. Assume that model Ms holds and Assumption A1 is satisfied. To

emphasize the dependence on K, we denote the proposed procedure by T∗K , the

corresponding information filtration at time t by F∗K,t, and the index set at time

t by S∗K,t. Then, the following results hold for each t ≥ 1:

1. limK→∞ λ̂K,t = λt a.s., where λ̂K,t = max{Wk,t : k ∈ S∗K,t+1} is the threshold

used by T∗K .

2. limK→∞ LFNRt+1(T∗K) = E(Vt | Vs ≤ λs, 0 ≤ s ≤ t) a.s. Moreover,

E(Vt | Vs ≤ λs, 0 ≤ s ≤ t) =

1− (1− θ)t, t < log(1−α)
log(1−θ) ,

α, t ≥ log(1−α)
log(1−θ) .

(4.2)

3. limK→∞K
−1|S∗K,t+1| = Pr (V1 ≤ λ1, . . . , Vt ≤ λt) a.s.

Note that according to the definition of λt and the second statement of The-

orem 2, when t < log(1− α)/log(1− θ), limK→∞ LFNRt+1(T∗K) < α a.s. and no

deactivation of streams is needed yet. Otherwise, limK→∞ LFNRt+1(T∗K) = α

a.s., which is achieved by deactivating suspicious streams.

We also provide asymptotic theory for a special case of Example 1 when the

change points are completely dependent; that is, τ1 = · · · = τK = τ0. We make

the following assumption.

A2. For Z1 following density p(·) and Z2 following density q(·), the density func-

tions satisfy E (log(p(Z1)/q(Z1))) > 0,E (log(q(Z2)/p(Z2))) > 0, E(log(p(Z1)

/q(Z1)))
2 <∞, and E (log(q(Z2)/p(Z2)))

2 <∞.

Note that E (log(p(Z1)/q(Z1))) and E (log(q(Z2)/p(Z2))) are the Kullback-Leibler

divergence between p(·) and q(·). Requiring them to be positive is the same as

requiring p(·) and q(·) to be densities of two different distributions.
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Theorem 3. Suppose that data follow a special case of the model given in Ex-

ample 1 when η = 1 and τ0 ∼ Geom(θ), and Assumption A2 holds. Let

Wt = Pr(τ0 < t | Xk,s, 1 ≤ k ≤ K, 1 ≤ s ≤ t), T = min{t : Wt > α}.

Then, T∗K = (T, . . . , T ). Moreover, the following asymptotic results hold:

1. limK→∞(T − τ0) = 1 a.s.,

2. limK→∞ LFNRt+1(T∗K) = 0 a.s.,

3. limK→∞K
−1|S∗K,t+1| = 1(τ0 ≥ t) a.s.

According to the above theorem, the detection time in the proposed proce-

dure is the same for all the data streams. This detection rule is the same as the

classical Shiryaev procedure (Shiryaev (1963)) for a single data stream. It thus

shares all the optimality properties of the Shiryaev procedure. We further remark

that the last limit in the above theorem is non-degenerate in the sense that it is

a Bernoulli random variable, rather than a constant, as in Theorem 2.

5. Additional Theoretical Results

In this section, we give extensions of Theorem 1. We first extend the uniform

optimality result in Theorem 1 to two other performance measures, RLt(T) =∑K
k=1(Tk ∧ τk ∧ t) and CDt = K − |St|, as discussed in Section 2.4.

Theorem 4. Under model Ms, the following equations hold for all t:

E(RLt(T∗)) = sup
T∈Tα

E(RLt(T)) and E(CDt(T∗)) = inf
T∈Tα

E(CDt(T)). (5.1)

We then extend Theorem 1 by comparing an arbitrary sequential procedure

in Tα and a procedure that switches from this procedure to the proposed pro-

cedure after a certain time point. This result provides further insights into the

proposed procedure. Specifically, we use TA ∈ Tα to denote an arbitrary se-

quential procedure which controls the LFNR. We further consider a procedure

TAPt0 , which takes the same procedure as TA for t = 1, . . . , t0. After time t0 + 1,

each step of TAPt0 follows the proposed update rule in Algorithm 1. Theorem 5

compares four sequential procedures, TA, TAPt0 , TAPt0+1 , and T∗.

Theorem 5. Let TA ∈ Tα be an arbitrary sequential procedure. Furthermore, let

TAPt0 and TAPt0+1 be the switching procedures described above, with switching

times t0 and t0 + 1, respectively, for some t0 ≥ 0. Then, for all t = 1, 2, . . .,
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TAPt0 ,TAPt0+1 ∈ Tα and under model Ms,

E
(
Ut(TA)

)
≤ E

(
Ut(TAPt0+1)

)
≤ E

(
Ut(TAPt0 )

)
≤ E (Ut(T∗)) .

The above theorem implies that, under model Ms, TAPt0 is uniformly bet-

ter than TA. It also suggests switching to the proposed procedure as soon as

possible, if one cannot use the proposed procedure at the beginning for practical

constraints. Theorems 1 and 5 are implied by the next theorem.

Theorem 6. Suppose that modelMs holds. For any t0, s ≥ 0, and any sequential

detection procedure TA ∈ Tα, let FA
t be the information filtration and SA

t be the

set of active streams at time t given by TA. Then,

E
[
|SA
t0+s|

∣∣FA
t0

]
≤ E

[
|SAPt0
t0+s |

∣∣∣FA
t0

]
a.s. (5.2)

6. Numerical Experiment

We evaluate the proposed procedure using a simulation study under the

change-point model Ms. Two stream sizes K = 50 and 500 are considered,

representing problems of different scales. For all the data streams, we let the pre-

and post-change distributions be N(0, 1) and N(1, 1), respectively. We consider

two settings for the change-point distribution, with θ = 0.01 and 0.05 in the

geometric distribution, respectively. We set the threshold to be α = 0.05 to

control the LFNR. The combinations of K and θ lead to four different settings.

For each setting, we run 5,000 independent replications.

We consider two procedures: (1) the adaptive procedure given in Algorithm 2,

and (2) a procedure in which a stream k is deactivated if the posterior probability

Wk,t is greater than the non-adaptive threshold λt (see (4.1)) given by the asymp-

totic results. The non-adaptive threshold λt is approximated using a simulation

with 1,000,000 streams.

We evaluate these procedures by (1) mean FNP, (2) mean LFNR, (3) mean

number of active streams, and (4) mean stream utilization, at each time point.

These values are obtained by averaging over the 5,000 independent replications.

For example, for each simulation, we calculate the FNP at each time point fol-

lowing equation (2.2). The mean FNP at each time point is then calculated by

averaging the corresponding FNP values from the 5,000 independent simulations

under each setting. The other metrics are calculated similarly. The results are

given in Figures 1 through 4, which correspond to the settings (1) K = 50,

θ = 0.01, (2) K = 50, θ = 0.05, (3) K = 500, θ = 0.01, and (4) K = 500,

θ = 0.05, respectively. We discuss these results below.
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Figure 1. Results under the setting when K = 50 and θ = 0.01. Panels (a) through (d)
correspond to the four metrics, (1) mean FNP, (2) mean LFNR, (3) mean number of
active streams, and (4) mean stream utilization, respectively.

First, for the proposed adaptive procedure, the mean FNP and mean LFNR

are always below the 0.05 threshold under all four settings, suggesting that the

risk of the active streams is well controlled at the aggregate level; see Panels

(a) and (b) of the figures. The control of these quantities is a direct result

of the proposed procedure controlling the LFNR at every time point. More

specifically, when θ = 0.05, the data streams change relatively more quickly than

the case when θ = 0.01. In that case, the proportion of post-change streams

quickly exceeds 0.05. The proposed procedure controls this proportion to be

slightly below 0.05 by deactivating those with the highest post-change posterior

probabilities. As time goes on, the mean FNP decays toward zero as the number

of active streams decays to zero; see Panels (c) and (d) of Figures 2 and 4. When

θ = 0.01, the data streams change at a much slower rate. Thus, at the beginning,

the proportion of post-change streams among the active ones tends to be smaller

than 0.05, and the proposed procedure does not tend to detect and deactivate

any streams. When the proportion of post-change streams accumulates above

0.05, the proposed procedure starts to deactivate changed streams to control the

proportion to be around the targeted level. As the change points occur more

slowly, the number of active streams at any given time point tends to be larger

than that when θ = 0.05. See Figures 1 and 3 for more details.

Second, as we can see from Panels (a) and (b) of the figures, the non-adaptive

procedure based on the asymptotic theory also controls the mean FNP and the

mean LFNR to be near or below the targeted level, though the mean FNP may be

slightly larger than the targeted level occasionally when K = 50. This procedure

tends to be slightly more aggressive than the adaptive procedure, because the

LFNR can sometimes exceed the targeted threshold α. Overall, the non-adaptive

procedure also performs well, in the sense that it tends to control the false non-

discovery rate at the targeted level α (i.e., the expected value of the LFNR) at
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Figure 2. Results under the setting when K = 50 and θ = 0.05. The four panels show
the same metrics as in Figure 1.
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Figure 3. Results under the setting when K = 500 and θ = 0.01. The four panels show
the same metrics as in Figure 1.
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Figure 4. Results under the setting when K = 500 and θ = 0.05. The four panels show
the same metrics as in Figure 1.

all time points, even though the LFNR itself is not exactly controlled.

Finally, we see that the two procedures tend to perform more similarly when

the number of active streams is larger, because the non-adaptive procedure is the

limiting case of the adaptive procedure when the number of streams grows to

infinity. More specifically, comparing the setting when K = 500 (Figures 3 and

4) with that when K = 50 (Figures 1 and 2), we see that the two procedures

are closer to each other when K = 500. For the same value of K, the two

procedures tend to be more similar under the setting when θ = 0.01 than that

when θ = 0.05, as data streams change more slowly and, thus, there tend to

be more active streams at every time point when θ = 0.01. Moreover, for each



COMPOUND SEQUENTIAL CHANGE-POINT DETECTION 471

setting, the two procedures tend to behave more similarly when t is smaller, as

the number of active streams decays with time t.

7. Conclusion

Motivated by real-world applications from various fields, including education,

engineering, and finance, we propose a compound decision framework for Bayesian

sequential change-point detection in parallel data streams. An easy-to-implement

procedure is proposed, for which theoretical properties are established. Specifi-

cally, under a class of change-point models, the proposed procedure is shown to

be uniformly optimal in a non-asymptotic sense. Numerical experiments show

that the proposed procedure can accurately control the aggregated risk of active

streams.

The current work can be extended along several directions. First, different

optimality criteria may be considered, and the proposed procedure can be ex-

tended accordingly. For example, different streams may have different weights,

owing to their unequal importance in practice. In that case, more general def-

initions of the LFNR and stream utilization measure can be given, for which a

tailored sequential procedure can be derived.

Second, in some real applications, the change-point distribution and the dis-

tributions for the pre- and post-change data may not be known in advance. This

problem may be handled by parameterizing the pre- and post-change distribu-

tions, and then using a full or empirical Bayes approach that combines the pro-

posed procedure with a sequential estimation of the unknown parameters. Opti-

mality theory may be established when the number of streams K goes to infinity.

Third, optimal sequential procedures remain to be developed under reason-

able models for dependent change points. In particular, in many multi-stream

change detection problems, the change points may be driven by a low-dimensional

latent process, which can be described by a dynamic latent factor model. Sev-

eral questions remain to be answered under such a change-point model, including

the existence of a uniformly optimal procedure, and the construction of such a

procedure if it exists.

Finally, a more general setting may be considered that allows new data

streams to be added dynamically. For example, in educational testing, once an

item is removed from the item pool, a new one needs to be developed to maintain

the size of the pool. The inclusion of new data streams changes the informa-

tion filtration. Under the new information filtration, which contains information

from both the original and the new streams, a locally optimal procedure can be
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developed under similar optimality criteria. However, it is unclear whether this

procedure is still uniformly optimal. This problem is worth future investigation.

Supplementary material

The supplementary material includes proofs of the theoretical results.
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