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Abstract: This study develops an optimal frequentist model averaging approach for

estimating the unknown conditional mean function in the nonparametric additive

model when the covariates and the degree of smoothing are subject to uncertainty.

Our weight choice criterion selects model weights by minimizing a plug-in estimator

of the risk of the model average estimator under a squared error loss function.

We derive the convergence rate of the model weights obtained from our proposed

method to the infeasible optimal weights, and prove that the resultant model average

estimators are asymptotically optimal. An extension to the additive autoregressive

model for time series data is also considered. Our simulation analysis shows that

the proposed model average estimators significantly outperform several commonly

used model selection estimators and their model averaging counterparts in terms of

the mean squared error in a large part of the parameter space. We further illustrate

our methods using two real data studies.
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1. Introduction

The nonparametric additive model (AM) (Stone (1985); Hastie and Tibshi-

rani (1990)) is a well-known statistical modeling approach. The AM belongs to

a class of regression models in which the usual linear relationship between the

response and the covariates is replaced by a sum of univariate smooth functions.

AMs thus avoid much of the curse of dimensionality that afflicts fully nonpara-

metric regression and afford more flexibility than traditional linear models with

respect to the covariate effects. The smooth functions in AMs are commonly

estimated by backfitting (Buja, Hastie and Tibshirani (1989); Mammen, Linton

and Nielsen (1999); Opsomer (2000); Nielsen and Sperlich (2005); Ravikumar

et al. (2009)), smoothing splines (Stone (1985); Doksum and Koo (2000); Huang

and Yang (2004); Chen, Fan and Li (2018)), or marginal integration methods
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(Tjostheim and Auestad (1994); Linton and Nielsen (1995); Fan, Hardle and

Mammen (1998)). AMs have been applied widely in many disciplines, includ-

ing ecology, economics, environmental research, and medicine. Recent examples

include the works of Eyto and Irvine (2007) and Bontemps, Simioni and Surry

(2008), among others.

Model selection is a vital aspect of any statistical analysis. Within the frame-

work of the AM, model selection typically involves choosing covariates and their

degrees of smoothing. Huang and Yang (2004) proposed a spline-based Bayesian

information criterion (BIC) for selecting the lag order in a nonlinear additive

autoregressive model. They proved the consistency of the proposed method, and

examined analogous spline-splitting methods based on the Akaike information

criterion (AIC) and generalized cross-validation (GCV) in a simulation study.

Xue (2009) introduced a penalized polynomial spline method for simultaneous

model estimation and variable selection in AMs. Huang, Horowitz and Wei

(2010) considered the group lasso. Belitz and Lang (2008) and Cantoni, Flem-

ming and Ronchetti (2011) developed algorithms for component selection in AMs.

Other well-known works on model selection in AMs include Härdle and Korostelev

(1996), Chen, Liang and Wang (2011), and Fan, Feng and Song (2011), among

others.

In recent years, model averaging has emerged as a viable alternative to model

selection. Unlike model selection, which chooses one model for the data at hand,

model averaging adopts a weighted ensemble approach that allows multiple mod-

els to contribute to the analysis in proportion to their estimated performance. In

doing so, it captures all useful information of the models. Model averaging usually

produces more stable estimates and more precise forecasts than those obtained

from a single model. Furthermore, because model averaging properly accommo-

dates uncertainty over models in situations where there is no predominant model

to call on, it benefits statistical inference (Hjort and Claeskens (2003); Liu (2015);

Zhang and Liu (2019)). Model averaging may be viewed as a smoothed extension

of model selection from the point of view of estimation and prediction.

A major part of the model averaging literature focuses on choosing model

weights. When approached from a Bayesian perspective, the model weights are

usually determined by the individual models’ posterior probabilities. Here, we

adopt a frequentist approach to model averaging, which has become increasingly

popular in statistics and data analysis in recent years. Frequentist model av-

eraging (FMA) precludes the need to specify any prior distribution. However,

choosing optimal weights using a data-driven method is arguably more chal-

lenging for the frequentist formulation than it is for its Bayesian counterpart.
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The FMA strategies that have been developed include weighting by information

criterion scores (Buckland, Burnham and Augustin (1997)), adaptive regression

by mixing (Yang (2001)), Mallows model averaging (Hansen (2007)), jackknife

model averaging (Hansen and Racine (2012); Ando and Li (2014)), optimal MSE

averaging (Liang et al. (2011)), and averaging using Kullback–Leibler-type mea-

sures (Zhang et al. (2016)). Claeskens (2016) provides a survey of this rapidly

expanding body of literature.

While the optimal choice of weights in FMA has been researched extensively,

the majority of the literature focuses on parametric models. Optimal FMA meth-

ods are relatively less well developed for nonparametric and semiparametric mod-

els. Hansen (2014) suggested the jackknife criterion for choosing the weights for

the nonparametric sieve regression averaging estimator. For the partially linear

model (PLM), Zhang and Wang (2019) developed a Mallows-type weight choice

criterion and studied the asymptotic optimality of the corresponding model av-

eraging estimator. Zhu et al. (2019) proposed a weight choice criterion in a PLM

with varying coefficients. Other studies of FMA on the choice of weights in non-

parametric and semiparametric models include Gao (2015), Chen et al. (2018),

and Li et al. (2018), among others.

The principal scientific contribution of this study is to develop optimal FMA

approaches for nonparametric additive models and additive autoregressive mod-

els, which have not been studied thoroughly in the existing literature. Our weight

choice criterion is based on minimizing a plug-in estimator of the squared error

risk of the FMA estimator. We consider two plug-in estimators that have similar

forms, but different penalties. We derive the convergence rate of our weights to

the infeasible optimal weights, and prove that the model average estimators ob-

tained from the weight choice criterion are asymptotically optimal in the sense of

achieving the smallest possible squared error. Note that developing asymptotic

theory in the present context is nontrivial, because in addition to the uncertainty

in the covariate set, we also allow for uncertainty in the degree of smoothing and

a dependent data structure.

The remainder of this paper is organized as follows. Section 2 describes the

model setup, discusses the FMA scheme, and presents the main results on the

asymptotic properties of the proposed model averaging method. In Section 3,

we extend our analysis to additive autoregressive models. Section 4 reports the

results of a simulation study that examines the finite-sample performance of the

proposed model averaging estimators. Section 5 applies the proposed method

to two real data sets related to medical and environmental research. Section 6

concludes the paper. All proofs of the results are contained in the Appendix.
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2. Model Setup and the Weight Choice Criterion

Consider the nonparametric additive model

Y =

d0∑
j=1

gj(X
(j)) + e ≡ µ+ e, (2.1)

where Y = (y1, . . . , yn)′ is a random vector, X(j) = (x1j , . . . , xnj)
′ is the jth co-

variate, gj are one-dimensional nonparametric functions with gj(X
(j)) = (gj(x1j),

. . . , gj(xnj))
′, and e = (e1, . . . , en)′ is a vector of disturbance terms, with ei being

independent with mean zero and variance σ2. To prove the asymptotic optimal-

ity of the model average estimators, we need no distributional assumption on e.

However, for the purpose of developing the weight choice criterion, we assume

that e follows a multivariate normal distribution. The same approach was taken

by Zhang, Zou and Carroll (2015), who examined model averaging in another

context. Now, assume that there are M candidate models, each corresponding to

a different covariate set and degree of smoothing. We let µ̂m = PmY be the esti-

mator of µ under the mth candidate model, where Pm is a hat matrix. The form

of Pm depends on the estimation method. As discussed in Section 1, backfitting,

smoothing splines, and marginal integration are some of the common estimation

methods studied in the literature.

The FMA estimator of µ can be expressed as µ̂(w) =
∑M

m=1wmµ̂m = P (w)Y ,

where w ∈ W = {w ∈ [0, 1]M :
∑M

m=1wm = 1} is the weight vector and P (w) =∑M
m=1wmPm. We assume that the Mth model has the largest dimension among

all candidate models.

Our weight choice criterion is based on a minimization of a plug-in estimator

of the risk of µ̂(w) under a squared error loss function. Define the squared error

loss function of µ̂(w) as L(w) = ‖µ− µ̂(w)‖2. Note that

L(w) = ‖Y − µ̂(w)‖2 − 2e′(Y − µ̂(w)) + e′e

= ‖Y − µ̂(w)‖2 − 2e′(I − P (w))(µ+ e) + e′e

= ‖Y − µ̂(w)‖2 + 2e′P (w)e− 2e′(I − P (w))µ− e′e. (2.2)

From (2.2), we obtain the following scaled risk function:

R0(w) = E

(
L(w)

σ2

)
= E

[
‖Y − µ̂(w)‖2

σ2
+ 2

M∑
m=1

wme
′Pme

σ2

]
− n. (2.3)
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Although an ideal approach would be to choose w by minimizing R0(w) directly,

this would not result in a solution, because R0(w) involves unknown expecta-

tions. Hence, we consider minimizing a plug-in estimator of R0(w). Ignoring the

constant n in (2.3), our plug-in estimator of R0(w) takes the form

‖Y − µ̂(w)‖2

σ̂2M
+ 2

M∑
m=1

wmE

(
e′Pme

σ̃2m

)
, (2.4)

where σ̂2M = ê′M êM/(n−tr(PM )) is the least squares estimator of σ2 based on the

largest model, êM = Y −µ̂M , and σ̃2m = ‖Y −µ̂m‖2/n = Y ′(In−Pm)′(In−Pm)Y/n

is the maximum likelihood estimator of σ2 based on the mth candidate model.

Our substitution of σ2 by σ̂2M in the first term on the right-hand side of

(2.3) follows Mallows (1973), who used the same approach to derive Mallows’ Cp

criterion. On the other hand, e′Pme/σ
2 can be thought of as the “penalty” for

the mth model. Hence, it makes sense to estimate σ2 in each of e′Pme/σ
2 in (2.3)

by σ̃2m so that there are different penalties for different models. This is similar

to the idea of using different tuning parameters for different coefficients in the

LASSO (Wang, Li and Tsai (2007)).

To use (2.4) as a weight choice criterion, an evaluation of E(e′Pme/σ̃
2
m) is

required. By Stein’s lemma (Stein (1981)), we have

E

(
e′Pme

σ̃2m

)
= σ2Etr

(
∂Pmeσ̃

−2
m

∂Y ′

)
= σ2Etr

(
Pm

∂eσ̃−2m
∂Y ′

)
= σ2tr

{
PmE

(
σ̃−2m

)
+ PmE

(
e
∂σ̃−2m
∂Y ′

)}
= tr

{
PmE

(
σ2σ̃−2m

)
+ σ4PmE

(
∂2σ̃−2m
∂Y Y ′

)}
= tr

{
PmE

(
σ2σ̃−2m

)
+ σ4PmE

(
2σ̃−6m

∂σ̃2m
∂Y

∂σ̃2m
∂Y ′

− σ̃−4m
∂2σ̃2m
∂Y Y ′

)}
.

Noting that ∂σ̃2m/∂Y = 2n−1(I − Pm)′(I − Pm)Y and ∂2σ̃2m/∂Y Y
′ = 2n−1(I −

Pm)′(I − Pm), we can write

E

(
e′Pme

σ̃2m

)
= E{σ2σ̃−2m tr(Pm) + 8n−2σ4σ̃−6m Y ′(I − Pm)′(I − Pm)Pm(I − Pm)′

(I − Pm)Y − 2n−1σ4σ̃−4m tr
(
(I − Pm)Pm(I − Pm)′)

}
. (2.5)



406 LIAO ET AL.

Substituting (2.5) in (2.4), we obtain the following weight choice criterion:

‖Y − µ̂(w)‖2

σ̂2M
+ 2

M∑
m=1

wmdfm, (2.6)

where

dfm = σ2σ̃−2m tr(Pm)

+8n−2σ4σ̃−6m Y ′(I − Pm)′(I − Pm)Pm(I − Pm)′(I − Pm)Y

−2n−1σ4σ̃−4m tr
(
(I − Pm)Pm(I − Pm)′

)
.

For the special case of a symmetric and idempotent Pm, the weight choice criterion

simplifies to

‖Y − µ̂(w)‖2

σ̂2M
+ 2

M∑
m=1

wm
σ2tr(Pm)

σ̃2m
. (2.7)

The unknown σ2 in (2.7) may be replaced by the least squares estimator σ̂2m =

‖Y − µ̂m‖2/(n − tr(Pm)) based on the mth candidate model or its maximum

likelihood counterpart σ̃2m. Both are commonly used to estimate σ2. We first

consider replacing σ2 in (2.7) by σ̂2m. This yields

‖Y − µ̂(w)‖2

σ̂2M
+ 2

M∑
m=1

wm
ntr(Pm)

n− tr(Pm)
. (2.8)

In order to use (2.8), one needs an explicit form of the hat matrix Pm. As dis-

cussed earlier, the form of Pm depends on the method of estimation. Here, we

consider the spline smoothing estimation method, which has the advantage of sim-

plicity (Huang and Yang (2004)). Let am, bm, and cm represent some sequences

varying with m. Denote the knot sequence as {a = ζj,0 < ζj,1 < · · · < ζj,Nam
j

<

ζj,Nam
j +1 = b} for gj , where a < b are finite numbers and Nam

j is the number of

interior knots. Let ϕ be the polynomial spline space consisting of functions that

are, first, polynomials of degree lbmj on intervals [ζj,s, ζj,s+1)(s = 0, . . . , Nam

j − 1)

and [ζj,Nam
j
, ζj,Nam

j +1], and second, lbmj − 1 times continuously differentiable on

[a, b] (Stone (1985); de Boor (2001); Xue (2009); Huang, Horowitz and Wei

(2010)). We assume that there exists a basis Bm
j (x) = (Bj1(x), . . . , Bjqmj (x))′

(qmj = Nam

j + lbmj and x ∈ [a, b]) for the spline space ϕ. Some examples include

the truncated power basis and B-spline basis (de Boor (2001)). Without loss of

generality, assume that xij ∈ [a, b]. Denote Bm
j = (Bm

j (x1j), . . . , B
m
j (xnj))

′. Let

scm be the index set of covariates under the mth model; that is, scm is a subset
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of {1, . . . , d}. Because the candidate models may be misspecified, d is not neces-

sarily equal to d0 given in (2.1). For the mth candidate model, we can write the

spline estimator of µ as µ̂m =
∑

j∈scm B
m
j θ̂

m
j , where θ̂m = [θ̂m

′

j ]′j∈scm represents

the
∑

j∈scm q
m
j -dimensional vector satisfying

θ̂m = argmin
θm

∥∥∥∥Y − ∑
j∈scm

Bm
j θ

m
j

∥∥∥∥2, (2.9)

with θm = [θm
′

j ]′j∈scm . This yields Pm = Bm(Bm′Bm)−1Bm′, which is symmetric

and idempotent, where Bm = [Bm
j ]j∈scm is the n ×

∑
j∈scm q

m
j basis matrix.

Substituting Pm in (2.8) results in the criterion

φ(w) = ‖Y − µ̂(w)‖2 + 2σ̂2M

M∑
m=1

wm
nrm
n− rm

, (2.10)

where rm =
∑

j∈scm q
m
j and qmj = Nam

j + lbmj . Write ŵ = argminw∈Wφ(w), and

label µ̂(ŵ), the FMA estimator of µ that uses ŵ, the additive model average

(AMA) estimator.

Remark 1. The way in which am, bm, and cm vary with m determines their

explicit expressions. Let h1 and h2 be the numbers of knot sequences and de-

grees, respectively. If, for example, am vary in {1, 2, . . . , h1} and bm vary in

{1, 2, . . . , h2}, then we can write am = m − h1[(m − 1)/h1], bm = 1 + [(m − 1

− h1h2[(m− 1)/(h1h2)])/h1], and cm = 1 + [(m − 1)/(h1h2)], where [A] denotes

the integral part of A.

Remark 2. If the unknown σ2 in the penalty term of (2.7) is replaced by the

maximum likelihood estimator σ̃2m instead of σ̂2m, then (2.8) changes to

‖Y − µ̂(w)‖2

σ̂2M
+ 2

M∑
m=1

wmtr(Pm). (2.11)

Substituting Pm in (2.11) yields the alternative criterion

φH(w) = ‖Y − µ̂(w)‖2 + 2σ̂2M

M∑
m=1

wmrm, (2.12)

which has the same form as Hansen’s (2007) Mallows weight choice criterion

for linear regression. Denote w̃ = argminw∈WφH(w). We refer to the model

average estimator µ̂(w̃) arising from φH(w) as the AMAH estimator. Clearly,
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φ(w) and φH(w) are plug-in versions of the same criterion, and they differ only

in the estimator of σ2 being used in the penalty term of the criterion. Like

Hansen (2007), φH(w) can actually be derived without the normality assumption

on the error term. The estimators resulting from φ(w) and φH(w) have the same

asymptotic properties, but different finite-sample properties. See Section 4 for

details. In fact, because φ(w) imposes heavier penalties on larger models, it may

have some merits over φH(w) in small samples.

Remark 3. Our weight choice scheme is formulated as a quadratic program-

ming problem. For small to moderate values of M (say M ≤ 400), the com-

putation is manageable and can be performed efficiently via, for example, the

function “solve.QP” in R. When M is large, one can first subset the models into

a smaller candidate set via “model screening” before applying model averaging

to the smaller set. Some well-known model screening methods include the “top

M” method, based on AIC and/or BIC scores (Yuan and Yang (2005)), and the

forward and backward stepwise procedures developed specifically for AMs when

only the covariates are subject to uncertainty (Huang and Yang (2004)).

Now, denote the risk function and the minimum possible risk as R(w) =

E
[
‖µ− µ̂(w)‖2

]
and ξn = infw∈W R(w), respectively. Let C be a generic positive

constant that can take on different values in different contexts. Consider the

following regularity conditions:

Condition 1. E(e4Gi ) ≤ C < ∞, and Mξ−2Gn

∑M
m=1(R(wm0))

G → 0, for some

fixed integer 1 ≤ G < ∞, where wm0 is an M × 1 vector with the mth element

taking on the value of unity, and the others zero.

Condition 2. µ′µ/n = O(1).

Condition 3. r2M/n ≤ C <∞.

Conditions 1–3 are similar to those used by Wan, Zhang and Zou (2010).

The first part of Condition 1 places a constraint on the moment of {ei}, while

the second part restricts the rate of increase of M . As an example, assume

that ξn has the order of nβ with β > 1/2, which is a reasonable assumption

for nonparametric regressions (Ando and Li (2014)), and max1≤m≤M R(wm0) =

O(n). Then, the second part of Condition 1 holds if M2/nG(2β−1) → 0. It has

been shown in other contexts that if the second part of Condition 1 is removed,

then the asymptotic optimality of FMA estimators can only be established under

a somewhat restricted weight set (Cheng, Ing and Yu (2015)). Condition 2 is

mild and commonly used. Condition 3 restricts the rate at which rM increases.
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Theorem 1. Under Conditions 1–3,

L(ŵ)

inf
w∈W

L(w)

p−→ 1, (2.13)

and

L(w̃)

inf
w∈W

L(w)

p−→ 1, (2.14)

where ŵ = argminw∈Wφ(w) and w̃ = argminw∈WφH(w).

Proof. See the Appendix.

Theorem 1 shows that both the AMA and the AMAH estimators are asymp-

totically optimal in the sense of achieving the smallest possible squared error.

Remark 4. For the FMA estimator to approach the true nonparametric com-

ponent of the model, it is necessary for the number of knots to increase with the

sample size. Stone (1985) and Huang and Yang (2004) showed that the estimator

of the nonparametric function can attain the optimal rate of convergence if the

number of knots is of the order of n1/5. In the following, we demonstrate that if

the candidate model set includes the models associated with the spline estima-

tors with the optimal rate of convergence given in Stone (1985), the asymptotic

optimality stated in Theorem 1 remains valid, provided that some mild regular-

ity conditions are fulfilled. Let us fix the polynomial degree and the number of

covariates, allow the number of knots to vary, and assume that the candidate

set comprises models of dimensions (rm) in the order of n1/5 (i.e., the number of

knots has the order of n1/5). Then, the mean squared error of the spline estima-

tor (divided by n) has the order n−4/5, which is the optimal rate of convergence

for spline estimators (Stone (1985)). For the above example, Condition 3 clearly

holds, and Theorem 1 remains valid if Condition 2 and the first part of Condition

1 are true and M2/nG/5 = o(1). The latter holds for appropriate M and G, and

is a sufficient condition for the second part of Condition 1 to hold.

Remark 5. Like all model selection and averaging procedures, the performance

of the proposed procedure depends heavily on the construction of the candi-

date set. We need to impose some conditions on the candidate model set in

order for the proposed procedure to be asymptotically optimal. See Section 2

for a discussion of the conditions. In practice, one often looks to the context of

the investigation for guidance in constructing candidate models. For example,

econometric models are usually based on economic theories. In the absence of
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any context-specific information, one can consider a large number of candidate

models with varying degrees of smoothness and different covariates in the initial

stage, then apply model screening to reduce the candidate set to a manageable

scale. See Remark 3 above.

Now, denote the (infeasible) optimal weight obtained from a direct minimiza-

tion of R(w) as w0 = argminw∈WR(w). It is assumed that w0 is an interior point

of W. Let λmin(A) and λmax(A) = ‖A‖ be the minimum and maximum singular

values, respectively, of a general real matrix A. Denote Λ1 = (µ̂1, . . . , µ̂M ) and

Λ = Λ′1Λ1. Consider the following regularity conditions:

Condition 4. There are two positive constants κ1 and κ2, such that Pr(0 <

κ1 < λmin(Λ/n) ≤ λmax(Λ/n) < κ2 <∞) tends to one as n→∞.

Condition 5. λmax

{
(Bm′Bm/n)−1

}
= O(1) uniformly in m.

Condition 6. rM/n = o(1) and MrM/(n
2δξn) = o(1), where δ is a positive

constant.

Condition 4 requires both the minimum and the maximum singular values of

Λ/n to be bounded away from zero and infinity. Other studies that have used sim-

ilar conditions include Fan and Peng (2004) and Bickel and Levina (2008). Con-

dition 5 implies that the maximum singular value of (Bm′Bm/n)−1 is bounded.

Ravikumar et al. (2009) used a similar condition. Condition 6 allows M and rM
to increase with n, but also places a restriction on their diverging rates.

Theorem 2. If Conditions 2, and 4–6 are satisfied, then there exist local mini-

mizers ŵ and w̃ of φ(w) and φH(w), respectively, such that

‖ŵ − w0‖ = Op

(
ξ1/2n n−1/2+δ

)
(2.15)

and

‖w̃ − w0‖ = Op

(
ξ1/2n n−1/2+δ

)
, (2.16)

where δ is a positive constant defined under Condition 6.

Proof. See Appendix.

Theorem 2 shows that the weights obtained by minimizing φ(w) and φH(w)

approach the optimal weights at the rate of ξ
1/2
n n−1/2+δ.

Remark 6. Condition 4 is mild when the dimension M of Λ is fixed; it is a strong

condition when M diverges, although similar conditions are frequently used in
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literature, as explained above. In fact, in the latter event, one can consider

substituting λmax(Λ/n) = Op(1) by the weaker condition λmax(Λ/n) = Op(M),

which is a reasonable alternative because λmax(Λ/n) ≤ trace(Λ/n) = Op(M)

when the diagonal elements of Λ/n are uniformly Op(1). Now, assuming that

λmax(Λ/n) = Op(M), all other things being equal, by following the steps of de-

riving Theorem 2, we can show that ‖ŵ−w0‖ = Op(M
1/2ξ

1/2
n n−1/2+δ), replacing

the original conclusion of ‖ŵ−w0‖ = Op(ξ
1/2
n n−1/2+δ) obtained under Condition

4. In other words, the use of λmax(Λ/n) = Op(M) in lieu of λmax(Λ/n) = Op(1)

implied by the stronger Condition 4 when M diverges results in a slower conver-

gence rate of ŵ.

3. Weight Choice for Additive Autoregressive Models

The purpose of this section is to extend the preceding analysis to an additive

autoregressive model. This model has the same structure as (2.1), except that

X(j) = (y1−j , . . . , yn−j)
′, so that gj(X

(j)) = (gj(y1−j), . . . , gj(yn−j))
′ and Bm

j =

(Bm
j (y1−j), . . . , B

m
j (yn−j))

′, and the subscript i, which indexes the observation

number, is replaced by the time index t (1 ≤ t ≤ n); that is, xij is replaced by

yt−j everywhere. We assume that {yt} is a stationary time series process. Like

AMs, additive autoregressive models are attractive alternatives to traditional

nonparametric time series models, owing to their ability to alleviate the curse of

dimensionality. Additive autoregressive models have been studied extensively in

the literature. See Chen and Tsay (1993), Huang and Yang (2004), and Li and

Yang (2007), among others.

Denote A(w) = I − P (w), and let R̃(w) = ‖A(w)µ‖2 + σ2tr
{
P 2(w)

}
and

ξ̃n = infw∈W R̃(w), where R̃(w) is an analogue of R(w) (they are the same under

the case of independent data in Section 2). Now, consider the following regularity

conditions:

Condition 7. maxm∈{1,...,M},j∈scm ,i∈{1,...,qmj }E|B
2
ji(yt−j)| <∞.

Condition 8. λmax

{
(Bm′Bm/n)−1

}
= Op(1) uniformly, for 1 ≤ m ≤M .

Condition 9. µ′µ/n = Op(1).

Condition 10. rM/n = o(1) and r
1/2
M n1/2ξ̃−1n = op(1).

Condition 7 is a standard moment condition for establishing asymptotic re-

sults. Conditions 8 and 9 are the counterparts of Conditions 5 and 2, respectively,

in the context of a time series model. Condition 10 assumes that ξ̃n increases at

a rate faster than n1/2 for fixed rM . The same assumption was used by Ando

and Li (2014).
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Theorem 3. Provided that Conditions 7–10 hold and {et} is mutually indepen-

dent, Theorem 1 continues to hold.

Proof. See the Appendix.

Theorem 4. Provided that Conditions 4 and 6–9 hold and {et} is mutually in-

dependent, Theorem 2 continues to hold.

Proof. See the Appendix.

Theorems 3 and 4 extend the results on the asymptotic optimality and con-

sistency for the AMA and AMAH estimators from independent data to stationary

time series data. One important assumption for Theorems 3 and 4 is that the

disturbances are independent. Our results can be further extended to the case

where {et} is weakly correlated. Consider the following regularity conditions:

Condition 11. {yt, et} is α-mixing with size −γ/(γ − 2) with γ > 2.

Condition 12. E |Bji(yt−j)et|γ < ∞ uniformly for i and j, where γ is defined

in Condition 11.

Condition 13. E {Bji(yt−j)et} = O(1/
√
n) uniformly for i and j.

Conditions 11 and 12 are frequently used to establish the Central Limit

Theorem of estimators under dependent data (e.g., White (1984)). Condition 13

implies that {et} is weakly correlated.

Theorem 5. Provided that Conditions 8–13 are satisfied, Theorem 1 continues

to hold.

Proof. See the Appendix.

Theorem 6. Provided that Conditions 4, 6, 8, 9, and 11–13 are satisfied, Theo-

rem 2 continues to hold.

Proof. See the Appendix.

4. Finite-Sample Analysis

In this section, we compare the finite-sample properties of the proposed AMA

and AMAH estimators with a number of other estimators, including the AIC and

BIC model selection estimators and the smoothed-AIC (SAIC) and smoothed-

BIC (SBIC) model averaging estimators. The AIC and BIC scores for the mth

model are defined as AIC(m) = nlogσ̃2m + 2rm and BIC(m) = nlogσ̃2m + (logn)rm,
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respectively. The AIC (BIC) estimator selects the model with the smallest AIC

(BIC) score. The SAIC estimator is an FMA estimator that assigns the weight

wAIC,m = exp

(
−AIC(m)

2

)/ M∑
m=1

exp

(
−AIC(m)

2

)
to the mth model, for 1 ≤ m ≤M . The SBIC estimator is defined analogously.

4.1. Simulations for the independent data case

We consider the model given in (2.1) with µ = (µ1, . . . , µn)′, e ∼ N(0, σ2In),

and σ = 0.4, 1.0, 1.5. The following process of µ is considered:

µi = xi1 + (2xi2 − 1)2 +
sin(2πxi3)

2− sin(2πxi3)

+
{

0.1 sin(2πxi4) + 0.2 cos(2πxi4) + 0.3(sin(2πxi4))
2

+0.4(cos(2πxi4))
3 + 0.5(sin(2πxi4))

3
}

+ 0.5α(sin(2πUi))
2. (4.1)

We let xij = (Vij+kUi)/(1+k), for j = 1, . . . , 7, where Vij and Ui are independent

and identically distributed (i.i.d.) U[0,1] observations and k = 0, 0.5, 1, 1.5, 2.

When k 6= 0, xij have common Ui for different j, that is, E(xi1xi2) 6= 0, and the

data are correlated. We use the parameter α in (4.1) to control the degree of

model misspecification.

We first consider the uncertainty of the choice of covariates. With seven

covariates, there are 27 candidate models. Note that (4.1) is similar to the sim-

ulation setup of Xue (2009), who considered the special case of α = 0. In our

simulations, we set α = 1 so that all candidate models are misspecified. In ad-

dition, we set the polynomial degree to three, and let the knots be equidistant.

Following Huang and Yang (2004), we set the number of knots to be the small-

est integer greater than or equal to (2n)1/5 − 1. We consider sample sizes of

n = 50, 70, 100, 150, 200. Let µ̃ be an estimator of µ. Our comparison of the

performance of the estimators is based on the squared error ||µ− µ̃||2, averaged

over 1,000 replications. Table 1 and Tables S.1 and S.2 in the Supplementary

Material present the results. While the following commentary applies to all val-

ues of k considered, to conserve space, we only report results corresponding to

k = 0, 1, 1.5. Results for other values of k are available upon request.

Our results show that the AMA and the AMAH estimators are almost always

the two best estimators with respect to the averaged squared errors. In the rare

cases where neither the AMA nor the AMAH produces the best estimates (e.g.,

when σ = 0.4, k = 0, and n = 200), they typically yield larger average squared
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Table 1. Averaged squared errors (×10−1) under independent data when covariate se-
lection is subject to uncertainty and σ = 0.4.

n AIC BIC SAIC SBIC AMAH AMA

k = 0 50 1.279 1.589 1.217 1.366 1.066 1.272

70 1.031 1.178 0.976 1.087 0.921 1.024

100 0.878 0.912 0.840 0.884 0.822 0.860

150 0.634 0.602 0.615 0.601 0.597 0.605

200 0.576 0.547 0.560 0.547 0.550 0.552

k = 1 50 1.206 1.259 1.128 1.088 0.875 0.970

70 0.947 1.078 0.869 0.977 0.772 0.830

100 0.771 0.941 0.719 0.872 0.678 0.710

150 0.604 0.816 0.575 0.760 0.547 0.564

200 0.534 0.691 0.514 0.647 0.497 0.504

k = 1.5 50 1.190 1.244 1.109 1.066 0.847 0.919

70 0.921 1.061 0.838 0.951 0.732 0.782

100 0.758 0.916 0.700 0.843 0.654 0.684

150 0.605 0.777 0.572 0.727 0.534 0.549

200 0.528 0.682 0.506 0.644 0.482 0.489

errors than the best estimator only by a small margin. On the other hand,

when they dominate other estimators, they usually do so by a large margin.

When σ = 1.5 (high noise levels), AMA performs better than AMAH, while the

converse is observed when σ = 0.4 (low noise level), and the two estimators exhibit

comparable performance when σ = 1 (moderate noise level). Without exception,

the SAIC and SBIC estimators outperform their model selection counterparts,

although both the SAIC and SBIC frequently exhibit inferior performance to the

proposed AMA and AMAH estimators. In general, the ordinal rankings of the

estimators are unaffected by the values of k.

We now consider the case where the covariates are certain, but the smooth-

ing degree and the number of knots are uncertain. Specifically, we let α = 0,

and select the degree of smoothing and the number of knots from {1, 2, 3} and

{2, 3, . . . , ceiling
(
(2n)1/5

)
+2}, respectively, where ceiling (A) denotes the small-

est integer greater than or equal to A. Thus, there are 3{ceiling
(
(2n)1/5

)
+ 1}

candidate models. Tables S.3–S.5 in the Supplementary Material, where the sim-

ulation results are reported, show that in the overwhelming majority of cases,

the AMA estimator performs best. Either the AMAH or the SBIC estimator

produces the second best estimates, and all of the AMA, AMAH, and SBIC es-

timators uniformly dominate the two model selection estimators. Although the

SAIC estimator invariably yields more accurate estimates than the AIC estimator
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does, it can have inferior performance to the BIC estimator.

In addition, we considered cases where the error term follows nonnormal

distributions, such as t distributions. The results (not reported here) show that

the AMA estimator often performs the best, and the AMAH the second best.

Furthermore, as suggested by a referee, we computed the average weights and

selection frequencies of models by each method. The results are reported in

Section S2 of the Supplementary Material.

4.2. Simulation for the dependent data case

Our simulation study is based on the following autoregressive process {yt, t =

0,±1, . . .}:

yt =
−0.4(3− y2t−1)

1 + y2t−1
+

0.6(3− (yt−2 − 0.5)3)

1 + (yt−2 − 0.5)4
+ αyt−10 + 0.1et, (4.2)

where et = ρet−1 + εt and εt ∼ N(0, 1). As in Subsection 4.1, we first consider

the uncertainty of the choice of covariates. We set yt−1, yt−2, yt−3, and yt−4 as

potential covariates, and assume that all candidate models are in the form of

the additive autoregressive model given in Section 3. This yields 24 candidate

additive autoregressive models, with yt = b+et being the null model, where b is an

intercept. When α = ρ = 0, the process (4.2) reduces to the process considered

by Huang and Yang (2004). In our simulations, we set n = 80, 100, 200 and

α = 0.3, 0.4 so that all candidate models are misspecified. As in Subsection

4.1, we set the polynomial degree to three and let the knots be equidistant.

To assess the predictive performance of the methods, we calculate the squared

prediction errors (yn+1 − ỹn+1)
2, averaged over 50,000 simulation trials, where

ỹn+1 is an estimator of yn+1. Unlike the independent data case in Subsection

4.1, for which the results are based on 1,000 replications, a substantially larger

number of replication trials are required here in order to obtain stable results.

The results, reported in Table 2 and Table S.6 in the Supplementary Mate-

rial, show that in the majority of cases, the AMA estimator results in the best

performance, with the AMAH estimator coming in a close second. In general,

the values of α, ρ, and n have little effect on the ordinal ranking of the estima-

tors, but they do have some bearing on the actual magnitudes of the squared

prediction errors. As expected, as α increases, the prediction squared errors of

all estimators increase, ceteris paribus. For most cases, the AIC (BIC) estimator

is dominated by its model averaging counterpart. The BIC (SBIC) estimator is

often preferred to the AIC (SAIC) estimator, although exceptions occur. For ex-
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Table 2. Averaged squared prediction errors (×10−1) under dependent data when co-
variate selection is subject to uncertainty and α = 0.3.

n AIC BIC SAIC SBIC AMAH AMA

ρ = 0 80 1.210 1.038 1.170 1.022 1.009 0.978

100 0.921 0.873 0.903 0.858 0.825 0.819

200 0.736 0.782 0.735 0.769 0.708 0.707

ρ = 0.2 80 1.136 0.997 1.100 0.978 0.953 0.928

100 0.945 0.893 0.929 0.876 0.842 0.833

200 0.793 0.840 0.793 0.827 0.758 0.756

ρ = 0.4 80 1.417 1.100 1.367 1.076 1.137 1.074

100 1.034 0.947 1.019 0.932 0.921 0.908

200 0.901 0.870 0.900 0.862 0.837 0.829

ample, when n = 200 and ρ is small, the AIC-based estimators may outperform

their BIC-based counterparts.

We next consider uncertainty in the degree of smoothing within (4.2). We

set α = 0 and ρ = 0, 0.2, 0.4. The simulation results, reported in Table S.7 of the

Supplementary Material, are again based on 50,000 simulation trials, and show

that the AMA is uniformly the best estimator, followed by either the AMAH

or the SBIC estimator. The worst estimates are always produced by the AIC

estimator.

5. Empirical Data Applications

5.1. Example 1

In this subsection, we apply the proposed method to theophylline concentra-

tion data that are part of the “Theoph” data set from the R “datasets” package.

Oral doses of theophylline are given to 12 individuals 11 times each, resulting in

132 observations. The response variable of interest is the theophylline concentra-

tion in the individual, labelled CON. The following are the covariates expected

to influence CON: the amount of oral doses of theophylline administered to the

individual, the time interval from drug administration to the time of sampling,

and the weight of the individual. There are 23 combinations of these covariates,

resulting in 23 candidate models. The basis of our analysis is the additive model

(2.1). We set the polynomial degree to three, and let the knots be equidistant,

with the number of knots equal to ceiling
(
(2n)1/5

)
− 1.

We consider all six estimators in the last section, and an alternative AMA es-

timator obtained with Bm in Pm = Bm(Bm′Bm)−1Bm′ replaced by the regressor
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Table 3. Results for Data Example 1.

n1 AIC BIC SAIC SBIC AMAH AMA AMAli
80 0.458 0.430 0.442 0.430 0.417 0.421 0.953

100 0.413 0.409 0.405 0.410 0.385 0.390 0.942
120 0.386 0.402 0.391 0.403 0.375 0.377 0.941

matrix of the mth model. This essentially reduces the AM to a linear regres-

sion model, and as such, the corresponding model average estimator combines

least squares estimators from linear regressions using (2.8) as the weight choice

criterion. We refer to this estimator as AMAli, to distinguish it from the AMA

and AMAH estimators that combine AMs. We randomly select n1 = 80, 100, 120

observations from the sample as training data, and use the remaining 132 − n1
observations as test data. The following mean squared prediction error (MSPE)

is used to gauge the performance of the estimators:

1

(132− n1)

132−n1∑
i=1

(
CONi − ĈONi

)2
,

where CONi and ĈONi are the ith actual and predicted values, respectively, of

CON in the test sample. We repeat the data splitting and estimation process

1,000 times, and compute the average of the MSPEs across the replications. The

results are reported in Table 3.

The results show that regardless of the values of n1, the AMAH and AMA

estimators invariably deliver the best and second best estimates. In all cases, the

AMAli estimator yields prediction outcomes that are inferior to those of other

estimators by a large margin, which suggests that nonlinear AMs provide a more

appropriate analytical framework than the linear model does for the data at hand.

5.2. Example 2

Our second data example is based on the “LakeHuron” data set from the R

package “datasets”. The objective is to forecast the level of Lake Huron, one of

the five largest lakes in North America, using an additive autoregressive model.

Data are available on the level (in feet) of the lake between 1875 and 1972, totaling

98 annual observations. We label the first difference of this time series as {yt}97t=1.

We let the maximum lag order be four. Thus, there are 24 candidate models, with

the largest model being

yt = g1(yt−1) + g2(yt−2) + g3(yt−3) + g4(yt−4) + et.
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Table 4. Results for Data Example 2.

n1 AIC BIC SAIC SBIC AMAH AMA AMAli
60 1.148 0.699 0.969 0.699 0.691 0.619 0.697
70 1.077 0.779 1.137 0.777 0.741 0.664 0.778
80 0.799 0.575 0.720 0.572 0.551 0.529 0.762

Here, {yt}n1+k+g
t=g (n1 = 60, 70, 80, g = 1, . . . , D) is used for model training and

yn1+k+g+1 for prediction evaluation. We choose the same degree of smoothing

and number of knots as in Subsection 5.1. We conduct D = 97 − (n1 + k +

1) one-step ahead predictions, with the forecast window being moved ahead by

one observation each time. Table 4 presents the mean squared prediction error

(MSPE), defined as
∑97

t=n1+k+2 (yt − ŷt)2 /D, with ŷt being the one-step ahead

model average predictor of yt.

We consider the same seven estimators as in the previous data example. Table

4 shows that in all cases, the AMA estimator yields the best predictions, followed

by the AMAH estimator, whereas the AIC and SAIC estimators often deliver the

worst forecasts. The AMAli estimator invariably performs worse than the AMA

estimator; however, occasionally it outperforms the other selection and averaging

estimators. This indicates that while the nonlinear additive autogressive model

is a more appropriate analytical framework than the linear autoregressive model

for this data set, functional form misspecification may be compensated for by a

superior estimation technique.

6. Conclusion

We have proposed a plug-in model averaging approach for the nonparametric

AM and the additive autoregressive model, and developed two estimators, the

AMA and AMAH estimators. The numerical results support the use of model

averaging in these models, and show that the AMA estimator is often a superior

alternative to the AMAH estimator.

One aspect of the model specification that is not examined in our analysis

is the assumption of a constant error variance. Extending the weight choice

procedure and associated theories to the context of heteroscedastic disturbances

is an area for future research. In addition, we emphasize the development of a

weight choice method oriented toward improving efficiency with respect to point

estimation. There is clearly a need to develop inference procedures based on the

model averaging estimator. In this regard, the asymptotic distributions of some

FMA estimators have been derived; see, for example, Hjort and Claeskens (2003),
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Liu (2015), and Zhang and Liu (2019). The asymptotic distribution theory for our

proposed model averaging estimator deserves to be studied further. In addition,

it would be interesting to study the adaptive estimation for unknown smoothness

by model averaging (see Yang (2001) and Zhang, Lu and Zou (2013) for related

results). This is left for future research.

Supplementary Material

The Supplementary Material contains additional simulation results (Tables

S.1–S.15).
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A. Appendices

A.1. Lemma and its proof

Lemma 1. If {et} is mutually independent,

sup
−∞≤t≤∞

E{|et|q} <∞, (A.1)

for some q ≥ 2, and

max
m∈{1,...,M},j∈scm ,i∈{1,...,qmj }

E
∣∣∣Bq

ji(yt−j)
∣∣∣ <∞, (A.2)

then

E

[
max

m∈{1,...,M}

∥∥∥∥ 1√
n
Bm′e

∥∥∥∥q] = O(r
q/2
M ). (A.3)

Proof of Lemma 1. Denote the tth column of Bm′ as Bm
j∈scm (yt−j). Note that

under Condition (A.2), there exists an m∗ ∈ {1, . . . ,M} such that

E

[
max

m∈{1,...,M}

∥∥∥∥ 1√
n
Bm′e

∥∥∥∥q]
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= E

[
max

m∈{1,...,M}

∥∥∥∥∥ 1√
n

n∑
t=1

Bm
j∈scm (yt−j)et

∥∥∥∥∥
q]

= E

 ∑
j∈scm∗

qm
∗

j∑
i=1

(
1√
n

n∑
t=1

Bji(yt−j)et

)2

q/2

≤ rq/2−1m∗

∑
j∈scm∗

qm
∗

j∑
i=1

E

∣∣∣∣∣ 1√
n

n∑
t=1

Bji(yt−j)et

∣∣∣∣∣
q

≤ rq/2−1m∗

∑
j∈scm∗

qm
∗

j∑
i=1

E

∣∣∣∣∣ 1n
n∑
t=1

B2
ji(yt−j)

∣∣∣∣∣
q/2

≤ rq/2−1m∗

∑
j∈scm∗

qm
∗

j∑
i=1

1

n

n∑
t=1

E
∣∣∣Bq

ji(yt−j)
∣∣∣

≤ rq/2m∗ max
j∈scm∗ ,i∈{1,...,q

m∗
j }

E
∣∣∣Bq

ji(yt−j)
∣∣∣

= O(r
q/2
M ), (A.4)

where the second inequality (on the fifth line of (A.4)) follows Condition (A.1)

and Lemma 2 of Wei (1987) since {et, $t} is a sequence of martingale differences

with $t being the σ-algebra generated by {yt, yt−1, . . .}. This completes the proof

of Lemma 1.

A.2. Proof of Theorem 1

Note that

φH(w) = ‖Y − µ̂(w)‖2 + 2σ̂2M

M∑
m=1

wmrm. (A.5)

Hence we have

φ(w) = φH(w) + 2σ̂2M

M∑
m=1

wm

(
nrm
n− rm

− rm
)
. (A.6)

From results of Wan, Zhang and Zou (2010), to prove (2.13) of Theorem 1, it

suffices to show that

sup
w∈W

[
R−1(w) |φH(w)−R(w)|

]
= op(1) (A.7)

and
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sup
w∈W

[
R−1(w)

∣∣∣∣∣σ̂2M
M∑
m=1

wm

(
nrm
n− rm

− rm
)∣∣∣∣∣
]

= op(1). (A.8)

Note that (A.7) can be verified from the proof of Theorem 2 in Wan, Zhang and

Zou (2010). Now, let us consider (A.8). First, from Condition 2 and E‖e‖2 =

nσ2 = O(n), we have

‖Y ‖ ≤ ‖µ‖+ ‖e‖ = Op(n
1/2). (A.9)

Hence, by Condition 3,

σ̂2M =
Y ′(In − PM )Y

n− rM
≤ λmax(In − PM )‖Y ‖2

n− rM
= Op(1). (A.10)

Furthermore, by Condition 1,

sup
w∈W

[
R−1(w)

∣∣∣∣∣σ̂2M
M∑
m=1

wm

{
nrm
n− rm

− rm
}∣∣∣∣∣
]

≤ ξ−1n σ̂2M
r2M

n− rM
→ 0. (A.11)

Therefore, (2.13) of Theorem 1 is true. In addition, by Wan, Zhang and Zou

(2010) and (A.7), it is straightforward to show that (2.14) of Theorem 1 holds

under Conditions 1–3. This completes the proof of Theorem 1.

A.3. Proof of Theorem 2

Denote εn = ξ
1/2
n n−1/2+δ. By results of Fan and Peng (2004) and Chen

et al. (2018), to prove (2.15) of Theorem 2, it suffices to show that there exists a

constant C0 such that for the M × 1 vector u = (u1, . . . , uM )′,

lim
n→∞

P

(
inf

‖u‖=C0,(w0+εnu)∈W
φ(w0 + εnu) > φ(w0)

)
= 1. (A.12)

This means that there exists a minimiser ŵ in the set {w0+εnu : ‖u‖ ≤ C0, (w
0+

εnu) ∈ W} such that ‖ŵ − w0‖ = Op (εn).

Denote Ω1 = (µ − µ̂1, . . . , µ − µ̂M ). Let π̄ = (π1, . . . , πM )′ with πm =

nrm/(n− rm) for 1 ≤ m ≤M . It is noted that

φ(w0 + εnu)− φ(w0)

= ε2nu
′Λu− 2εnw

0′Ω′1Λ1u− 2e′P (εnu)µ− 2e′P (εnu)e+ 2εnσ̂
2
Mu
′π̄. (A.13)
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As λmin(Λ/n) > κ1 under Condition 4, we have

ε2nu
′Λu > κ1nε

2
n‖u‖2 > 0, (A.14)

with probability approaching 1.

Recognising that ‖Ω1w
0‖ = Op(ξ

1/2
n ) since E‖Ω1w

0‖2 = E‖µ−µ̂(w0)‖2 = ξn,

and ‖Λ1‖ = λ
1/2
max(Λ) = Op(n

1/2) by Condition 4, we have

|εnw0′Ω′1Λ1u| ≤ εn‖Λ1‖‖Ω1w
0‖‖u‖

= Op(n
1/2ξ1/2n εn)‖u‖. (A.15)

Hence, εnw
0′Ω′1Λ1u is dominated asymptotically by ε2nu

′Λu.

From Condition 5 and Lemma 1 for independent data cases,

max
m∈{1,...,M}

e′Pme

= max
m∈{1,...,M}

{
e′Bm(Bm′Bm)−1Bm′e

}
≤ max

m∈{1,...,M}
λmax

{(
Bm′Bm

n

)−1}
max

m∈{1,...,M}

∥∥∥∥ 1√
n
Bm′e

∥∥∥∥2
= Op(rM ), (A.16)

which, together with (A.9), implies that

max
m∈{1,...,M}

|e′PmY | ≤ ‖Y ‖ max
m∈{1,...,M}

(
e′Pme

)1/2
= Op(n

1/2r
1/2
M ).

Hence,

|e′P (εnu)µ+ e′P (εnu)e| = |e′P (εnu)Y |

≤ εn ‖u‖
(
M max

m∈{1,...,M}
|e′PmY |2

)1/2

≤ Op(n1/2r1/2M M1/2εn) ‖u‖ . (A.17)

Using Condition 6, we have

n1/2r
1/2
M M1/2εn
nε2n

=
n1/2r

1/2
M M1/2

nn−1/2+δξ
1/2
n

=
r
1/2
M M1/2

nδξ
1/2
n

= o(1), (A.18)

and using (A.10),

|εnσ̂2Mu′π̄| ≤ εnσ̂2M‖(π1, . . . , πM )′‖‖u‖
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= εnσ̂
2
M

(
M∑
m=1

(πm)2

)1/2

‖u‖

= Op

(
nrMM

1/2

n− rM
εn

)
‖u‖ = Op

(
rMM

1/2εn

)
‖u‖ . (A.19)

From (A.17), (A.19) and the first part of Condition 6, it is readily seen that

|εnσ̂2Mu′π̄| is dominated by |e′P (εnu)Y |, and from (A.18), both of these terms

are dominated asymptotically by ε2nu
′Λu. Thus, (2.15) of Theorem 2 is proved.

Also, we see that (2.16) of Theorem 2 is true using the same proving steps. This

completes the proof of Theorem 2.

A.4. Proof of Theorem 3

First, we consider (2.13). Note that

φ(w) = ‖Y − µ̂(w)‖2 + 2σ̂2Mw
′π̄

= ‖µ+ e− µ̂(w)‖2 + 2σ̂2Mw
′π̄

= ‖µ− µ̂(w)‖2 + 2e′(µ− P (w)µ− P (w)e) + ‖e‖2 + 2σ̂2Mw
′π̄

= L(w)− 2e′P (w)µ− 2e′P (w)e+ ‖e‖2 + 2µ′e+ 2σ̂2Mw
′π̄. (A.20)

To prove (2.13), in light of the results of Wan, Zhang and Zou (2010), it suffices

to show that

sup
w∈W

[
R̃−1(w)

∣∣e′P (w)e
∣∣] = op(1), (A.21)

sup
w∈W

[
R̃−1(w)

∣∣e′P (w)µ
∣∣] = op(1), (A.22)

sup
w∈W

[
R̃−1(w)

∣∣σ̂2Mw′π̄∣∣] = op(1), (A.23)

and

sup
w∈W

[
R̃−1(w)

∣∣∣L(w)− R̃(w)
∣∣∣] = op(1). (A.24)

Let us consider (A.21). Note that

sup
w∈W

[
R̃−1(w)

∣∣e′P (w)e
∣∣]

≤ ξ̃−1n max
m∈{1,...,M}

e′Pme

= ξ̃−1n max
m∈{1,...,M}

{
e′Bm(Bm′Bm)−1Bm′e

}
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≤ ξ̃−1n max
m∈{1,...,M}

λmax

{(
Bm′Bm

n

)−1}
max

m∈{1,...,M}

∥∥∥∥ 1√
n
Bm′e

∥∥∥∥2
= Op(rM ξ̃

−1
n ). (A.25)

The last line of (A.25) is due to Conditions 7 and 8 and Lemma 1. Hence (A.21)

is true under Condition 10. Similarly, we observe that

sup
w∈W

[
R̃−1(w)

∣∣e′P (w)µ
∣∣]

≤ ξ̃−1n max
m∈{1,...,M}

(
e′Pmµµ

′Pme
)1/2

≤ ‖µ‖ξ̃−1n max
m∈{1,...,M}

(
e′Pme

)1/2
= Op(r

1/2
M n1/2ξ̃−1n ), (A.26)

where the equality on the last line of (A.26) is due to (A.25) and Condition 9.

Hence (A.22) is also true by virtue of (A.26) and Condition 10.

From (A.9) and (A.10), we can see that (A.23) is valid because

sup
w∈W

[
R̃−1(w)

∣∣σ̂2Mw′π̄∣∣]
≤ ξ̃−1n σ̂2M

maxm∈{1,...,M} nrm

n− rm
= Op(rM ξ̃

−1
n ) = op(1) (A.27)

by virtue of Condition 10.

Now, note that

L(w)− R̃(w) = ‖µ− P (w)µ− P (w)e‖2 − R̃(w)

= ‖A(w)µ− P (w)e‖2 − R̃(w)

= e′P 2(w)e− 2µ′A(w)P (w)e− σ2tr
{
P 2(w)

}
. (A.28)

Furthermore, we see from (A.25) that

sup
w∈W

[
R̃−1(w)e′P 2(w)e

]
≤ sup

w∈W
λmax {P (w)} sup

w∈W

[
R̃−1(w)e′P (w)e

]
=

{
max

m∈{1,...,M}
λmax (Pm)

}
sup
w∈W

[
R̃−1(w)e′P (w)e

]
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≤ sup
w∈W

[
R̃−1(w)e′P (w)e

]
= Op(rM ξ̃

−1
n ), (A.29)

sup
w∈W

[
R̃−1(w)

∣∣µ′A(w)P (w)e
∣∣]

≤ ξ̃−1/2n sup
w∈W

[
R̃−1(w)

∣∣e′P (w)A(w)µµ′A(w)P (w)e
∣∣]1/2

= ‖µ‖ξ̃−1/2n sup
w∈W

[
λ1/2max {P (w)}λmax {A(w)}

]
sup
w∈W

[
R̃−1(w)e′P (w)e

]1/2
= O(n1/2ξ̃−1/2n ) sup

w∈W

[
R̃−1(w)e′P (w)e

]1/2
= Op(n

1/2ξ̃−1/2n r
1/2
M ξ̃−1/2n ) = Op(n

1/2r
1/2
M ξ̃−1n ), (A.30)

and

sup
w∈W

[
R̃−1(w)tr

{
P 2(w)

}]
≤ ξ̃−1n max

m,l∈{1,...,M}
tr (PmPl)

≤ ξ̃−1n max
m,l∈{1,...,M}

{λmax (PmPl) rank (PmPl)}

≤ ξ̃−1n max
m,l∈{1,...,M}

{λmax (Pm)λmax (Pl) rank (Pm)}

= Op(rM ξ̃
−1
n ). (A.31)

Together with Condition 10, these results imply that (A.24) and hence (2.13) are

correct. Following the above proving steps, it is readily seen that (2.14) is also

true. This completes the proof of Theorem 3.

A.5. Proof of Theorem 4

By Condition 7, (A.3) holds for q = 2. The remaining steps for proving

Theorem 4 are nearly identical to those for proving Theorem 2, and thus are

omitted for brevity.

A.6. Proof of Theorem 5

To prove Theorem 5, we first show that

1√
n

n∑
t=1

Bji(yt−j)et = Op(1), (A.32)

uniformly for i and j. Note that
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n

n∑
t=1

Bji(yt−j)et

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
n

n∑
t=1

[Bji(yt−j)et − E {Bji(yt−j)et}]

∣∣∣∣∣+
∣∣√nE{Bji(yt−j)et} |. (A.33)

By Condition 13, in order to prove (A.32), it suffices to verify that

V ar

(
1√
n

n∑
t=1

Bji(yt−j)et

)
≤ C, (A.34)

uniformly for i and j. The proof of (A.34) is similar to that of Gao (2015). We

first write

V ar

(
1√
n

n∑
t=1

Bji(yt−j)et

)

=
1

n

n∑
t=1

V ar (Bji(yt−j)et) +
2

n

n−1∑
t=1

n−t∑
s=1

Cov(Bji(yt−j)et, Bji(yt−j+s)et+s). (A.35)

Since {yt, et} is α-mixing with size −γ/(γ − 2), {Bji(yt−j)et} is also α-mixing

with the same size (White (1984)). From results by Davydov (1968) and Gao

(2015), we have

|Cov (Bji(yt−j)et, Bji(yt−j+s)et+s)|
≤ 12 [E |Bji(yt−j)et|γ ]1/γ [E |Bji(yt−j+s)et+s|γ ]1/γ α(s)1−2/γ

≤ Cα(s)1−2/γ , (A.36)

uniformly for i and j under Condition 12, where the mixing coefficient α(s) =

O(s−γ/(γ−2)−δ) with δ > 0 by Condition 11. Therefore,

n−t∑
s=1

|Cov (Bji(yt−j)et, Bji(yt−j+s)et+s)|

≤ C
∞∑
s=1

s−1−δ(γ−2)/γ ≤ C, (A.37)

implying that the second term on the right-hand side of (A.35) is bounded. In

addition, the boundedness of the first term on the right-hand side of (A.35) is

implied by Condition 12. Hence, (A.34) and therefore (A.32) are true.
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In light of (A.4) and (A.32), we have

max
m∈{1,...,M}

∥∥∥∥ 1√
n
Bm′e

∥∥∥∥2
= max

m∈{1,...,M}

∑
j∈scm

qmj∑
i=1

∣∣∣∣∣ 1√
n

n∑
t=1

Bji(yt−j)et

∣∣∣∣∣
2

= Op(rM ). (A.38)

Together with the steps for proving Theorem 3, this implies that Theorem 5 is

true.

A.7. Proof of Theorem 6

Theorem 6 follows from (A.38) and the proof of Theorem 2. The details are

omitted for brevity.
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