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S1 Proof

S1.1 Proof of Theorem 1

We give two lemmas first.

Lemma 1. Assume that Xi − EXi are independent identically distributed

random variables and n1/4 logn√
αn

→ 0. The second finite monments exists.

Then we have

Pr{max
1≤i≤n

∣∣∣|D̃n(i)| − |D(i)|
∣∣∣ > τn} = o(1) (S1.1)

where τn = O(
√

logn
αn

).
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Proof of Lemma 1 We first rewrite D̃n(i) as a sum of independent

variables:

D̃n(i) =
1

α2
n

{ i+αn−1∑
j=i

(j − i+ 1)Xj +
i+2αn−1∑
i+αn

(3αn − 2j + 2i− 2)Xj

+
i+3αn−1∑
i+2αn

(3αn − j + i− 1)Xj

}
. (S1.2)

Then the variance of D̃n(i) equals, for a constant C > 0:

Var

{
1

α2
n

(
i+αn−1∑
j=i

(j − i+ 1)Xj +
i+2αn−2∑
j=i+αn

(2i+ 3αn − 2j − 2)Xj

+
i+3αn−2∑
i+2αn−1

(i+ 3αn − j − 1)Xj)

}

=
V ar(X1)

α4
n

(
αn∑
i=1

2 · i2 +
αn∑
h=1

(3αn − 2h)2) :=
C2

αn
= σ2

n. (S1.3)

It is obvious that the variance of D̃(i) is then free of the index i with

σn = C/
√
αn. In addition, as D̃n(i) is a weighted sum of {Xi}ni=1, we then

further rewrite it. Define a weight function wn(t, j) as denoting [nt] as the

largest integer that is smaller or equal to [nt],

wn(t, j) = I{[nt] ≤ j ≤ [nt] + αn − 1}(j − [nt] + 1)

α2
n

+ I{[nt] + αn ≤ j ≤ [nt] + 2αn − 1}(3αn − 2j + 2[nt]− 2)

α2
n

+ I{[nt] + 2αn ≤ j ≤ [nt] + 3αn − 1}(3αn − j + [nt]− 1)

α2
n

,

where I{B} denotes indicator function of set B. As for evert i there exists
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ti ∈ (0, 1) such that i = [nti], we have

wn(ti, j) = I{[nti] ≤ j ≤ [nti] + αn − 1}(j − i+ 1)

α2
n

+ I{[nti] + αn ≤ j ≤ [nti] + 2αn − 1}(3αn − 2j + 2[nti]− 2)

α2
n

+ I{[nti] + 2αn ≤ j ≤ [nti] + 3αn − 1}(3αn − j + [nti]− 1)

α2
n

.

(S1.4)

D̃n(i) can then be rewritten as D̃n(i) =
∑n

j=1wn(ti, j)Xj. Then D̃n(i) −

D̃(i) =
∑n

j=1wn(ti, j)(Xj − E(Xj)). Thus we have

D̃n(i)− D̃(i)

σn
=

n∑
j=1

wn(ti, j)

σn
(Xj − E(Xj))

Let w̃n(ti, j) = wn(ti,j)
σn

, Yn(ti) = D̃n(i)− D̃(i)/σn and ej = Xj − E(Xj).

Then we have that

Yn(ti) =
n∑
j=1

w̃n(ti, j)ej, (S1.5)

where w̃n(ti, j) can be seen as a special case of Equation (18) in Wu and

Zhao (2007). In addition, define Ωn(ti) = |w̃n(ti, 1)| +
∑n

j=2 |w̃n(ti, j) −

w̃n(ti, j − 1)| and Ωn = max1≤i≤n{Ωn(ti)}. Some elementary calculations

lead to

Ωn(ti) =
4αn + 3

α2
nσn

. (S1.6)

As Ωn(ti) is free of i and then Ωn = 4αn+3
α2
nσn

. The application of Theorem 3

in Wu (2007) and Equation (6) in Wu and Zhao (2007) suggest that there
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exists a Gaussian process below with the standard Brownian motion B(·),

Y ∗n (ti) =
n∑
j=1

w̃n(ti, j)
√

Var(X1){B(j)− B(j − 1)} (S1.7)

such that almost surely for all i

|Yn(ti)− Y ∗n (ti)| ≤ o(Ωn(ti)n
1/4 log n), (S1.8)

and then

max
1≤i≤n

|Yn(ti)− Y ∗n (ti)| = o(Ωnn
1/4 log n). (S1.9)

This yields that almost surely

max
1≤i≤n

|Yn(ti)| = max
1≤i≤n

|Yn(ti)− Y ∗n (ti) + Y ∗n (ti)|

≤ max
1≤i≤n

|Y ∗n (ti)|+ max
1≤i≤n

|Yn(ti)− Y ∗n (ti)|

≤ max
1≤i≤n

|Y ∗n (ti)|+ o(Ωnn
1/4 log n),

(S1.10)

and

max
1≤i≤n

∣∣∣|D̃n(i)| − |D̃(i)|
∣∣∣/σn ≤ max

1≤i≤n

∣∣∣D̃n(i)− D̃(i)
∣∣∣/σn

= max
1≤i≤n

∣∣∣Yn(ti)
∣∣∣

≤ max
1≤i≤n

|Y ∗n (ti)|+ o(Ωnn
1/4 log n).

(S1.11)

Due to the fact σn = O(1/
√
αn) and the result in (S1.6), we can see

that Ωn = 4αn+3
α2
nσn

= O(1/
√
αn). By the condition n1/4 logn√

αn
→ 0, we have for
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any τn

Pr{max
1≤i≤n

∣∣∣|D̃n(i)| − |D̃(i)|
∣∣∣ > τn} = Pr{max

1≤i≤n

∣∣∣|D̃n(i)| − |D̃(i)|
∣∣∣/σn > τn/σn}

≤ Pr{max
1≤i≤n

∣∣∣Y ∗n (ti)
∣∣∣+ o(

n1/4 log n√
αn

) > τn/σn}

≤ Pr{max
1≤i≤n

∣∣∣Y ∗n (ti)
∣∣∣+ 1 > τn/σn}.

(S1.12)

From (S1.7), we have

Var(Y ∗n (i)) =
Var(X1)

σ2
nα

4
n

(
αn∑
i=1

2 · i2 +
αn∑
h=1

(3αn − 2h)2) = 1. (S1.13)

In other words, Y ∗n (ti) follows the standard normal distribution, and thus,

with an application of Proposition 2.1.2 in Roman (2017), we have, for large

τn/σn,

Pr{max
1≤i≤n

∣∣∣Y ∗n (ti)
∣∣∣+ 1 > τn/σn} ≤n max

1≤i≤n
Pr{
∣∣∣Y ∗n (ti)

∣∣∣+ 1 > τn/σn}

= nPr{
∣∣∣Y ∗n (t1)

∣∣∣ > τn/σn − 1}

≤ n/(
τn
σn
− 1) exp{−1

2
(
τn
σn
− 1)2}.

(S1.14)

Taking τn/σn =
√

2 log n+ 1, we have as n→∞

n/(
τn
σn
− 1) exp

{
−1

2
(
τn
σn
− 1)2

}
= exp

{
log n− log

√
2 log n− log n

}
=

√
1

2 log n
→ 0.

That is when τn = σn(
√

2 log n + 1) = O(
√

logαn/
√
αn) and n → ∞, we
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have

Pr{max
1≤i≤n

∣∣∣|D̃n(i)| − |D̃(i)|
∣∣∣ > τn} ≤

√
1

2 log n
→ 0. (S1.15)

This means that max1≤i≤n

∣∣∣|D̃n(i)|−|D̃(i)|
∣∣∣ = Op(

√
logn
αn

). We complete the

proof of Lemma 1.

For the consistency of the estimated change points defined in the cri-

terion, we first give the detailed computation of D̃(i). It is easy to see

that

|D̃(i)| =



0, zk−1 + αn ≤ i ≤ zk − 2αn;

1+···+(i−(zk−2αn))
α2
n

βk, zk − 2αn < i ≤ zk − αn;

[(i−(zk−αn−1))+···+αn]+[(αn−1)+···+(αn−(i−(zk−αn)))]
α2
n

βk, zk − αn < i ≤ zk − αn
2

;

[(zk−i+2)+···+αn]+[(αn−1)+···+(αn−(zk−i+1))]
α2
n

βk, zk − αn
2
< i ≤ zk;

1+···+((zk+αn)−i+1)
α2
n

βk, zk < i ≤ zk + αn;

0, zk + αn < i ≤ zk+1 − 2αn.

From this formula, we have a more detailed calculation that will be used in
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the proof of Lemma 2 and Theorem 2.1:

|D̃(i)| =



0, zk−1 + αn ≤ i ≤ zk − 2αn;

(i−zk+2αn+1)·(i−zk+2αn)
α2
n

βk, zk − 2αn < i ≤ zk − αn;

−i2−αni+2izk−i+zk−z2k+αnzk+
1
2
(α2
n−αn)

α2
n

βk, zk − αn < i < zk − αn
2
−Bn;

(3
4
− B2

n

α2
n

+ Bn
α2
n

)βk, i = zk − αn
2
−Bn;

−i2−αni+2izk−i+zk−z2k+αnzk+
1
2
(α2
n−αn)

α2
n

βk, zk − αn
2
−Bn < i < zk − αn

2
;

3
4
βk, i = zk − 1

2
αn;

−i2−αni+2izk−i+zk−z2k+αnzk+
1
2
(α2
n−αn)

α2
n

βk, zk − αn
2
< i < zk − αn

2
+Bn;

(3
4
− B2

n

α2
n

+ Bn
α2
n

)βk, i = zk − αn
2

+Bn;

−i2−αni+2izk−i+zk−z2k+αnzk+
1
2
(α2
n−αn)

α2
n

βk, zk − αn
2

+Bn < i ≤ zk;

(−i+zk+αn+2)(−i+1+αn+zk)
α2
n

βk, zk < i ≤ zk + αn;

0, zk + αn < i ≤ zk+1 − 2αn.

(S1.16)

We can then know that when zk−1−2αn ≤ i ≤ zk− αn
2

, |D̃(i)| monotonically

increases with i while when zk − αn
2
≤ i ≤ zk + αn, |D̃(i)| monotonically

decreases.
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Similarly, we can derive T (i) = |D̃(i)|+cn
|D̃(i+ 3αn

2
)|+cn

as:

T (i) =



0+cn
0+cn

= 1, zk−1 + αn ≤ i ≤ zk − 7
2
αn,

0+cn
(i−zk+2αn+1)·(i−zk+2αn)

α2n
βk+cn

, zk − 7
2
αn < i ≤ zk − 5

2
αn,

0+cn
−i2−αni+2izk−i+zk−z

2
k
+αnzk+

1
2 (α2n−αn)

α2n
βk+cn

, zk − 5
2
αn < i < zk − 2αn −Bn,

0+cn

( 3
4
−B

2
n

α2n
+Bn
α2n

)βk+cn
, i = zk − 2αn −Bn,

0+cn
−i2−αni+2izk−i+zk−z

2
k
+αnzk+

1
2 (α2n−αn)

α2n
βk+cn

, zk − 2αn −Bn < i < zk − 2αn,

0+cn
3
4
βk+cn

, i = zk − 2αn,
(i−zk+2αn+1)·(i−zk+2αn)

α2n
βk+cn

−i2−αni+2izk−i+zk−z
2
k
+αnzk+

1
2 (α2n−αn)

α2n
βk+cn

, zk − 2αn < i ≤ zk − 2αn +Bn,

Bn(Bn+1)

α2n
+cn

( 3
4
−B

2
n

α2n
+Bn
α2n

)βk+cn
, i = zk − 2αn +Bn,

(i−zk+
1
2αn+1)·(i−zk+

1
2αn)

α2n
βk+cn

−i2−αni+2izk−i+zk−z
2
k
+αnzk+

1
2 (α2n−αn)

α2n
βk+cn

, zk − 2αn +Bn < i ≤ zk − 3
2
αn,

(i−zk+
1
2αn+1)·(i−zk+

1
2αn)

α2n
βk+cn

(−i+zk+αn+1)·(−i+zk+αn+2)

α2n
βk+cn

, zk − 3
2
αn < i ≤ zk − αn,

−i2−αni+2izk−i+zk−z
2
k+αnzk+

1
2 (α2n−αn)

α2n
βk+cn

((zk+αn)−i+1)((zk+αn)−i+2)βk
α2n

+cn
, zk − αn < i ≤ zk − 1

2
αn,

−i2−αni+2izk−i+zk−z
2
k+αnzk+

1
2 (α2n−αn)

α2n
βk+cn

0+cn
, zk − 1

2
αn < i ≤ zk,

((zk+
3
2αn)−i+1)((zk+

3
2αn)−i+2)

α2n
+cn

0+cn
, zk < i ≤ zk + αn,

0+cn
0+cn

= 1, zk + αn < i ≤ zk+1 − 7
2
αn.

(S1.17)

We now give another lemma and its proof.

Lemma 2. Assume that Xi − EXi are independent identically distributed
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random variables, we could define Ad = {i : T (i) < d} and Adn = {i :

Tn(i) ≤ d} for any 0 < d < 1. We have for any d1, d2 and d3 with

0 < d3 < d1 < d2 < 1.

Pr{Ad1n ⊆ Ad2} → 1 Pr{Ad3 ⊆ Ad1n } → 1. (S1.18)

Further, for any k = 1, . . . , K the intervals (mk,Mk) are disjoint and each

contains only one local minimizer zk − 3αn/2 of T (i). Further, for any d

with 0 < d < 1,

max
i∈Adn
|Tn(i)− T (i)| = op(1). (S1.19)

Proof of Lemma 2 To prove this lemma, we first analyse the prop-

erties of Tn(i) = D̃n(i)+cn
D̃n(i+

3
2
αn)+cn

around the point zk − 2αn where zk is the

change point. Write it as

Tn(i) =
|D̃n(i)|+ cn

|D̃n(i+ 3
2
αn)|+ cn

=
|D̃n(i)| − |D̃(i)|+ |D̃(i)|+ cn

|D̃n(i)| − |D̃(i+ 3
2
αn)|+ |D̃(i+ 3

2
αn)|+ cn

=
Op(

√
logn√
αn

) + |D̃(i)|+ cn

Op(
√
logn√
αn

) + |D̃(i+ 3
2
αn)|+ cn

(S1.20)

For the flat parts in the sequence with |D̃(i)| = 0 for all i, we have

Tn(i) =
Op(

√
logn√
αn

) + 0 + cn

Op(
√
logn√
αn

) + 0 + cn
= op(1). (S1.21)

When a change point appears, we have that, from (S1.16) and the discussion

right below it, for ∀i ∈ [zk − 7
2
αn, zk − 2αn], |D̃(i)| = 0, |D̃(i + 3

2
αn)|
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monotonically increases and at i = zk − 2αn, we have

Tn(zk − 2αn) =
|D̃n(zk − 2αn)|+ cn

|D̃n(zk − 1
2
αn)|+ cn

=
Op(

√
logn√
αn

) + 0 + cn

Op(
√
logn√
αn

) + 3
4
βk + cn

= op(1).

(S1.22)

As we discussed before, for any i ∈ [zk−2αn, zk− 1
2
αn], |D̃(i)| monotonically

increases, and |D̃(i + 3
2
αn)| monotonically decreases, then Tn(i) uniformly

converges to the monotonically increasing T (i) and

Tn(zk −
1

2
αn) =

|D̃n(zk − 1
2
αn)|+ cn

|D̃n(zk + αn)|+ cn
=
Op(

√
logn√
αn

) + 3
4
βk + cn

Op(
√
logn√
αn

) + 0 + cn

P−→∞.

(S1.23)

Step 1 To prove the subset equations in (S1.18) and the uniform con-

vergence in (S1.19). Define Ad2 = {i : T (i) < d2} and Ad1n = {i : Tn(i) < d1}

where d1 < d2. Recall the decomposition of (S1.20). By the definition of

Ad1n , we have for all i ∈ Ad1n , we have Tn(i) ≤ d1. Then,

op(cn) + |D̃(i)|+ cn ≤ d1(op(cn) + |D̃(i+
3

2
αn)|+ cn).

That is,

|D̃(i)|+ cn ≤ d1(|D̃(i+
3

2
αn)|+ cn) + op(cn).

We can get, uniformly over all i, in probability, for large n

T (i) =
|D̃(i)|+ cn

|D̃(i+ 3
2
αn)|+ cn

≤ d1 + o(1) < d2.

(S1.24)
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In other words, with a probability going to one, Ad1n ⊆ Ad2 = {i : T (i) <

d2}. We can similarly prove that with a probability tending to one, Ad3 ⊆

Ad1n for d3 with d3 < d1 < 1.

Step 2. To prove that for any k = 1, . . . , K the intervals (mk,Mk)

are disjoint and each contains only one local minimizer zk − 2αn of T (i).

Consider a value d with d > 0.5. Let m̃k and M̃k satisfy the following

conditions:

T (m̃k − 1) ≥ d, T (m̃k) < d,

T (M̃k) < d, T (M̃k + 1) ≥ d.

Denote the interval (m̃k, M̃k). From the previous proof, we can easily derive

that in probability, (mk,Mk) ⊆ (m̃k, M̃k). Further, from the properties, we

also know that all (m̃k, M̃k) are contained in Ad and disjoint, also each

interval contains only one local minimizer zk−2αn of T (i). When we choose

a value d with 0 < d < 0.5 we can derive that in probability, (m̃k, M̃k) ⊆

(mk,Mk). Similarly, we also know that all (m̃k, M̃k) are contained in Ad

and disjoint, also each interval contains only one local minimizer zk−2αn of

T (i). These two properties imply that in probability (mk,Mk) are contained

in A0.5
n and disjoint, also each interval contains only one local minimizer

zk − 2αn of T (i).

Step 3. To prove the weak convergence of Tn(i) to T (i) over the set
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Ad1n . As in probability Ad1n ⊆ Ad2 such that T (i) ≤ d2 < 1, we consider

a large set to derive the uniform convergence. For any i ∈ Ad2 , we have,

uniformly,

Tn(i)− T (i) =
|D̃n(i)|+ cn

|D̃n(i+ 3
2
αn)|+ cn

− |D̃(i)|+ cn

|D̃(i+ 3
2
αn)|+ cn

=
|(Dn(i)|+ cn)(|D̃(i+ 3

2
αn)|+ cn)− (|D̃(i)|+ cn)(|D̃n(i+ 3

2
αn)|+ cn)

(|D̃n(i+ 3
2
αn)|+ cn)(|D̃(i+ 3

2
αn)|+ cn)

= {
[(|D̃n(i)| − |D̃(i))||(D̃(i+ 3

2
αn)|+ cn)]

(|D̃n(i+ 3
2
αn)|+ cn)(|D̃(i+ 3

2
αn)|+ cn)

−
[(|D̃n(i+ 3

2
αn)| − |D̃(i+ 3

2
αn)|)(|D̃(i)|+ cn)]

(|D̃n(i+ 3
2
αn)|+ cn)(|D̃(i+ 3

2
αn)|+ cn)

}

= {
[op(cn)(|D̃(i+ 3

2
αn)|+ cn)]− [op(cn)(|D̃(i)|+ cn)]

(|D̃n(i+ 3
2
αn)|+ cn)(|D̃(i+ 3

2
αn)|+ cn)

}

=
op(cn)

op(cn) + (|D̃(i+ 3αn
2

)|+ cn)
− op(cn)T (i)

=
op(cn)

cn
− op(cn) = op(1).

Thus maxi∈Ad2 |Tn(i)− T (i)| = op(1). The proof is finished.

Proof of Theorem 1. We consider the first part in the theorem. By

Lemma 2, in probability zk− 2αn ∈ (m̃k, M̃k) ⊆ Ad implies that zk− 2αn ∈

(mk,Mk) ⊆ A0.5
n ⊆ Ad. Thus uniformly over 1 ≤ k ≤ K in probability, we

have

m̃k ≤ zk − 2αn ≤ M̃k. (S1.25)

At the population level with T (i)’s, by the uniqueness of zk−2αn in the in-

terval (mk,Mk), searching for zk−2αn in (mk,Mk) is equivalent to searching
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for zk − 2αn in the non-random (m̃k, M̃k) in probability.

Write ẑk−2αn as the local minimizer of Tn(i)’s in the interval (mk,Mk) ⊆

(m̃k, M̃k) ⊆ Ad. Recall that by Lemma 2 maxi∈Ad2 |Tn(i) − T (i)| = op(1).

We can then work on each interval (mk,Mk). For any k with 1 ≤ k ≤ K,

from (S1.17), T (zk−2αn) is the only local minimum and by the definition of

ẑk − 2αn, Tn(i) ≥ Tn(ẑk − 2αn) in the interval in probability. From (S1.22)

and (S1.23), we have that, as |D̃(zk − 2αn)| = 0,

|D̃n(zk − 2αn)| = Op(
√

log n/
√
αn) = op(cn) (S1.26)

and, as |D̃(zk − 1
2
αn)| = 3βk/4,

|D̃n(zk −
1

2
αn)| − 3βk/4 = Op(

√
log n/

√
αn) = op(cn). (S1.27)

Further, from the calculation of T (i) before, we can see that letting Bn =

αn(logαn)−1/5, for any j = O(Bn)

|D̃(zk − 2αn ± j)| = O(cn). (S1.28)

To prove that ẑk/zk − 1 = op(1), we only need to prove that |ẑk −

zk| = Op(Bn). To this end, applying the strictly decreasing and increasing

monotonicity of T (i) on the two sides of zk − 2αn respectively, and the

uniform convergence of Tn(i) to T (i) in probability in the set A0.5
n , we only

need to show that Tn(zk − 2αn ± Bn) − Tn(zk − 2αn) > 0 in probability.
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Consider Tn(zk − 2αn −Bn) first. Note that

Tn(zk − 2αn −Bn) =
0 + cn + op(cn)

(3
4
− B2

n

α2
n

+ Bn
α2
n

)βk + cn + op(cn)
. (S1.29)

Let bn1 = (B
2
n

α2
n
− Bn

α2
n

)βk. To simplify the notations, in the following all

derivations are in probability. We can derive that

Tn(zk − 2αn −Bn)− Tn(zk − 2αn)

=
cn +O(

√
logn√
αn

)

O( 1√
αn

) + cn + 3
4
βk − bn

−
cn +O(

√
logn√
αn

)

O( 1√
αn

) + cn + 3
4
βk

:=
cn + an2
βn2 − bn1

− cn + an1
βn1

=
(an2 + cn)βn1 − (an1 + cn)(βn2 − bn1)

βn1(βn2 − bn1)

=
(an1 + cn)(βn1 − βn2) + (an2 − an1)βn1 + (an1 + cn)bn1

βn1(βn2 − bn1)

=
(an1 + cn)O(

√
logn√
αn

) +O(
√
logn√
αn

)βn1 + (an1 + cn)bn1

βn1(βn2 − bn1)

=
((an1 + cn)bn1)[O(

√
logn

bn1
√
αn

) +O(
√
logn

(an1+cn)bn1
√
αn

)βn1 + 1]

βn1(βn2 − bn1)
.

(S1.30)

When (an1 + cn)bn1
√
αn/
√

log n → ∞, and bn1
√
αn/
√

log n → ∞, we then

have for large n, the value in the brackets is larger than a positive constant

and then the numerator is positive as cn
√
αn/
√

log n→∞ and cn > 0 such

that an1 + cn = cn(1 + an1
cn

) = cn(1 + O(
√
logn√
αncn

)) > 0 and (an1 + cn)bn1 > 0.

We then have Tn(zk − 2αn −Bn)− Tn(zk − 2αn) > 0 when bn1 · cn ·
√
αn =

B2
n

α2
n
· cn ·

√
αn/
√

log n > B2
n

α2
n
·
√

logαn →∞.
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For i = zk − 2αn +Bn, we have

Tn(zk − 2αn +Bn) =

Bn(Bn+1)
α2
n

βk + cn + op(cn)

(3
4
− B2

n

α2
n

+ Bn
α2
n

)βk + cn + op(cn)
. (S1.31)

Let bn2 = Bn(Bn+1)
α2
n

βk. We similarly have, in probability,

Tn(zk − 2αn +Bn)− Tn(zk − 2αn)

=
cn +O(

√
logn√
αn

) + bn2

cn +O(
√
logn√
αn

) + 3
4
βk − bn1

−
cn +O(

√
logn√
αn

)

O(
√
logn√
αn

) + cn + 3
4
βk

=:
cn + an3 + bn2
βn3 − bn1

− cn + an1
βn1

=
(cn + an3 + bn2)βn1 − (an1 + cn)βn3 + (an1 + cn)bn1

βn1(βn3 − bn1)

=
(an3 − an1)βn1 + (an1 + cn)(βn1 − βn3) + (an1 + cn)bn1 + bn2βn1

βn1(βn3 − bn1)

≥
O(
√
logn√
αn

)βn1 + (an1 + cn)O(
√
logn√
αn

) + bn2βn1

βn1(βn3 − bn1)

=
bn2[O(

√
logn√
αnbn2

)βn1 + (an1 + cn)O(
√
logn√
αnbn2

) + βn1]

βn1(βn3 − bn1)
(S1.32)

The inequality is due to (an1+cn)bn1 > 0. Thus as long as bn2·
√
αn/
√

log n >

B2
nα
−3/2
n /

√
log n → ∞, the first term in the brackets converges to zero.

Note that an1 and cn both tend to zero. The second term converges

to zero. As βn1 = O(
√
logn√
αn

) + cn + 3
4
βk, in which O(

√
logn√
αn

) and cn go

to zero, βn1 then tends to βk and thus βn1 is larger than zero for large

n. Therefore, (O(
√
logn√
αnbn2

)βn1 + (an1 + cn)O(
√
logn√
αnbn2

) + βn1) is greater than

zero. The whole numerator and then the difference is larger than zero
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such that Tn(zk − 2αn + Bn) − Tn(zk − 2αn) > 0. Altogether, when

B2
n · cn · α

− 3
2

n /
√

log n→∞, then

Tn(zk − 2αn ±Bn)− Tn(zk − 2αn) > 0. (S1.33)

As we argued before, ẑk cannot be larger than zk±Bn in probability. Also,

based on the definition in Lemma 2, we can get that (zk − 2αn − Bn, zk −

2αn +Bn) ⊂ Ad1n . That is

−Bn + zk − 2αn ≤ ẑk − 2αn ≤ Bn + zk − 2αn.

As Bn
αn
→ 0

| ẑk − zk
αn

| ≤ Bn

αn
→ 0

in probablity. In other words, for any ε > 0, we have the uniform conver-

gence over all k ≤ K: as n→∞

P ( max
1≤k≤K

| ẑk − zk
αn

| < ε)→ 1 (S1.34)

This proves that uniformly over all k ≤ K, ẑk is a consistent estimator of

zk in the above sense. The proof of the first part of Theorem 1 is finished.

We now prove the second Part of Theorem 1. From the proof of the

first part, we can see that we can consistently estimate all zk for 1 ≤ k ≤ K.

Thus, clearly K̂ = K with a probability going to one.

Now we prove the third part of Theorem 1. In the case with divergent

K, along with the steps in the proof of Lemma 2 and of the first part of the
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theorem, we still have that maxk Tn(zk − 2αn)→ 0 in probability. That is,

the local minima of Tn(zk−2αn) can also converge to zero. The consistency

can be proved almost the same as that for given K. Also K̂ = K with a

probability going to one in the divergent case. We then omit the details

and finish the proof.

S1.2 Proof of Theorem 2

Denote the minimum change magnitude as βz = min1≤k≤Kn βk. βz con-

verges to 0 at the rate of O((logαn)−1/5) by the assumption.

From the proof of Lemma 2 and (S1.17), we have that, letting Bn =

αn(logαn)−1/10, for any j = O(Bn),

|D̃(zk − 2αn ± j)| = O(cn). (S1.35)

To this end, applying the strict monotonicity of T (i), respectively, on the

two sides of z−2αn, and the uniform convergence of Tn(i) to T (i) in proba-

bility in the set A0.5
n , we only need to show that Tn(zk−2αn±Bn)−Tn(zk−

2αn) > 0 in probability. In other words, we only need to check, similarly as

those in (S1.30) and (S1.32),

bn1 · cn ·
√
αn/

√
log n→∞ (S1.36)

where bn1 = (B
2
n

α2
n
−Bn
α2
n

)βz. As βz = O((logαn)−1/5) andBn = αn(logαn)−1/10,
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we have the above convergence. Then

Tn(zk − 2αn ±Bn)− Tn(z − 2αn) > 0. (S1.37)

Thus zk−Bn ≤ ẑk ≤ zk +Bn in probability. As Bn
αn
→ 0, we have uniformly

over all k ≤ K in probability

| ẑk − zk
αn

| ≤ Bn

αn
→ 0.

The proof is finished.

S1.3 Proof of Theorem 3

We now prove the consistency of the estimators of the variance change

points. From the criterion construction, the proof is very much similar

to that for Theorem 1 as long as we pay attention to the rate of uniform

convergence of Dn(i) that is in this case the variance difference. Rather

than only considering the first and second moment, we should take both

second and forth moment into account. As the second monment of variable

exists, there exists a constant C such that E(X2
j ) ≥ C for all j. Then we
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have that

max
i
|D̃n(i)− D̃(i)| = max

i
log

∑n
j=1wn(ti, j)X

2
j∑n

j=1wn(ti, j)E(X2
j )

= max
i

log

∑n
j=1wn(ti, j)X

2
j −

∑n
j=1wn(ti, j)E(X2

j ) +
∑n

j=1wn(ti, j)E(X2
j )∑n

j=1wn(ti, j)E(X2
j )

= max
i

log(1 +

∑n
j=1wn(ti, j)X

2
j −

∑n
j=1wn(ti, j)E(X2

j )∑n
j=1wn(ti, j)E(X2

j )
)

≤ max
i

∑n
j=1wn(ti, j)X

2
j −

∑n
j=1wn(ti, j)E(X2

j )∑n
j=1wn(ti, j)E(X2

j )

≤ max
i

1

C
(
n∑
j=1

wn(ti, j)X
2
j −

n∑
j=1

wn(ti, j)E(X2
j ))

(S1.38)

For both of the mean and variance scenario, the number of variables that

D̃n(i) involves is the same. As the forth finite moment exists, we have that

the convergence rate maxi |
∑n

j=1wn(ti, j)X
2
j −

∑n
j=1wn(ti, j)E(X2

j )| = Op(
√

logn
αn

)

And thus we have maxi |D̃n(i) − D̃(i)| = Op(
√

logn
αn

). We then finish the

proof without repeating the details that are used to prove Theorem 1.
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