SAS MODEL CHECKING 1

MODEL CHECKING IN LARGE-SCALE DATA SET VIA
STRUCTURE-ADAPTIVE-SAMPLING

Yixin Han!, Ping Ma?, Haojie Ren?, and Zhaojun Wang'

1School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin, P.R. China
2Department of Statistics, University of Georgia, Athens, GA, USA
3School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China

Supplementary Material

This Supplementary Material contains the proofs of several technical lemmas, the
relevant proof of estimated dimension reduction direction, and some additional simu-

lation results.

S1. Useful lemmas

The first lemma is a standard Bernstein’s inequality.

Lemma S.1 (Bernstein’s inequality). Let Y;,...,Y, be independent centered random
variables a.s. bounded by A < oo in absolute value. Let 0 = n~tY " E(Y?). Then

forallt >0,

p Vist| <exp-——n ).
T<Z ~ >—eXp< 2n02+2At/3>

i=1
The next lemma is a well-known projection result for U-statistic.

Lemma S.2 (Projection of U-statistic). Let zq,...,2, be an independent and iden-
tically random wvariable, H,(z1,22) be an order two kernel of the U-statistics U, =

{n(n—1)}"" >izj Ho(ziy 25). Let ry(zi) = E{H,(zi, 2;)|2:} be the projection on z;. If
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we provide E {H?2(z;, 2;)} = o(n), then we have

Un =E{rn(z:)} + Op(l)-

Lemma is a direct result for Nadaraya-Watson estimator in |Ren et al.| (2020)).

Lemma S.3 (Nadaraya-Watson estimator). Suppose the condition in C’omllary all
hold. Under the “singular” local alternative (2.6)), the Nadaraya-Watson estimator

]\/Z(w) of M(w) satisfies

sup |M(w) — M(w)’ =0, (hfeé; + 1/%) :
weQy nohf

S2. Proofs of Lemmas

Proof of Lemma [A.1]

W, (e,e) can be regarded as a U-statistic with a kernel

1 (w;—w
Hn(Zi,Zj) = —K (CU W]

h h > VI wi) /f(wy)

where z; = {w;,&;}. Under Hy, E(g; | w;) = 0. Thus, we can verify that

€ 1 Wi — Wj b
E{Hn<zi’zj) | Zi} = h\/mE{\/mK( h )E(€] | ])} 0,

this implies that W (e, €) is a degenerate statistic of order two. By a similar proof of
Lemma 3.3 in [Zheng (1996) with the technique provided in Hall (1984), it is easy to

obtain nh'/2W, (g, €) /oy £, N(0,1), where of = 20%|Q| [ K?(u)du. O

Proof of Lemma [A 2]
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By Assumption 5| and the Bernstein’s inequality (Lemma |S.1)), we can show that

195() = gi(¥)| < sup |R(V)b* +n~" Hy(v Zm )@ (ugi —

vel

=0, {v" +

(nb/logn)™"% + n~1/2}.

By Assumptions [} it suffices to show that

G(X;3,8) -

here gy (v) lies between g(v) and gx(v), k =1,...

G(X;B%.g") =

= 0,(n7'?) + 0, {b* +

=0y {b2+

v)ei| + Op(n~'7?)

(nb/logn) Y2 + n_l/Q} :

(nb/logn)~Y? + n_l/Q}

VG5(X;B.8)(B—B)+ VG (X;B.8)E -8

,q, and 5 lies between B and ,é\ By

Assumption [d] the first derivatives of G(-) with respect to 8 and g are bounded. Then,

the result is proved from the above discussion.

Proof of Lemma [A.3]

U

Note that for any fixed 8, E{W,(e, Y*)} = 0 because E(g; | w;) = 0 under Hy.

Then, we calculate its second-order moment

S P

E{W;(e, X*)} =

<

n(n—1)%c

i=1 j#i /=1 j5'#

T () ()

Since E(g;e4) # 0 if and only if i = 4’, we have

5T, o
]E
n%(n — 1)2h? { fw;) \/TJ\/TJ (

o

2

" { v B w

@) [{62 + (nb/logn)~1?* + n_l/Q}Z] :

E; T;
n_ 1 2h2 ZZZZ /f(wi) /f(wj)

} |
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where the last inequality is due to Lemma[A.2] Based on the bandwidth condition in
Assumption [6| and Chebyshev’s inequality, we have W, (e, Y*) = o0,(n"'h~1/2).
By Assumption , we have the expansion T = VG%(X,-; 83, g) (B—B0)+VGg(Xi; 8, g)(g—

go). Substituting Y} into W, (Y*, T*) and re-expresses it as

" VG {g —g0(Xi)} VGI{8(X;) — 280X} [ wi —w;
W, (T, T* - g i j
( n(n—1 hzél f(w» 7)) K< h )

" VG {E(X)) — g0 (X)} VG (B —ﬁo) i —w;

EmEy v e ()

= Wit + 2Whio + Wias.

For W12, we know that

n o n VGT(,B ﬁo) Wi — w .
o S T 2 Ve ) O ) sl

the inequality holds since the kernel K (-), the derivatives VGg and G5, and density f(-)
are positive and bounded functions. By Lemma[A.2] we get sup,p [8(X;) — g0(Xs)| =

O, {b* + (nb/logn)~'/?}. Based on the bandwidth conditions in Assumption@
Warz = O, (n71/%) - O, {0* + (nb/ log )/} = 0, (n™'h™"72).

For W13, it is easy to check that W13 = O, (n™!) = o, (n_lh_l/Q),
Next, we discuss the term W,;;. By the representation of link function g =

(g1, -- ,gq)T, there exists a bounded function A(-) such that

n”! Xn: A(X;)Qp (uri — ) Y
Ge(v) = —=, +O0,(n), k=1,....q. (S.1)
- ;A(Xj)Qb (urj —v)
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Let C(v) =n=' Y A(X})Qp (ug; — v). Substituting (S.1)) into W1y
i=1

' n n n n 1 Wi — Wj
o~ e o v ()

Us — Uy

b

Ut—Uj

) 0= (X0 VG A (1) (- X)) | + 0,7

.
- VGz A(Xy)Q <
Then, we need to prove W11 = o, (nilhfl/ 2) in the following two cases.

Case 1. {The indices i, j, s,t are all different}. Denote the expectation result as S;. By
the Assumption [5| the Lemma B.1 in [Fan and Li (1996), and Lemma 2 and
Lemma 3 in |Robinson| (1988)), we have

Us — Uy

VGIAX:)Q ( ; ) (Y, — go(Xi))}

Si=s W%CWC@)E {E{
‘E, {VGgA(X@-)Q (Ut 7 uj) (Y; - go(Xj))} - <%)1

< C?sz]E {Dg(Xz-)Dg(Xj)K <Wi 5 wj) }

=00*) = o(n_lh_1/2),

where C} is a positive constant, and Dg(-) is the rth bounded derivative of g(-).

Case 2. {The indices i, j, s, t take no more than three different values}. Denote the expec-

tation result as S;. By the same conditions in Case 1, we have

S

T mﬁc(ui)c‘(uj)
BB {vegamo (U5 ) - s} 1 (25

< CZQTE {Dg(Xz-)Dg(Xa‘)K (%)}

= O(b*) = o(n *h~1/?%).
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Hence, E(W,11) = S1+ S =0 (nflhfl/z). By similar discussion (we omit tedious
process for simplicity), there is E(W?2,) = o(n 2h™'). Further, the application of
Chebyshev’s inequality yields that W11 = o0, (n"'h=*/2).

In summary, we arrive at the result that W, (X*, X*) = o,(n"th~1/2). O

Proof of Lemma [A.4]

Note that W, (e, L) be rewritten as a U-statistic with kernel

! . e g : £ .
e (5 k) i),

By the theory of non-degenerate U-statistic in [Serfling| (2009))

Hn('ziv Zj) =

E {Hz(z,, Z; }

{%WNK (52} - ()}
(“’i ) B0 ) )

“i) @
/ u)dw;du

= o(n),

IA
Q b|q D‘l,_.

&g

[ Wi — Wj 1
) E{K( h > f(w)E{L(X")}W“%H

i Wi — Wj 1 ‘
" 2h f(wnE _K< h ) f<wj>E{L(Xj>}]

E{L(X; | w; — hu)} v/ f(w; — hu) K (u)hdu

E{H,(zi,2) | zi} =

2h\/— /

_ sE{L(X;)}
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With these results, we have the projection of statistic W,,(e, L) (Lemma as

Z]E{H 2i,25) | zi} = —= ZEE{L +%Zln(zi)20 1

~

Note that f(w — hu) = f(w) — f (w)hu and [ f(w)?*(hu)*K (u)du = O(h?). Thus,

E{12(z)} = O(h?) — 0. As a result, we have W,,(g, L) = O,(n~%/?). O

Proof of Lemma [A.5]
Note that f(w) oc M?(w). It is straightforward to verify this result under (2.3)) by

using Lemma [S.3] O

S3. Proofs of the asymptotic results with an estimated 6

Lemma S.4. Suppose the Assumptions ﬂ hold. Given L(-) is a continuously differ-
entiable function, which satisfies |L(X)| < p(X) for all X € R? and E {p*(X)} < cc.

If h = 0 and ngh®/? — oo, then under the null hypothesis Hy, the following result holds

withé\
~ 1 L £; o LX) —1/25—1/4
Wo(e,L,0) = — K (0 — B;) =il = O, (n V2R,
n(n—n;; @ N I@) T

Proof. This result is a variation of Lemma[A.4l with an estimated dimension reduction
direction. By Assumption EI, we know that 6 — 6 = O,(ngy Y 2). A new error term is

involved by 0

;gﬁw—h
S LX) K’(”"‘~)<0 6)"(X, - X,).
h221]#,/ W@ 1/ Wj h
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the second formula holds by mean value theorem. Here w; = gTXi €  with §J €
min{gj,ej},max{éj,ej}], i=1,...n;5=1,...p. By Assumption we know the
derivative of K(-) with respect to € is bounded, then we assert that replacing 0 by 6

does not impact the convergence rate of Wy. That is

L(X;) (wi —w >
>y ) #K t) (X = X;),
n - 1 h =1 ji wl wj h
can be rewritten as a U-statistic. Then, we can similarly show that this term is of

order O,(n~"/2). Under the condition n9h32 — oo, the convergence rate of W, (e, L, )

is Op(ng Y2p- In=1/2) = Op(n_l/Qh_l/4n()_1/2h_3/4) = 0,(n"1/2p71/4). O

Proof of Theorem [3

Theorem [3]is a direct extension of the results in Lemma and Proposition
as long as the difference incurred by the estimated direction in kernel function and
sampling density can be controlled. For the difference in kernel function K(-), we can
refer to the derivation in Lemma[S.4] Next, we focus on the differences that appear in

the density f(-). Take Lemma as an example, the error term is involved in f(-)

—1

€ £; SO V fwi)/ fw;)
;%ﬁfw»ff(wj)fw N a7

By the uniform convergence rate of kernel density estimator in [Silverman| (1978)

and Lemma [A 5] sup, |f(w) — f(w)| = O, {h3 + (nohy/logng)™*/?}. By Assumption

[7, the standard derivations yield that

24 1/2

“up VI (wi)/ flwg) ] _ Op{ T2 n2 4 (nohf/logno)*l/z}- (S.2)
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Note that E(W;) = 0. We next consider its second-order moment

E(WJ‘Q):E{ n_lzhzzzzz \/le \/wa \/fl;JZ Vf(w - )K( Z; :

i=1 j#i /=1 j'#i

@) o)

_K<@i'—@j'> \/f(wi)\/fw \/f
" Vien/i@) Vi@ W

Observe that E(g;ejep€5) # 0 if and only if ¢ = ¢, j = 5/ or i = j',j = ¢’. Then,

we can take a supremum for the last two terms in the above summation. By the result
in (S.2)), we have E(W}) = O, {logno/(n*hnohy)}. The application of Chebyshev’s
inequality yields Wy = op(nflhfl/ 2). When replacing 6 with 4/9\, the same results can
be obtain in Lemma [A.3]

By the same techniques discussed above, we get
2 KQ w;)

ZZ f UJz ) +Op(1)7

zlj;éz

<m
||

where the main term is a U-statistic of order two with kernel function

1 Wi — Wy £ 832
Hn(ziv Zj) = %KQ ( h ) f(wz) f(wj)’

E {H, (2, %)} /K2( j) f(aji) fzj:j)f(wi)f(wj)dwidwj
_ ‘% / K2(w)duhdw + o(1)
= 04]Q]/K2(u)du+o(1)
=0 /2+ o(1).

And E{H2(z;,2;)} = o(h™') = o(n). By Lemma[S.2] we have 53 = o + 0,(1).

Consequently, we can naturally get the conclusions in Theorem [3] O
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S4. Addition simulations

To explore the influence of the dimension reduction methods and kernel functions

in our proposed algorithm, we conduct the following studies by 500 replications on

Scenarios I-III listed in Section [ The results are reported in Table [SI] and Table

Table S1: Empirical sizes and powers (%) of the SAS procedure for different SDR methods under

Scenarios I-II1.

MAVE SAVE DR

Scenario 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50
structure

I 1ID 5.8 97.0 99.8 7.0 974 100.0 56 944 100.0

COR 6.4 11.8 652 6.8 12.6 66.6 4.0 12.0 64.8

II 1ID 44 174 754 5.2 172 82.8 54 13.6 70.6

COR 6.2 5.6 16.8 5.8 9.0 18.4 4.6 7.0 16.2

11T IID 5.2 9.0 318 6.6 7.4 10.2 5.2 6.2 13.0

COR 7.0 44 152 5.6 6.8 10.4 6.4 6.2 10.8

Table [S1] reveals that the dimension
our test procedure under three scenarios.
functions on empirical sizes and powers
result, we choose the MAVE dimension

function in our numerical analysis.

reduction methods are not very sensitive to
In Table [S2] the influence of different kernel
of our SAS procedure is not obvious. As a

reduction method and Epanechnikov kernel
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Table S2: Empirical sizes and powers (%) of the SAS procedure for different kernel functions under

Scenarios I-II1.

Epanechnikov Triangular Triweight
6
Scenario 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50
structure
I 11D 58 97.0 99.8 56 96.2 99.8 5.6 95.6 100.0
COR 6.4 11.8 65.2 6.8 12.0 62.8 54 12.0 56.6
I 11D 44 174 754 56 18.0 75.6 6.8 15.8 71.8
COR 6.2 56 16.8 4.8 10.0 17.0 5.2 8.0 14.0
11T 11D 5.2 9.0 31.8 5.0 7.6 28.0 4.6 6.8 26.8
COR 70 44 152 7.6 6.2 16.0 6.6 6.2 13.2
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