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Abstract: Categorical responses with a hierarchical structure are common in so-

cial sciences, public health, and marketing. The continuation ratio model is one of

the most common models used to characterize such hierarchical data. Despite the

wealth of research on this model, few studies have considered its design in the data

collection step. Here, we study locally D-optimal designs for models with general

link functions under the partial proportional odds assumption. The necessary and

sufficient conditions for the positive definiteness of the Fisher information matrix

are derived, which show that a feasible design may contain fewer supports than the

number of parameters in the model. Based on some deduced characteristics of the

D-optimal criterion, an efficient algorithm is proposed to search for optimal designs

that can deal with both discrete and continuous design fields. Lastly, numerical ex-

amples illustrate the advantages of the proposed designs over some existing designs.

Key words and phrases: Approximate design, continuation ratio model, general link

functions, multinomial response.

1. Introduction

Categorical responses are common in scientific experiments. As such, design

of experiments with categorical responses is becoming increasingly popular in

many scientific disciplines. Some progress has been achieved in terms of both

theory and algorithms; see, for example, Sitter and Wu (1993), Atkinson, Donev

and Tobias (2007), Yang, Zhang and Huang (2011), Yang, Biedermann and Tang

(2013), Yang, Tong and Mandal (2017), and Lukemire, Mandal and Wong (2019).

Among the various types of categorical responses, ordinal responses with a hi-

erarchical structure are often used. Examples include ratings of preferences in

consumer choice experiments, tumor grades in drug testing, and animal fitness

in ecology; see Agresti (2007) for details.

The continuation ratio (CR) model (O’Connell (2006)) is one of the most

commonly applied models, and focuses on estimating the probabilities of succes-

sive stages when the lower stages are reached first (Fullerton (2009)). Mathemat-
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ically, the CR model estimates the conditional probabilities. For example, in an

experiment on the emergence of house flies (Zocchi and Atkinson (1999)), seven

sets of m = 500 pupae were exposed to one of several doses of radiation. Obser-

vations included the number of flies that died before the opening of the pupae

(y1); the number of flies out of the opened pupae but that died before com-

pleting emergence (y2); and the number of flies that emerged completely (y3).

Such a response is a typical ordinal variable. The two essential ratios, namely,

the mortality of the flies inside the pupae (y1/m) and the mortality of the flies

before complete emergence to the total number of flies that started to emerge

(y2/(m− y1)), can be described by the CR model.

In a CR model, the responses are assumed to be generated from a multinomial

distribution. It can be regarded as a special case of a multivariate generalized

linear model (Mccullagh and Nelder (1989)). Finding optimal designs on a CR

model is challenging, because it involves a wide choice of link functions. Here,

popular options include the logit link, probit link, log-log link, Cauchit link, and

complementary log-log link. Moreover, different parameter restriction assump-

tions across ordinal responses need to be considered. Three kinds of assumptions

are routinely used in the CR model, namely, the proportional odds assumption,

non-proportional odds assumption, and partial proportional odds assumption.

The proportional odds assumption (McCullagh (1980)) assumes that the effect of

each predictor is invariant across ordinal responses. The non-proportional odds

assumption allows different parameters for different categories (Agresti (2007)).

Because a different explanatory variable structure may be required to model the

different stages, the non-proportional odds assumption is more commonly used in

practice. The partial proportional odds assumption is proposed in Peterson and

Harrell (1990), in which a subset of these explanatory variables are assumed to

have proportional odds, while the rest are not. Clearly, the partial proportional

odds assumption includes both the proportional odds and the non-proportional

odds assumptions as special cases.

For the aforementioned reasons, relevant results in the design literature for

CR models are very limited, with most being handled on a case-by-case basis. To

the best of our knowledge, the most relevant works are those of Zocchi and Atkin-

son (1999) and Bu, Majumdar and Yang (2020). Zocchi and Atkinson (1999)

determine optimal designs for CR models with the logit link function under the

non-proportional odds assumption. Bu, Majumdar and Yang (2020) generalized

optimal designs for the partial proportional odds case. However, the latter work

considers only the discrete design field, which is not always applicable in practice,

especially for dose-finding studies. Note that there are infinite candidate design
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points in the continuous design field. Therefore, the optimal designs given in Bu,

Majumdar and Yang (2020) cannot be applied directly here. When the number

of grid points is not small, there is a computational bottleneck when searching

for the optimal weights on the grid points over the design field. Furthermore,

finding optimal designs for CR models with general link functions has not been

considered in the previous works.

To address these issues, we study D-optimal designs for CR models with gen-

eral link functions under the three kinds of parameter assumptions. This study

makes three main contributions to the development of optimal design problems

on CR models. First, to the best of our knowledge, our method is the first to give

optimal designs for CR models with general link functions on both discrete and

continuous design fields. Second, similarly to Bu, Majumdar and Yang (2020),

we obtain the explicit representation of the Fisher information matrix and derive

the sufficient and necessary conditions for the positive definiteness of the Fisher

information matrix, which ensures the non-degeneracy of the corresponding de-

signs. Third, the proposed algorithm can deal with multivariate responses cases.

This computational aspect has rarely been considered in the literature. Com-

prehensive simulation results show the advantages of our methods over current

designs.

The rest of this paper is organized as follows. In Section 2, we review CR

models with general link functions. The Fisher information matrix is also derived.

Section 3 characterizes the locally D-optimality criterion for approximate designs,

and shows the sufficient and necessary conditions for the positive definiteness of

the Fisher information matrix. In Section 4, an algorithm is provided to search

the locally D-optimal designs under both discrete and continuous design fields.

Moreover, the explicit form of the optimal weights is derived for some special

models. Section 5 illustrates our methods using several numerical examples.

Section 6 concludes the paper. All proofs are relegated to the Supplementary

Material.

2. The CR Model and its Fisher Information Matrix

2.1. The CR model

Suppose we conduct n1, . . . , nm experiments under m(m ≥ 2) different ex-

perimental settings {x1, . . . ,xm}, respectively, where xi ∈ X , for i = 1, . . . ,m,

and X is the design field that we are interested in. Let the possible responses

be denoted by {1, . . . , J}(J ≥ 2), and yij be the number of responses equal to

j(j ∈ {1, . . . , J}) under the experimental setting xi, for i = 1, . . . ,m. Clearly,
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yi1 + · · ·+ yiJ = ni. Then, Yi = (yi1, . . . , yiJ)T can be described by the following

multinomial distribution:

p(yi1, . . . , yiJ) =
ni!

yi1! · · · yiJ !
π1(xi)

yi1 · · ·πJ(xi)
yiJ , (2.1)

where πj(xi) denotes the probability that the response is j under experimental

setting xi. For notational simplicity, we use πij to denote πj(xi) in the rest

of the paper. The relationship between the explanatory variables xi and the

probabilities πi1, . . . , πiJ are described through the CR model in terms of the

partial proportional odds structure. Specifically, for some given link function

g(·), the conditional distribution Y |xi is linked to the working model through

the probabilities πi1, . . . , πiJ by the following equation:

g

(
πij

πij + · · ·+ πiJ

)
= hT0 (xi)β + hTj (xi)θj , (2.2)

for i = 1, . . . ,m and j = 1, . . . , J − 1. The transformations hj(·), for j =

0, . . . , J − 1, are known in advance, where h0(xi) ∈ Rp0 stands for the predictors

that are common in all categories, and hj(xi) ∈ Rpj , for j = 1, . . . , J − 1, stands

for the individual predictors belonging to the jth category only. Furthermore, β

and θj(j = 1, . . . , J − 1) are unknown parameters. We further assume all β and

θj(j = 1, . . . , J−1) lie in a compact parameter space. There are p = p0+· · ·+pJ−1

unknown parameters in total. Clearly, CR models under proportional odds and

non-proportional odds assumptions are two special cases, with hj(xi) = 1, for

j = 1, . . . , J − 1, and h0(xi) = 0, respectively. Note that Model (2.2) becomes

the multinomial logit model (Agresti (2007)) when g(·) is the logit link function.

To ensure that the model is well defined, we need the following two regu-

larity assumptions, mentioned in Mccullagh and Nelder (1989), throughout the

remainder of this paper.

Assumption 1. For any i = 1, . . . ,m and j = 1, . . . , J , 0 < πij < 1.

Assumption 2. The link function g(·) is differentiable and its derivative g′(·) >
0.

Under Assumption 2, g(·) is an injective function, as is g−1(·). Thus, in Model

(2.2), πij/(πij + · · ·+πiJ) can be represented using g−1(hT0 (xi)β+hTj (xi)θj), for

i = 1, . . .m and j = 1, . . . , J − 1. Note that πi1 + · · · + πiJ = 1, it is clear that

πi1, . . . , πiJ are completely determined by the link function g(·), the predictors

h0(xi),h1(xi), . . . ,hJ−1(xi), and the parameters β,θ1, . . . ,θJ−1.
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2.2. Fisher information matrix

Following Kiefer (1974), we call a probability measure

ξ =

(
x1 · · · xm
ω1 · · · ωm

)
(2.3)

an approximate design, where x1, . . . ,xm ∈ X and ωi > 0, for i = 1, . . . ,m, with

ω1 + · · · + ωm = 1. We further assume that the experimental region χ is com-

pact. To obtain the Fisher information matrix, we first require some additional

notation.

For x ∈ X , H(x) is a (J − 1)× p matrix with

H(x) =


hT0 (x) hT1 (x) 0 · · · 0

hT0 (x) 0 hT2 (x) · · · 0
...

...
...

...

hT0 (x) 0 0 · · · hTJ−1(x)

 .

Let D(x) = diag(π1(x), . . . , πJ(x)), with π1(x), . . . , πJ(x) defined in Model (2.1),

where diag(·) denotes a diagonal matrix with corresponding diagonal elements.

After defining H(x) and D(x), the Fisher information matrix for Model (2.2)

under a design ξ is derived in the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. The Fisher information matrix

for Model (2.2) under the design ξ defined in (2.3) can be written as

M(ξ) =

m∑
i=1

ωiH
T (xi)G

T (xi)D
−1(xi)G(xi)H(xi), (2.4)

where G(xi) is a J×(J−1) matrix decided by the model and experimental setting

xi, which is given in Appendix A.1.

Example 1. Consider the following model that was used in Zocchi and Atkinson

(1999):

log

(
πi1

πi2 + πi3

)
= θ11 + θ12xi + θ13x

2
i ,

log

(
πi2
πi3

)
= θ21 + θ22xi,

(2.5)

for i = 1, . . . ,m.

Note that the above model is a special case of Model (2.2), with three (J = 3)
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categories and the logit link, under the non-proportional odds assumption. In this

model, at experimental setting xi, the matrices H(xi), D(xi), and G(xi) in the

Fisher information matrix (2.4) can be expressed as

H(xi) =

(
1 xi x

2
i 0 0

0 0 0 1 xi

)
,

D(xi) = diag

(
bi1

1 + bi1
,

bi2
(1 + bi1)(1 + bi2)

,
1

(1 + bi1)(1 + bi2)

)
,

G(xi) =
1

(1 + bi1)2(1 + bi2)2

 bi1(1 + bi2)2 0

−bi1bi2(1 + bi2) (1 + bi1)bi2
−bi1(1 + bi2) −(1 + bi1)bi2

 ,

where bi1 = eθ11+θ12xi+θ13x2
i , and bi2 = eθ21+θ22xi , for i = 1, . . . ,m.

3. Determinant of the Fisher Information Matrix

The D-optimality criterion, which seeks to maximize the determinant of the

Fisher information matrix, is one of the most popular design criteria in optimal

design theory.

This criterion results in minimizing the volume of the estimator’s confidence

ellipsoid. To avoid trivial solutions, the Fisher information matrix is required

to be positive definite. The sufficient and necessary condition for the positive

definiteness of the Fisher information matrix is stated in the following theorem.

Theorem 2. The Fisher information matrix M(ξ) calculated in Equation (2.4)

is positive definite if and only if the matrix (HT (x1), . . . ,HT (xm)) has full row

rank.

As a direct conclusion, we obtain some equivalent conditions, which are easy

to verify.

Corollary 1. Let Hj = (hj(x1), . . . ,hj(xm)), for j = 0, . . . , J − 1. The Fisher

information matrix M(ξ) is positive definite if and only if the following statements

hold simultaneously:

(1) The number of support points m satisfies m ≥ max{p0 + r, p1, . . . , pJ−1},
where r = dim

(
∩J−1
j=1C(HT

j )
)

, C(HT
j ) denotes the column space of HT

j , and

dim(·) denotes the dimension of the corresponding space.

(2) The m support points x1, . . . ,xm satisfy the following two conditions: (a)

H0, . . . ,HJ−1 are full row rank; (b) ∩J−1
j=0C(HT

j ) = {0}.
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The same conditions are also required in Theorem 3.3 for the logit link in

Bu, Majumdar and Yang (2020). From these conditions, the minimally supported

designs have max{p0+r, p1, . . . , pJ−1} different design points, which is different to

the designs for binary responses. Note that a feasible design for a CR model with

different types of links may contain fewer experimental settings than parameters.

As a special case, H1 = · · · = HJ−1, the minimum number of support points is

p0 + p1, which is strictly less than the number of parameters p0 + (J − 1)p1 when

J ≥ 3. Furthermore, for Model (2.2) under the proportional odds assumption,

that is, hj(xi) = 1, for j = 1, . . . , J − 1, the minimum number of support points

is p0 + 1.

Example 2. Recall Model (2.5) mentioned in Example 1. It is clear to see that

p0 = 0, p1 = 3, and p2 = 2. The dimension of C(HT
1 ) ∩ C(HT

2 ) is r ≤ 2. Thus,

the number of support points m satisfies m ≥ max{p0 + r, p1, p2} = 3. Note that

when there are only three distinct design points x1, x2, x3, simple algebra shows

that H0, H1, and H2 are full row rank, and C(HT
0 ) ∩ C(HT

1 ) ∩ C(HT
2 ) = {0}.

Therefore, the minimum number of support points is three, according to Corollary

1.

To study the D-optimal designs and their properties, we start with a char-

acterization of |M(ξ)|, where | · | denotes the determinant of the corresponding

matrix. Theorem 3 shows that |M(ξ)| is a homogeneous polynomial of ω1, . . . , ωm
when the support points {x1, . . . ,xm} are predefined. Before formally presenting

Theorem 3, we introduce some necessary notation.

Let δx denote the single-point design and M(δx) be the corresponding Fisher

information matrix. For simplicity, let τ be a map from {1, . . . , p} to {1, . . . ,m}
and Mτ be a p × p matrix with the kth row the same as the kth row of matrix

M(δxτ(k)), for k = 1, . . . , p. Define

∆(α1, . . . , αm) =

{
τ

∣∣∣∣∣
p∑

k=1

I{i}(τ(k)) = αi, i = 1, . . . ,m

}
,

where IA(·) is an indicator function defined on the set A, and α1, . . . , αm ∈ N,

with α1 + · · ·+αm = p. Then, the following theorem can be used to simplify the

calculation of |M(ξ)|.

Theorem 3. The determinant of the Fisher information matrix M(ξ) is

|M(ξ)| =
∑

α1≥0,...,αm≥0,
α1+···+αm=p

cα1,...,αmω
α1

1 · · ·ω
αm
m ,
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where

cα1,...,αm =
∑

τ∈∆(α1,...,αm)

|Mτ |. (3.1)

Furthermore, let {j∗1 , . . . , j∗k} = {j|αj > 0}. Then, the coefficients (3.1) are zero

if the (α1, . . . , αm) satisfies one of the following conditions:

(1) The maximum of α1, . . . , αm is equal to or greater than J .

(2) The number of positive elements in {αj}mj=1, say k, satisfies k+1 ≤ max{p0+

r, p1, . . . , pJ−1}, where r is defined in Corollary 1.

Theorem 3 reflects the fact that the determinants of the Fisher information

matrices are homogeneous polynomials. This enables us to use the lift-one al-

gorithm to search out the optimal weights when the support points are given in

advance. This characteristic also holds for the cumulative link models. See Yang,

Tong and Mandal (2017) for details.

Example 3. Consider Model (2.5) mentioned in Examples 1 and 2. To ensure the

Fisher information matrix being positive definite, the number of support points

m ≥ 3. According to Theorem 3, |M(ξ)| is an order-5 homogeneous polynomial

and the coefficients of ω5
i , ω

4
i ωj , ω

3
i ω

2
j , ω

3
i ωjωk are zero. Therefore,

|M(ξ)| =
∑

1≤i<j≤m

∑
1≤k≤m,
k 6=i,k 6=j

c(ijk) · ω2
i ω

2
jωk +

m∑
i=1

∑
1≤j<k<l≤m,
j 6=i,k 6=i,l 6=i

c(ijkl) · ω2
i ωjωkωl

+
∑

1≤h<i<j<k<l≤m
c(hijkl) · ωhωiωjωkωl,

with some coefficients c(ijk), c(ijkl), c(hijkl).

4. Locally D-optimal Designs

As with other generalized linear models, the Fisher information matrix (2.4)

depends on both the design ξ and the unknown parameters. To solve the depen-

dence on the unknown parameters, many approaches have been proposed, such

as local optimality (Chernoff (1953)), sequential procedure (Ford, Titterington

and Kitsos (1989)), Bayesian optimality (Chaloner and Verdinelli (1995)), and

maximin approach (Imhof (2001)). In this work, we focus on the locally optimal

approach based on a “best guess” of the unknown parameters. Note that the

locally optimal designs may be inefficient if the initial guesses of parameters are
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far away from the true parameters. However, it can still be a benchmark for de-

signs chosen to satisfy experimental constraints (Ford, Torsney and Wu (1992);

Stufken and Yang (2012)).

To search the locally D-optimal designs, we begin with the following general

equivalence theorem (Atkinson, Donev and Tobias (2007); Atkinson et al. (2014)).

Theorem 4. For a design ξ and a point x ∈ X , define

φ(x, ξ) = tr
(
M−1(ξ)HT (x)GT (x)D−1(x)G(x)H(x)

)
− p,

where tr(·) denotes the trace of the corresponding matrix. A design ξ∗ is D-

optimal if and only if the inequalitiy φ(x, ξ∗) ≤ 0 holds for all x ∈ X . The

equality holds if and only if x is one of the support points of ξ∗.

When the design field is discrete, we need only find the optimal weights

for the finite experimental settings. The lift-one algorithm (Yang and Mandal

(2015); Yang, Tong and Mandal (2017); Bu, Majumdar and Yang (2020)) can be

used to find the locally D-optimal designs. Details of this algorithm are given

in Appendix A.2. However, when the design field is continuous, we are also

interested in finding possible support points. Although optimal designs found on

a moderate number of grid points using the lift-one algorithm are possible, this

method is often computationally infeasible when the number is large.

To solve this problem, we propose the following algorithm to find the locally

D-optimal designs on the continuous design field X .

Algorithm 1:

(i) Set t = 0, and initialize ξ0 such that |M(ξ0)| > 0. Let S(0) be the set of the
support points of ξ0, and ε(ε > 0) be the predefined tolerance.

(ii) Derive the optimal weights for S(t) to form ξt using the lift-one algorithm.

(iii) Find x∗t = argmaxx∈Xφ(x, ξt), where φ(x, ξt) is defined in Theorem 4.

(iv) If φ(x∗t , ξt) ≤ ε, then return ξt.

(v) Otherwise, set S(t+1) =S(t) ∪ {x∗t } and update t = t+ 1. Repeat Steps (ii)–(iv).

According to Theorem 2, the uniform-weights design with support points sati-

sfying the conditions in Corollary 1 is a feasible initialization to start the lift-one

algorithm. In step (iii), the optimal solution is easy to achieve when the design

field X is regular. For example, the Nelder-Mead method (Nelder and Mead

(1965)) can be applied here. Note that our algorithm is also suitable for the
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discrete design case, and the maximization in step (iii) can be achieved using an

exhaustive search.

The design achieved by Algorithm 1 converges to an optimal design, as stated

in the following theorem.

Theorem 5. For any initial design that satisfies |M(ξ0)| > 0, the sequence of

designs {ξt} in Algorithm 1 converges to an optimal design that maximizes |M(ξ)|
as t→∞.

We consider a CR model under the non-proportional odds assumption with

p1 = · · · = pJ−1, and there exist p1 distinct experimental settings x1, . . . ,xp1
such that H1, . . . ,HJ−1 are full row rank. The following theorem shows that

the optimal weights are 1/p1 for all the experimental settings. This can further

accelerate step (ii) in our algorithm.

Theorem 6. If p0 = 0, p1 = · · · = pJ−1 and there exist p1 distinct experimental

settings x1, . . . ,xp1 such that H1, . . . ,HJ−1 are full row rank, then the D-optimal

design on {x1, . . . ,xp1} is

ξ∗ =

(
x1 · · · xp1
1
p1
· · · 1

p1

)
.

Theorem 6 shows that for non-proportional odds models with p1 = · · · =

pJ−1, uniform allocations are still D-optimal as the D-optimal designs studied in

Corollary S.7 in the Supplementary Material of Bu, Majumdar and Yang (2020).

In general, uniform weighted designs are not always optimal. For example, con-

sider the following CR model with two distinct experimental settings x1, x2 ∈ R:

g(πi1) = θ1 + βxi,

g

(
πi2

πi2 + πi3

)
= θ2 + βxi.

(4.1)

The D-optimal design for Model (4.1) can be obtained by the following the-

orem.

Theorem 7. For Model (4.1), the D-optimal design supported on {x1, x2} is

ξ∗ =

 x1 x2

c1−c2+
√
c21−c1c2+c22

2c1−c2+
√
c21−c1c2+c22

c1
2c1−c2+

√
c21−c1c2+c22

 ,
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where

c1 =
ḡ2

11ḡ
2
12(π12 + π13)2

π11π12π13

(
ḡ2

21

π21(π22 + π23)
+

(π22 + π23)2ḡ2
22

π22π23

)
(x1 − x2)2,

c2 =
ḡ2

21ḡ
2
22(π22 + π23)2

π21π22π23

(
ḡ2

11

π11(π12 + π13)
+

(π12 + π13)2ḡ2
12

π12π13

)
(x1 − x2)2,

and ḡij = (g−1)′(θj + βxi), for i = 1, 2, j = 1, 2.

From Theorem 7, the uniform allocation is D-optimal if and only if c1 = c2.

Thus, the uniform allocations are not D-optimal, in general, for CR models under

the partial proportional odds assumption.

Now, we derive the analytic solution for the following model, which general-

izes the model in Example 1:

g(πi1) = θ11 + θ12xi + θ13x
2
i ,

g

(
πi2

πi2 + πi3

)
= θ21 + θ22xi.

(4.2)

The optimal weights for the D-optimal design supported on {x1, x2, x3} are sum-

marized in the following theorem.

Theorem 8. For Model (4.2), define

c1 = t1t2(x1 − x2)2, c2 = t1t3(x1 − x3)2, c3 = t2t3(x2 − x3)2,

where ti = ((g−1)′(θ21 +θ22xi))
2(πi2 +πi3)3(πi2πi3)−1. Without loss of generality,

we assume c1 ≥ c2 ≥ c3. Then, the optimal weights for the D-optimal design

supported on {x1, x2, x3} satisfy the following statements:

(1) If c1 = c2 = c3, then ω1 = ω2 = ω3 = 1/3.

(2) If c1 = c2 < c3, then ω1 = ω2 = (−2c1 + c3 + ∆1)/Λ1, ω3 = c3/Λ1, where

∆1 =
√

4c2
1 − c1c3 + c2

3 and Λ1 = −4c1 + 3c3 + 2∆1.

(3) If c1 < c2 = c3, then ω1 = (−c1 +2c3 +∆2)/Λ2 and ω2 = ω3 = 3c3/Λ2, where

∆2 =
√
c2

1 − c1c3 + 4c2
3 and Λ2 = −c1 + 8c3 + ∆2.

(4) If c1 < c2 < c3, then ω1 = u1/(u1 + u2 + 1), ω2 = u2/(u1 + u2 + 1), and

ω3 = 1/(u1 + u2 + 1), where u1 and u2 satisfy

c3u1u2(u1 − 2) + 2c2u1(u1 − 1) = c1u2(−2u1 + 1),

c3u1u2(u2 − 2) + 2c1u2(u2 − 1) = c2u1(−2u2 + 1).
(4.3)
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Table 1. Link functions considered in Section 5.

link name link function link name link function
logit log(µ/(1− µ)) probit Φ−1(µ)

log-log − log(− log(µ)) c-log-log log(− log(1− µ))
Cauchit tan(π(µ− 1/2))

Here, Φ(·) is the cumulative distribution function of N(0, 1) and c-log-log is the “complementary
log-log”.

Theorem 8 generalizes the results for the logit link, which is studied in Bu,

Majumdar and Yang (2020). The characteristic of such a design is the same,

regardless of c1, c2, and c3, which are decided by the link function and the model

parameters. The explicit solution of Equation (4.3) is given in the proof of Lemma

S.4 of Bu, Majumdar and Yang (2020); thus, we omit it here.

5. Simulation Studies

In this section, we evaluate our method by means of several examples. CR

models with five commonly used link functions, listed in Table 1, are considered

throughout this section. The quality of a design ξ is evaluated by the relative

D-efficiency:

EffD(ξ) =

(
|M(ξ)|
|M(ξ∗)|

)1/p

× 100%,

where ξ∗ is found using Algorithm 1 in Section 4.

Two kinds of designs are compared with our method (ξ∗). The first is the

uniform weighted design, in which all the given support points are assigned equal

weights. The second is the design proposed by Bu, Majumdar and Yang (2020)

on the discrete design field. Note that both the uniform weighted design and the

design proposed by Bu, Majumdar and Yang (2020) are applicable only if the

design field is discrete. When the design field is continuous, a common method

is to consider the grid points as its discrete levels. Let ξU and ξBMY denote the

uniform weighted design and the design proposed by Bu, Majumdar and Yang

(2020), respectively on the grid points. Note that only the optimal design for

Model (2.2) with the logit link is considered in Bu, Majumdar and Yang (2020).

Hence, ξBMY is not available when the link is not the logit link, and we denote

the results as “NA” in the corresponding part.

Example 4. In an experiment on the emergence of house flies (Zocchi and Atkin-

son (1999)), seven sets of pupae were exposed to seven different doses of gamma

radiation. After a period of time, for each set of pupae, observations included
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Table 2. Relative D-efficiencies of our method (ξ∗) against the uniform-weights designs
(ξU ) and the designs proposed by Bu, Majumdar and Yang (2020) (ξBMY ).

4 6 10 20 50

logit
EffD(ξU ) 60.1% 65.8% 66.5% 66.1% 65.6%

EffD(ξBMY ) 75.3% 90.3% 97.3% 99.6% 99.9%

the number of flies that died before the opening of the pupae, the number of flies

out of the opened pupae, but that died before completing emergence, and the

number of flies that completely emerged. See Table 1 in Zocchi and Atkinson

(1999) for more details.

We confirm that Model (2.5) used in Zocchi and Atkinson (1999) fits the

data the best among the five link functions in terms of AIC. Therefore, we only

consider the optimal design for Model (2.5).

Following Zocchi and Atkinson (1999), the design field X = [0, 200]. We

search for the locally D-optimal design ξ∗ using the algorithm in Section 4, with

the true parameters estimated from the original data. To show the efficiency of

our design (ξ∗) against ξU and ξBMY , we consider five different cases, namely, 4,

6, 10, 20, and 50 grid points. The summarized efficiencies of ξU and ξBMY are

listed in Table 2. The numbers in the first row of Table 2 indicate the numbers

of grid points used in the corresponding designs.

As shown in Table 2, the uniform weighted designs are far from satisfactory

for all cases. The relative D-efficiency increases as the number of grid points

increases when using the grid-point search mentioned in Bu, Majumdar and Yang

(2020) is adopted. However, the corresponding design cannot achieve satisfactory

efficiency in this example when only four grid points are used. In practice, the

number of grid points is difficult to determine. Therefore, our method occurs

prior to the grid-point search on the continuous design field.

To evaluate the computational efficiency, we report the computing time (in

seconds) for ξ∗ and ξBMY with 4, 6, 10, 20, and 50 grid points. We repeat each

case 1000 times, and compute the average time. All computations are carried

out on a Mac Mini with an M1 chip. Table 3 shows the results, where ξBMY,k

indicates the design proposed by Bu, Majumdar and Yang (2020) with k grid

points. From Table 3, one can see that to achieve the optimal design (in the

sense that the relative efficiency is more than 99%), ξBMY needs much more time

than our method does.

Example 5. In a developmental toxicity study (Agresti (2007)), in early preg-

nancy, each mouse was exposed to one of five scores for concentration level for 10
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Table 3. Average computing time (in seconds) of our method (ξ∗) and the designs
proposed by Bu, Majumdar and Yang (2020) with different grid points (ξBMY,k).

ξ∗ ξBMY,4 ξBMY,6 ξBMY,10 ξBMY,20 ξBMY,50

0.198 0.0257 0.0747 0.529 3.033 22.73

Table 4. Relative D-efficiencies of our methods against the uniform-weights designs (ξU )
and the designs proposed by Bu, Majumdar and Yang (2020) (ξBMY ).

4 6 10 20 50

logit
EffD(ξU ) 83.7% 84.0% 83.8% 83.3% 83.0%

EffD(ξBMY ) 97.4% 99.2% 99.7% 99.9% 99.9%

Cauchit
EffD(ξU ) 66.2% 55.5% 55.3% 53.2% 51.9%

EffD(ξBMY ) NA NA NA NA NA

days. Each fetus had three possible outcomes: dead, malformation, and normal.

See Table 6.11 in Agresti (2007) for more details. Agresti (2007) applied Model

(2.2) with the logit link under the proportional odds assumption. The model is

g (πi1) = θ1 + βxi,

g

(
πi2

πi2 + πi3

)
= θ2 + βxi,

(5.1)

where i = 1, . . . ,m and g(·) is the logit link.

The score for the concentration level is a continuous factor ranging from 0

to 500. As in Example 4, we also compare our design with ξU and ξBMY under

the same settings.

Actually, the Cauchit link is the best of the five link functions in terms of the

AIC. Therefore, we also consider Model (5.1) with g(·) being the Cauchit link.

The relative efficiencies of ξU and ξBMY are listed in Table 4. From Table 4, ξU
and ξBMY perform similarly to Example 4, in the logit link case.

Example 6. In this example, we demonstrate the case in which the parameters

in the Fisher information matrix are not known in advance. Here, a locally

optimal design cannot be applied directly. To overcome this problem, a Bayesian

optimal design (Chaloner and Verdinelli (1995)) is adopted here. Specifically,

we seek a design such that Eγ(log |M(ξ,γ)|) attains its maximum, where γ =

(βT ,θT1 , . . . ,θ
T
J−1)T .

Consider the house flies experiment in Example 4. A multivariate normal

prior with its mean and variance-covariance matrix estimated from the initial

data set in Zocchi and Atkinson (1999) is considered in this example. This prior
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Figure 1. Summary of the relative D-efficiencies of the Bayesian optimal design (ξB),
locally optimal design (ξL), and the uniform-weights designs (ξU,k).

is also used as the prior for the EW D-optimal design in Bu, Majumdar and

Yang (2020). To avoid calculating the expectation of the Fisher information

matrix analytically, we use its Monte Carlo version instead. More precisely, we

consider the Bayesian optimal design ξB that maximizes
∑1000

i=1 log |M(ξ,γi)|,
where γ1, . . . ,γ1000 are independent and identically generated from the prior.

The relative D-efficiencies of the 1,000 locally optimal designs are summarized

in Figure 1, where ξL is the locally optimal design studied in Example 4, and

ξU,k indicates the uniform weighted design for k grid points. Clearly, Figure 1

illustrates that ξB and ξL are significantly more robust than the uniform-weights

design.

6. Conclusion

We have address the problem of constructing locally D-optimal designs for

CR models with general link functions under the partial proportional odds as-

sumption. We derived the Fisher information matrix of the CR model to help

us better understand the characteristics of D-optimal designs. We presented an

algorithm to search for optimal designs on continuous design fields that is much

better than the grid-point search. See Example 4 for details. Furthermore, our

method can be applied to discrete design fields with a simple modification. Exam-

ple 5 shows that blindly using the optimal designs under the logit link is not very

efficient when other links are used to characterize the data. Several numerical

results show the necessity and superiority of the proposed method over current

methods.

Locally optimal designs may not be very efficient if the initial guesses are

far away from the true parameters. However, they can still serve as the basis
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for constructing optimal designs with respect to more robust criteria, such as

Bayesian optimality (Chaloner and Verdinelli (1995)). These can be regarded as

possible implementations of our proposed designs.

Supplementary Material

All technical proofs and additional simulation results are included in the

online Supplementary Material.
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A. Appendix

A.1. Definition of G(x)

Recall g(·) is a general link function, x ∈ X is a design point, and G(x) =

(gjk(x)) in Theorem 1 is a J × (J − 1) matrix.

When j = 1, g1k(x) has the form

g1k(x) =

{
(g−1)′(hT0 (x)β + hT1 (x)θ1) k = 1,

0 k = 2, . . . , J − 1.

When j = 2, . . . , J − 1,

gjk(x) =


−g−1(hT0 (x)β + hTj (x)θj)

(∑j−1
l=1 glk(x)

)
k = 1, . . . , j − 1,

(g−1)′(hT0 (x)β + hTj (x)θj)
(

1−
∑j−1

l=1 πil

)
k = j,

0 k = j + 1, . . . , J − 1.

Finally, when j = J,

gJk(x) = −
J−1∑
j=1

gjk(x), k = 1, . . . , J − 1.

Note that G(x) is a lower triangular matrix, i.e., gjk(x) = 0 for k > j. By

Assumption 2, gjj(x) > 0 for j = 1, . . . , J − 1, thus G(x) has full column rank.



DESIGNS FOR HIERARCHICAL RESPONSE EXPERIMENTS 397

A.2. Lift-one algorithm

When the experimental settings {x1, . . . ,xm} is given, lift-one algorithm

gives the optimal weights (ω∗1, . . . , ω
∗
m) for the corresponding experiment settings.

According to Theorem 3, we write the determinant of the Fisher information ma-

trix as |M(ξ)| = f(ω1, . . . , ωm) for an order p homogeneous polynomial function f .

Following Yang, Mandal and Majumdar (2016); Yang, Tong and Mandal (2017),

define S+ = {(ω1, . . . , ωm)T |ωi ≥ 0, i = 1, . . . ,m,
∑m

i=1 ωi = 1, f(ω1, . . . , ωm) >

0}, and

fi(z) = f

(
1− z
1− ωi

ω1, . . . ,
1− z
1− ωi

ωi−1, z,
1− z
1− ωi

ωi+1, . . . ,
1− z
1− ωi

ωm

)
. (A.1)

with 0 ≤ z ≤ 1 and (ω1, . . . , ωm)T ∈ S+. Note that fi(z) in Equation (A.1) can

be represented as

fi(z) =
∑

α1≥0,...,αm≥0
α1+···+αm=p

cα1,...,αmz
αi

m∏
j=1,j 6=i

(
1− z
1− ωi

ωj

)αj
.

Moreover, cα1,...,αm = 0 when some αi ≥ J , thus fi(z) can be further simpli-

fied as fi(z) =
∑J−1

k=0 c(k)z
k(1 − z)p−k, for some coefficients c(0), . . . , c(J−1). The

coefficients c(0), . . . , c(J−1) can be calculated through solving the following J lin-

ear equations, fi(zj) =
∑J−1

k=0 c(k)z
k
j (1 − zj)p−k, for J distinct z1, . . . , zJ ∈ [0, 1),

where fi(zj) can be directly calculated through Equation (A.1).

The lift-one algorithm is described in what follows.

Algorithm 2:

(i) Start with a uniform allocation ω0 = (1/m, . . . , 1/m)T and compute f(ω0).

(ii) Set up a random order of i going through {1, . . . ,m}.

(iii) For each i, determine fi(z).

(iv) Use quasi-Newton algorithm to find z∗ maximizing fi(z) with 0 ≤ z ≤ 1. If

fi(z
∗) ≤ fi(0), let z∗ = 0. Define ω

(i)
∗ = (ω1(1− z∗)/(1− ωi), . . . , ωi−1(1− z∗)

/(1− ωi), z∗, ωi+1(1− z∗)/(1− ωi), . . . , ωm(1− z∗)/(1− ωi))
T .

(v) Replace ω0 with ω
(i)
∗ , and f(ω0) with f(ω

(i)
∗ ).

(vi) Repeat (ii)–(v) until f(ω0) = f(ω
(i)
∗ ) for all i.
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