Statistica Sinica: Supplement

Supplementary Material

LOCALLY *D*-OPTIMAL DESIGNS FOR HIERARCHICAL RESPONSE EXPERTIMENTS

Mingyao Ai¹, Zhiqiang Ye¹, Jun Yu²

LMAM, School of Mathematical Sciences and Center for Statistical Science, Peking University¹ School of Mathematics and Statistics, Beijing Institute of Technology²

Supplementary Material

S1 Proofs

To proof Theorem 1, we begin with two technical lemmas. Let $\boldsymbol{\gamma} \in \mathbb{R}^p$ denote the parameter vector, i.e., $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_p)^T = (\boldsymbol{\beta}^T, \boldsymbol{\theta}_1^T, \dots, \boldsymbol{\theta}_{J-1}^T)^T$. The first lemma gives the Fisher information matrix for Model (2.2) under an exact design. The second lemma calculates $\partial \pi(\boldsymbol{x}) / \partial \boldsymbol{\gamma}^T$, which is an essential part of Theorem 1.

For an exact design

$$\xi_{ ext{exact}} = \left(egin{array}{ccc} oldsymbol{x}_1 & \cdots & oldsymbol{x}_m \\ n_1 & \cdots & n_m \end{array}
ight),$$

the corresponding Fisher information matrix is derived in the following lemma.

Lemma S1. Suppose Assumptions 1 and 2 hold, the Fisher information

matrix for Model (2.2) under the exact design ξ_{exact} can be written as

$$M(\xi_{\text{exact}}) = \sum_{i=1}^{m} n_i M_i,$$

where $M_i = (m_{i_{st}})_{1 \leq s,t \leq p}$ is a $p \times p$ matrix with

$$m_{i_{st}} = \sum_{j=1}^{J} \frac{1}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t}$$

Proof of Lemma S1. For the experimental setting \boldsymbol{x}_i , for i = 1, ..., m, the responses $(Y_{i1}, ..., Y_{iJ})^T \sim \text{Multinomial}(n_i; \pi_{i1}, ..., \pi_{iJ})$. We know that $E(Y_{ij}) = n_i \pi_{ij}, E(Y_{ij}^2) = n_i (n_i - 1) \pi_{ij}^2 + n_i \pi_{ij}$, and $E(Y_{is}Y_{it}) = n_i (n_i - 1) \pi_{is} \pi_{it}$ when $s \neq t$.

The log-likelihood function (up to a constant) is

$$l(\boldsymbol{\gamma}) = \sum_{i=1}^{m} \sum_{j=1}^{J} Y_{ij} \log \pi_{ij}.$$

Then the score function is

$$\frac{\partial l}{\partial \gamma_s} = \sum_{i=1}^m \sum_{j=1}^J \frac{Y_{ij}}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s}.$$

Note that $\pi_{i1} + \cdots + \pi_{iJ} = 1$, it follows that

$$E\left(\sum_{j=1}^{J}\frac{Y_{ij}}{\pi_{ij}}\frac{\partial\pi_{ij}}{\partial\gamma_s}\right) = \sum_{j=1}^{J}n_i\frac{\partial\pi_{ij}}{\partial\gamma_s} = n_i\frac{\partial}{\partial\gamma_s}\left(\sum_{j=1}^{J}\pi_{ij}\right) = 0,$$

for i = 1, ..., m. The Hessian matrix can be achieved through the following calculation.

$$E\frac{\partial l}{\partial \gamma_s}\frac{\partial l}{\partial \gamma_t} = E\left(\sum_{i=1}^m \sum_{j=1}^J \frac{Y_{ij}}{\pi_{ij}}\frac{\partial \pi_{ij}}{\partial \gamma_s}\right)\left(\sum_{i=1}^m \sum_{j=1}^J \frac{Y_{ij}}{\pi_{ij}}\frac{\partial \pi_{ij}}{\partial \gamma_t}\right)$$

Supplementary Material

$$\begin{split} &= \sum_{i=1}^{m} E\left(\sum_{j=1}^{J} \frac{Y_{ij}}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s}\right) \left(\sum_{j=1}^{J} \frac{Y_{ij}}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_t}\right) \\ &= \sum_{i=1}^{m} E\left(\sum_{j=1}^{J} \frac{Y_{ij}^2}{\pi_{ij}^2} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t} + 2\sum_{1 \le j < k \le m} \frac{Y_{ij}}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\pi_{ik}}{\pi_{ik}} \frac{\partial \pi_{ik}}{\partial \gamma_t}\right) \\ &= \sum_{i=1}^{m} \sum_{j=1}^{J} \frac{n_i(n_i - 1)\pi_{ij}^2 + n_i\pi_{ij}}{\pi_{ij}^2} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t} \\ &+ 2\sum_{i=1}^{m} \sum_{1 \le j < k \le m} \frac{n_i(n_i - 1)\pi_{ij}\pi_{ik}}{\pi_{ij}\pi_{ik}} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t} \\ &= \sum_{i=1}^{m} n_i \left(\left(n_i - 1\right) \left(\sum_{j=1}^{J} \frac{\partial \pi_{ij}}{\partial \gamma_s}\right) \left(\sum_{j=1}^{J} \frac{\partial \pi_{ij}}{\partial \gamma_t}\right) + \sum_{j=1}^{J} \frac{1}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t} \right) \\ &= \sum_{i=1}^{m} \left(n_i \sum_{j=1}^{J} \frac{1}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t} \right). \end{split}$$

By the definition of Fisher information matrix, we have

$$M(\xi_{\text{exact}}) = E\left(\frac{\partial l}{\partial \boldsymbol{\gamma}}\right) \left(\frac{\partial l}{\partial \boldsymbol{\gamma}}\right)^T = \sum_{i=1}^m n_i M_i,$$

where $M_i = (m_{i_{st}})_{1 \le s,t \le p}$ is a $p \times p$ matrix with

$$m_{i_{st}} = \sum_{j=1}^{J} \frac{1}{\pi_{ij}} \frac{\partial \pi_{ij}}{\partial \gamma_s} \frac{\partial \pi_{ij}}{\partial \gamma_t}.$$

Remark S1. From Lemma S1, the Fisher information matrix for Model

(2.2) under an approximate design

$$\xi = \left(egin{array}{ccc} oldsymbol{x}_1 & \cdots & oldsymbol{x}_m \ oldsymbol{\omega}_1 & \cdots & oldsymbol{\omega}_m \end{array}
ight),$$

can be written as

$$M(\xi) = \sum_{i=1}^{m} \omega_i M_i.$$

Recall $\delta_{\boldsymbol{x}}$ denote the single point design, then $M(\delta_{\boldsymbol{x}_i}) = M_i$, for $i = 1, \ldots, m$.

Let $\partial \boldsymbol{\pi}(\boldsymbol{x})/\partial \boldsymbol{\gamma}^T$ denote a $J \times p$ matrix, whose (j, k)th entry is $\partial \pi_j(\boldsymbol{x})/\partial \gamma_k$, where $\boldsymbol{x} \in \mathcal{X}$ is a design point. We have the following lemma.

Lemma S2. For Model (2.2),

$$\frac{\partial \boldsymbol{\pi}(\boldsymbol{x})}{\partial \boldsymbol{\gamma}^T} = G(\boldsymbol{x}) H(\boldsymbol{x}), \qquad (S1.1)$$

where $G(\mathbf{x})$ is defined in Section A.1 and $H(\mathbf{x})$ is defined in Section 2.2.

Proof of Lemma S2. To be convenience, let $e_j(\boldsymbol{x}) = g^{-1}(\boldsymbol{h}_0^T(\boldsymbol{x})\boldsymbol{\beta} + \boldsymbol{h}_j^T(\boldsymbol{x})\boldsymbol{\theta}_j)$, for $j = 1, \dots, J - 1$. We first show the following equation

$$\frac{\partial \pi_j(\boldsymbol{x})}{\partial \beta_s} = h_{0s}(\boldsymbol{x}) \sum_{k=1}^j g_{jk}(\boldsymbol{x}), \qquad (S1.2)$$

holds, for $s = 1, ..., p_0$ and j = 1, ..., J. For each s, we prove Equation (S1.2) holds, for j = 1, ..., J - 1, by induction.

(i) When j = 1, it follows that

$$\frac{\partial \pi_1(\boldsymbol{x})}{\partial \beta_s} = h_{0s}(\boldsymbol{x})g_{11}(\boldsymbol{x}),$$

by the fact $\pi_1(\boldsymbol{x}) = e_1(\boldsymbol{x})$, which implies Equation (S1.2) holds for j = 1.

(ii) Suppose Equation (S1.2) holds for $2, \ldots, j - 1$ (j < J), by

$$\pi_j(\boldsymbol{x}) = e_j(\boldsymbol{x}) \left(1 - \sum_{k=1}^{j-1} \pi_k(\boldsymbol{x}) \right),$$

we have

$$\begin{split} \frac{\partial \pi_j(\boldsymbol{x})}{\partial \beta_s} &= \frac{\partial e_j(\boldsymbol{x})}{\partial \beta_s} \left(1 - \sum_{k=1}^{j-1} \pi_k(\boldsymbol{x}) \right) - e_j(\boldsymbol{x}) \sum_{k=1}^{j-1} \frac{\partial \pi_k(\boldsymbol{x})}{\partial \beta_s} \\ &= h_{0s}(\boldsymbol{x})(g^{-1})'(\boldsymbol{h}_0^T(\boldsymbol{x})\boldsymbol{\beta} + \boldsymbol{h}_j^T(\boldsymbol{x})\boldsymbol{\theta}_j) \left(1 - \sum_{k=1}^{j-1} \pi_k(\boldsymbol{x}) \right) \\ &- e_j(\boldsymbol{x}) \sum_{k=1}^{j-1} \left(h_{0s}(\boldsymbol{x}) \sum_{l=1}^k g_{kl}(\boldsymbol{x}) \right) \\ &= h_{0s}(\boldsymbol{x}) g_{jj}(\boldsymbol{x}) + h_{0s}(\boldsymbol{x}) \sum_{k=1}^{j-1} \left(-e_j(\boldsymbol{x}) \sum_{l=1}^k g_{kl}(\boldsymbol{x}) \right) \\ &= h_{0s}(\boldsymbol{x}) g_{jj}(\boldsymbol{x}) + h_{0s}(\boldsymbol{x}) \sum_{k=1}^{j-1} \left(-e_j(\boldsymbol{x}) \sum_{l=1}^j g_{kl}(\boldsymbol{x}) \right) \\ &= h_{0s}(\boldsymbol{x}) g_{jj}(\boldsymbol{x}) + h_{0s}(\boldsymbol{x}) \sum_{l=1}^{j-1} \left(-e_j(\boldsymbol{x}) \sum_{l=1}^j g_{kl}(\boldsymbol{x}) \right) \\ &= h_{0s}(\boldsymbol{x}) g_{jj}(\boldsymbol{x}) + h_{0s}(\boldsymbol{x}) \sum_{l=1}^{j-1} g_{jl}(\boldsymbol{x}) \\ &= h_{0s}(\boldsymbol{x}) g_{jj}(\boldsymbol{x}) + h_{0s}(\boldsymbol{x}) \sum_{l=1}^{j-1} g_{jl}(\boldsymbol{x}) \end{split}$$

which implies Equation (S1.2) holds for j.

As for the case j = J, utilizing the fact $\pi_1(\boldsymbol{x}) + \cdots + \pi_J(\boldsymbol{x}) = 1$ and

the facts that have been proved in (i) and (ii), we have

$$egin{aligned} rac{\partial \pi_J(oldsymbol{x})}{\partial eta_s} &= -\sum_{j=1}^{J-1} rac{\partial \pi_j(oldsymbol{x})}{\partial eta_s} \ &= -\sum_{j=1}^{J-1} \left(h_{0s}(oldsymbol{x}) \sum_{k=1}^j g_{jk}(oldsymbol{x})
ight) \ &= h_{0s}(oldsymbol{x}) \sum_{j=1}^{J-1} \left(-\sum_{k=1}^{J-1} g_{jk}(oldsymbol{x})
ight) \ &= h_{0s}(oldsymbol{x}) \sum_{k=1}^{J-1} \left(-\sum_{j=1}^{J-1} g_{jk}(oldsymbol{x})
ight) \ &= h_{0s}(oldsymbol{x}) \sum_{k=1}^{J-1} g_{Jk}(oldsymbol{x}), \ &= h_{0s}(oldsymbol{x}) \sum_{k=1}^{J-1} g_{Jk}(oldsymbol{x}) \sum_{k=1}^{J-1} g_{Jk}(oldsymbol{x}), \ &= h_{0s}(oldsymbol{x}) \sum_{k=1}^{J-1} g_{Jk}(oldsymbol{x}) \sum_{k=1}^{J-1} g_{Jk}(ol$$

then Equation (S1.2) holds for j = J. Therefore, Equation (S1.2) holds, for $s = 1, ..., p_0$ and j = 1, ..., J.

Now we turn to prove the following equation,

$$\frac{\partial \pi_j(\boldsymbol{x})}{\partial \theta_{uv}} = h_{uv}(\boldsymbol{x})g_{ju}(\boldsymbol{x}), \qquad (S1.3)$$

for u = 1, ..., J - 1, $v = 1, ..., p_u$, and j = 1, ..., J. Similarly, for each u, v, we prove Equation (S1.3) holds for j = 1, ..., J - 1, by induction.

(1) When j = 1, then $\pi_1(\boldsymbol{x}) = e_1(\boldsymbol{x})$, we have

$$rac{\partial \pi_1(\boldsymbol{x})}{\partial heta_{1r}} = h_{1r}(\boldsymbol{x})g_{11}(\boldsymbol{x}), rac{\partial \pi_1(\boldsymbol{x})}{\partial heta_{uv}} = 0 = h_{uv}(\boldsymbol{x})g_{1u}(\boldsymbol{x}),$$

for $r = 1, ..., p_1$, u = 2, ..., J - 1, and $v = 1, ..., p_u$, which implies Equation (S1.3) holds for j = 1. (2) Suppose Equation (S1.3) holds for $2, \ldots, j - 1(j < J)$. For u =

 $1, \ldots, j-1$ and $v = 1, \ldots, p_u$, it follows that

$$\begin{aligned} \frac{\partial \pi_j(\boldsymbol{x})}{\partial \theta_{uv}} &= \frac{\partial e_j(\boldsymbol{x})}{\partial \theta_{uv}} \left(1 - \sum_{k=1}^{j-1} \pi_k(\boldsymbol{x}) \right) - e_j(\boldsymbol{x}) \sum_{k=1}^{j-1} \frac{\partial \pi_k(\boldsymbol{x})}{\partial \theta_{uv}} \\ &= -e_j(\boldsymbol{x}) \sum_{k=1}^{j-1} \frac{\partial \pi_k(\boldsymbol{x})}{\partial \theta_{uv}} \\ &= -e_j(\boldsymbol{x}) h_{uv}(\boldsymbol{x}) \sum_{k=1}^{j-1} g_{ku}(\boldsymbol{x}) \\ &= h_{uv}(\boldsymbol{x}) g_{ju}(\boldsymbol{x}). \end{aligned}$$

Note that for $v = 1, \ldots, p_j$, it holds that

$$\begin{split} \frac{\partial \pi_j(\boldsymbol{x})}{\partial \theta_{jv}} &= \frac{\partial e_j(\boldsymbol{x})}{\partial \theta_{jv}} \left(1 - \sum_{k=1}^{j-1} \pi_k(\boldsymbol{x}) \right) - e_j(\boldsymbol{x}) \sum_{k=1}^{j-1} \frac{\partial \pi_k(\boldsymbol{x})}{\partial \theta_{jv}} \\ &= h_{jv}(\boldsymbol{x}) (g^{-1})' (\boldsymbol{h}_0^T(\boldsymbol{x}) \boldsymbol{\beta} + \boldsymbol{h}_j^T(\boldsymbol{x}) \boldsymbol{\theta}_j) \left(1 - \sum_{k=1}^{j-1} \pi_k(\boldsymbol{x}) \right) \\ &= h_{jv}(\boldsymbol{x}) g_{jj}(\boldsymbol{x}). \end{split}$$

By the definition of $\pi_j(\boldsymbol{x})$ and $G(\boldsymbol{x})$, the following equation holds

$$\frac{\partial \pi_j(\boldsymbol{x})}{\partial \theta_{uv}} = 0 = h_{uv}(\boldsymbol{x})g_{ju}(\boldsymbol{x}),$$

for $u = j + 1, \dots, J - 1$ and $v = 1, \dots, p_u$.

Combining the aforementioned three equations, Equation (S1.3) holds for j. When j = J, utilizing the fact $\pi_1(\boldsymbol{x}) + \cdots + \pi_J(\boldsymbol{x}) = 1$ and the facts that have been proved in (a) and (b), we have

$$\begin{aligned} \frac{\partial \pi_J(\boldsymbol{x})}{\partial \pi_{uv}} &= -\sum_{j=1}^{J-1} \frac{\partial \pi_j(\boldsymbol{x})}{\partial \pi_{uv}} \\ &= -\sum_{j=1}^{J-1} h_{uv}(\boldsymbol{x}) g_{ju}(\boldsymbol{x}) \\ &= h_{uv}(\boldsymbol{x}) \left(-\sum_{j=1}^{J-1} g_{ju}(\boldsymbol{x}) \right) \\ &= h_{uv}(\boldsymbol{x}) g_{Ju}(\boldsymbol{x}), \end{aligned}$$

which implies Equation (S1.3) holds for j = J. Thus Equation (S1.3) holds for $u = 1, \ldots, J - 1$, $v = 1, \ldots, p_u$, and $j = 1, \ldots, J$. Based on Equations (S1.2) and (S1.3), Lemma S2 is proved.

Proof of Theorem 1. Combing the results in Lemmas S1 and S2, it follows that

$$M(\xi) = \sum_{i=1}^{m} \omega_i M_i$$

= $\sum_{i=1}^{m} \omega_i \left(\frac{\partial \boldsymbol{\pi}(\boldsymbol{x}_i)}{\partial \boldsymbol{\gamma}^T}\right)^T D^{-1}(\boldsymbol{x}_i) \left(\frac{\partial \boldsymbol{\pi}(\boldsymbol{x}_i)}{\partial \boldsymbol{\gamma}^T}\right)$
= $\sum_{i=1}^{m} \omega_i H^T(\boldsymbol{x}_i) G^T(\boldsymbol{x}_i) D^{-1}(\boldsymbol{x}_i) G(\boldsymbol{x}_i) H(\boldsymbol{x}_i),$

which completes the proof.

Proof of Theorem 2. Let $\widetilde{H} = (H^T(\boldsymbol{x}_1), \ldots, H^T(\boldsymbol{x}_m))$, and

$$\widetilde{W} = \operatorname{diag}(\omega_1 G^T(\boldsymbol{x}_1) D^{-1}(\boldsymbol{x}_1) G(\boldsymbol{x}_1), \dots, \omega_m G^T(\boldsymbol{x}_m) D^{-1}(\boldsymbol{x}_m) G(\boldsymbol{x}_m)).$$

According to Theorem 1, the Fisher information matrix can be written as $M(\xi) = \widetilde{H}\widetilde{W}\widetilde{H}^T$. Since $\pi_j(\boldsymbol{x}_i) > 0$, for $j = 1, \ldots, J$, $G(\boldsymbol{x}_i)$ has full column rank (see Appendix A.1), and $\omega_i > 0$, for $i = 1, \ldots, m$, \widetilde{W} is positive definite. Therefore, $M(\xi)$ is positive definite if and only if \widetilde{H} has full row rank.

Proof of Corollary 1. After some elementary column transformations for the matrix $(H^T(\boldsymbol{x}_1), \ldots, H^T(\boldsymbol{x}_m))$, we obtain a new matrix

$$H_{new} = \begin{pmatrix} H_0 & H_0 & H_0 & \cdots & H_0 \\ H_1 & 0 & 0 & \cdots & 0 \\ 0 & H_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & H_{J-1} \end{pmatrix}$$

In order to keep H_{new} full row rank, H_0, \ldots, H_{J-1} are full row rank, thus $m \ge p_j$, for $j = 0, \ldots, J-1$.

Suppose $\bigcap_{j=0}^{J-1}C(H_j^T) \neq \{\mathbf{0}\}$, without loss of generality, we assume that the first row of H_0 lies in $\bigcap_{j=1}^{J-1}C(H_j^T)$. Therefore, the first row of H_0 can be represented by the linear combination of the rows of H_1, \ldots, H_{J-1} , respectively. Thus, the first row in H_{new} can be represented by the last p-1 rows, which contradicts the fact that H_{new} is full row rank.

Recall $r = \dim \left(\bigcap_{j=1}^{J-1} C(H_j^T) \right)$, utilizing the fact that $\bigcap_{j=0}^{J-1} C(H_j^T) = \{ \mathbf{0} \}$, the rank of the matrix $(H_0^T, \dots, H_{J-1}^T)$ is at least $p_0 + r$. Thus $m \ge p_0 + r$. \Box

Proof of Theorem 3. As mentioned in Remark S1, $M_i = M(\delta_{\boldsymbol{x}_i})$. The information matrix under the design ξ is

$$M(\xi) = \sum_{i=1}^{m} \omega_i M(\delta_{\boldsymbol{x}_i}).$$

Using the same argument in Theorem 2 of Yang et al. (2017), it can be shown that $|M(\xi)|$ is a polynomial function of $(\omega_1, \ldots, \omega_m)$.

Now we will show that the coefficients calculated in Equation (3.1) are zero in conditions (1) or (2).

(1) For the first scenario, recall $M(\delta_{\boldsymbol{x}_i}) = H^T(\boldsymbol{x}_i)G^T(\boldsymbol{x}_i)D^{-1}(\boldsymbol{x}_i)G(\boldsymbol{x}_i)H(\boldsymbol{x}_i)$. The rank of $M(\delta_{\boldsymbol{x}_i})$ is less than or equal to the rank of $G(\boldsymbol{x}_i)$, i.e., J-1, for $i = 1, \ldots, m$. Since $\max_{1 \leq i \leq m} \alpha_i \geq J$, without loss of generality, we assume $\alpha_1 \geq J$. Then for any $\tau \in \Delta_{\alpha_1,\ldots,\alpha_m}$, there are at least J rows of M_{τ} which are the same with the corresponding rows of $M(\delta_{\boldsymbol{x}_1})$, then $|M_{\tau}| = 0$, which implies $c_{\alpha_1,\ldots,\alpha_m} = 0$ according to Equation (3.1).

(2) For the second scenario, let
$$\bar{H} = (H^T(\boldsymbol{x}_1)G^T(\boldsymbol{x}_1), \dots, H^T(\boldsymbol{x}_m)G^T(\boldsymbol{x}_m)),$$

and $\bar{W} = \operatorname{diag}(\omega_1 D^{-1}(\boldsymbol{x}_1), \dots, \omega_m D^{-1}(\boldsymbol{x}_m)),$ then $M(\xi) = \bar{H}\bar{W}\bar{H}^T.$

By Cauchy-Binet formula (Horn and Johnson, 2012), it follows

$$\begin{split} c_{\alpha_1,\dots,\alpha_m} &= \sum_{(v_1,\dots,v_p)\in\Lambda(\alpha_1,\dots,\alpha_m)} |\bar{H}[i_1,\dots,i_p]|^2 \prod_{k:\alpha_k>0} \prod_{l:(k-1)J < v_l \le kJ} \pi_{k,v_l-(k-1)J}^{-1}, \\ \text{where } 1 \le v_1 < \cdots < v_p \le mJ, \ \Lambda(\alpha_1,\dots,\alpha_m) \text{ only depends on } \\ \alpha_1,\dots,\alpha_m, \text{ and } \bar{H}[i_1,\dots,i_p] \text{ is the submatrix consisting of the } i_1\text{th}, \\ \dots, i_p\text{th rows of } \bar{H}. \text{ Without loss of generality, we assume } \\ \alpha_1 \ge \cdots \ge \\ \alpha_k > 0 = \alpha_{k+1} = \cdots = \alpha_m, \text{ where } k+1 \le \max\{p_0+r,p_1,\dots,p_{J-1}\}. \\ \text{Suppose } c_{\alpha_1,\dots,\alpha_m} \neq 0 \text{ for some } (\alpha_1,\dots,\alpha_m). \text{ Therefore, there exist } \\ (v_1,\dots,v_p) \text{ such that } \bar{H}[v_1,\dots,v_p] \text{ has full rank } p, \text{ and } 1 \le v_1 < \\ \cdots < v_p \le kJ. \text{ Then } \bar{\bar{H}} = \bar{H}[1,\dots,kJ] \text{ is full row rank. Let } \\ \bar{W} = \\ k^{-1}\text{diag}(D^{-1}(\boldsymbol{x}_1),\dots,D^{-1}(\boldsymbol{x}_k)). \quad \bar{H}\bar{W}\bar{H}^T \text{ is positive definite. On the } \\ \text{other hand, we can regard } \\ \bar{H}\bar{W}\bar{H}^T \text{ as the Fisher information matrix } \\ \text{under uniform weighted design on the } k \text{ support points, thus } k \ge \\ \max\{p_0+r,p_1,\dots,p_{J-1}\}, \text{ which is a contradiction.} \end{split}$$

Proof of Theorem 4. Note that maximizing $|M(\xi)|$ is equivalent to maximize $\log |M(\xi)|$. Recall δ_x denote the single point design. The Frechet derivate of $\log |M(\xi)|$ at ξ^* in the direction of $\delta_x - \xi^*$ is

$$\lim_{\alpha \to 0} \frac{1}{\alpha} \left(\log |M((1-\alpha)\xi^* + \alpha\delta_{\boldsymbol{x}})| - \log |M(\xi^*)| \right)$$

$$= \lim_{\alpha \to 0} \frac{1}{\alpha} \left(\log |M(\xi^*) + \alpha(M(\delta_{\boldsymbol{x}}) - M(\xi^*))| - \log |M(\xi^*)| \right)$$
$$= \operatorname{tr} \left(M^{-1}(\xi^*)(M(\delta_{\boldsymbol{x}}) - M(\xi^*)) \right)$$
$$= \operatorname{tr} \left(M^{-1}(\xi^*)M(\delta_{\boldsymbol{x}}) \right) - p$$
$$= \operatorname{tr} \left(M^{-1}(\xi^*)H^T(\boldsymbol{x})G^T(\boldsymbol{x})D^{-1}(\boldsymbol{x})G(\boldsymbol{x})H(\boldsymbol{x}) \right) - p.$$

Then the theorem is proved following Pukelsheim (2006). \Box

Proof of Theorem 5. Note that the set of all Fisher information matrices is a convex hull. Since the design region is compact, the corresponding set is a convex and compact subset of the linear space of symmetric matrices. By Carathéodory's Theorem (Danninger-Uchida, 2009), there exists a design ξ^* which contains only a finite number of design points that maximizes $\log |M(\xi)|$.

Since $\log |M(\xi_t)|$ is a bounded and increasing function of t, $\log |M(\xi_t)|$ converges when $t \to \infty$. We shall show that

$$\lim_{t \to \infty} \log |M(\xi_t)| = \log |M(\xi^*)|.$$
(S1.4)

If Equation (S1.4) does not hold, there exists $\zeta > 0$, by the monotonicity of $\log |M(\xi_t)|$, such that

$$\log |M(\xi^*)| - \log |M(\xi_t)| > \zeta.$$
(S1.5)

Utilizing the concavity of $\log |M(\xi)|$, we have

$$(1 - \alpha) \log |M(\xi_t)| + \alpha \log |M(\xi^*)| \le \log |(1 - \alpha)M(\xi_t) + \alpha M(\xi^*)|,$$
 (S1.6)

for any $0 < \alpha \leq 1$. Equation (S1.6) implies that

$$\frac{\log |(1-\alpha)M(\xi_t) + \alpha M(\xi^*)| - \log |M(\xi_t)|}{\alpha} \ge \log |M(\xi^*)| - \log |M(\xi_t)|.$$

Let $\alpha \to 0^+$ and utilize Equation (S1.5),

$$tr(M^{-1}(\xi_t)(M(\xi^*) - M(\xi_t))) > \zeta.$$
(S1.7)

Recall $\boldsymbol{x}_t^* = \arg \max_{\boldsymbol{x} \in \mathcal{X}} \phi(\boldsymbol{x}, \xi_t)$, then $\phi(\boldsymbol{x}_t^*, \xi_t) \ge \phi(\boldsymbol{x}, \xi_t)$ for any $\boldsymbol{x} \in$

 $\chi.$ Thus, we have

$$\phi(\boldsymbol{x}_t^*, \xi_t) \ge \int_{\boldsymbol{x} \in \chi} \phi(\boldsymbol{x}, \xi_t) \xi^*(d\boldsymbol{x}) = \operatorname{tr}(M^{-1}(\xi_t)(M(\xi^*) - M(\xi_t)))$$

Combing with Equation (S1.7), it follows that

$$\phi(\boldsymbol{x}_t^*, \xi_t) > \zeta. \tag{S1.8}$$

Let $\xi_{t+1}(\alpha) = (1 - \alpha)\xi_t + \alpha \delta_{x_t^*}$, where $0 \leq \alpha \leq \frac{1}{2}, t \in \mathbb{N}^*$. Since $\log |M(\xi)|$ is an increasing function and by the definition of ξ_{t+1} , it can be shown that

$$\log \left| \frac{1}{2} M(\xi_t) \right| \le \log |M(\xi_{t+1}(\alpha))| \le \log |M(\xi_{t+1})|, \qquad (S1.9)$$

for any $0 \le \alpha \le \frac{1}{2}$. By the definition of ξ^* , we have

$$\log \left| \frac{1}{2} M(\xi_1) \right| \le \log |M(\xi_{t+1}(\alpha))| \le \log |M(\xi^*)|.$$
 (S1.10)

Equation (S1.10) implies that $\log |M(\xi_{t+1}(\alpha))|$ is uniformly bounded for $0 \leq \alpha \leq \frac{1}{2}$ and $t \in \mathbb{N}^*$. By Theorem 3, $|M(\xi_{t+1}(\alpha))|$ is a polynomial of α , which implies that $\log |M(\xi_{t+1}(\alpha))|$ is infinitely differentiable with respect to α . Recall that both $M(\xi_t)$ and $M(\xi_{t+1}(\alpha))$ lie in a same convex and compact subset of the linear space of symmetric matrices for all t and $\alpha \in [0, \frac{1}{2}]$. Combining Equation (S1.10) with the aforementioned facts, there exists $0 < K < \infty$, such that,

$$\inf\left\{\frac{d^2\log|M(\xi_{t+1}(\alpha))|}{d\alpha^2}:\alpha\in\left[0,\frac{1}{2}\right],t\in\mathbb{N}^*\right\}=-K.$$
(S1.11)

Using Taylor expansion of $\log |M(\xi_{t+1}(\alpha))|$ with respect to α and applying Equations (S1.8), (S1.11), we can show that,

$$\log |M(\xi_{t+1}(\alpha))| = \log |M(\xi_t)| + \phi(\boldsymbol{x}_t^*, \xi_t)\alpha + \frac{1}{2}\alpha^2 \left. \frac{d^2 \log |M(\xi_{t+1}(\alpha))|}{d\alpha^2} \right|_{\alpha = \alpha'}$$
$$\geq \log |M(\xi_t)| + \zeta \alpha - \frac{1}{2}K\alpha^2,$$

where $\alpha' \in (0, \alpha)$. Combining Equation (S1.9), the following equation holds for any $0 \le \alpha \le 1/2$,

$$\log |M(\xi_{t+1})| - \log |M(\xi_t)| \ge \zeta \alpha - \frac{1}{2} K \alpha^2.$$

Now we consider the following two situations.

• If $K > 2\zeta$, let $\alpha = \frac{\zeta}{K}$, then

$$\log |M(\xi_{t+1})| - \log |M(\xi_t)| \ge \frac{\zeta^2}{2K}$$

• If $K \leq 2\zeta$, let $\alpha = \frac{1}{2}$, then

$$\log |M(\xi_{t+1})| - \log |M(\xi_t)| \ge \frac{1}{2}\zeta - \frac{1}{8}K \ge \frac{1}{4}\zeta.$$

Note that ζ and K are finite. The two cases imply $\lim_{t\to\infty} \log |M(\xi_t)| = \infty$, which leads a contradiction. Thus, the sequence of designs $\{\xi_t\}$ converge to an optimal design that maximizes $|M(\xi)|$ as $t \to \infty$.

Proof of Theorem 6. In this case, $H(\boldsymbol{x}) = \text{diag}\{\boldsymbol{h}_1^T(\boldsymbol{x}), \dots, \boldsymbol{h}_{J-1}^T(\boldsymbol{x})\}$ is a $(J-1) \times p_1(J-1)$ matrix. $\widetilde{H} = (H^T(\boldsymbol{x}_1), \dots, H^T(\boldsymbol{x}_{p_1}))$ is a $p_1(J-1) \times p_1(J-1)$ matrix. For any design

$$\xi = \left(egin{array}{ccc} oldsymbol{x}_1 & \cdots & oldsymbol{x}_{p_1} \ & & & \ \omega_1 & \cdots & \omega_{p_1} \end{array}
ight)$$

let $\widetilde{W} = \operatorname{diag}\left(\omega_1 G^T(\boldsymbol{x}_1) D^{-1}(\boldsymbol{x}_1) G(\boldsymbol{x}_1), \dots, \omega_{p_1} G^T(\boldsymbol{x}_{p_1}) D^{-1}(\boldsymbol{x}_{p_1}) G(\boldsymbol{x}_{p_1})\right).$

Then the determinant of $M(\xi)$ is

$$\begin{split} |M(\xi)| &= |\widetilde{H}\widetilde{W}\widetilde{H}^{T}| \\ &= |\widetilde{H}|^{2} \cdot |\widetilde{W}| \\ &= |\widetilde{H}|^{2} \left(\prod_{i=1}^{p_{1}} \left| G^{T}(\boldsymbol{x}_{i}) D^{-1}(\boldsymbol{x}_{i}) G(\boldsymbol{x}_{i}) \right| \right) \left(\prod_{i=1}^{p_{i}} \omega_{i} \right)^{J-1}. \end{split}$$

Maximizing the above expression with respect to the weights $\omega_1, \ldots, \omega_{p_1}$ under the condition $\sum_{i=1}^{p_1} \omega_i = 1$ gives $\omega_i = 1/p_1$ for all $i = 1, \ldots, p_1$, which proves this theorem.

Proof of Theorem 7. For Model (4.1),

$$H(x_i) = \begin{pmatrix} x_i & 1 & 0 \\ x_i & 0 & 1 \end{pmatrix}, G(x_i) = \begin{pmatrix} \bar{g}_{i1} & 0 \\ -\frac{\pi_{i2}}{\pi_{i2} + \pi_{i3}} \bar{g}_{i1} & (\pi_{i2} + \pi_{i3}) \bar{g}_{i2} \\ -\frac{\pi_{i3}}{\pi_{i2} + \pi_{i3}} \bar{g}_{i1} & -(\pi_{i2} + \pi_{i3}) \bar{g}_{i2} \end{pmatrix}$$

,

where $\bar{g}_{ij} = (g^{-1})'(\theta_j + \beta x_i)$, for i = 1, 2, j = 1, 2. Directly calculations yield that,

$$H^{T}(x_{i})G^{T}(x_{i})D^{-1}(x_{i})G(x_{i})H(x_{i}) = \begin{pmatrix} (s_{i}+t_{i})x_{i}^{2} & s_{i}x_{i} & t_{i}x_{i} \\ s_{i}x_{i} & s_{i} & 0 \\ t_{i}x_{i} & 0 & t_{i} \end{pmatrix},$$

where $s_i = \bar{g}_{i1}^2 \pi_{i1}^{-1} (\pi_{i2} + \pi_{i3})^{-1}$, and $t_i = (\pi_{i2} + \pi_{i3})^3 \bar{g}_{i2}^2 (\pi_{i2} \pi_{i3})^{-1}$, for i = 1, 2. The determinant of the Fisher information matrix can be derived as follows,

$$|M(\xi)| = \omega_1 \omega_2 (c_1 \omega_1 + c_2 \omega_2),$$

where $c_1 = (x_1 - x_2)^2 s_1 t_1 (s_2 + t_2), c_2 = (x_1 - x_2)^2 s_2 t_2 (s_1 + t_1)$. Using the facts in Corollary 2 of Yang et al. (2017), the theorem is proved.

Proof of Theorem 8. For Model (4.2), the matrices $H(x_i)$ and $G(x_i)$ have

the following formula,

$$H(x_i) = \begin{pmatrix} 1 & x_i & x_i^2 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_i \end{pmatrix}, G(x_i) = \begin{pmatrix} \bar{g}_{i1} & 0 \\ -\frac{\pi_{i2}}{\pi_{i2} + \pi_{i3}} \bar{g}_{i1} & (\pi_{i2} + \pi_{i3}) \bar{g}_{i2} \\ -\frac{\pi_{i3}}{\pi_{i2} + \pi_{i3}} \bar{g}_{i1} & -(\pi_{i2} + \pi_{i3}) \bar{g}_{i2} \end{pmatrix},$$

where $\bar{g}_{i1} = (g^{-1})'(\theta_{11} + \theta_{12}x_i + \theta_{13}x_i^2), \ \bar{g}_{i2} = (g^{-1})'(\theta_{21} + \theta_{22}x_i), \text{ for } i = 1, 2, 3.$ Directly calculations yield that,

$$H^{T}(x_{i})G^{T}(x_{i})D^{-1}(x_{i})G(x_{i})H(x_{i}) = \begin{pmatrix} s_{i} & s_{i}x_{i} & s_{i}x_{i}^{2} & 0 & 0\\ s_{i}x_{i} & s_{i}x_{i}^{2} & s_{i}x_{i}^{3} & 0 & 0\\ s_{i}x_{i}^{2} & s_{i}x_{i}^{3} & s_{i}x_{i}^{4} & 0 & 0\\ 0 & 0 & 0 & t_{i} & t_{i}x_{i}\\ 0 & 0 & 0 & t_{i}x_{i} & t_{i}x_{i}^{2} \end{pmatrix},$$

where $s_i = \bar{g}_{i1}^2 \pi_{i1}^{-1} (\pi_{i2} + \pi_{i3})^{-1}$, and $t_i = (\pi_{i2} + \pi_{i3})^3 \bar{g}_{i2}^2 (\pi_{i2} \pi_{i3})^{-1}$, for i = 1, 2, 3. The determinant of the Fisher information matrix can be derived as follows,

$$|M(\xi)| = C\omega_1\omega_2\omega_3(c_1\omega_1\omega_2 + c_2\omega_1\omega_3 + c_3\omega_1\omega_2),$$

where $C = s_1 s_2 s_3 (x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2$, $c_1 = t_1 t_2 (x_1 - x_2)^2$, $c_2 = t_1 t_3 (x_1 - x_3)^2$, $c_3 = t_2 t_3 (x_2 - x_3)^2$. This theorem follows by Lemma S.4 in Section S.13 and its proof in Section S.15 of Bu et al. (2020).

S2 Additional simulations results

Example S1. In this example, we demonstrate the optimal design searched out by our method. For comparison, we also report the results for the D-optimal design constructed in Bu et al. (2020) via grid-points. All the simulation settings are the same as Example 4 in the main text. For clear transparency, we drop out the points with zero weights in the following.

$$\begin{split} \xi_{BMY,4} &= \begin{pmatrix} 0 & 66.7 & 133.3 \\ 0.206 & 0.394 & 0.400 \end{pmatrix}, \\ \xi_{BMY,6} &= \begin{pmatrix} 0 & 80.0 & 120.0 & 160.0 \\ 0.202 & 0.100 & 0.336 & 0.362 \end{pmatrix}, \\ \xi_{BMY,10} &= \begin{pmatrix} 0 & 111.1 & 155.6 \\ 0.203 & 0.398 & 0.399 \end{pmatrix}, \\ \xi_{BMY,20} &= \begin{pmatrix} 0 & 105.3 & 147.4 \\ 0.203 & 0.398 & 0.399 \end{pmatrix}, \\ \xi_{BMY,50} &= \begin{pmatrix} 0 & 102.0 & 106.1 & 146.9 & 151.0 \\ 0.203 & 0.278 & 0.120 & 0.184 & 0.215 \end{pmatrix}, \\ \xi^* &= \begin{pmatrix} 0 & 101.1 & 147.8 & 149.3 \\ 0.203 & 0.397 & 0.307 & 0.093 \end{pmatrix}. \end{split}$$

One can see that $\xi_{BMY,4}$, $\xi_{BMY,10}$, and $\xi_{BMY,20}$ have only three support

points, which are minimally supported. While $\xi_{BMY,6}$ and $\xi_{BMY,50}$ have 4 and 5 support points, respectively. Note that the optimal design ξ^* has less support points compared with the $\xi_{BMY,50}$, which is of practical significance due to the cost of changing settings.

Example S2. Consider the situation where the pre-specified value of the parameter vector is moderately misspecified. Since all the cases have similar performance, we report the results of Model (2.5) as an example. Suppose the pre-specified value of the parameter vector for the locally optimal design fluctuates in a moderate range ($\pm 10\%$ the magnitude of the true value).

For visualization propose, we report the results for the case that only one of the five parameters is misspecified (we choose θ_{11} as an example). The results are presented in Figure S1(a). Figure S1(a) shows the relative *D*-efficiencies for the locally *D*-optimal designs under the misspecified parameter θ_{11} . Clearly, these *D*-optimal designs under misspecified parameters have relative *D*-efficiencies greater than 99.97%. When there are two parameters misspecified (we choose θ_{11}, θ_{21} as an example), we plot a contour plot in Figure S1(b). From Figure S1(b), one can see that the relative *D*-efficiencies are also greater than 95.0%.

To give a comprehensive result, we also consider the case that all the five parameters are misspecified, via the grid-point method. The results

Supplementary Material

(a) θ_{11} is misspecified (b) both θ_{11} and θ_{21} are misspecified

Figure S1: Relative *D*-efficiencies when the parameters are misspecified.

are summarized in Table S1. The minimum efficiency is 63.6%, which is close to the efficiency of uniform design consider in Example 4. On the other hand, the 1st quartile is 94.3%, which indicates the *D*-optimal designs with moderately misspecified parameters are quite robust and still have satisfactory performances.

 Table S1: Summary of relative D-efficiencies when all the five parameters

 are misspecified.

Min.	1st Quartile	Median	3rd Quartile	Max.
63.6%	94.3~%	97.6%	99.4%	100.0%

References

- Bu, X., D. Majumdar, and J. Yang (2020). D-optimal designs for multinomial logistic models. Annals of Statistics 48(2), 983–1000.
- Danninger-Uchida, G. E. (2009). Carathéodory theorem. In P. M. Floudas, Christodoulos A.and Pardalos (Ed.), *Encyclopedia of Optimization*, pp. 358–359. Springer US.
- Horn, R. A. and C. R. Johnson (2012). Matrix analysis (2nd ed.). Cambridge university press.
- Pukelsheim, F. (2006). Optimal design of experiments. Society for Industrial and Applied Mathematics.
- Yang, J., L. Tong, and A. Mandal (2017). D-optimal designs with ordered categorical data. Statistica Sinica 27(4), 1879–1902.