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Abstract: Exhaustive search-based optimization algorithms can be computationally

intensive and hypothesis testing-based procedures may encounter the false positive

problem. To avoid these problems, we revisit change point detection of means and

variances in a sequence of observations. We also propose a novel criterion, using a

signal statistic to define a consistent estimation, even when the number of change

points can go to infinity at a certain rate as the sample size goes to infinity. The

signal statistic exhibits a useful “PULSE” pattern near change points, such that

we can simultaneously identify all change points. The estimation consistency holds

for the number of change points and for locations, in a certain sense. Furthermore,

its visual nature means the locations can be more easily identified using plots than

when using existing methods in the literature. The method can also detect weak

signals in the sense that those changes go to zero. As a generic methodology, it

may be extendable to handle other models. Numerical studies validate its good

performance of the proposed method.

Key words and phrases: Double average ratios, multiple change-points detection,

threshold, visualization.

1. Introduction

When there is a sequence of observations available, change point detection has

attracted significant attention in a variety of research fields. For example Wu and

Zhao (2007) detected mean changes in time series data for financial modeling, and

Muggeo and Adelfio (2011) identified genes associated with diseases by applying

a method of change point detection for means. There are a number of methods

available in the literature; see, for example, Niu, Hao and Zhang (2016) for a

comprehensive review.

Here, we focus on detecting mean changes, and as an adoption of the method,

detecting variance changes. The following brief review stimulates us to consider

a new way of investigating this issue, which has the potential to handle more
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complex data structures. Several objective function-based criteria with opti-

mization algorithms for exhaustive searches have been proposed for problems

with fixed numbers of change points. Yao (1988)) suggested a BIC-Hyphenate

type criterion. Frick, Munk and Sieling (2014) suggested a simultaneous multi-

scale change-point estimator (SMUCE) by solving an optimization problem, and

Yao and Au (1989)) proposed a penalized least squares-based approach for mean

changes. A weighted least squares function-based method was suggested by Gao

et al. (2019). Harchaoui and Levy-Leduc (2010) proposed a lasso-based approach.

The estimation consistency can be ensured under certain regularity conditions.

One of the main concerns about these methods is their computational complexity.

See the comments by Niu, Hao and Zhang (2016). When the number of change

points goes to infinity as the sample size tends to infinity, the methods incur a

greater computational cost. In contrast, cumulative sum (CUSUM)-based ap-

proaches are popular because of their lower computational cost. Here, relevant

methods are based on hypothesis testing, and in many cases are efficient in terms

of detection. The seminal paper by Page (1954)) had a significant influence on

later developments. Vostrikova (1981) designed tests for multiple changes using

binary segmentation procedures. To alleviate the difficulty caused by short spac-

ings between change points or small jump magnitudes, Fryzlewicz (2014, 2020)

introduced an additional randomization step in the algorithms called WBS and

WBS2, where WBS2 is shown to be computationally more efficient. Using the

moving sum (MOSUM) or “scan” statistic to construct the test statistic is also

a popular technique; see Bauer and Hackl (1980) and Chu, Hornik and Kuan

(1995). Wu and Zhao (2007) and Cao and Wu (2015) discussed the limiting

distributions of the maxima of MOSUM. Hao, Niu and Zhang. (2013) consid-

ered a MOSUM-based test statistic, called the screening and ranking algorithm

(SaRa), to simultaneously detect multiple change points. A further development

is by Fang, Li and Siegmund (2020), who also used a hypothesis testing-based

method to detect multiple changes, and gave a good way to control false posi-

tives in the study of large deviation theory. To handle the case with a diverging

number of change points, for the independent and identically distributed (i.i.d.)

normal errors, Baranowski, Chen and Fryzlewicz (2019) extended the CUSUM-

based procedure. Wang, Yu and Rinaldo (2020) extended the WBS procedure.

Eichinger and Kirch (2018) also suggested a MOSUM-based statistic to simul-

taneously determine changes when the number of change points goes to infinity

as the sample size tends to infinity. They used the maximum of local MOSUMs

over all possible local intervals such that all local changes with sufficiently large

magnitudes can be detected, as in Hao, Niu and Zhang. (2013). This is also a
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computationally efficient approach.

Note that controlling false positives (Benjamini and Hochberg (1995)) affects

the threshold determination for these test statistics and, thus, the detection of

change points. This affects the estimation consistency of existing CUSUM-based

or MOSUM-based methods in two ways, although family-wise test procedures

can alleviate this issue. First, owing to the effect of noise, with a nonzero proba-

bility, test statistics in the intervals with no changes could also be larger than the

designed threshold. Thus, in theory, the estimation consistency for the number

of change points, if no extra conditions are assumed, would need further study.

Second, these methods can well detect those change points with magnitudes that

are larger than a designed threshold. We call this detection under the global

alternative hypothesis. However, the detectability of weak signals that converge

to zero at a certain rate as the sample size tends to infinity, under local alter-

natives, needs careful study. When stepwise procedures are applied, Shao and

Zhang (2010) and Tewes (2017) provided theoretical results related to weak signal

detection. However, in stepwise procedures, the convergence rates of detectable

weak signals to zero slow down because of increasingly smaller sample sizes ow-

ing to the stepwise segmentations. In other words, it becomes more diffficult to

detect weak signals in sequential testing procedures. This is particularly the case

with a diverging number of change points. To the best of our knowledge, there

are no relevant results on the estimation consistency in the literature. Niu, Hao

and Zhang (2016) provide a comprehensive review.

We propose a novel signal statistic, as well as a criterion. The key feature of

the approach is that it involves neither an optimization algorithm nor a hypothe-

sis testing procedure. As such we can alleviate the computational complexity and

deal with the issue of false positives, while still achieving estimation consistency

for the number of change points and their locations. The defined signal statistic,

which uses a sequence of MOSUM-based ridge ratios of double moving averages,

can meet these requirements. Note that to identify change points, we need to

make the values at the true change points (or nearby in a certain sense) stand

out. To the best of our knowledge, we have not seen a similar idea in the liter-

ature. The distinguishing feature of the new criterion is that the defined signal

statistic is discontinuous, with a useful “PULSE” pattern near all change points:

at the population level, any change point plus two times the segment length of the

moving average attains a local minimum tending to zero, followed by a local max-

imum going to infinity. This feature makes change points stand out significantly,

and thus provides an efficient way to simultaneously identify them. We give a

toy example to show this pattern in Section 2 when we describe the criterion
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construction. Note that its visual nature means the plot of the signal statistic

is easy to implement. We call this criterion the PULSE criterion. To show its

usefulness, we check how sensitive the criterion is to “weak changes” in the sense

that some changes in the sequence of local means converge to a sequence without

mean changes, at a certain rate. As a generic methodology, it can be extended

to handle other change points detection problems, such as distributional changes

(e.g., Pollak (1987)), changes in regression models (e.g., Qu and Perron (2007)),

change points of functional data (e.g., Berkes et al. (2009)), and high-dimensional

change point detection (e.g., Wang and Samworth (2018)). However, it has a lim-

itation in handling the problems with short spacings between two change points.

This is because, to guarantee estimation consistency, the segment length of the

moving averages needs to be sufficiently long. As a result, there is more than

one change point in short spacing scenarios. We will have a brief discussion in

Section 6.

The remainder of the paper is organized as follows. In Section 2, we in-

troduce the criterion construction, and investigate the estimation consistency.

Section 3 investigates weak signals, where the magnitudes of changes converge

to zero at a certain rate as the sample size tends to infinity. Section 4 examines

detecting changes over variances. Some numerical studies are put in Section 5.

Section 6 contains an illustrative application to the detection of mean changes.

Section 7 concludes the paper. All technical proofs are presented in the online

Supplementary Material.

2. Methodological Development

2.1. Notation

Let X1, . . . , Xn be independent one-dimensional random variables decom-

posed as

Xi = µi + εi, 1 ≤ i ≤ n,

where µi = E(Xi) are the means. Assume that there are K change points

1 < z1 < z2 < · · · < zK < n, such that µzk−1+j = µ(k), for k = 1, . . . ,K + 1 and

0 ≤ j ≤ zk − zk−1 − 1, where z0 = 0 and zK+1 = n. For k = 1, . . . ,K, write

βk = |µ(k+1) − µ(k)| for the (nonzero) difference in means between consecutive

segments. The number K can go to infinity as the sample size goes to infinity.

Write the minimum length of the segments as α∗n:

α∗n := min
0≤k≤K

{zk+1 − zk}, (2.1)
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and the minimum magnitudes of the mean changes as ν:

ν := min
1≤k≤K

βk. (2.2)

Denote by 1 < ẑ1 ≤ ẑ2 ≤ · · · ≤ ẑK < n− 1 the estimated locations.

2.2. Criterion construction

Construct a signal statistic using the following steps. Consider the mean

change detection problem first.

Difference of Moving Averages: To character the mean information, let S(i)

be the moving sum with window size αn for every location i:

S(i) =

i+αn−1∑
j=i

µj . (2.3)

Because the difference between two successive moving sums at the population

level shows the mean change at its location zk, we define D(i) as follows: for

1 ≤ i ≤ n− 2αn, if 2αn < α∗n,

D(i) :=
1

αn
(S(i)− S(i− αn)) =

1

αn

(
i+αn−1∑
j=i

µj −
i−1∑

j=i−αn

µj

)
. (2.4)

For any fixed k, we have:

D(i) =


i− (zk − αn)

αn
(µk+1 − µk), zk − αn ≤ i < zk,

zk + αn − i
αn

(µk+1 − µk), zk ≤ i ≤ zk + αn

0, zk−1 + αn ≤ i ≤ zk − αn.

(2.5)

This is because, when zk−1 + αn ≤ i ≤ zk − αn, S(i) = S(i + αn). Here, D(i)

attains a local maximum/minimum at i = zk, for any k, with 1 ≤ k ≤ K within

the segment of length 2αn. Figure 1 presents a plot visualizing the pattern. This

is simply the idea of MOSUM. Identifying local minima would be a way to identify

changes. Because we expect it to have too many local maxima/minima, owing

to the randomness oscillation, we may have difficulty accurately determining

the number of change points and their locations. To make the differences more

smooth at the sample level, we consider a smoothing step by double averaging.

Note that the second averaging step is not necessary in theory, but in practice,

we found it is useful for better detection.
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Double Averaging: The second round of averaging repeatedly uses the data

points in every average. Note that at the population level, this step is not nec-

essary, but at the sample level, it alleviates the oscillation of the sequence; see

Remark 1. Denote D̃(i) as the average of D(i) within the window of size αn:

D̃(i) =
1

αn

i+αn−1∑
j=i

D(j). (2.6)

Thus we have that

D̃(i)

{
> 0, zk − 2αn ≤ i ≤ zk + αn,

= 0, otherwise,

with the following detail:

|D̃(i)|=



0, zk−1+αn≤ i≤zk−2αn;
(i−zk+2αn+1)·(i−zk+2αn)

α2
n

βk, zk − 2αn<i≤zk−αn;
−i2−αni+2izk−i+zk−z2k+αnzk+(α2

n−αn)/2
α2

n
βk, zk−αn<i<zk − αn

2 −
√
αn;(

3
4 −

αn−
√
αn

α2
n

)
βk, i=zk− αn

2 −
√
αn;

−i2−αni+2izk−i+zk−z2k+αnzk+(α2
n−αn)/2

α2
n

βk, zk− αn

2 −
√
αn<i<zk−

αn

2 ;

3
4βk, i=zk− 1

2αn;
−i2−αni+2izk−i+zk−z2k+αnzk+(α2

n−αn)/2
α2

n
βk, zk− αn

2 <i<zk −
αn

2 +
√
αn;(

3
4 −

αn−
√
αn

α2
n

)
βk, i = zk− αn

2 +
√
αn;

−i2−αni+2izk−i+zk−z2k+αnzk+(α2
n−αn)/2

α2
n

βk, zk− αn

2 +
√
αn<i≤zk;

(−i+zk+αn+2)(−i+1+αn+zk)
α2

n
βk, zk<i≤zk+αn;

0, zk+αn<i≤zk+1−2αn.

where βk = |µk+1 − µk|. Clearly, D̃(i) attains a local maxima at zk − αn/2,

for each k, with 1 ≤ k ≤ K. The local maximizers of D̃(i) plus αn/2 are the

locations of the change points. Similarly to D(i), the sequence D̃(i) cannot be

used directly as a signal statistic either. Now, we construct a sequence of ridge

ratios as a signal statistic with a “pulse” pattern that identifies change points

well.

Signal function (we call it the signal statistic at the sample level).

Consider the ratios between D̃(i) and D̃(i+ 3αn/2). Define the ridge ratios T (i)

at the population level as
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T (i) =
|D̃(i)|+ cn

|D̃(i+ (3/2)αn)|+ cn
, (2.7)

where cn → 0 as n → ∞, to be selected later, to avoid the undefined terms

0/0. In addition, for i ∈ (zk−1 + αn, zk − 2αn), |D̃(i)| = 0 and |D̃(i + 3αn/2)|
monotonically increases. For i ∈ (zk − 2αn, zk − αn/2), |D̃(i))| monotonically

increases, and |D̃(i+3αn/2)|monotonically decreases. For i ∈ (zk−αn/2, zk+αn),

|D̃(i+ 3αn/2)| = 0 and |D̃(i)| monotonically decreases. Then, cn could also play

a role of making T (i) monotonic, to avoid the scenario where there are too many

points tending to zero. In summary, the following property can be easily justified.

Let ↘ and ↗ mean decreasing and increasing, respectively, with respect to the

index i. In addition, → 0 and →∞ mean going to zero and infinity, respectively,

as n→∞. Then,

T (i) =



1, zk−1 + αn ≤ i ≤ zk − 7
2αn,

cn
|D̃(i+3αn/2)|+cn

↘, zk − 7
2αn < i < zk − 2αn,

cn
|D̃(i+3αn/2)|+cn

→ 0, i = zk − 2αn,

|D̃(i)|+cn
|D̃(i+3αn/2)|+cn

↗, zk − 2αn < i < zk − αn

2 ,

|D̃(i)|+cn
cn

→∞, i = zk − αn

2 ,

|D̃(i)|+cn
cn

↘, zk − αn

2 < i < zk + αn,

1, zk + αn ≤ i < zk+1 − 7
2αn.

Any true change point is just the local minimizer plus 2αn. Based on the signal

function, using the local minimizers to identify the change points is convenient

to implement. The toy example in Figure 1 shows the curve patterns of D(i),

|D̃(i + αn/2)| and T (i + 2αn), enabling us to better understand why the pulse

pattern of the signal function T (i), rather than that of D(i) or |D̃(i)|, can be

used to construct a useful criterion. Define their empirical versions.

Sample Version. To define the signal statistic at the sample level, which is

called the signal function at the population level, we can use the sample averages

to estimate D(i) and D̃(i). Let Ŝ(i) =
∑i+αn−1

j=i Xj to estimate S(i), Dn(i) =

(1/αn)(Ŝ(i)− Ŝ(i+αn)) and D̃n(i) = (1/αn)
∑i+αn−1

j=i Dn(j). The signal statistic

is then defined as follows: for i = 1, . . . , n− 7αn/2,

Tn(i) =
|D̃n(i)|+ cn

|D̃n(i+ 3αn/2)|+ cn
, (2.8)
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Figure 1. The plots at the population level.

and the ridge value cn tends to zero at a certain rate specified later. We can see

that ED̃n(i) = D̃(i).

Criterion: As we discussed above, the signal statistic should be highly oscillat-

ing, and there are too many local minima. Thus, we restrict our search, separately

within each chosen interval, to find a local minimum of Tn(i). We do this through

a threshold τ , with 0 < τ < 1. That is,{
i, αn + 1 ≤ i ≤ n− 5

2
αn : Tn(i) < τ

}
.

From the properties of Tn(i), which can also be seen from the plot of Figure 1

heuristically, all these indices can be separated into disjoint subsets, each contain-

ing only one change point asymptotically. Therefore, we can search, separately

within the disjoint subsets, for local minima. To make the search easily imple-

mentable, we recommend τ = 0.5 to avoid possible overestimation with large τ

close to one and underestimation with small τ close to zero. From the definition

of Tn(i) and its pulse pattern, we can also search for the changes by identifying

local maxima that, at the population level, tend to infinity. However, this is

equivalent to using 1/Tn(i), and we do not discuss it further here. In addition,

from the definition of T (i) at the population level, the gap between two local

minimizers must be larger than 2αn. Owing to the consistency of the involved
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estimators, there are K̂ pairs {mk,Mk}, where mk and Mk with mk < Mk are

determined by Tn(i) < 0.5 . In addition, mk satisfies that Tn(mk − 1) ≥ 0.5 and

Tn(mk) < 0.5, and Tn(Mk) < 0.5 and Tn(Mk + 1) ≥ 0.5. Write ẑk − 2αn as the

minimizer in each interval (mk,Mk).

Theorem 1. Assume that Xi−EXi with second moments are i.i.d. random vari-

ables. The tuning parameter cn and the window size αn satisfy cn/
√

log n/αn →
∞, n1/4 log n/

√
αn → 0, and α∗n/αn →∞, where α∗n is the minimum number of

samples between any two change points.

(1) When K is known, then the estimators {ẑ1, . . . , ẑK} have, for every ε > 0,

Pr{max1≤k≤K̂ |(ẑk − zk)/αn| < ε} → 1 as n→∞.

(2) When K is fixed but unknown, then K̂ = K with probability going to one,

and the estimators {ẑ1, . . . , ẑK̂} have the same consistency as the above.

(3) When K = Kn grows unbounded at the rate satisfying n/(α∗Kn)→∞ and

is unknown, the results are the same as those in (2).

Remark 1. We have several issues to discuss.

(1) For selecting the window size αn, we wish to use a small αn such that we

can detect changes within relatively short segments. On the other hand, we

need a large αn such that D̃n(·) has a fast rate of convergence to make a wide

range of the ridge cn. This can make the signal statistic Tn(·) converge to its

limit. In this sense, the optimal selection, if possible, should be different from

the optimal tuning parameter selection in nonparametric estimation, which

tries to balance between bias and variance. Because we need not discuss the

limiting distribution and the bias and variance, we do not have an optimal

selection of αn for the estimation efficiency, and do not know whether an

optimal choice exists.

(2) As previously discussed, the second averaging is mainly for practical use, be-

cause it makes the signal statistic less oscillating. The costs are as follows: 1)

the technical proof becomes more complicated, but still manageable; and 2)

the segment length for each change, if we consider even higher order averag-

ing, should be increased to (o+ 1)αn from 2αn for the first-order averaging,

where o is the order of the averaging. From the plot, double averaging (o = 2)

makes the curve sufficiently smooth. Triple or higher order averaging may

not be necessary any more, which requires an even longer segment to detect

each change.
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Remark 2. The conditions on the rates of divergence of αn, α∗n, and Kn are

based on the following observations. First, we prove that D̃n(i)− D̃(i) converges

in probability to zero at a rate of order
√

log n/αn. Then, the ridge cn should be

a dominating term in every Tn(i), which converges to zero at a rate slower than

that of D̃n(i) − D̃(i). Such a ridge can help Tn(i) hold the properties of T (i)

asymptotically. We show this in the proofs of the theorems in the Supplementary

Material.

For the ridge cn, we recommend a choice for practical use in the numerical

studies. To guarantee the estimation consistency, αn should not be too small such

that the averages can be close to the corresponding means. Thus, for paradigms

with short spacing, our method may not perform well. We present a discussion

in Section 7.

Remark 3. Because one pulse corresponds to one change, the length of a segment

cannot be longer than the minimum distance α∗n between any two changes. Thus,

we assume that the window size αn = o(α∗n). On the other hand, αn cannot be

too small, otherwise the convergence rate of Tn to T will be slow. In our results,

we assume that n1/4 log n/
√
αn → 0, although this condition can be weakened,

which is beyond the scope of this study. These conditions also restrict the number

of change points satisfying Kn = o(n/α∗n).

3. The Case of Weak Signals

In this section, we extend the criterion to handle weak signal scenarios. The

term “weak signals” means that the magnitudes of some changes converge to zero

at a certain rate as the sample size goes to infinity. We also call such models local

models. Consider the following sequence of models: for 1 ≤ k ≤ K:

Xi = µ+ βzkI{i ≥ zk}+ ε, (3.1)

where zk are the locations of the change points, and βzk are the change magni-

tudes, which converge to zero as n → ∞. Denote βz = min1≤k≤K βk. We have

the following results.

Theorem 2. Under the conditions in Theorem 1, for the sequence of local mod-

els in (3.1), when logαn
1/5βz → ∞, we have limn→∞ Pr{K̂ = K} = 1 and

limn→∞ Pr{max1≤k≤K̂ |ẑk − zk|/αn < ε} = 1, for every ε > 0.
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4. Change Points in Variances

In this section, we adopt the criterion for detecting change points in variances.

Consider the second moments of Xi that are generated from the following model:

Xi = µ+ εi, 1 ≤ i ≤ n, (4.1)

where µ is an unknown mean and E(ε) = 0, V ar(ε) = σ2(i). Similarly, we assume

that σ2(i) follows a piecewise constant structure with K + 1 segments. In other

words, there are K change points 1 < z1 < z2 < · · · < zK < n− 1 such that, for

any k with 0 ≤ k ≤ K,

σ2zk+1 = · · · = σ2zk+1
= σ2k. (4.2)

As before, define z0 = 0 and zK+1 = n. At the population level, we similarly

define D(i) and D̃(i):

D(i) = log σ(i) − log σ(i−αn) and D̃(i) =
1

αn

i+αn−1∑
j=i

D(j).

We estimate µ by the sample mean and the variance by

σ̂2(i) =
1

αn

i+αn−1∑
t=i

(
Xt −

1

n

n∑
j=1

Xj

)2

, (4.3)

and Dn(i) and D̃n(i) are defined as the difference between the moving averages

and the average of Dn(j):

Dn(i) = log σ̂(i) − log σ̂(i+αn) and D̃n(i) =
1

αn

i+αn∑
j=i

Dn(j). (4.4)

Finally, we take the ratios of D̃(i) to acquire the required estimator of T (i):

Tn(i) =
|D̃n(i)|+ cn

|D̃n(i+ 3αn/2)|+ cn
. (4.5)

The criterion is the same as before using{
i, 1 ≤ i ≤ n− 7

2
αn : Tn(i) < τ

}
.

Theorem 3. Assume that Xi−µ with fourth moments are independent distributed

random variables and that the conditions in Theorem 1 are still satisfied. Then,

all the parallel results to those in Theorem 1 still hold.
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5. Simulations

To evaluate the performance of the proposed criterion, we run the simulations

with other competing methods. We consider the methods CumSeg in Muggeo

and Adelfio (2011), SMUCE in Frick, Munk and Sieling (2014), and WBS in

Fryzlewicz (2014), and the MOSUM approach considered in Eichinger and Kirch

(2018). Our theoretical results require that αn should be of order higher than

n1/2. Thus, we tried to choose a small αn with an order close to n1/2. In our

algorithm, we take αn = O(n0.6), τ = 0.5 and cn = O(
√

log n/αn). These choices

follow a rule of thumb, and are not data driven. The steps are given in Algorithm

1 below. Note that choosing an appropriate threshold τ is useful, and is done in

a data-driven manner. By the rule of thumb, 0.5 can be a good compromise, and

is thus recommended.

Algorithm 1. How to estimate change points.

Input: X ∈ Rn×1

1: Take αn = O(n0.6), τ = 0.5, cn = O(
√

log n/αn)

2: Perform PULSE construction steps directly to acquire the estimation ẑi, for i =

1, . . . , k.

3: Estimate ẑi based on parameters we select in step 1.

Output: ẑi

For each example, 1,000 replications are used to approximate the distribution

of K̂−K, where K̂n is the estimated number of change points. We also report the

Rand Index (Rand (1971))), which represents a measure of similarity between two

different partitions of the same observations. The Rand Index was also reported

by Matteson and James (2014) to measure the quality of change point locations.

Thus we refer to their definition. Specifically, suppose that the two clusters of

n observations are given by U = U1, . . . , Ua and V = V1, . . . , Vb, respectively,

with a and b clusters. For these two clusters, the Rand Index is calculated by

noting the relative cluster membership for all pairs of observations. Consider the

pairs of observations that fall into one of the following two sets: {A} pairs of

observations in the same cluster under U and in the same cluster under V ; {B}
pairs of observations in different clusters under U and in different clusters under

V . Let #A and #B denote the respective number of pairs of observations in each

of these two sets. The Rand Index is then defined as

Rand Index =
#A+ #B

(n2 )
.
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5.1. Mean changes

We adopt the blocks setting used in the literature (Fryzlewicz (2014)). The

model is

Xi = µi + εi, (5.1)

with four error distributions:

(i) εi
i.i.d.∼ N(0, 1),

(ii) εi
i.i.d.∼ N(0, 3),

(iii) εi
i.i.d.∼ 7 · Uniform(0, 1),

(iv) εi
i.i.d.∼ 3 · t3,

where tv is the Student’s t-distribution with v degree of freedom. The sample

size is n = 2048. The number of change points is K = 11, and the change points

are located at positions 171, 341, 511, 681, 851, 1021, 1191, 1361, 1531, 1701,

and 1871; the means µi are, respectively, 1, 3, 2, -1, 1, 3, 2, 5, 1, -2, 3, and 0. We

call this model the change point (CP) model. To check whether the method can

detect weak signals, we consider another case with the respective means µi 0, 0.7,

0, -0.7, 0.7, 0, 2, 2.7, 0, -2.7, -2, and 0. We call this model the weak signal CP

model. The results are reported in Tables 1 - 4 to examine the performance of

the competitors. Tables 1 and 2 are for the estimated numbers of changes points,

and Tables 3 and 4 are for the estimated locations.

There are several observations from Table 1. In the normal case (i) with

σ2 = 1, PULSE shows competitive performance with WBS and SMUCE, and

better than that of the others. In the normal case (ii) with σ2 = 3, all other

competitors have a serious underestimation issue. Our method overestimates

the number of change points, but the proportion of |K̂ − K| ≤ 1 is still equal

to 95%. In the uniform case (iii) and Student’s t case (iv), the proportions of

|K̂ −K| ≤ 1 are equal to 98% and 78.1%, respectively, much higher than those

of the competitors; particularly in case (iv), all the others have very inaccurate

estimations.

For the quality of the estimated locations, Table 3 indicates that our method

shows competitive performance compared with that of the others. Table 4 shows

that in weak signal cases, our method outperforms the others, although it rea-

sonably performs worse than it does in the strong signal cases.
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Table 1. Distribution of K̂ −K with K = 11 for various detection algorithms under the
CP model.

K̂ −K
Scenarios Procedures ≤ −3 −2 -1 0 1 2 ≥ 3 MSE
(i)σ = 1 MOSUM 0 150 414 383 52 1 0 1.07

cumSeg 0 0 1 875 119 5 0 0.14
WBS 0 0 0 983 15 2 0 0.023

SMUCE 0 0 0 996 4 0 0 0.004
PULSE 0 0 3 994 3 0 0 0.006

(ii)σ2 = 3 MOSUM 881 101 14 4 0 0 0 15.562
cumSeg 702 257 35 5 1 0 0 9.241
WBS 255 606 120 19 0 0 0 4.979

SMUCE 475 497 27 1 0 0 0 6.409
PULSE 0 7 72 643 250 30 3 0.477

(iii) MOSUM 168 515 256 53 7 1 0 3.992
cumSeg 21 703 234 33 9 0 0 3.244
WBS 0 415 477 107 1 0 0 2.138

SMUCE 0 347 496 157 0 0 0 1.884
PULSE 0 5 115 833 47 0 0 0.182

(iv) MOSUM 1,000 0 0 0 0 0 0 55.94
cumSeg 996 1 1 0 2 0 0 61.69
WBS 1 0 0 3 1 3 992 221.19

SMUCE 0 0 0 0 0 0 1,000 505.54
PULSE 1 8 66 331 384 164 46 4.63

5.2. Variance changes

Consider the model

Xi = σiεi. (5.2)

The distributions of εi are the same as those in the mean changes detection above.

Four methods are compared, including SUMCE introduced by Frick, Munk and

Sieling (2014), BS introduced in Scott and Knott (1974)), and PELT introduced

in Killick, Fearnhead and Eckley (2012). Again the sample size is n = 2048 and

K = 11. The change points are located at positions 161, 323, 485, 638, 801, 967,

1132, 1299, 1465, 1632, and 1794; σi are equal to 1, 0.25, 1, 5, 1, 0.25, 1, 5, 1, 0.25,

1, and 5, respectively. Tables 5 and 6 present the comparison results. Clearly,

the new method works robustly against all distributions, and much better than

SUMCE and BS, which underestimate greatly the true number K in all cases.

The performance of PELT varies. In the normal cases (i) and (ii), it performs

well overall. In the uniform case (iii), it underestimates the number of changes,

and in the Student’s t case (iv), it tends to have an overestimation. Note that
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Table 2. Distribution of K̂ −K for various detection algorithms under the weak signal
model.

K̂ −K
Scenarios Procedures ≤ −3 −2 -1 0 1 2 ≥ 3 MSE
(i)σ = 1 MOSUM 953 39 8 0 0 0 0 21.957

cumSeg 245 254 266 152 82 1 0 4.167
WBS 0 51 224 612 111 2 0 0.547

SMUCE 12 113 554 321 0 0 0 1.114
PULSE 0 0 37 889 73 1 0 0.114

(ii)σ2 = 3 MOSUM 1,000 0 0 0 0 0 0 89.395
cumSeg 1,000 0 0 0 0 0 0 50.469
WBS 1,000 0 0 0 0 0 0 39.165

SMUCE 1,000 0 0 0 0 0 0 39.561
PULSE 6 17 43 93 163 211 467 8.813

(iii) MOSUM 1,000 0 0 0 0 0 0 56.917
cumSeg 1,000 0 0 0 0 0 0 46.107
WBS 997 3 0 0 0 0 0 24.915

SMUCE 998 2 0 0 0 0 0 25.035
PULSE 158 156 223 203 147 78 35 3.71

(iv) MOSUM 1,000 0 0 0 0 0 0 42.371
cumSeg 992 7 0 1 0 0 0 41.275
WBS 0 0 0 0 1 0 999 248.034

SMUCE 0 0 0 0 0 0 1,000 628.123
PULSE 18 56 97 221 224 198 168 3.699

Student’s t distribution in case (iv) does not satisfy the required condition for

our theoretical results. We conducted this simulation to keep continuity with the

previous section when detecting change points in means, and checked its practical

use, even when the condition is violated. The simulation results show that our

“PULSE” procedure is still capable of estimating the number of change points

well.

6. Real-Data Example

Consider an Array CGH data set, which shows aberrations in genomic DNA.

The observations are normalized glioblastoma profiles from the data set of Bredel

et al (2005). We now detect regions on which the observations jump from zero.

Compute Tn(i) about the array CGH profile of chromosome 13 in GBM31. The

threshold τ = 0.5 and ridge cn are selected as before. In Figure 2, we plot

the original data, Dn(i), D̃n(i), and Tn(i). From Dn(i), the magnitudes of the

changes are small, except for a point between 500 and 600, which is also smaller

than 0.5. D̃n(i) also shows this pattern, but magnitude of the change of the latter
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Table 3. Rand Index for various detection algorithms under the CP model.

Scenario Procedure Rand Index
(i)σ = 1 MOSUM 0.9835

cumSeg 0.9851
WBS 0.9868

SMUCE 0.9861
PULSE 0.9869

(i)σ = 3 MOSUM 0.8395
cumSeg 0.9502
WBS 0.9658

SMUCE 0.9603
PULSE 0.9614

(i)(iii) MOSUM 0.9381
cumSeg 0.9650
WBS 0.9663

SMUCE 0.9682
PULSE 0.9470

(i)(iv) MOSUM 0.5897
cumSeg 0.7519
WBS 0.9445

SMUCE 0.9469
PULSE 0.9426

point is 0.4, which is still small. The plot of Tn(i) presents a curve clearly showing

that it can be regarded as a change point. Tn(i) also suggests the number 579 as

the location of a change point. From all four plots, determining this location is

reliable.

7. Conclusion

We have proposed a generic method for detecting change points of means and

variances. Our approach achieves estimation consistency with less computational

complexity. The construction of D̃ with the segment length αn can be viewed

from a nonparametric estimation perspective for a function with fixed designed

points t = 1, . . . , n. This is because moving averages can be regarded as a local

smoothing procedure. Thus, the optimal selection of αn, if we want to study

the estimation efficiency of Tn, can be regarded as the optimal selection of a

tuning parameter. Note that the optimal selection of the tuning parameter in a

nonparametric estimation tries to balance the estimation bias and the variance.

However, as we discussed in Remarks 1 and 3, the optimality, if it exists, is

related to the rate of convergence of the signal statistic. Thus, this is an essential

difference in methodology. It deserves further study to determine in what sense
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Table 4. Rand Index for various detection algorithms under the weak signal model.

Scenario Procedure Rand Index
(i)σ = 1 MOSUM 0.9031

cumSeg 0.9517
WBS 0.9749

SMUCE 0.9678
PULSE 0.9775

(i)σ = 3 MOSUM 0.5753
cumSeg 0.7724
WBS 0.8294

SMUCE 0.8412
PULSE 0.9510

(i)(iii) MOSUM 0.7543
cumSeg 0.7775
WBS 0.8917

SMUCE 0.8928
PULSE 0.9535

(i)(iv) MOSUM 0.8154
cumSeg 0.7877
WBS 0.9469

SMUCE 0.9466
PULSE 0.9549

Table 5. Distribution of K̂ −K using various detection algorithms under the CP model
for variance changes.

K̂ −K
Scenarios Procedures ≤ −3 −2 -1 0 1 2 ≥ 3 MSE
(i)σ = 1 SMUCE 1,000 0 0 0 0 0 0 9

BS 1,000 0 0 0 0 0 0 36
PELT 11 4 0 985 0 0 0 0.412

PULSE 0 0 0 998 2 0 0 0.002
(ii)σ2 = 3 SMUCE 1,000 0 0 0 0 0 0 9

BS 1,000 0 0 0 0 0 0 36
PELT 11 0 308 681 0 0 0 0.471

PULSE 0 0 0 992 8 0 0 0.008
(iii) SUMCE 1,000 0 0 0 0 0 0 9

BS 1,000 0 0 0 0 0 0 36
PELT 1,000 0 0 0 0 0 0 36

PULSE 0 0 0 1,000 0 0 0 0
(iv) SMUCE 1,000 0 0 0 0 0 0 9

BS 1,000 0 0 0 0 0 0 36
PELT 9 2 4 67 84 173 661 23.867

PULSE 0 0 33 962 5 0 0 0.038
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Table 6. Rand Index using various detection algorithms under the CP model for variance
changes.

Scenario Procedure Rand Index
(i)σ = 1 SMUCE 0.9275

BS 0.8732
PELT 0.9868

PULSE 0.9636
(i)σ = 3 SMUCE 0.9430

BS 0.8604
PELT 0.9829

PULSE 0.9625
(i)(iii) SMUCE 0.9347

BS 0.8875
PELT 0.8882

PULSE 0.9675
(i)(iv) SMUCE 0.9173

BS 0.8574
PELT 0.9770

PULSE 0.9598
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Figure 2. The plots for the Array CGH data.

we need an optimal selection, and whether the optimal αn exists.

In addition, our approach can be extended to handle more general models

than mean or variance changes. For example, it might be used to detect change

points in distribution or regression functions. Our approach might also be applied

to multivariate data, as in Matteson and James (2014), or, under certain regu-
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larity conditions, to high-dimensional data, as in Wang and Samworth (2018).

A rough idea is to define a criterion that is the minimum of the signal statis-

tics over all components. Note that such a minimum of component-based signal

statistics will no longer have a pulse pattern, because we can check that the max-

imum value of this minimum signal statistic is one. However, the minima near

the change points are still zero, which can be used to identify the changes. Our

approach may also work for change point detection in functional data, mentioned

in Berkes et al. (2009). In addition to the component-based method mentioned

above, another possible way is to use projected variables.

Finally, a limitation of the proposed method is that it suffers from the short-

spacing problem. More specifically, in our criterion, the segment length is larger

than 3αn, where αn = O(n0.6). When the spacing between two change points

is shorter than 3αn, change points within the segment cannot be identified. A

possible improvement of our method may be to incorporate the work of Fryzlewicz

(2014, 2020), if we can derive the relevant asymptotic properties. This is left to

further research.
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