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Abstract

This supplement contains the technical details required for the arugments given in
Section 2.2 of the main paper.
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1. Technical details

We begin with the proof of Proposition 2.1.

1.1 Proof of Proposition 2.1

Below let
∫

:=
∫ 1

0
. According to the definitions of τ̂Xj (λ), v̂Xj (t, λ), τXj , and vXj , a simple

calculation shows that for almost all t ∈ [0, 1],∫
(CX(t, s) + (ĈX

m (t, s, λ)− CX(t, s)))(vXj (s) + (v̂Xj (s, λ)− vXj (s)))ds (6.1)

= (τXj + (τ̂Xj (λ)− τXj ))(vXj (t) + (v̂Xj (t, λ)− vXj (t))).

The sequence {vXj }j∈N forms an orthonormal basis of L2([0, 1]), and hence for each natural
number j there exist coefficients {ξi,λ}i∈N such that

v̂Xj (t, λ)− vXj (t) =
∞∑
i=1

ξi,λv
X
i (t), (6.2)

for almost every t in [0, 1]. By rearranging terms in (6.1), we see that∫
CX(t, s)(v̂Xj (s, λ)− vXj (s))ds+

∫ (
ĈX
m (t, s, λ)− CX(t, s)

)
vXj (s)ds (6.3)
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1.1 Proof of Proposition 2.1

= τXj (v̂Xj (t, λ)− vXj (t)) +
(
τ̂Xj (λ)− τXj

)
vXj (t) +Gj,m(t, λ),

where

Gj,m(t, λ) =

∫
[CX(t, s)− ĈX

m (t, s, λ)][v̂Xj (s, λ)− vXj (s)]ds+ [τ̂Xj (λ)− τXj ][v̂Xj (t, λ)− vXj (t)].

Taking the inner product on the left and right hand sides of (6.3) with vk, for k 6= i, and
employing (6.2) yields

τXk ξk,λ +

∫∫ (
ĈX
m (t, s, λ)− CX(t, s)

)
vXj (s)vXk (t)dsdt = τXj ξk,λ + 〈Gj,m(·, λ), vXk 〉,

which implies that

ξk,λ =
〈ĈX

m (·, ·, λ)− CX , vXj ⊗ vXk 〉
τXj − τXk

− 〈Gj,m(·, λ), vXk 〉
τXj − τXk

, (6.4)

for all λ ∈ [0, 1] and k 6= i. Furthermore, by the parallelogram law,

ξi,λ = 〈vXj , v̂Xj (·, λ)− vXj 〉 = −1

2
‖v̂Xj (·, λ)− vXj ‖2. (6.5)

Let Sj,X = min{τXj−1 − τXj , τXj − τXj+1} for j ≥ 2 and S1,X = τX1 − τX2 . By Assumption 2.3 and
the fact that j ≤ d we have Sj,X > 0. Hence, Lemma 2.2 in Horváth and Kokoszka (2012)
(see also Section 6.1 of Gohberg et al. (1990)) implies for all λ ∈ [0, 1],

√
λ‖v̂Xj (·, λ)− vXj ‖ ≤

1

Sj,X

∥∥√λ[ĈX
m (·, ·, λ)− CX ]

∥∥. (6.6)

Further,

√
λ[ĈX

m (t, s, λ)− CX(t, s)] =

√
λ

bmλc

bmλc∑
i=1

(Xi(t)Xi(s)− CX(t, s))

=
1√
m

√
mλ√
bmλc

1√
bmλc

bmλc∑
i=1

(Xi(t)Xi(s)− CX(t, s)).

It is easy to show using the Cauchy–Schwarz inequality that the sequenceXi(·)Xi(·)−CX(·, ·) ∈
L2([0, 1])2 is L2+κ-m-approximable for some κ > 0 if Xi is Lp-m-approximable for some p > 4.
Lemma B.1 from the Supplementary Material of Aue et al. (2018) can be generalized to L2+κ-
m-approximable random variables taking values in L2([0, 1]2), from which it follows that

sup
λ∈[0,1]

1√
bmλc

∥∥∥ bmλc∑
i=1

(Xi(·)Xi(·)− CX(·, ·))
∥∥∥ = OP(log(1/κ)(m)).

Using this and combining with (6.6), we obtain the bound

sup
λ∈[0,1]

∥∥∥√λ[ĈX
m (·, ·, λ)− CX ]

∥∥∥ = OP

(
log(1/κ)(m)

√
m
)
, (6.7)



1.1 Proof of Proposition 2.1

and the estimate (2.28). Furthermore, using the bound that

|τ̂Xj (λ)− τXj | ≤
∥∥ĈX

m (·, ·, λ)− CX
∥∥,

we obtain by similar arguments that

sup
λ∈[0,1]

√
λ|τ̂Xj (λ)− τXj | = OP

( log(1/κ)(m)√
m

)
. (6.8)

Using the triangle inequality, Cauchy–Schwarz inequality, and combining (6.7) and (6.8), it
follows

sup
λ∈[0,1]

λ‖Gj,m(·, λ)‖ ≤ sup
λ∈[0,1]

√
λ
∥∥∥[ĈX

m (·, ·, λ)− CX ]
∥∥∥ sup
λ∈[0,1]

√
λ‖v̂(·, λ)− vXj ‖ (6.9)

+ sup
λ∈[0,1]

√
λ|τ̂Xj (λ)− τXj | sup

λ∈[0,1]

√
λ‖v̂(·, λ)− vXj ‖ = OP

( log(2/κ)(m)

m

)
.

Let

Rj,m(t, λ) =
1√
m

∑
k 6=j

vXk (t)

τXj − τXk

∫ 1

0

∫ 1

0

ẐX
m (s1, s2, λ)vXk (s2)v

X
j (s1)ds1ds2.

Combining (6.2), (6.4) and (6.5), we see that for almost all t ∈ [0, 1] and for all λ ∈ [0, 1],

λ[v̂Xj (·, λ)− vXj (t)] =
mλ

bmλc
Rj,m(t, λ)−

∑
k 6=j

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (t)− 1

2
‖v̂Xj (·, λ)− vXj ‖2vXj (t),

with the convention that (mλ/bmλc)Rj,m(t, λ) = 0 for λ < 1/m. Using this identity and the
triangle inequality, we obtain

sup
λ∈[0,1]

∥∥∥λ[v̂Xj (·, λ)− vXj (t)]− mλ

bmλc
Rj,m(t, λ)

∥∥∥ (6.10)

≤ 1

2
sup
λ∈[0,1]

λ‖v̂Xj (·, λ)− vXj ‖2 + sup
λ∈[0,1]

∥∥∥∑
k 6=j

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (t)
∥∥∥.

The first term on the right-hand side of (6.10) can be bounded by bound (2.28). In order to
bound the second term we have, using the orthonormality of the vXk (Parseval’s identity) and
the fact that 1/(τXj − τXk )2 ≤ 1/S2

j,X for all k 6= i, that∥∥∥∑
k 6=j

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (·)
∥∥∥ =

(∑
k 6=j

〈λGj,m(·, λ), vXk 〉2

(τXj − τXk )2

)1/2
≤ 1

Sj,X

(∑
k 6=j

〈λGj,m(·, λ), vXk 〉2
)1/2
≤ 1

Sj,X
‖λGj,m(·, λ)‖.

Therefore

sup
λ∈[0,1]

∥∥∥∑
k 6=j

〈λGj,m(·, λ), vXk 〉
τXj − τXk

vXk (·)
∥∥∥ ≤ sup

λ∈[0,1]

1

Sj,X
‖λGj,m(·, λ)‖ = OP

( log(2/κ)(m)

m

)
,
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where the last estimate follows from (6.9). Using these bounds in (6.10), we obtain that

sup
λ∈[0,1]

∥∥∥λ[v̂Xj (·, λ)− vXj (t)]− mλ

bmλc
Rj,m(t, λ)

∥∥∥ = OP

( log(2/κ)(m)

m

)
.

Given the convention that (mλ/bmλc)Rj,m(t, λ) = 0 for 0 ≤ λ < 1/m, the result follows then
by showing that

sup
λ∈[1/m,1]

∣∣∣ mλbmλc − 1
∣∣∣∥∥∥Rj,m(t, λ)

∥∥∥ = OP

( log(2/κ)(m)

m

)
.

This result is a consequence of supλ∈[1/m,1]
∣∣ mλ
bmλc − 1

∣∣ ≤ 1/m, and supλ∈[1/m,1] ‖Rj,m(t, λ)‖ =

OP(1).

1.2 Proof of Proposition 2.3

Before proceeding with this proof, we develop some notation as well as a rigorous definition of
the constant ζj. Recall the notations (2.31), (2.26) and (2.27) and define the random variables

X̃i(s1, s2) = Xi(s1)Xi(s2)− CX(s1, s2); Ỹi(s1, s2) = Yi(s1)Yi(s2)− CY (s1, s2). (6.11)

Further let the random variables X
(j)

i and Y
(j)

i be defined by

X
(j)

i =
∫ 1

0

∫ 1

0
X̃i(s1, s2)f

X
j (s1, s2)ds1ds2 , (6.12)

Y
(j)

i =
∫ 1

0

∫ 1

0
Ỹi(s1, s2)f

Y
j (s1, s2)ds1ds2,

with the functions fXj , f
Y
j given by

fXj (s1, s2) = −vXj (s1)
∑
k 6=j

vXk (s2)

τXj − τXk

∫ 1

0

vXk (t)vYj (t)dt, (6.13)

fYj (s1, s2) = −vYj (s1)
∑
k 6=j

vYk (s2)

τYj − τYk

∫ 1

0

vYk (t)vXj (t)dt. (6.14)

Firstly, we note that by using the orthonormality of the eigenfunctions vXj and vYj , and As-
sumption 2.3, we get that

‖fXj ‖2 =

∫∫
(fXj (s1, s2))

2ds1ds2 = ‖vXj ‖2
∑
k 6=j

(∫ 1

0
vXk (t)vYj (t)dt

)2
(τXj − τXk )2

≤ 1/S2
j,X <∞.

Let

σ2
X,j =

∞∑
`=−∞

cov(X
(j)

0 , X
(j)

` ), and σ2
Y,j =

∞∑
`=−∞

cov(Y
(j)

0 , Y
(j)

` ).

Based on these quantities, ζj is defined as

ζj = 2

√
σ2
X,j

θ
+

σ2
Y,j

1− θ
. (6.15)
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Proof of Proposition 2.3. We can write

Ẑ(j)
m,n(λ) =

√
m+ n

∫ 1

0

(D̂(j)
m,n(t, λ))2 − λ2D2

j (t))dt (6.16)

=
√
m+ n

{∫ 1

0

(D̂(j)
m,n(t, λ)− λDj(t))

2

+2λDj(t)(D̂
(j)
m,n(t, λ)− λDj(t))

2dt

=
√
m+ n

∫ 1

0

(D̃(j)
m,n(t, λ))2dt

+2λ
√
m+ n

∫ 1

0

Dj(t)D̃
(j)
m,n(t, λ)dt+ oP(1)

uniformly with respect to λ ∈ [0, 1], where the process D̃
(j)
m,n(t, λ) is defined in (2.31) and

Proposition 2.2 was used in the last equation. Observing (2.32) gives

Ẑ(j)
m,n(λ) = Z̃(j)

m,n(λ) + oP(1) (6.17)

uniformly with respect to λ ∈ [0, 1], where the process Z̃
(j)
m,n is given by

Z̃(j)
m,n(λ) = 2λ

√
m+ n

∫ 1

0

Dj(t)D̃
(j)
m,n(t, λ)dt. (6.18)

Consequently the assertion of Proposition 2.3 follows from the weak convergence

{Z̃(j)
m,n(λ)}λ∈[0,1]  {λζjB(λ)}λ∈[0,1].

We obtain, using the orthogonality of the eigenfunctions and the notation (2.6), that

Z̃(j)
m,n(λ) = 2λ

√
m+ n

{ 1√
m

∫ 1

0

ẐX
m (s1, s2, λ)

∫ 1

0

∫ 1

0

Dj(t)
∑
k 6=j

vXk (t)

τXj − τXk
dtvXj (s1)v

X
k (s2)ds1ds2

− 1√
n

∫ 1

0

ZY
n (s1, s2, λ)

∫ 1

0

∫ 1

0

Dj(t)
∑
k 6=j

vYk (t)

τYj − τYk
dtvYj (s1)v

Y
k (s2)ds1ds2

}
(6.19)

= 2λ
√
m+ n

{ 1

m

bmλc∑
i=1

X
(j)

i +
1

n

bnλc∑
i=1

Y
(j)
i

}
,

where the random variables X
(j)

i and Ȳ
(j)
i are defined above. We now aim to establish that

{ 1√
m

bmλc∑
i=1

X
(j)

i

}
λ∈[0,1]

 σX,j{BX(λ)}λ∈[0,1], (6.20)

where BX is a standard Brownian motion on the interval [0, 1]. In the following we use the
symbol ‖·‖ simultaneously for L2-norm on the space L2([0, 1]) and L2([0, 1]2) as the particular
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meaning is always clear from the context. Firstly, we note that by using the orthonormality
of the eigenfunctions vXj and vYj , and Assumption 2.3, we get that

‖fXj ‖2 =

∫∫
(fXj (s1, s2))

2ds1ds2 = ‖vXj ‖2
∑
k 6=j

(∫ 1

0
vXk (t)vYj (t)dt

)2
(τXj − τXk )2

≤ 1/S2
j,X <∞.

The following calculation is similar to Lemma A.3 in Aue et al. (2020). Let

X̃
(m)
i (t, s) = Xi,m(t)Xi,m(s)− EX0(t)X0(s),

where {Xi,m}i∈Z is the mean zerom-dependent sequence used in definition ofm-approximability
(see Assumption 2.2). Moreover, if q = p/2 with p given in Assumption 2.2, then we have by
the triangle inequality and Minkowski’s inequality that{
E‖X̃i − X̃(m)

i ‖q
}1/q ≤ {E(‖Xi(·)(Xi(·)−Xi,m(·))‖+ ‖Xi,m(·)(Xi(·)−Xi,m(·))‖)q

}1/q
(6.21)

≤
{
E(‖Xi(·)(Xi(·)−Xi,m(·))‖q

}1/q
+
{
E‖Xi,m(·)(Xi(·)−Xi,m(·))‖q

}1/q
.

Using the definition of the norm in L2([0, 1]), it is clear that

‖Xi(·)(Xi(·)−Xi,m(·))‖ = ‖Xi‖‖Xi −Xi,m‖,

and hence we obtain from the Cauchy–Schwarz inequality applied to the expectation on the
concluding line of (6.21) and stationarity that

(E(‖Xi(·)(Xi(·)−Xi,m(·))‖q)1/q + (E‖Xi,m(·)(Xi(·)−Xi,m(·))‖q)1/q

≤ (E‖X0‖2q)1/2q(E‖X0 −X0,m‖2q)1/2q.

It follows from this and (6.21) that

∞∑
m=1

(E‖X̃i − X̃(m)
i ‖q)1/q ≤ (E‖X0‖p)1/p

∞∑
m=1

(E‖X0 −X0,m‖p)1/p <∞. (6.22)

Now let X
(j)

i,m be defined as X
(j)

i in (6.12) with Xi replaced by Xi,m. We obtain using the
Cauchy–Schwarz inequality that

(E[X
(j)

i −X
(j)

i,m]q)1/q ≤ ‖fXj ‖(E‖X̃i − X̃(m)
i ‖q)1/q.

By (6.22) it follows that
∞∑
m=1

(E[X
(j)

i −X
(j)

i,m]q)1/q <∞

and therefore the sequence X
(j)

i satisfies the assumptions of Theorem 3 in Wu (2005). By this
result the weak convergence in (6.20) follows. By the same arguments it follows that

{ 1√
n

bnλc∑
i=1

Y
(j)

i

}
λ∈[0,1]

 σY,j{EBY (λ)}λ∈[0,1], (6.23)
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where BY is a standard Brownian motion on the interval [0, 1] and

σ2
Y,j =

∞∑
`=−∞

cov(Y
(j)

0 , Y
(j)

` ).

Since the sequences {Xi}i∈R and {Yi}i∈R are independent, we have that (6.20) and (6.23) may
be taken to hold jointly where the Brownian motions BX and BY are independent. It finally
follows from this and (6.19) that

{Z̃(j)
m,n(λ)}λ∈[0,1]  

{
2λ
(σX,j√

θ
BX(λ) +

σY,j√
1− θ

BY (λ)
)}

λ∈[0,1]

D
=
{
λζjB(λ)

}
λ∈[0,1] ,

which completes the proof of Proposition 2.3.

References

Aue, A., Rice, G., and Sönmez, O. (2020). Structural break analysis for spectrum and trace of covariance operators.

Environmetrics, 31(1):e2617.

Aue, A., Rice, G., and Sönmez, O. (2018). Detecting and dating structural breaks in functional data without dimension

reduction. Journal of the Royal Statistical Society, Series B, 80:509–529.

Gohberg, I., Goldberg, S., and Kaashoek, M. A. (1990). Classes of Linear Operators. Vol. I. Operator Theory: Advances

and Applications 49. Birkhäuser, Basel.
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